On the Boundary of Self-Affine Sets

Qi-Rong Deng ${ }^{1}$ and Xiang-Yang Wang ${ }^{2}$
${ }^{1}$ Department of Mathematics, Fujian Normal University, Fuzhou 350117, China
${ }^{2}$ School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China

Correspondence should be addressed to Xiang-Yang Wang; mcswxy@mail.sysu.edu.cn
Received 20 January 2015; Accepted 16 February 2015
Academic Editor: Jan Andres
Copyright © 2015 Q.-R. Deng and X.-Y. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is devoted to studying the boundary behavior of self-affine sets. We prove that the boundary of an integral self-affine set has Lebesgue measure zero. In addition, we consider the variety of the boundary of a self-affine set when some other contractive maps are added. We show that the complexity of the boundary of the new self-affine set may be the same, more complex, or simpler; any one of the three cases is possible.

1. Introduction

Let (X, ρ) be a complete matric space. Recall that a map S : $X \rightarrow X$ is contractive if there exists a constant $0<r<1$ such that $\rho(S(x), S(y)) \leq r \rho(x, y)$. We call a finite set of contractive maps $\left\{S_{j}\right\}_{j=1}^{m}$ an iterated function system (IFS). It is well known [1] that there exists a unique nonempty compact subset $K \subset$ X such that $K=\bigcup_{j=1}^{m} S_{j}(K)$. We call K the invariant set or attractor of the IFS. Moreover, if we associate the IFS with a set of probability weights $\left\{p_{i}>0: i=1, \ldots, m\right\}$, then there exists a unique probability measure μ supported on K satisfying the equation

$$
\begin{equation*}
\mu(\cdot)=\sum_{j=1}^{m} p_{j} \mu\left(S_{j}^{-1}(\cdot)\right) . \tag{1}
\end{equation*}
$$

We call μ the invariant measure.
Let A be a $d \times d$ expanding real matrix; that is, all its eigenvalues have modules larger than one. Let λ be the smallest absolute value of A 's eigenvalues, choose $c \in(1, \lambda)$, and define $\|x\|$ for each $x \in \mathbb{R}^{d}$ as

$$
\begin{equation*}
\|x\|=\sum_{n=1}^{\infty} c^{n}\left|A^{-n} x\right| \tag{2}
\end{equation*}
$$

where $|\cdot|$ is the Euclidian norm in \mathbb{R}^{d}. Then $\|\cdot\|$ is a norm in \mathbb{R}^{d}. Let $\rho(x, y)=\|x-y\|$ be the induced metric. It is easy
to check that the map $S(x)=A^{-1}(x+c)$ with $x, c \in \mathbb{R}^{d}$ is contractive under the metric ρ.

Let A be a $d \times d$ expanding real matrix and $\mathscr{D}=$ $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \subset \mathbb{R}^{d}$. We call the family of maps on \mathbb{R}^{d}

$$
\begin{equation*}
S_{i}(x)=A^{-1}\left(x+d_{i}\right), \quad i=1,2, \ldots, m \tag{3}
\end{equation*}
$$

a self-affine IFS. The corresponding invariant set K and invariant measure μ are called a self-affine set and a self-affine measure of the IFS, respectively. Furthermore, if the matrix A in (3) is an orthonormal matrix multiple a constant, then such IFS is called self-similar, and the invariant set and invariant measure are called self-similar set and self-similar measure of the IFS, respectively.

Our main interests in this note are the structures and properties of the boundary ∂K of a self-affine set K. For self-similar IFS, Lau and Xu [2] showed that $\operatorname{dim}_{H}(\partial K)<$ d provided that the self-similar IFS satisfies the open set condition (OSC). He et al. [3] studied the calculation of $\operatorname{dim}_{H}(\partial K)$ for integral self-similar IFS. Furthermore, the overlapping cases were considered by Lau and Ngai in [4]. For self-affine sets, however, less is known about K and ∂K (see [5-7]). There is no method to compute the Hausdorff dimension and the Lebesgue measure $\mathscr{L}(\partial K)$ of ∂K for overlapping self-affine set.

Motivated by these results, we consider the Lebesgue measures of the boundaries of integral self-affine sets. We prove that they have Lebesgue measure zero.

Theorem 1. Let $\left\{A^{-1}\left(x+d_{j}\right)\right\}_{j=1}^{m}$ be a self-affine IFS defined on \mathbb{R}^{d}. Assume that A and d_{j} are all integral. Let K be the selfaffine set of the IFS; then $\mathscr{L}(\partial K)=0$.

Consider two IFSs $\left\{S_{j}\right\}_{j=1}^{m}$ and $\left\{S_{j}\right\}_{j=1}^{n}, m<n$ (they may not be self-affine). Let K_{1} and K_{2} be the invariant sets, respectively; then $K_{1} \subseteq K_{2}$, so $\operatorname{dim}\left(K_{1}\right) \leq \operatorname{dim}\left(K_{2}\right)$. We think about the natural question: what is the relationship between ∂K_{1} and ∂K_{2} ?

We prove that any one case of $\operatorname{dim}_{H}\left(\partial K_{2}\right)=\operatorname{dim}_{H}\left(\partial K_{1}\right)$, $\operatorname{dim}_{H}\left(\partial K_{2}\right)<\operatorname{dim}_{H}\left(\partial K_{1}\right)$, and $\operatorname{dim}_{H}\left(\partial K_{2}\right)>\operatorname{dim}_{H}\left(\partial K_{1}\right)$ may occur.

2. Proofs of Results

For an IFS $\left\{S_{j}\right\}_{j=1}^{n}$ on \mathbb{R}^{d}, we use the following notations throughout the paper. Let $\Sigma_{m}=\{1, \ldots, m\}$ (or Σ if there is no confusion), and $\Sigma^{*}=\bigcup_{n \geq 1} \Sigma^{n}$. For any $I=i_{1} i_{2} \cdots i_{n} \in \Sigma^{n}$ and $J=j_{1} j_{2} \cdots j_{k} \in \Sigma^{k}$, let $I J=i_{1} i_{2} \cdots i_{n} j_{1} j_{2} \cdots j_{k}$ and

$$
\begin{gather*}
p_{I}=p_{i_{1}} p_{i_{2}} \cdots p_{i_{n}}, \quad S_{I}=S_{i_{1}} \circ S_{i_{2}} \circ \cdots \circ S_{i_{n}} \\
d_{I}=d_{i_{n}}+A d_{i_{n-1}}+\cdots+A^{n-1} d_{i_{1}}, \tag{4}\\
\mathscr{D}_{n}=\mathscr{D}+A \mathscr{D}+\cdots+A^{n-1} \mathscr{D} .
\end{gather*}
$$

Also, we use $\mathscr{L}(E), E^{o}$, and ∂E to denote the Lebesgue measure, the interior, and the boundary of a subset $E \subset \mathbb{R}^{d}$, respectively.

Theorem 2. Let $\left\{\phi_{j}\right\}_{j=1}^{m}$ and $\left\{\psi_{i}\right\}_{i=1}^{k}$ be two contractive IFSs on \mathbb{R}^{d} under some norm $\|\cdot\|$ with the invariant sets K_{1} and K_{2}, respectively. If the invariant set K_{1} contains interior points, then there exist $a, n \in \mathbb{N}$ and $\alpha \in \mathbb{Z}^{d}$ such that the IFSs $\mathscr{F}=\left\{\varphi_{i_{1} i_{2} \cdots i_{n}}: 1 \leq i_{j} \leq m\right\}$ and $\mathscr{F} \cup \mathscr{G}$ generate the same attractor $a K_{1}+\alpha$, where $\mathscr{G}=\left\{\psi_{j_{1} j_{2} \cdots j_{n}}: 1 \leq j_{i} \leq k\right\}$ and $\varphi_{j}(x)=a \phi_{j}\left(a^{-1}(x-\alpha)\right)+\alpha, j=1, \ldots, m$.

Proof. Observe that

$$
\begin{align*}
\bigcup_{j=1}^{m} \varphi_{j}\left(a K_{1}+\alpha\right) & =\bigcup_{j=1}^{m}\left(a \phi_{j}\left(K_{1}\right)+\alpha\right) \\
& =a\left(\bigcup_{j=1}^{m} \phi_{j}\left(K_{1}\right)\right)+\alpha=a K_{1}+\alpha . \tag{5}
\end{align*}
$$

This means that $a K_{1}+\alpha$ is the invariant set of $\left\{\varphi_{j}\right\}_{j=1}^{m}$ for any $a>0$ and $\alpha \in \mathbb{R}^{d}$. Hence it is also the invariant set of the IFS \mathscr{F}. Now we need only to prove that $a K_{1}+\alpha$ is the invariant set of $\mathscr{F} \cup \mathscr{G}$ for some $a, n \in \mathbb{N}$ and $\alpha \in \mathbb{Z}^{d}$.

Note that K_{1} contains interior points; we can find a constant $r>0$ and a point $x_{0} \in K_{1}$ with rational entries such that $B_{2 r}\left(x_{0}\right) \subset K_{1}$. Hence $B_{2 a r}(0) \subset a K_{1}-a x_{0}$ for all positive real number $a>0$. Since $\left\{\psi_{i}\right\}_{i=1}^{k}$ are contractive in the norm $\|\cdot\|$, we can choose integers $a, n \in \mathbb{N}$ large enough such that $K_{2} \subset B_{a r}(0)$ and $\left|\psi_{J}\left(a K_{1}+\alpha\right)\right|<a r$ for all $J \in \Sigma_{k}^{*}$ with
$|J| \geq n$, where $|E|$ is the diameter of the set $E \subset \mathbb{R}^{d}$ under the norm $\|\cdot\|$. Also, we can assume that $\alpha=-a x_{0} \in \mathbb{Z}^{d}$. Noting $K_{2} \subseteq B_{a r}(0) \subseteq B_{2 a r}(0) \subseteq a K_{1}+\alpha,\left|\psi_{j_{1} j_{2} \cdots j_{n}}\left(a K_{1}+\alpha\right)\right|<a r$ and observing

$$
\begin{equation*}
\psi_{j_{1} j_{2} \cdots j_{n}}\left(a K_{1}+\alpha\right) \cap K_{2} \supseteq \psi_{j_{1} j_{2} \cdots j_{n}}\left(K_{2}\right) \neq \emptyset, \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\psi_{j_{1} j_{2} \cdots j_{n}}\left(a K_{1}+\alpha\right) \subseteq a K_{1}+\alpha \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
a K_{1}+\alpha=\bigcup_{f \in \mathscr{F}} f\left(a K_{1}+\alpha\right) \subseteq \bigcup_{f \in \mathscr{F} \cup \mathscr{G}} f\left(a K_{1}+\alpha\right) \subseteq a K_{1}+\alpha \tag{8}
\end{equation*}
$$

We see that $a K_{1}+\alpha$ is the invariant set of $\mathscr{F} \cup \mathscr{G}$. This completes the proof.

In Theorem 2, IFS \mathscr{F} is a subset of IFS $\mathscr{F} \cup \mathscr{G}$ and they have the same invariant set $a K_{1}+\alpha$. So do the same boundary of the invariant set. On the other hand, the invariant set of \mathscr{G} is K_{2}. Obviously, either $\operatorname{dim}_{H}\left(\partial\left(a K_{1}+\alpha\right)\right)<\operatorname{dim}_{H}\left(\partial K_{2}\right)$ or $\operatorname{dim}_{H}\left(\partial\left(a K_{1}+\alpha\right)\right)>\operatorname{dim}_{H}\left(\partial K_{2}\right)$ may occur.

In the following, we consider the Lebesgue measure of ∂K for the self-affine IFS (3). We will prove Theorem 1; that is, $\mathscr{L}(\partial K)=0$ if A and d_{j} are all integral. For this, we first prove some lemmas.

Lemma 3. Let the IFS in (3) be integral; that is, all entries of A and d_{j} are integers. Assume that the self-affine set K has positive Lebesgue measure; then $K^{o} \neq \emptyset$.

Proof. Note that the fact that A and d_{j} are all integral implies that the IFS is uniformly discrete, and the assertion follows from [7, Theorem 3.1].

Lemma 4. Let the IFS in (3) be integral. Suppose that $\left\{d_{j}\right\}_{j=1}^{m}$ contains a complete set of residues $\left(\bmod A \mathbb{Z}^{d}\right)$. Then the selfaffine measure μ in (1) is absolutely continuous with respect to the Lebesgue measure provided that

$$
\begin{equation*}
\sum_{j:\left(d_{i}-d_{j}\right) \in A \mathbb{Z}^{d}} p_{j}=\frac{1}{|\operatorname{det}(A)|}, \quad i=1, \ldots, m \tag{9}
\end{equation*}
$$

Proof. Without loss of generality, assume that $\widetilde{\mathscr{D}}=$ $\left\{d_{1}, \ldots, d_{\ell}\right\}$ is a complete set of residues $\left(\bmod A \mathbb{Z}^{d}\right)$ with $|\operatorname{det}(A)|=\ell$. Then $\widetilde{\mathscr{D}}_{n}:=\widetilde{\mathscr{D}}+A \widetilde{\mathscr{D}}+\cdots+A^{n-1} \widetilde{\mathscr{D}}$ is a complete set of residues $\left(\bmod A^{n} \mathbb{Z}^{d}\right)$.

For each $i \in\{1, \ldots, \ell\}$, let $I_{i}=\left\{j: 1 \leq j \leq m,\left(d_{j}-d_{i}\right) \in\right.$ $\left.A \mathbb{Z}^{d}\right\}$ and $p_{j}=1 / \ell \# I_{i}$ if $j \in I_{i}$; then we have

$$
\begin{equation*}
\sum_{j \in I_{i}} p_{j}=\frac{1}{|\operatorname{det}(A)|}, \quad i=1, \ldots, \ell \tag{10}
\end{equation*}
$$

Hence such probability weights $\left\{p_{i}\right\}_{i=1}^{m}$ satisfying (9) always exist.

To prove the absolute continuity of μ, by making use of [8, Theorem 3.5], we need only to show that

$$
\begin{equation*}
\sum_{J \in \Sigma^{n}, d_{J}=z} p_{J} \leq|\operatorname{det}(A)|^{-n}, \quad \forall n>0, z \in \mathbb{Z}^{d} \tag{11}
\end{equation*}
$$

We will prove this by induction on n. By (9), the inequality (11) holds for $n=1$. Assume that (11) holds for $n=k$. Let $z=d_{i}+A z_{1}$ with $d_{i} \in \widetilde{\mathscr{D}}$ and $z_{1} \in \mathbb{Z}^{d}$. If $J \in \Sigma^{k}, j \in \Sigma$, and $d_{J j}=z$, then $d_{j}+A d_{J}=d_{i}+A z_{1}$, so $\left(d_{j}-d_{i}\right) \in A \mathbb{Z}^{d}$, and let $d_{j}=d_{i}+A e_{j}$ with $e_{j} \in \mathbb{Z}^{d} ;$ we have $e_{j}+d_{J}=z_{1}$. Therefore

$$
\begin{align*}
\sum_{J j \in \Sigma^{k+1}, d_{J j}=z} p_{J j} & \leq \sum_{j \in \Sigma,\left(d_{j}-d_{i}\right) \in A \mathbb{Z}^{d}} p_{j} \sum_{J \in \Sigma^{k}, d_{j}=z_{1}-e_{j}} p_{J} \\
& \leq|\operatorname{det}(A)|^{-k} \sum_{j \in \Sigma,\left(d_{j}-d_{i}\right) \in A \mathbb{Z}^{d}} p_{j} \leq|\operatorname{det}(A)|^{-(k+1)} \tag{12}
\end{align*}
$$

Hence (11) is also true for $n=k+1$. This completes the proof.

Remark. Lemma 4 gives a sufficient condition for the existence of L^{1}-solutions of integral refinement equations:

$$
\begin{equation*}
f(x)=|\operatorname{det}(A)| \sum_{j=1}^{m} p_{j} f\left(A x-d_{j}\right) \tag{13}
\end{equation*}
$$

provided that $\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbb{Z}^{d}$ contains a complete set of residues $\left(\bmod A \mathbb{Z}^{d}\right)$. Condition (9) ensures that the refinement equation has a unique (up to a scalar multiple) bounded L^{1}-solution with compact support if p_{j} 's satisfy (9). Condition (9) is an extension of the "sum role."

Lemma 5. Let the IFS in (3) be integral. Suppose $\left\{d_{j}\right\}_{j=1}^{m}$ contains a complete set of residues $\left(\bmod A \mathbb{Z}^{d}\right) ; K$ is the corresponding self-affine set. Then $\mathscr{L}(\partial K)=0$.

Proof. Lemma 4 implies that there exist probability weights $\left\{p_{j}\right\}_{j=1}^{m}$ such that the corresponding self-affine measure μ is absolutely continuous with respect to the Lebesgue measure and so $\mathscr{L}(K)>0$.

Lemma 3 implies that $K^{o} \neq \emptyset$, so K^{o} is a nonempty invariant open set (i.e., $\left.\bigcup_{j=1}^{m} S_{j}\left(K^{o}\right) \subseteq K^{o}\right)$ and $\mu\left(K^{o}\right)>0$. Then [8, Theorem 4.13] implies that $\mu(\partial K)=0$. On the other hand, [8, Theorem 3.12] implies that the Lebesgue measure restricted on K is also absolutely continuous with respect to μ. Hence $\mathscr{L}(\partial K)=0$.

Now we can prove the main theorem of the paper.
Proof of Theorem 1. If $K^{o}=\emptyset$, then $\partial K=K$ and Lemma 3 implies that $\mathscr{L}(\partial K)=0$.

Now we consider the case $K^{o} \neq \emptyset$. Let $\phi_{j}(x)=A^{-1}\left(x+d_{j}\right)$, $\varphi_{j}(x)=a \phi_{j}\left(a^{-1}(x-\alpha)\right)+\alpha=A^{-1}\left(x-\alpha+a d_{j}+A \alpha\right)$, $j=1, \ldots, m$, and $\psi_{i}(x)=A^{-1}\left(x+z_{i}\right), i=1, \ldots, k$, where $\mathscr{Z}=$ $\left\{z_{1}=0, \ldots, z_{k}\right\}$ is a complete set of residues $\left(\bmod A \mathbb{Z}^{d}\right)$.

Making use of Theorem 2 and the notations there, there exist $a, n \in \mathbb{N}$ and $\alpha \in \mathbb{Z}^{d}$ such that the IFSs \mathscr{F} and $\mathscr{F} \cup \mathscr{G}$ have the same attractor $a K+\alpha$. Let $\widetilde{\mathscr{D}}=a \mathscr{D}-\alpha+A \alpha$. Then $\mathscr{F} \cup \mathscr{G}=\left\{A^{-n}(x+d): d \in \widetilde{\mathscr{D}}_{n} \cup \mathscr{Z}_{n}\right\}$. Note that $\widetilde{\mathscr{D}}_{n} \cup \mathscr{Z}_{n}$ contains a complete set \mathscr{E}_{n} of residues $\left(\bmod A \mathbb{Z}^{d}\right)$; Lemma 5 implies that $\mathscr{L}(\partial K)=a^{-d} \mathscr{L}(\partial(a K+\alpha))=0$. We complete the proof.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The research is supported by NSFC (nos. 11371382 and 11471075).

References

[1] J. E. Hutchinson, "Fractals and self-similarity," Indiana University Mathematics Journal, vol. 30, no. 5, pp. 713-747, 1981.
[2] K.-S. Lau and Y. Xu, "On the boundary of attractors with non-void interior," Proceedings of the American Mathematical Society, vol. 128, no. 6, pp. 1761-1768, 2000.
[3] X.-G. He, K.-S. Lau, and H. Rao, "Self-affine sets and graphdirected systems," Constructive Approximation, vol. 19, no. 3, pp. 373-397, 2003.
[4] K.-S. Lau and S.-M. Ngai, "Dimensions of the boundaries of self-similar sets," Experimental Mathematics, vol. 12, no. 1, pp. 13-26, 2003.
[5] T. Bedford and M. Urbański, "The box and Hausdorff dimension of self-affine sets," Ergodic Theory and Dynamical Systems, vol. 10, no. 4, pp. 627-644, 1990.
[6] C. McMullen, "The Hausdorff dimension of general Sierpinski carpets," Nagoya Mathematical Journal, vol. 96, pp. 1-9, 1984.
[7] J. C. Lagarias and Y. Wang, "Self-affine tiles in \mathbb{R}^{n}," Advances in Mathematics, vol. 121, no. 1, pp. 21-49, 1996.
[8] Q.-R. Deng, "Absolute continuity of vector-valued self-affine measures," Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1250-1264, 2008.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

