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We present a counterexample to the main result of the abovementioned paper showing that this result is false and cannot be
improved in a simple way.

1. Introduction

In [1] author considers the nonlinear Volterra integral equa-
tion (VIE)

𝑥 (𝑡) = 𝑢 (𝑡) +∫

𝑡

0
𝑓 (𝑡, 𝜏, 𝑥 (𝜏)) 𝑑𝜏 (1)

and the nonlinear functional Volterra integral equation
(FVIE)

𝑥 (𝑡) = 𝑢 (𝑡) +∫

𝑡

0
𝑓 (𝑡, 𝜏, 𝑥 (𝜏) , 𝑥) 𝑑𝜏. (2)

Theorem 2.1 of [1] states the following.

Theorem1. Let 𝑢 : [0, 1] → R and let𝑓 : [0, 1]×[0, 1]×R →
R be given. Suppose that (C1)–(C4) are fulfilled.

(C1) 𝑢 is continuous.
(C2) For each (𝑡, 𝑥) ∈ [0, 1]×R, the function 𝜏 → 𝑓(𝑡, 𝜏, 𝑥)

is Lebesgue measurable. For all (𝑡, 𝑥) ∈ [0, 1] × R and
for almost all 𝜏 ∈ [0, 1],





𝑓 (𝑡, 𝜏, 𝑥)





< 𝑀 (𝜏) , (3)

where𝑀 : [0, 1] → [0,∞] is a Lebesgue integrable
function.

(C3) For each (𝑡, 𝜏, 𝑥) ∈ [0, 1] × [0, 1] ×R

lim sup
𝑦↑𝑥

𝑓 (𝑡, 𝜏, 𝑦) ≤ 𝑓 (𝑡, 𝜏, 𝑥) = lim inf
𝑦↓𝑥

𝑓 (𝑡, 𝜏, 𝑦) . (4)

(C4) Let 𝐹 = {𝑦 ∈ R : |𝑦| ≤ ‖𝑢‖ + | ∫10 𝑀(𝜏)𝑑𝜏|}, where
‖𝑢‖ = max{|𝑢(𝑡)|; 𝑡 ∈ [0, 1]}. For every 𝑦 ∈ 𝐹 and all
𝑛 ∈ N the functions

𝑡 → ∫

𝑡

0
sup
|𝑥−𝑦|≤1/3𝑛

𝑓 (𝑡, 𝜏, 𝑥) 𝑑𝜏 (5)

are equicontinuous and tend to zero as 𝑡 ↓ 0.

Under the above assumptions VIE expressed by (1) has
extremal solutions in the interval [0, 1].

In the following we present a counterexample showing
that this result is false.

2. Comment on the Assumption (C4)

Define

ℎ
𝑦,𝑛
(𝑡) = ∫

𝑡

0
sup
|𝑥−𝑦|≤1/3𝑛

𝑓 (𝑡, 𝜏, 𝑥) 𝑑𝜏,

𝑦 ∈ 𝐹, 𝑛 ∈ N, 𝑡 ∈ [0, 1] .

(6)

(C4) states that ℎ
𝑦,𝑛
(𝑡) is equicontinuous in [0, 1] and tends

to zero as 𝑡 ↓ 0. In fact the last seems to be superfluous since
it follows from equicontinuity (or from (C2)).

Assume that 𝑓 does not depend on 𝜏; that is, we set
𝑓(𝑡, 𝜏, 𝑥) = 𝑓(𝑡, 𝑥) (with a small violation of notation). Now
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(C2) gives |𝑓(𝑡, 𝑥)| ≤ 𝑀 in [0, 1] × R for some𝑀 ≥ 0. We
also have
ℎ
𝑦,𝑛
(𝑡) = 𝑡 sup

|𝑥−𝑦|≤1/3𝑛
𝑓 (𝑡, 𝑥) = sup

|𝑥−𝑦|≤1/3𝑛
𝑡𝑓 (𝑡, 𝑥) ,

𝑦 ∈ 𝐹, 𝑛 ∈ N, 𝑡 ∈ [0, 1] .
(7)

Proposition 2. If𝑓 is Lipschitz continuous in 𝑡, that is, if there
exists 𝐿 ≥ 0 such that





𝑓 (𝑡, 𝑥) −𝑓 (𝑡, 𝑥)





≤ 𝐿




𝑡 − 𝑡





(8)

for all (𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 1] ×R then (C4) is satisfied.

Proof. For all 𝑡, 𝑡 ∈ [0, 1] and 𝑦 ∈ 𝐹, 𝑛 ∈ N, we have





ℎ
𝑦,𝑛
(𝑡) − ℎ

𝑦,𝑛
(𝑡)







=












sup
|𝑥−𝑦|≤1/3𝑛

𝑡𝑓 (𝑡, 𝑥) − sup
|𝑥−𝑦|≤1/3𝑛

𝑡𝑓 (𝑡, 𝑥)












≤ sup
|𝑥−𝑦|≤1/3𝑛





𝑡𝑓 (𝑡, 𝑥) − 𝑡𝑓 (𝑡, 𝑥)






≤ sup
|𝑥−𝑦|≤1/3𝑛





𝑡𝑓 (𝑡, 𝑥) − 𝑡𝑓 (𝑡, 𝑥)






+ sup
|𝑥−𝑦|≤1/3𝑛





𝑡𝑓 (𝑡, 𝑥) − 𝑡𝑓 (𝑡, 𝑥)






≤ 𝑀




𝑡 − 𝑡




+ 𝐿




𝑡 − 𝑡




= (𝑀+𝐿)





𝑡 − 𝑡




.

(9)

This gives equicontinuity of ℎ
𝑦,𝑛
(𝑡).

3. The Counterexample

Our example is a modification of this given in [2].
Consider VIE

𝑧 (𝑠) = − 𝑠∫

𝑠

−1
𝑧 (𝜏)

1/2
𝑑𝜏 𝑠 ∈ [−1, 1] , (10)

where 𝑧1/2 = |𝑧|1/2 sgn 𝑧 for any 𝑧 ∈ R (see [2]).
Consider VIE

𝑥 (𝑡) = (2− 4𝑡) ∫
𝑡

0
𝑥 (𝜏)

1/2
𝑑𝜏 𝑡 ∈ [0, 1] . (11)

Proposition 3. Set 𝑠 = 2𝑡 − 1, 𝑡 ∈ [0, 1], and 𝑧(𝑠) = 𝑥(𝑡),
𝑠 ∈ [−1, 1]. A function 𝑧(𝑠) is a solution of (10) if and only if
𝑥(𝑡) is a solution of (11).

Proof. Suppose that 𝑧(𝑠) is a solution of (10). Set 𝑠 = 2𝑡 − 1,
𝑡 ∈ [0, 1], in (10). We have

𝑥 (𝑡) = 𝑧 (2𝑡 − 1) = (1− 2𝑡) ∫
2𝑡−1

−1
𝑧 (𝜏)

1/2
𝑑𝜏. (12)

By making a substitution 𝜏 = 2𝑟 − 1 in the integral we get

𝑥 (𝑡) = (2− 4𝑡) ∫
𝑡

0
𝑧 (2𝑟 − 1)1/2 𝑑𝑟

= (2− 4𝑡) ∫
𝑡

0
𝑥 (𝑟)

1/2
𝑑𝑟.

(13)

Hence, 𝑥(𝑡) satisfies (11). Similarly setting 𝑡 = (𝑠 + 1)/2, 𝑠 ∈
[−1, 1], in (11) we obtain that 𝑧(𝑠) satisfies (10) if 𝑥(𝑡) satisfies
(11).

Corollary 4. VIE (10) has a maximal (minimal) solution if
and only if (11) has a maximal (minimal) solution.

Consider VIE

𝑥 (𝑡) = (2− 4𝑡) ∫
𝑡

0
[𝐼 (𝑥 (𝜏))]

1/2
𝑑𝜏 𝑡 ∈ [0, 1] , (14)

where 𝐼(𝑥) = (sgn𝑥)min{|𝑥|, 4} for 𝑥 ∈ R.

Proposition 5. VIE’s (11) and (14) have the same (nonempty)
sets of solutions.

Proof. The statement follows from the fact that every solution
of (11) and (14) takes its values in the interval [−4, 4] where
𝐼(𝑥) = 𝑥. Indeed, if 𝑥 satisfies (11) and ‖𝑥‖ = max{|𝑥(𝑡)|; 𝑡 ∈
[0, 1]} then we have

|𝑥 (𝑡)| ≤ |2− 4𝑡| ∫
𝑡

0
|𝑥 (𝜏)|

1/2
𝑑𝜏 ≤ 2∫

1

0
‖𝑥‖

1/2
𝑑𝜏

≤ 2 ‖𝑥‖1/2 , 𝑡 ∈ [0, 1]
(15)

which implies ‖𝑥‖ ≤ 2‖𝑥‖1/2 and ‖𝑥‖ ≤ 4. Since |𝐼(𝑥)| ≤ |𝑥| a
similar estimation holds for (14). Of course a zero function is
a solution of both equations.

Set 𝑓(𝑡, 𝜏, 𝑥) = 𝑓(𝑡, 𝑥) = (2 − 4𝑡)[𝐼(𝑥)]1/2. Of course, 𝑓
is Lipschitz continuous in 𝑡. It is not difficult to verify (see
Proposition 2) the following.

Remark 6. VIE (14) satisfies all the assumptions ofTheorem 1.

Proposition 7. VIE (14) has no extremal solution in [−1, 1].

Proof. In view of Corollary 4 and Proposition 5 we only need
to show that (10) has no extremal solutions. This was in fact
done in [2] where the proof is rather long and complicated.
For the reader’s convenience, we present an original and short
explanation.

Suppose that V is not a trivial solution of the problem

V (𝑠) = − 𝑠1/2V (𝑠)1/2 ,

V (−1) = 0

in [−1, 1] .

(16)

Such solution exists since this problem, in view of the classical
theory, has many solutions. Suppose that 𝑧

𝑀
(𝑠) is a maximal

solution of (10). Since 0, 𝑠V(𝑠), −𝑠V(𝑠) are all solutions of (10)
we have 𝑧

𝑀
(𝑠) ≥ max{0, 𝑠V(𝑠), −𝑠V(𝑠)}; hence 𝑧

𝑀
(𝑠) ≥ 0 and it

is not identically zero.This gives 𝑧
𝑀
(𝑠) = −𝑠 ∫

𝑠

−1 𝑧𝑀(𝜏)
1/2
𝑑𝜏 <

0 for some 𝑠 ∈ (0, 1]. This leads to a contradiction. We finish
the proof by observing that the negative of aminimal solution
of (10) must be its maximal solution.
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Remark 8. Of course, we can improveTheorem 1 by assuming
that 𝑓 is nondecreasing in 𝑥. In this case however, (C3) is not
necessary and (C4) can be reduced to a simpler one and the
result is well-known.

Remark 9. Theorem 3.1 [1] (FVIE (2)) and Theorem 4.1 [1]
(system of Volterra integral equation) are false since they
generalize Theorem 1 (Theorem 2.1 [1]).
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