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The aim of this paper is to prove some coincidence and common fixed point theorems for probabilistic nearly densifying mappings
in complete Menger spaces. Our results improve the results of Chamola et al. (1991), Dimri and Pant (2002), and Pant et al. (2004)
and extend the results of Khan and Liu (1997) in the framework of probabilistic settings.

1. Introduction and Preliminaries

Banach contraction mapping principle is one of the most
interesting and useful tools in applied mathematics. In recent
years many generalizations of Banach contraction mapping
principle have appeared. The notion of probabilistic metric
spaces (in short PM-spaces) is a probabilistic generalization
of metric spaces which are appropriate to carry out the study
of those situations wherein distances are measured in the
sense of distribution functions rather than nonnegative real
numbers.The study of PM-spaceswas initiated byMenger [1].
Since then, Schweizer and Sklar [2] enriched this concept and
provided a new impetus by proving some fundamental results
on this theme. The first result on fixed point theory in PM-
spaces was given by Sehgal and Bharucha-Reid [3] wherein
the notion of probabilistic contraction was introduced as a
generalization of the classical Banach fixed point principle in
terms of probabilistic settings. Some recent fixed point results
can be studied in [4–7].

Kuratowski [8] introduced the notion of measure of non-
compactness of a bounded subset of a metric space. Further,
this study was carried on by Furi and Vignoli [9]. They intro-
duced the notion of densifying (also called condensing)map-
ping in terms of Kuratowski’s measure of noncompactness

and obtained some fixed point theorems. Following Furi and
Vignoli [9], a number of mathematicians worked on densify-
ing mappings and proved some metrical fixed point theorem
(cf. [10–14]). As a generalization of Kuratowski’s measure of
noncompactness, Bocsan and Constantin [15] introduced the
notion of Kuratowski’s measure of noncompactness in PM-
spaces. Subsequently, Bocşan [16] studied the notion of prob-
abilistic densifying mappings. Later, Hadžić [17], Tan [18],
Chamola et al. [19], Dimri and Pant [20], Pant et al. [21], Pant
et al. [22], and Singh and Pant [23] proved some results for
such mappings. In [24], Ganguly et al. introduced the notion
of probabilistic nearly densifying mappings and proved some
interesting results in this setting.

The aim of this paper is to prove some coincidence and
common fixed point theorems for certain classes of nearly
densifying mappings in complete Menger spaces. First, we
give some topological definitions and terminology defined in
[8, 15–17].

Definition 1. A semigroup 𝐺 is said to be left reversible if for
any 𝑟, 𝑠 ∈ 𝐺 there exist 𝑎, 𝑏 ∈ 𝐺 such that 𝑟𝑎 = 𝑠𝑏.

It is easy to see that the notion of left reversibility is equiv-
alent to the statement that any two right ideals of𝐺 have non-
empty intersection.
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Definition 2. Let𝐺 be a family of self-mappings in𝑋. A subset
𝑌 of𝑋 is called 𝐺-invariant if 𝑔𝑌 ⊆ 𝑌 for all 𝑔 ∈ 𝐺.

Definition 3. Let 𝐺∗ be the semigroup generated by 𝐺 under
composition ∗. Clearly, 𝐺∗ ⊇ {𝑔

𝑛

: 𝑛 ≥ 0} for any 𝑔 ∈ 𝐺 and
𝐺
∗

(𝑢) = {𝑢} ∪ {𝑔𝑢 : 𝑔 ∈ 𝐺
∗

} for 𝑢 ∈ 𝑋.

We restate the notion of probabilistic diameter for the
sake of quick reference.

Definition 4. Let 𝐴 be a nonempty subset of 𝑋. A function
𝐷
𝐴
(⋅) defined by

𝐷
𝐴
(𝑥) = sup

𝑦<𝑥

{ inf
𝑢,V∈𝐴

𝐹
𝑢,V (𝑦)} (1)

is called probabilistic diameter of 𝐴. 𝐴 is said to be bounded
if

sup
𝑥∈𝑅

𝐷
𝐴
(𝑥) = 1. (2)

The following definition is due to Bocsan and Constantin
[15].

Definition 5. For a probabilistic bounded subset 𝐴 of 𝑋,
𝛼
𝐴
(𝑥) defined by 𝛼

𝐴
(𝑥) = sup{𝜀 ≥ 0 : ∃ a finite cover

A of 𝐴 such that 𝐷
𝑆
(𝑥) ≥ 𝜀 for all 𝑆 ∈ A} is called

Kuratowski’s function.

The following properties of Kuratowski’s functions are
proved in [8]:

(a) 𝛼
𝐴
∈ I, the set of distribution functions;

(b) 𝛼
𝐴
(𝑥) ≥ 𝐷

𝐴
(𝑥);

(c) if 𝜙 ̸= 𝐴 ⊂ 𝐵 ⊂ 𝑋, then 𝛼
𝐴
(𝑥) ≥ 𝛼

𝐵
(𝑥);

(d) 𝛼
𝐴∪𝐵

(𝑥) = min{𝛼
𝐴
(𝑥), 𝛼
𝐵
(𝑥)};

(e) let 𝐴 be the closure of 𝐴 in the (𝜀, 𝜆)-topology on 𝑋;
then

𝛼
𝐴
(𝑥) = 𝛼

𝐴
(𝑥) ; (3)

(f) 𝐴 is probabilistic precompact (totally bounded) if
𝛼
𝐴
= 𝐻,

where 𝐻 denotes the specific distribution function
defined by

𝐻(𝑥) =
{

{

{

0, 𝑥 ≤ 0;

1, 𝑥 > 0.

(4)

Definition 6. Let (𝑋,F) be a PM-space. A continuous map-
ping 𝑓 of 𝑋 into 𝑋 is called a probabilistic densifying
mapping if and only if, for every subset 𝐴 of 𝑋, 𝛼

𝐴
< 𝐻

implies 𝛼
𝑓(𝐴)

> 𝛼
𝐴
.

Definition 7. A self-mapping 𝑓 : 𝑋 → 𝑋 is probabilistic
nearly densifying if 𝛼

𝑓(𝐴)
> 𝛼
𝐴
, whenever 𝛼

𝐴
< 𝐻, 𝐴 ⊂ 𝐻,

and 𝐴 is 𝑓-invariant.

Definition 8. Suppose 𝜙 : [0,∞) → [0,∞) is an upper sem-
icontinuous function with 𝜙(0) = 0 and 𝜙(𝑡) < 𝑡 for all 𝑡 > 0.

2. Main Results

First, we prove some fixed point theorems for probabilistic
nearly densifying mappings in Menger spaces.

Theorem 9. Let 𝑃, 𝑄, and 𝑅 be three continuous and nearly
densifying self-mappings on a completeMenger space (𝑋,F, ∗)

such that sup 𝑥 ∗ 𝑥 = 1 and 𝑅 commutes with 𝑃 and 𝑄. If, for
all 𝑥 < 1, 𝑢, V ∈ 𝑋, the following conditions are satisfied:

𝜙
1
(𝑃𝑢, 𝑄V) > min{𝜙

2
(𝑅𝑢, 𝑅V) , 𝜙

2
(𝑅𝑢, 𝑃𝑢) ,

𝜙
1
(𝑅V, 𝑄V) ,

𝜙
2
(𝑅𝑢, 𝑃𝑢) 𝜙

1
(𝑅V, 𝑄V)

𝜙
2
(𝑅𝑢, 𝑅V)

}

𝑓𝑜𝑟 𝑅𝑢 ̸= 𝑅V, 𝑃𝑢 ̸= 𝑄V;
(5)

𝜙
2
(𝑄𝑢, 𝑃V) > min{𝜙

1
(𝑅𝑢, 𝑅V) , 𝜙

1
(𝑅𝑢, 𝑄𝑢) , 𝜙

2
(𝑅V, 𝑃V) ,

𝜙
1
(𝑅𝑢, 𝑄𝑢) 𝜙

2
(𝑅V, 𝑃V)

𝜙
1
(𝑅𝑢, 𝑅V)

} ,

𝑓𝑜𝑟 𝑅𝑢 ̸= 𝑅V, 𝑄𝑢 ̸= 𝑃V,
(6)

where 𝜙
1
and 𝜙

2
are real valued mappings from𝑋×𝑋 to 𝜍, the

collection of all distribution functions, with either𝜙
1
or𝜙
2
being

upper semicontinuous (u.s.c.) and 𝜙
1
(𝑢, 𝑢) = 𝜙

2
(𝑢, 𝑢) = 1 for

all 𝑢 ∈ 𝑋.
Further, if, for some 𝑢

0
∈ 𝑋, 𝐺(𝑢

0
) = {𝑃

𝑖

𝑄
𝑗

𝑅
𝑘

𝑢
0
: 𝑖 =

0, 1, 2, . . . ; 𝑗 = 0, 1, 2, . . . ; 𝑘 = 0, 1, 2, . . .} is bounded, then 𝑃

and 𝑅 or 𝑄 and 𝑅 have a coincidence point.

Proof. For 𝑢
0
∈ 𝑋, let 𝐴 = 𝐺(𝑢

0
) and 𝑆 = {𝑃𝑄𝑅}.

Then 𝐴 = {𝑢
0
} ∪ 𝑃(𝐴) ∪ 𝑄(𝐴) ∪ 𝑅(𝐴).

If 𝛼
𝐴
< 𝐻, then

𝛼
𝐴
= 𝛼
{𝑢0}∪𝑃(𝐴)∪𝑄(𝐴)∪𝑅(𝐴)

= min {𝛼
𝑃(𝐴)

, 𝛼
𝑄(𝐴)

, 𝛼
𝑅(𝐴)

} > 𝛼
𝐴
,

(7)

a contradiction. It implies that 𝐴 is precompact.
Let 𝐵 = ⋂

∞

𝑛=0
(𝑃𝑄𝑅)

𝑛

(𝐴).
Then it is easy to see that 𝑆𝐵 = 𝐵 and 𝐵 is nonempty

compact subset of 𝐴. By the continuity of 𝑃, 𝑄, and 𝑅, it
follows that 𝑃𝐴 ⊂ 𝐴, 𝑄𝐴 ⊂ 𝐴, and 𝑅𝐴 ⊂ 𝐴. Further, it is
clear that 𝑃(𝐵) ⊂ 𝐵, 𝑄(𝐵) ⊂ 𝐵, and 𝑅(𝐵) ⊂ 𝐵.

Note that

𝑅 (𝐵) =

∞

⋂

𝑛=0

𝑅 (𝑃𝑄𝑅)
𝑛

(𝐴) ⊂

∞

⋂

𝑛=0

(𝑃𝑄𝑅)
𝑛

𝑅 (𝐴) ⊂ 𝐵,

𝐵 = 𝑃𝑄𝑅 (𝐵) = 𝑅𝑃𝑄 (𝐵) ⊂ 𝑅𝑃 (𝐵) ⊂ 𝑅 (𝐵) ,

(8)

which implies 𝑅(𝐵) = 𝐵 or 𝑅2(𝐵) = 𝐵.
Now, assume that 𝜙

1
is upper semicontinuous. Then the

function 𝑇 : 𝐵 → I, defined by 𝑇(𝑢) = 𝜙
1
(𝑅𝑢, 𝑄𝑢), is u.s.c.

So 𝑇 assumes its maximal value at some point 𝑝 in 𝐵. Clearly,
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𝑝 ∈ 𝑅
2

(𝐵), so there is a 𝑤 ∈ 𝐵 such that 𝑝 = 𝑅
2

(𝑤). Suppose
that neither 𝑃 and 𝑅 nor 𝑄 and 𝑅 have a coincidence point.
Then

𝑇 (𝑃𝑄 (𝑤))

= 𝜙
1
(𝑅𝑃𝑄 (𝑤) , 𝑄𝑃𝑄 (𝑤))

= 𝜙
1
(𝑃𝑅𝑄 (𝑤) , 𝑄𝑃𝑄 (𝑤)) by (5) ,

> min{𝜙
2
(𝑅
2

𝑄 (𝑤) , 𝑅𝑃𝑄 (𝑤)) ,

𝜙
2
(𝑅
2

𝑄 (𝑤) , 𝑃𝑅𝑄 (𝑤)) , 𝜙
1
(𝑅𝑃𝑄 (𝑤) , 𝑄𝑃𝑄 (𝑤)) ,

𝜙
2
(𝑅
2

𝑄 (𝑤) , 𝑃𝑅𝑄 (𝑤)) 𝜙
1
(𝑅𝑃𝑄 (𝑤) , 𝑄𝑃𝑄 (𝑤))

𝜙
2
(𝑅2𝑄 (𝑤) , 𝑅𝑃𝑄 (𝑤))

}

= 𝜙
2
(𝑄𝑅
2

(𝑤) , 𝑃𝑅𝑄 (𝑤)) , by (6) ,

> min{𝜙
1
(𝑅𝑅
2

(𝑤) , 𝑅
2

𝑄 (𝑤)) , 𝜙
1
(𝑅𝑅
2

(𝑤) , 𝑄𝑅
2

(𝑤)) ,

𝜙
2
(𝑅
2

𝑄 (𝑤) , 𝑃𝑅𝑄 (𝑤)) ,

𝜙
1
(𝑅𝑅
2

(𝑤) , 𝑄𝑅
2

(𝑤)) 𝜙
2
(𝑅
2

𝑄 (𝑤) , 𝑃𝑅𝑄 (𝑤))

𝜙
1
(𝑅𝑅2 (𝑤) , 𝑅2𝑄 (𝑤))

}

= 𝜙
1
(𝑅𝑅
2

(𝑤) , 𝑄𝑅
2

(𝑤)) = 𝜙
1
(𝑅𝑝, 𝑄𝑝) = 𝑇 (𝑝) ,

(9)

a contradiction to the selection of 𝑝. Hence, 𝑃 and𝑅 or𝑄 and
𝑅must have a coincidence point.

The same result holds good if 𝜙
2
is upper semicontinuous.

This completes the proof of the theorem.

Remark 10. The above theorem extends the results of Khan
and Liu [25, Theorem 3.1 and Corollary 3.3] to PM-spaces.

Theorem 11. Let 𝑋, 𝑃, 𝑄, and 𝑅 be as in Theorem 9. Further,
let 𝑃, 𝑄, and 𝑅 satisfying (5) and (6) have a coincidence point
𝑤; then 𝑅𝑤 is a unique common fixed point of 𝑃, 𝑄, and 𝑅.

Proof. We have 𝑃𝑤 = 𝑄𝑤 = 𝑅𝑤. By commutativity of 𝑅 with
𝑃 and 𝑄, 𝑃𝑅(𝑤) = 𝑅𝑃(𝑤) = 𝑅𝑅(𝑤) and 𝑄𝑅(𝑤) = 𝑅𝑄(𝑤) =

𝑅𝑅(𝑤), or 𝑃𝑅(𝑤) = 𝑅𝑅(𝑤) = 𝑄𝑅(𝑤).
Now let 𝑅2𝑤 ̸= 𝑅𝑤; then by (5) and (6), we have

𝜙
1
(𝑅
2

𝑤, 𝑅𝑤)

= 𝜙
1
(𝑃𝑅𝑤,𝑄𝑤)

> min{𝜙
2
(𝑅
2

𝑤, 𝑅𝑤) , 𝜙
2
(𝑅
2

𝑤, 𝑃𝑅𝑤) ,

𝜙
1
(𝑅𝑤,𝑄𝑤) ,

𝜙
2
(𝑅
2

𝑤, 𝑃𝑅𝑤) 𝜙
1
(𝑅𝑤,𝑄𝑤)

𝜙
2
(𝑅2𝑤, 𝑅𝑤)

}

= 𝜙
2
(𝑅
2

𝑤, 𝑃𝑅𝑤) = 𝜙
2
(𝑄𝑅𝑤, 𝑃𝑤)

> min{𝜙
1
(𝑅
2

𝑤, 𝑅𝑤) , 𝜙
1
(𝑅
2

𝑤,𝑄𝑅𝑤) ,

𝜙
2
(𝑅𝑤, 𝑃𝑤) ,

𝜙
1
(𝑅
2

𝑤,𝑄𝑅𝑤) 𝜙
2
(𝑅𝑤, 𝑃𝑤)

𝜙
1
(𝑅2𝑤, 𝑅𝑤)

}

= 𝜙
1
(𝑅
2

𝑤, 𝑅𝑤) ,

(10)

which is a contradiction. Hence, 𝑅2𝑤 = 𝑅𝑤. Thus, 𝑅𝑤 is a
fixed point of 𝑅. Thus, 𝑅𝑤 = 𝑅(𝑅𝑤) = 𝑃(𝑅𝑤) = 𝑄(𝑅𝑤).
Therefore, 𝑅𝑤 is a common fixed point of 𝑃, 𝑄, and 𝑅.

The uniqueness of 𝑅𝑤 as a common fixed point of 𝑃, 𝑄,
and 𝑅 follows from (5) and (6).

Theorem 12. Let 𝑓 and 𝑔 be commuting, continuous, and
nearly densifying self-mappings on a complete Menger space𝑋
satisfying

𝜙 (𝑔𝑢, 𝑔V) > min {𝜙 (𝑓𝑢, 𝑓V) , 𝜙 (𝑓𝑢, 𝑔𝑢) , 𝜙 (𝑓V, 𝑔V)} (11)

for 𝑓𝑢 ̸= 𝑓V, 𝑔𝑢 ̸= 𝑔V, and 𝑢, V ∈ 𝑋, where 𝜙 : 𝑋 × 𝑋 → 𝜁

is u.s.c. and 𝜙(𝑢, 𝑢, ) = 1, 𝑢 ∈ 𝑋. If, for some 𝑢
0
in 𝑋, 𝐺(𝑢

0
) =

{𝑓
𝑖

𝑔
𝑗

𝑢
0
: 𝑖 = 0, 1, 2, . . . ; 𝑗 = 0, 1, 2, . . .} is bounded, then𝑓 and

𝑔 have a unique common fixed point.

Proof. Let𝐴 = 𝐺(𝑢
0
). Since𝑓 and 𝑔 are commuting and con-

tinuous, we have 𝑓(𝐴) ⊆ 𝐴 and 𝑔(𝐴) ⊆ 𝐴 and then 𝐴 =

{𝑢
0
} ∪ 𝑓(𝐴) ∪ 𝑔(𝐴).
If 𝛼
𝐴
< 𝐻, then

𝛼
𝐴
= 𝛼
{𝑢0}∪𝑓(𝐴)∪𝑔(𝐴)

= min {𝛼
𝑓(𝐴)

, 𝛼
𝑔(𝐴)

} > 𝛼
𝐴
,

(12)

which is a contradiction. It implies that 𝐴 is precompact.
Now define 𝐵 = ⋂

∞

𝑛=0
(𝑓𝑔)
𝑛

(𝐴). Since {(𝑓𝑔)
𝑛

𝐴} is a
decreasing sequence of nonempty compact subset of 𝐴, it
follows that 𝐵 is nonempty set such that 𝑓(𝐵) ⊂ 𝐵, 𝑔(𝐵) ⊂ 𝐵.

Suppose that 𝑢 ∈ 𝐵; then 𝑢 ∈ (𝑓𝑔)
𝑛+1

𝐴 for all 𝑛. Hence,
there exists {𝑥

𝑛
} ⊆ (𝑓𝑔)

𝑛

𝐴. Since (𝑓𝑔)𝑛𝐴 is compact and
closed for all 𝑛,𝑓 and 𝑔 are continuous and nearly densifying;
therefore, there exists a point 𝑝 ∈ (𝑓𝑔)

𝑛

𝐴 for all 𝑛 so that
𝑓𝑔(𝑝) = 𝑢. Hence, 𝑢 ∈ 𝑓(𝐵) and 𝑢 ∈ 𝑔(𝐵). Thus, we have

𝑓 (𝐵) = 𝐵 = 𝑔 (𝐵) . (13)

Let us define a real valued function 𝜓 on 𝐵 by 𝜓(𝑢) =

𝜙(𝑓𝑢, 𝑔𝑢). It is u.s.c. and hence attains its maximum at some
point 𝑝 ∈ 𝐵. Then there exists a 𝑤 ∈ 𝐵 such that 𝑝 = 𝑓𝑤.
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Suppose that there is no point 𝑢 in 𝑋 such that 𝑓𝑢 = 𝑔𝑢;
then we have by (11)

𝜓 (𝑔𝑤)

= 𝜙 (𝑓𝑔𝑤, 𝑔𝑔𝑤) = 𝜙 (𝑔𝑓𝑤, 𝑔𝑔𝑤)

> min {𝜙 (𝑓2𝑤, 𝑓𝑔𝑤) , 𝜙 (𝑓2𝑤, 𝑔𝑓𝑤) , 𝜙 (𝑓𝑔𝑤, 𝑔𝑔𝑤)}

= min {𝜙 (𝑓2𝑤, 𝑓𝑔𝑤) , 𝜙 (𝑓𝑔𝑤, 𝑔𝑔𝑤)}

= 𝜙 (𝑓
2

𝑤, 𝑓𝑔𝑤) = 𝜙 (𝑓𝑝, 𝑔𝑝) = 𝜓 (𝑝) ,

(14)

which is a contradiction to the selection of 𝑝. Hence, there
exists a𝑤

0
∈ 𝐵 such that𝑓𝑤

0
= 𝑔𝑤
0
or𝑓2𝑤

0
= 𝑓𝑔𝑤

0
= 𝑔𝑓𝑤

0
.

Suppose 𝑓2𝑤
0

̸= 𝑓𝑤
0
; then we have

𝜙 (𝑓
2

𝑤
0
, 𝑓𝑤
0
)

= 𝜙 (𝑔𝑓𝑤
0
, 𝑔𝑤
0
)

> min {𝜙 (𝑓2𝑤
0
, 𝑓𝑤
0
) , 𝜙 (𝑓

2

𝑤
0
, 𝑔𝑓𝑤
0
) , 𝜙 (𝑓𝑤

0
, 𝑔𝑤
0
)}

= 𝜙 (𝑓
2

𝑤
0
, 𝑓𝑤
0
) ,

(15)

which is a contradiction. Hence,𝑓2𝑤
0
= 𝑔𝑓𝑤

0
= 𝑓𝑤
0
.There-

fore, 𝑓𝑤
0
is common fixed point of 𝑓 and 𝑔. Now we will

prove the uniqueness of 𝑓𝑤
0
. Let 𝑤 be the other fixed point

of 𝑓 and 𝑔; then, by (11), we have

𝜙 (𝑤, 𝑓𝑤
0
)

= 𝜙 (𝑔𝑤, 𝑓𝑔𝑤
0
) = 𝜙 (𝑔𝑤, 𝑔𝑓𝑤

0
)

> min {𝜙 (𝑓𝑤, 𝑓2𝑤
0
) , 𝜙 (𝑓𝑤, 𝑔𝑤) , 𝜙 (𝑓

2

𝑤
0
, 𝑔𝑓𝑤
0
)}

= 𝜙 (𝑓𝑤, 𝑓
2

𝑤
0
) = 𝜙 (𝑤, 𝑓𝑤

0
) , a contradiction.

(16)

Hence, 𝑓𝑤
0
is unique. This completes the proof of the

theorem.

Remark 13. Theorems 9, 11, and 12 improve the result of
Chamola et al. [19], Dimri and Pant [20], Ganguly et al. [24],
and Pant et al. [21] under more natural conditions.
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