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Let 𝐸 be a smooth Banach space with a norm ‖ ⋅ ‖. Let 𝑉(𝑥, 𝑦) = ‖𝑥‖
2
+ ‖𝑦‖

2
− 2 ⟨𝑥, 𝐽𝑦⟩ for any 𝑥, 𝑦 ∈ 𝐸, where ⟨⋅, ⋅⟩ stands for

the duality pair and 𝐽 is the normalized duality mapping. We define a 𝑉-strongly nonexpansive mapping by 𝑉(⋅, ⋅). This nonlinear
mapping is nonexpansive in a Hilbert space. However, we show that there exists a 𝑉-strongly nonexpansive mapping with fixed
points which is not nonexpansive in a Banach space. In this paper, we show a weak convergence theorem and strong convergence
theorems for fixed points of this elastic nonlinear mapping and give the existence theorem.

1. Introduction

Let 𝐸 be a smooth Banach space with a norm ‖ ⋅ ‖ and let 𝐸∗
be the dual space of 𝐸. We denote by ⟨⋅, ⋅⟩ a duality pair on
𝐸×𝐸
∗ and let 𝐽 be the normalized duality mapping on 𝐸. It is

well known that 𝐽 is a continuous single-valued mapping in a
smooth Banach space and a one-to-one mapping in a strictly
convex Banach space (cf. [1]). We define a mapping 𝑉 : 𝐸 ×

𝐸 → R by 𝑉(𝑥, 𝑦) = ‖𝑥‖
2
+ ‖𝑦‖
2
− 2⟨𝑥, 𝐽𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐸,

where R is a set of real numbers. It is obvious that 𝑉(𝑥, 𝑦) ≥

(‖𝑥‖ − ‖𝑦‖)
2
≥ 0. Let any 𝑦 ∈ 𝐸 be fixed, and then 𝑉(⋅, 𝑦) is a

convex function because of convexity of ‖⋅‖2. Many nonlinear
mappings which are defined by using 𝑉(⋅, ⋅) are studied (see
[2–4]). We also defined a nonlinear mapping which is called
a 𝑉-strongly nonexpansive mapping in [5] as follows.

Definition 1. Let𝐶 be a nonempty subset of a smooth Banach
space 𝐸. A mapping 𝑇 : 𝐶 → 𝐸 is called 𝑉-strongly nonex-
pansive if there exists a constant 𝜆 > 0 such that for all 𝑥, 𝑦 ∈

𝐶

𝑉 (𝑇𝑥, 𝑇𝑦) ≤ 𝑉 (𝑥, 𝑦) − 𝜆𝑉 ((𝐼 − 𝑇) 𝑥, (𝐼 − 𝑇) 𝑦) , (1)
where 𝐼 is the identity mapping on 𝐸.

From this definition, it is obvious that the identity
mapping 𝐼 is also a 𝑉-strongly nonexpansive mapping. In a

Hilbert space, it is trivial that this mapping is nonexpansive
since 𝑉(𝑥, 𝑦) = ‖𝑥 − 𝑦‖

2 and that any firmly nonexpansive
mapping is a 𝑉-strongly nonexpansive mapping with 𝜆 = 1

(see [5]).Moreover, we showed that if there exists a fixed point
of a 𝑉-strongly nonexpansive mapping 𝑇, then 𝑇 is strongly
nonexpansive with a Bregman distance in [5]. However, in
Banach spaces, as we give an example in the later section,
we find that there exists a 𝑉-strongly nonexpansive mapping
with fixed points which is not nonexpansive. We should
point out that a guarantee of continuity of the 𝑉-strongly
nonexpansive mappings has not been given in a generalized
Banach space yet.

In this paper, we prove a weak convergence theorem
and strong convergence theorems for finding fixed points of
a 𝑉-strongly nonexpansive mapping in Banach spaces and
show the existence theorem of fixed point with a dissipative
property.

2. Preliminaries

In this section, at first we show the relationship between a
𝑉-strongly nonexpansivemapping and other nonlinear map-
pings, in a Hilbert space. Secondly, we state some properties
of 𝑉-strongly nonexpansive mappings in a Banach space
and give an example of a 𝑉-strongly nonexpansive mapping
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which is not a quasinonexpansive mapping in a Banach space
although 𝑇 has fixed points. We finally show some lemmas
which are necessary in order to prove our theorems.

Let 𝐶 be a subset of a Banach space 𝐸 and let 𝑇 : 𝐶 → 𝐸

be a mapping. Then a point 𝑝 in the closure of 𝐶 is said
to be an asymptotically fixed point of 𝑇 if 𝐶 contains a
sequence {𝑥

𝑛
}which converges weakly to 𝑝 and the sequence

{𝑥
𝑛
− 𝑇𝑥
𝑛
} converges strongly to 0. 𝐹(𝑇) denotes the set of

asymptotically fixed points of 𝑇. In [6], Reich introduced a
strongly nonexpansivemappingwhich is defined by using the
Bregman distance𝐷(⋅, ⋅).

Definition 2. Let 𝐸 be a Banach space. The Bregman distance
corresponding to a function 𝑓 : 𝐸 → R is defined by

𝐷(𝑥, 𝑦) = 𝑓 (𝑥) − 𝑓 (𝑦) − 𝑓
󸀠
(𝑦) (𝑥 − 𝑦) , (2)

where 𝑓 is Gâteaux differentiable and 𝑓
󸀠
(𝑥) stands for the

derivative of𝑓 at the point𝑥. Let𝐶 be a nonempty subset of𝐸.
We say that themapping𝑇 : 𝐶 → 𝐸 is strongly nonexpansive
if 𝐹(𝑇) ̸= 0 and

𝐷(𝑝, 𝑇𝑥) ≤ 𝐷 (𝑝, 𝑥) ∀𝑝 ∈ 𝐹 (𝑇) 𝑥 ∈ 𝐶, (3)

and if it holds that lim
𝑛→∞

𝐷(𝑇𝑥
𝑛
, 𝑥
𝑛
) = 0 for a bounded

sequence {𝑥
𝑛
} such that lim

𝑛→∞
(𝐷(𝑝, 𝑥

𝑛
) − 𝐷(𝑝, 𝑇𝑥

𝑛
)) = 0

for any 𝑝 ∈ 𝐹(𝑇).

Taking the function ‖ ⋅ ‖
2 as the convex, continuous, and

Gâteaux differentiable function 𝑓, we obtain the fact that the
Bregman distance 𝐷(⋅, ⋅) coincides with 𝑉(⋅, ⋅). In particular,
in a Hilbert space, it is trivial that 𝐷(𝑥, 𝑦) = 𝑉(𝑥, 𝑦) = ‖𝑥 −

𝑦‖
2.

Proposition 3 (see [5]). In a Hilbert space, a 𝑉-strongly non-
expansive mapping with 𝐹(𝑇) ̸= 0 is strongly nonexpansive.

Nextwe recall twomappings of other nonlinearmappings
(cf. [6–9]). A firmly nonexpansive mapping and an 𝛼-inverse
strongly monotone mapping are defined as follows.

Definition 4. Let 𝐶 be a nonempty, closed, and convex subset
of a Banach space 𝐸. A mapping 𝑇 : 𝐶 → 𝐸 is said to be
firmly nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥 − 𝑦, 𝑗⟩ (4)

for all 𝑥, 𝑦 ∈ 𝐶 and some 𝑗 ∈ 𝐽(𝑇𝑥 − 𝑇𝑦).

It is trivial that a firmly nonexpansive mapping is nonex-
pansive.

Definition 5. Let 𝐻 be a Hilbert space. A mapping 𝑇 : 𝐶 →

𝐻 is said to be 𝛼-inverse strongly monotone if

𝛼
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

≤ ⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ (5)

for all 𝑥, 𝑦 ∈ 𝐶.

The relation among firmly nonexpansive mappings, 𝛼-
inverse strongly monotone mappings and 𝑉-strongly nonex-
pansive mappings is shown in the following proposition.

Proposition 6 (see [5]). In a Hilbert space, the following hold.

(a) A firmly nonexpansive mapping is 𝑉-strongly nonex-
pansive with 𝜆 = 1.

(b) Let 𝐴 be an 𝛼-inverse strongly monotone mapping for
𝛼 > 1/2; then 𝑆 = (𝐼 − 𝐴) is 𝑉-strongly nonexpansive
with (2𝛼 − 1).

The above (b) is obvious by showing that, for all 𝑥, 𝑦 ∈ 𝐻,

⟨𝑆𝑥 − 𝑆𝑦, 𝑥 − 𝑦⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝛼
󵄩󵄩󵄩󵄩(𝐼 − 𝑆)𝑥 − (𝐼 − 𝑆) 𝑦

󵄩󵄩󵄩󵄩

2

.

(6)

We will introduce some properties of 𝑉-strongly nonexpan-
sive mappings in [5].

Proposition 7 (see [5]). In a smooth Banach space 𝐸, the
following hold.

(a) For 𝑐 ∈ (−1, 1], 𝑇 = 𝑐𝐼 is𝑉-strongly nonexpansive. For
𝑐 = 1, 𝑇 = 𝐼 is 𝑉-strongly nonexpansive for any 𝜆 > 0.
For 𝑐 ∈ (−1, 1), 𝑇 = 𝑐𝐼 is 𝑉-strongly nonexpansive for
any 𝜆 ∈ (0, (1 + 𝑐)/(1 − 𝑐)].

(b) If 𝑇 is 𝑉-strongly nonexpansive with 𝜆, then, for any
𝛼 ∈ [−1, 1] with 𝛼 ̸= 0, 𝛼𝑇 is also 𝑉-strongly
nonexpansive with 𝛼

2
𝜆.

(c) If 𝑇 is 𝑉-strongly nonexpansive with 𝜆 ≥ 1, then 𝐴 =

𝐼 − 𝑇 is 𝑉-strongly nonexpansive with 𝜆
−1.

(d) Suppose that 𝑇 is 𝑉-strongly nonexpansive with 𝜆 and
that 𝛼 ∈ [−1, 1] satisfies 𝛼2𝜆 ≥ 1. Then (𝐼 − 𝛼𝑇) is 𝑉-
strongly nonexpansive with (𝛼

2
𝜆)
−1. Moreover, if 𝑇

𝛼
=

𝐼 − 𝛼𝑇, then

𝑉 (𝑇
𝛼
𝑥, 𝑇
𝛼
𝑦) ≤ 𝑉 (𝑥, 𝑦) − 𝜆

−1
𝑉 (𝑇𝑥, 𝑇𝑦) . (7)

Now we give an example of a 𝑉-strongly nonexpansive
mapping in a Banach space.

Example 8 (see [10]). Let 1 < 𝑝, 𝑞 < ∞ such that 1/𝑝 + 1/𝑞 =

1. Let 𝐸 = R × R be a real Banach space with a norm ‖ ⋅ ‖
𝑝

defined by

‖𝑥‖𝑝 = {
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

𝑝

}
1/𝑝

∀𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝐸. (8)

Then 𝐸 is smooth, and the normalized duality mapping 𝐽 is
single-valued. 𝐽 is given by

𝐽𝑥 = ‖𝑥‖
2−𝑝

𝑝
(𝑥
1

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

𝑝−2

, 𝑥
2

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨

𝑝−2

) ∈ 𝑙
𝑞
(R ×R)

∀𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝐸.

(9)

Hence, we have for 𝑥, 𝑦 ∈ 𝐸 that

𝑉 (𝑥, 𝑦) = ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2 ⟨𝑥, 𝐽𝑦⟩

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} .

(10)
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We define a mapping 𝑇 : 𝐸 → 𝐸 as follows:

𝑇𝑥 =

{{

{{

{

𝑥 if ‖𝑥‖𝑝 ≤ 1,

1

‖𝑥‖𝑝

𝑥 if ‖𝑥‖𝑝 > 1.
(11)

In a case of 𝑝 = 1, we have shown that the mapping 𝑇 defined
by (11) is a 𝑉-strongly nonexpansive mapping (see [5]). We
will show that 𝑇 is 𝑉-strongly nonexpansive with any 𝜆 ≤ 1,
for 𝑝 > 1.

Proposition 9. Suppose that 𝑇 is defined by the formula (11)
under the above situation. Then, 𝑇 is a 𝑉-strongly nonexpan-
sive mapping with any 𝜆 ≤ 1.

Proof. Case (a): suppose that 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖
𝑝

≤ 1 and
‖𝑦‖
𝑝
> 1.

Since 𝑇𝑦 = ((𝑇𝑦)
1
, (𝑇𝑦)
2
) = (𝑦

1
‖𝑦‖
−1

𝑝
, 𝑦
2
‖𝑦‖
−1

𝑝
), we have

that

𝑉 (𝑇𝑥, 𝑇𝑦) = 𝑉 (𝑥, 𝑇𝑦) = ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑇𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2

󵄩󵄩󵄩󵄩𝑇𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

⋅ {𝑥
1
(𝑇𝑦)
1

󵄨󵄨󵄨󵄨(𝑇𝑦)1

󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
(𝑇𝑦)
2

󵄨󵄨󵄨󵄨(𝑇𝑦)2

󵄨󵄨󵄨󵄨

𝑝−2

}

= ‖𝑥‖
2

𝑝
+ 1 − 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} .

(12)

Since

𝑦 − 𝑇𝑦 = (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

𝑦
1
,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

𝑦
2
) , (13)

we have that

𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦) = 𝑉 (0, 𝑦 − 𝑇𝑦) =
󵄩󵄩󵄩󵄩𝑦 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

𝑝

= {

(
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

}

2

= (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

.

(14)

Hence, we obtain that

𝑉 (𝑥, 𝑦) − 𝑉 (𝑇𝑥, 𝑇𝑦) − 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

− ‖𝑥‖
2

𝑝
− 1 + 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

− 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

=
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 1 − 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
(
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} − 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

≥ (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) {(

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

+ 1) − 2
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

1−𝑝

𝑝

⋅ (
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−1

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−1

)

− 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)} .

(15)

Hölder’s inequality implies that

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−1

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−1

≤ ‖𝑥‖𝑝 {(
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨

𝑝−1

)
𝑞

+ (
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

𝑝−1

)
𝑞

}

1/𝑞

= ‖𝑥‖𝑝 (
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

𝑝

)
1/𝑞

= ‖𝑥‖𝑝
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

𝑝−1

𝑝
.

(16)

Therefore, we obtain that

𝑉 (𝑥, 𝑦) − 𝑉 (𝑇𝑥, 𝑇𝑦) − 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

≥ (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)

⋅ {
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
+ 1 − 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
‖𝑥‖𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝−1

𝑝
− 𝜆

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

+ 𝜆}

= (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) {

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

+ 1 − 2 ‖𝑥‖𝑝 − 𝜆
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
+ 𝜆}

≥ (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) {(1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

+ 1 − 2 + 𝜆}

= (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) {(1 − 𝜆) (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1)}

= (1 − 𝜆) (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

≥ 0, for any 𝜆 ∈ [0, 1] .

(17)

That is, the inequality (1) holds.
Case (b): suppose that 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖

𝑝
≥ 1 and ‖𝑦‖

𝑝
≤

1.
Then we have that

𝑉 (𝑇𝑥, 𝑇𝑦) = 𝑉 (𝑇𝑥, 𝑦)

= 1 +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2 ‖𝑥‖

−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} ,

(18)

𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦) = 𝑉(

(‖𝑥‖𝑝 − 1)

‖𝑥‖𝑝

𝑥, 0) = (‖𝑥‖𝑝 − 1)
2

.

(19)

Hence, we have that

𝑉 (𝑥, 𝑦) − 𝑉 (𝑇𝑥, 𝑇𝑦) − 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} − 1 −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝

+ 2
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2−𝑝

𝑝
‖𝑥‖
−1

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

− 𝜆 (‖𝑥‖𝑝 − 1)
2
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≥ ‖𝑥‖
2

𝑝
− 1 − 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

⋅ {
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−1

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−1

} (1 − ‖𝑥‖
−1

𝑝
)

− 𝜆 (1 − ‖𝑥‖𝑝)
2

.

(20)

As (a), we obtain from Hölder’s inequality that

𝑉 (𝑥, 𝑦) − 𝑉 (𝑇𝑥, 𝑇𝑦) − 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

≥ ‖𝑥‖
2

𝑝
− 1 − 2 ‖𝑥‖𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝−1

𝑝

⋅ (1 − ‖𝑥‖
−1

𝑝
) − 𝜆 (‖𝑥‖𝑝 − 1)

2

= (‖𝑥‖𝑝 − 1) (‖𝑥‖𝑝 + 1) − 2
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
(‖𝑥‖𝑝 − 1)

− 𝜆 (‖𝑥‖𝑝 − 1)
2

= (‖𝑥‖𝑝 − 1) {‖𝑥‖𝑝 + 1 − 2
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 𝜆 ‖𝑥‖𝑝 + 𝜆}

≥ (‖𝑥‖𝑝 − 1) (1 − 𝜆) (‖𝑥‖𝑝 − 1)

= (1 − 𝜆) (‖𝑥‖𝑝 − 1)
2

≥ 0, for any 𝜆 ∈ [0, 1] .

(21)

That is, the inequality (1) holds.
Case (c): suppose that 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖

𝑝
, ‖𝑦‖
𝑝
≥ 1.

Then we have that

𝑉 (𝑇𝑥, 𝑇𝑦)

= 1 + 1 − 2 ⟨‖𝑥‖
−1

𝑝
(𝑥
1
, 𝑥
2
) ,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
(𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

, 𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

)⟩

= 2 − 2 ‖𝑥‖
−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} ,

𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

= 𝑉(

‖𝑥‖𝑝 − 1

‖𝑥‖𝑝

𝑥,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

𝑦)

= (‖𝑥‖𝑝 − 1)
2

+ (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

− 2 (‖𝑥‖𝑝 − 1) (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) ‖𝑥‖

−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝

⋅ ⟨(𝑥
1
, 𝑥
2
) , (

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

𝑦
1
,
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

𝑝−2

𝑦
2
)⟩

= (‖𝑥‖𝑝 − 1)
2

+ (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

− 2 (‖𝑥‖𝑝 − 1) (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) ‖𝑥‖

−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

} .

(22)

Hence, we have that

𝑉 (𝑥, 𝑦) − 𝑉 (𝑇𝑥, 𝑇𝑦) − 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2−𝑝

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

− 2 + 2 ‖𝑥‖
−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

− 𝜆 (‖𝑥‖𝑝 − 1)
2

− 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

+ 2𝜆 (‖𝑥‖𝑝 − 1) (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1) ‖𝑥‖

−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝

⋅ {𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2 − 𝜆 (‖𝑥‖𝑝 − 1)

2

− 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

− 2 ‖𝑥‖
−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
{𝑥
1
𝑦
1

󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨

𝑝−2

+ 𝑥
2
𝑦
2

󵄨󵄨󵄨󵄨𝑦2
󵄨󵄨󵄨󵄨

𝑝−2

}

⋅ {‖𝑥‖𝑝
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1 − 𝜆 (‖𝑥‖𝑝 − 1) (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1)} .

(23)

It is obvious that

‖𝑥‖𝑝
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1 − 𝜆 (‖𝑥‖𝑝 − 1) (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1) ≥ 0 (24)

for any 𝜆 ∈ [0, 1] and ‖𝑥‖
𝑝
, ‖𝑦‖
𝑝

≥ 1. Thus, we have from
Hölder’s inequality that

𝑉 (𝑥, 𝑦) − 𝑉 (𝑇𝑥, 𝑇𝑦) − 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

≥ ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2 − 𝜆 (‖𝑥‖𝑝 − 1)

2

− 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

− 2 ‖𝑥‖
−1

𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

1−𝑝

𝑝
‖𝑥‖𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝−1

𝑝

⋅ {‖𝑥‖𝑝
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1 − 𝜆 (‖𝑥‖𝑝 − 1) (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1)}

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2 − 𝜆 (‖𝑥‖𝑝 − 1)

2

− 𝜆 (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1)
2

− 2 {‖𝑥‖𝑝
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
− 1 − 𝜆 (‖𝑥‖𝑝 − 1) (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 1)}

= ‖𝑥‖
2

𝑝
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝑝
− 2 − 𝜆

⋅ {‖𝑥‖
2

𝑝
− 2 ‖𝑥‖𝑝 + 1 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

𝑝
− 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

+ 1}

− 2 ‖𝑥‖𝑝
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
+ 2 + 2𝜆 {‖𝑥‖𝑝

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− ‖𝑥‖𝑝 −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
+ 1}

= (‖𝑥‖𝑝 −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
)
2

− 𝜆 (‖𝑥‖𝑝 −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
)
2

= (1 − 𝜆) (‖𝑥‖𝑝 −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝑝
)
2

≥ 0, for any 𝜆 ∈ [0, 1] .

(25)

That is, the inequality (1) holds.
It is clear that if ‖𝑥‖

𝑝
, ‖𝑦‖
𝑝

≤ 1 then inequality (1)
holds. Therefore, from Cases (a), (b), and (c), we obtain the
conclusion that 𝑇 is 𝑉-strongly nonexpansive for any 𝜆 ∈

(0, 1].
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Remark 10. When 𝑝 = 1, we have given the result in [5].
When 𝑝 = 2, we already know that 𝐸 is a Hilbert space and a
𝑉-strongly nonexpansive mapping 𝑇 is nonexpansive.

Theorem 11. There exists a 𝑉-strongly nonexpansive mapping
𝑇 with a nonempty subset of fixed points such that 𝑇 is not
nonexpansive for some Banach space.

Proof. It is enough to show that the𝑉-strongly nonexpansive
mapping which is given in the previous proposition is not
nonexpansive.

Let 𝑥 = (0, 1) ∈ 𝐸. Suppose that 𝑦 = (𝑦
1
, 𝑦
2
) satisfies

that ‖𝑦‖𝑝𝑝 = |𝑦
1
|
𝑝
+ |𝑦
2
|
𝑝

> 1 and 0 < 𝑦
1
, 𝑦
2

< 1. Then
𝑇𝑦 = ‖𝑦‖

−1

𝑝
𝑦. Let ℎ = (𝑦

2
/𝑦
1
) and 𝑡 = ‖𝑦‖

−1

𝑝
𝑦
1
− 𝑦
1
. We have

that 𝑡 < 0 and ‖𝑦‖
−1

𝑝
𝑦
2
− 𝑦
2
= ℎ𝑡 < 0. Then we obtain that

𝑇𝑦 = (‖𝑦‖
−1

𝑝
𝑦
1
, ‖𝑦‖
−1

𝑝
ℎ𝑦
1
). Then, we have that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

𝑝

𝑝
=

󵄩󵄩󵄩󵄩󵄩
(−

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

−1

𝑝
𝑦
1
, 1 −

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

−1

𝑝
ℎ𝑦
1
)
󵄩󵄩󵄩󵄩󵄩

𝑝

=
󵄨󵄨󵄨󵄨󵄨
−
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

−1

𝑝
𝑦
1

󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨
1 −

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

−1

𝑝
ℎ𝑦
1

󵄨󵄨󵄨󵄨󵄨

𝑝

= (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

−1

𝑝
𝑦
1
)
𝑝

+ (1 −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

−1

𝑝
ℎ𝑦
1
)
𝑝

= (𝑦
1
+ 𝑡)
𝑝

+ (1 − ℎ (𝑦
1
+ 𝑡))
𝑝

,

(26)

and since ‖𝑥 − 𝑦‖
𝑝

𝑝 = 𝑦
𝑝

1
+ (1 − ℎ𝑦

1
)
𝑝, we have that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

𝑝

𝑝
−
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑝

𝑝

= (𝑦
1
+ 𝑡)
𝑝

− 𝑦
𝑝

1
+ (1 − ℎ (𝑦

1
+ 𝑡))
𝑝

− (1 − ℎ𝑦
1
)
𝑝

.

(27)

Therefore, we will show that
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

𝑝

𝑝
−
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑝

𝑝
> 0

⇐⇒ (𝑦
1
+ 𝑡)
𝑝

− 𝑦
𝑝

1
+ (1 − ℎ (𝑦

1
+ 𝑡))
𝑝

− (1 − ℎ𝑦
1
)
𝑝

> 0

⇐⇒ {(𝑦
1
+ 𝑡)
𝑝

− 𝑦
𝑝

1
} 𝑡
−1

+ {(1 − ℎ (𝑦
1
+ 𝑡))
𝑝

− (1 − ℎ𝑦
1
)
𝑝

} 𝑡
−1

< 0,

(28)

since 𝑡 < 0. Let ℎ be fixed. As ‖𝑦‖
𝑝

𝑝 = 𝑦
𝑝

1
+ (ℎ𝑦
1
)
𝑝

→ 1,
𝑡 = ‖𝑦‖

−1

𝑝
𝑦
1
− 𝑦
1

→ 0. Thus, we have for a sufficiently small
|𝑡| that

{(𝑦
1
+ 𝑡)
𝑝

− 𝑦
𝑝

1
} 𝑡
−1

+ {(1 − ℎ (𝑦
1
+ 𝑡))
𝑝

− (1 − ℎ𝑦
1
)
𝑝

} 𝑡
−1

< 0

⇐⇒ 𝑝𝑦
𝑝−1

1
− 𝑝ℎ (1 − ℎ𝑦

1
)
𝑝−1

< 0.

(29)

It is trivial that

𝑝𝑦
𝑝−1

1
− 𝑝ℎ (1 − ℎ𝑦

1
)
𝑝−1

< 0 ⇐⇒ 𝑦
𝑝−1

1
< ℎ (1 − ℎ𝑦

1
)
𝑝−1

⇐⇒ 𝑦
𝑝

1
< 𝑦
2
(1 − 𝑦

2
)
𝑝−1

.

(30)

Let 𝑝 = 3/2. For 𝑦 = (0.2, 0.95), we have that

𝑦
𝑝

1
= (0.2)

3/2
< 0.95 (0.05)

1/2
= 𝑦
2
(1 − 𝑦

2
)
𝑝−1

. (31)

We obtain that ‖𝑦‖𝑝𝑝 = (0.2)
3/2

+ (0.95)
3/2

> 1 and that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

𝑝

𝑝
=

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

−𝑝

𝑝
{(0.2)

3/2
+ (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑝

− 0.95)
3/2

}

> (0.2)
3/2

+ (0.05)
3/2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑝

𝑝
.

(32)

Therefore, we obtain the conclusion.

We remark that the symbols 𝑥
𝑛

→ 𝑢 and 𝑥
𝑛
⇀ 𝑢 mean

that {𝑥
𝑛
} converges strongly and weakly to 𝑢, respectively.We

will introduce the following important lemmas for proofs of
our theorems.

Lemma 12. (a) For all 𝑥, 𝑦, 𝑧 ∈ 𝐸,

𝑉 (𝑥, 𝑦) ≤ 𝑉 (𝑥, 𝑦) + 𝑉 (𝑦, 𝑧)

= 𝑉 (𝑥, 𝑧) − 2 ⟨𝑥 − 𝑦, 𝐽𝑦 − 𝐽𝑧⟩ .

(33)

(b) Let {𝑥
𝑛
} be a sequence in 𝐸 such that there exists

lim
𝑛→∞

𝑉(𝑥
𝑛
, 𝑝) < ∞ for some 𝑝 ∈ 𝐸; then {𝑥

𝑛
} is bounded.

Lemma 13 (see [3]). Let 𝐸 be a smooth and uniformly convex
Banach space and 𝐶 a nonempty, convex, and closed subset of
𝐸. Suppose that 𝑇 : 𝐶 → 𝐸 satisfies

𝑉 (𝑇𝑥, 𝑇𝑦) ≤ 𝑉 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐶. (34)

If a weakly convergent sequence {𝑧
𝑛
}
𝑛≥1

⊂ 𝐶 satisfies that
lim
𝑛→∞

𝑉(𝑇𝑧
𝑛
, 𝑧
𝑛
) = 0, it holds that 𝑧

𝑛
⇀ 𝑧 ∈ 𝐹(𝑇).

Theorem 14 (see [1, 11]). Let 𝑌 be a compact subset of a
topological vector space𝐸 and let𝑋 be a convex subset of 𝑌. Let
𝐴 : 𝑋 → 2

𝑌 be an operator such that, for each 𝑦 ∈ 𝑌, 𝐴−1𝑦 is
convex. Suppose that 𝐵 : 𝑋 → 2

𝑌 satisfies the following:

(1) 𝐵𝑥 ⊂ 𝐴𝑥 for each 𝑥 ∈ 𝑋,
(2) 𝐵−1𝑦 ̸= 0 for each 𝑦 ∈ 𝑌,
(3) 𝐵𝑥 is open for each 𝑥 ∈ 𝑋.

Then there exists a point 𝑥
0
∈ 𝑋 such that 𝑥

0
∈ 𝐴𝑥
0
.

Lemma 15 (see [12]). Let 𝑠 > 0 and let 𝐸 be a Banach
space. Then 𝐸 is uniformly convex if and only if there exists
a continuous, strictly increasing, and convex function 𝑔 :

[0,∞) → [0,∞), 𝑔(0) = 0, such that
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩

2

≥ ‖𝑥‖
2
+ 2 ⟨𝑦, 𝑗⟩ + 𝑔 (

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩)

(35)

for all 𝑥, 𝑦 ∈ {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑠} and 𝑗 ∈ 𝐽𝑥.

Lemma 16 (see [13]). Let 𝐸 be a smooth and uniformly
convex Banach space. Then, there exists a continuous, strictly
increasing, and convex function 𝑔 : [0,∞) → [0,∞) such
that 𝑔(0) = 0 and, for each real number 𝑟 > 0,

0 ≤ 𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) ≤ 𝑉 (𝑥, 𝑦) (36)

for all 𝑥, 𝑦 ∈ 𝐵
𝑟
= {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑟}.
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Lemma 17 (see [13]). Let 𝐸 be a smooth and uniformly convex
Banach space and {𝑦

𝑛
} and {𝑧

𝑛
} in 𝐸. If lim

𝑛→∞
𝑉(𝑦
𝑛
, 𝑧
𝑛
) = 0

and either {𝑦
𝑛
} or {𝑧

𝑛
} is bounded, then {𝑦

𝑛
− 𝑧
𝑛
} → 0.

3. Main Results

In this section, we prove a weak convergence theorem and
strong convergence theorems for finding fixed points of a 𝑉-
strongly nonexpansivemapping𝑇 in Banach spaces, and then
we show the existence theorem for fixed points of 𝑇 with a
dissipative property (cf. [10]).

Theorem 18. Let 𝐸 be a smooth and uniformly convex Banach
space and 𝐶 a nonempty, closed, and convex subset of 𝐸.
Suppose that a mapping 𝑇 : 𝐶 → 𝐶 is 𝑉-strongly nonex-
pansive with 𝜆 and that𝐹(𝑇) ̸= 0. One defines aMann iterative
sequence {𝑥

𝑛
} as follows: for any 𝑥

1
∈ 𝐶 and 𝑛 ≥ 1,

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
, (37)

where {𝛽
𝑛
} ⊂ (0, 1) and lim

𝑛→∞
𝛽
𝑛
= 0. Then 𝑥

𝑛
⇀ 𝑝
0
for

some 𝑝
0
∈ 𝐹(𝑇).

Proof. Suppose that 𝑝 ∈ 𝐹(𝑇). Then we have from the
convexity of 𝑉 that

𝑉 (𝑥
𝑛+1

, 𝑝) = 𝑉 (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
, 𝑝)

≤ 𝛽
𝑛
𝑉 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
) 𝑉 (𝑇𝑥

𝑛
, 𝑝)

= 𝛽
𝑛
𝑉 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
) 𝑉 (𝑇𝑥

𝑛
, 𝑇𝑝) .

(38)

Since 𝑇 is 𝑉-strongly nonexpansive with 𝜆, we have that

𝑉 (𝑥
𝑛+1

, 𝑝)

≤ 𝛽
𝑛
𝑉 (𝑥
𝑛
, 𝑝) + (1 − 𝛽

𝑛
)

⋅ {𝑉 (𝑥
𝑛
, 𝑝) − 𝜆𝑉 ((𝐼 − 𝑇) 𝑥

𝑛
, (𝐼 − 𝑇) 𝑝)}

= 𝑉 (𝑥
𝑛
, 𝑝) − (1 − 𝛽

𝑛
) 𝜆𝑉 (𝑥

𝑛
− 𝑇𝑥
𝑛
, 0)

≤ 𝑉 (𝑥
𝑛
, 𝑝) .

(39)

Hence, we have lim
𝑛→∞

𝑉(𝑥
𝑛
, 𝑝) = 𝛼 < ∞. From Lemma 12

(b), {𝑥
𝑛
} is bounded. Furthermore, we have that

(1 − 𝛽
𝑛
) 𝜆𝑉 (𝑥

𝑛
− 𝑇𝑥
𝑛
, 0) ≤ 𝑉 (𝑥

𝑛
, 𝑝) − 𝑉 (𝑥

𝑛+1
, 𝑝) . (40)

Since lim
𝑛→∞

𝛽
𝑛
= lim

𝑛→∞
{𝑉(𝑥
𝑛
, 𝑝) − 𝑉(𝑥

𝑛+1
, 𝑝)} = 0, we

obtain that

lim
𝑛→∞

𝑉 (𝑥
𝑛
− 𝑇𝑥
𝑛
, 0) = lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩

2

= 0. (41)

This means that {𝑥
𝑛
− 𝑇𝑥
𝑛
} converges strongly to 0. Hence,

{𝑇𝑥
𝑛
} is also bounded, and there exists 𝑀 > 0 such that

‖𝑥
𝑛
‖, ‖𝑇𝑥

𝑛
‖ ≤ 𝑀 − ‖𝑝‖ for all 𝑛 ≥ 1.

On the other hand, we have from Lemma 12 (a) that

0 ≤ 𝑉 (𝑥
𝑛
, 𝑇𝑥
𝑛
)

= 𝑉 (𝑥
𝑛
, 𝑝) − 𝑉 (𝑇𝑥

𝑛
, 𝑝) − 2 ⟨𝑥

𝑛
− 𝑇𝑥
𝑛
, 𝐽𝑇𝑥
𝑛
− 𝐽𝑝⟩

≤ 𝑉 (𝑥
𝑛
, 𝑝) − 𝑉 (𝑇𝑥

𝑛
, 𝑝) + 2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩)

≤ 𝑉 (𝑥
𝑛
, 𝑝) − 𝑉 (𝑇𝑥

𝑛
, 𝑝) + 2𝑀

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥
𝑛
− 𝑇𝑥
𝑛
, 𝐽𝑝⟩ + 2𝑀

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩

= (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩) (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩)

− 2 ⟨𝑥
𝑛
− 𝑇𝑥
𝑛
, 𝐽𝑝⟩ + 2𝑀

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 + 2𝑀) − 2 ⟨𝑥
𝑛
− 𝑇𝑥
𝑛
, 𝐽𝑝⟩ .

(42)

Hence, we obtain that lim
𝑛→∞

𝑉(𝑥
𝑛
, 𝑇𝑥
𝑛
) = lim

𝑛→∞
𝑉(𝑇𝑥
𝑛
,

𝑥
𝑛
) = 0. From Lemma 13, there exists a point 𝑝

0
∈ 𝐹(𝑇) such

that 𝑥
𝑛
⇀ 𝑝
0
and 𝑇𝑥

𝑛
⇀ 𝑝
0
.

The duality mapping 𝐽 of a Banach space 𝐸 with Gâteaux
differentiable norm is said to be weakly sequentially continu-
ous if 𝑥

𝑛
⇀ 𝑥 in 𝐸 implies that {𝐽𝑥

𝑛
} converges weak star to

𝐽𝑥 in 𝐸
∗ (cf. [14]). This happens, for example, if 𝐸 is a Hilbert

space, or finite-dimensional and smooth, or 𝑙𝑝 if 1 < 𝑝 < ∞

(cf. [15]). Next we prove a strong convergence theorem.

Theorem 19. Let 𝐸 be a reflexive, smooth, and strictly convex
Banach space. Suppose that the dualitymapping 𝐽 of𝐸 is weakly
sequentially continuous. Suppose that 𝐶 is a nonempty, closed,
and convex subset of𝐸,𝑇 : 𝐶 → 𝐶 is𝑉-strongly nonexpansive
with 𝜆, and 𝐹(𝑇) ̸= 0. One defines a Mann iterative sequence
{𝑥
𝑛
} as follows: for any 𝑥

1
∈ 𝐶 and 𝑛 ≥ 1,

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
, (43)

where {𝛽
𝑛
} ⊂ (0, 1) and lim

𝑛→∞
𝛽
𝑛
= 0. If 𝑇 satisfies that

⟨𝑥, 𝐽𝑇𝑥⟩ ≤ 0 ∀𝑥 ∈ 𝐶, (44)

then 𝑥
𝑛

→ 𝑝
0
and 𝑇𝑥

𝑛
→ 𝑝
0
for some 𝑝

0
∈ 𝐹(𝑇).

Proof. As in the proof of Theorem 18, we obtain that
lim
𝑛→∞

𝑉(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0 and 𝑥

𝑛
⇀ 𝑝
0
and 𝑇𝑥

𝑛
⇀ 𝑝
0
for

some 𝑝
0
∈ 𝐹(𝑇). Furthermore, from Lemma 12 (a), we have

that

0 ≤ 𝑉 (𝑥
𝑛
, 𝑝
0
) + 𝑉 (𝑝

0
, 𝑇𝑥
𝑛
)

= 𝑉 (𝑥
𝑛
, 𝑇𝑥
𝑛
) − 2 ⟨𝑥

𝑛
− 𝑝
0
, 𝐽𝑝
0
− 𝐽𝑇𝑥

𝑛
⟩

= 𝑉 (𝑥
𝑛
, 𝑇𝑥
𝑛
) − 2 ⟨𝑥

𝑛
− 𝑝
0
, 𝐽𝑝
0
⟩

+ 2 ⟨𝑥
𝑛
, 𝐽𝑇𝑥
𝑛
⟩ − 2 ⟨𝑝

0
, 𝐽𝑇𝑥
𝑛
⟩ .

(45)

Hence, the assumptions imply that

𝑉 (𝑥
𝑛
, 𝑝
0
) 󳨀→ 0, 𝑉 (𝑝

0
, 𝑇𝑥
𝑛
) 󳨀→ 0 as 𝑛 󳨀→ ∞. (46)

From Lemma 17, we have the conclusion that 𝑥
𝑛

→ 𝑝
0
and

𝑇𝑥
𝑛

→ 𝑝
0
.
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Condition (44) is a definition of a linear dissipative
mapping 𝑇 (cf. [16]). Moreover, we give a definition of a
𝐽-dissipative mapping for nonlinear mappings in a Banach
space.

Definition 20. Let 𝐽 be a single-valued duality mapping on 𝐸

and let 𝐶 be a nonempty subset of 𝐸. Then a mapping 𝑇 :

𝐶 → 𝐸 is called 𝐽-dissipative if it holds that

⟨𝑥 − 𝑦, 𝐽𝑇𝑥 − 𝐽𝑇𝑦⟩ ≤ 0 (47)

for all 𝑥, 𝑦 ∈ 𝐶.

In a Hilbert space, such a mapping 𝑇 is called dissipative.
In Banach spaces, we remark that the 𝐽-dissipative mapping
is not equal to the dissipative mapping (cf. [17]). Next we give
a characterization of 𝐽-dissipative mappings by using 𝑉(⋅, ⋅).

Theorem 21. Let 𝐸 be a smooth Banach space, 𝐶 a nonempty
subset of 𝐸, and 𝑇 : 𝐶 → 𝐸 a mapping. Then, the following
are equivalent.

(a) 𝑇 is 𝐽-dissipative.
(b) For all 𝑥, 𝑦 ∈ 𝐶,

𝑉 (𝑥, 𝑇𝑦) + 𝑉 (𝑦, 𝑇𝑥) ≤ 𝑉 (𝑥, 𝑇𝑥) + 𝑉 (𝑦, 𝑇𝑦) . (48)

Proof. For any 𝑥, 𝑦 ∈ 𝐶,

⟨𝑥 − 𝑦, 𝐽𝑇𝑥 − 𝐽𝑇𝑦⟩ ≤ 0 (49)

is equal to

− 2 ⟨𝑥, 𝐽𝑇𝑦⟩ − 2 ⟨𝑦, 𝐽𝑇𝑥⟩ ≤ −2 ⟨𝑥, 𝐽𝑇𝑥⟩ − 2 ⟨𝑦, 𝐽𝑇𝑦⟩ ,

− 2 ⟨𝑥, 𝐽𝑇𝑦⟩ − 2 ⟨𝑦, 𝐽𝑇𝑥⟩ + ‖𝑥‖
2
+
󵄩󵄩󵄩󵄩𝑇𝑦

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

+ ‖𝑇𝑥‖
2

≤ −2 ⟨𝑥, 𝐽𝑇𝑥⟩ − 2 ⟨𝑦, 𝐽𝑇𝑦⟩ + ‖𝑥‖
2
+ ‖𝑇𝑥‖

2

+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑇𝑦

󵄩󵄩󵄩󵄩

2

.

(50)

From the definition of 𝑉, this inequality is equivalent to

𝑉 (𝑥, 𝑇𝑦) + 𝑉 (𝑦, 𝑇𝑥) ≤ 𝑉 (𝑥, 𝑇𝑥) + 𝑉 (𝑦, 𝑇𝑦) . (51)

Furthermore, we have the following result by this theo-
rem.

Lemma 22. Suppose that 𝐸 is a smooth and strictly convex
Banach space and that 𝐶 ⊂ 𝐸 is a nonempty convex subset.
Assume that a mapping 𝑇 : 𝐶 → 𝐸 is J-dissipative. If there are
fixed points of 𝑇, then 𝐹(𝑇) is singleton.

Proof. Assume that there exist 𝑝
0
and 𝑞

0
such that 𝑇𝑝

0
= 𝑝
0

and 𝑇𝑞
0
= 𝑞
0
. Since 𝑇 is 𝐽-dissipative, we have byTheorem 21

that
0 ≤ 𝑉 (𝑝

0
, 𝑇𝑞
0
) + 𝑉 (𝑞

0
, 𝑇𝑝
0
)

≤ 𝑉 (𝑝
0
, 𝑇𝑝
0
) + 𝑉 (𝑞

0
, 𝑇𝑞
0
)

= 𝑉 (𝑝
0
, 𝑝
0
) + 𝑉 (𝑞

0
, 𝑞
0
) = 0.

(52)

Thus, we have that 𝑉(𝑝
0
, 𝑞
0
) = 𝑉(𝑞

0
, 𝑝
0
) = 0. This implies

that

0 ≤ (
󵄩󵄩󵄩󵄩𝑝0

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑞0

󵄩󵄩󵄩󵄩)
2

≤ 𝑉 (𝑝
0
, 𝑞
0
) = 0,

󵄩󵄩󵄩󵄩𝑝0
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑞0
󵄩󵄩󵄩󵄩 .

(53)

Furthermore, we have

𝑉 (𝑝
0
, 𝑞
0
) =

󵄩󵄩󵄩󵄩𝑝0
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑞0

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑝
0
, 𝐽𝑞
0
⟩

=
󵄩󵄩󵄩󵄩𝑝0

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑝0

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑝
0
, 𝐽𝑞
0
⟩ = 0,

(54)

and we have ‖𝑝
0
‖
2
= ⟨𝑝
0
, 𝐽𝑞
0
⟩. Since 𝐸 is strictly convex and

𝐽 is one-to-one, we obtain that 𝑝
0
= 𝑞
0
.

We give a result before proving an existence theorem for
fixed points.

Theorem 23 (see [10]). Let 𝐸 be a smooth and uniformly
convex Banach space, and let 𝑇 : 𝐸 → 𝐸 be a 𝑉-strongly
nonexpansive mapping with 𝜆. Then, one has that

lim
‖𝑥−𝑦‖→0

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 = 0, (55)

for ‖𝑥‖, ‖𝑦‖, ‖𝑇𝑥‖, ‖𝑇𝑦‖ ≤ 𝑟, where 𝑟 > 0.

Proof. Since 𝑇 is a 𝑉-strongly nonexpansive with 𝜆, we have

0 ≤ 𝑉 (𝑇𝑥, 𝑇𝑦) + 𝜆𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦)

≤ 𝑉 (𝑥, 𝑦)

= ‖𝑥‖
2
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥, 𝐽𝑦⟩

= ‖𝑥‖
2
−
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥 − 𝑦, 𝐽𝑦⟩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 + 2
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 (‖𝑥‖ + 3
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩) , for any 𝑥, 𝑦 ∈ 𝐸.

(56)

Thus, we obtain, for 𝑥, 𝑦 with ‖𝑥‖, ‖𝑦‖ ≤ 𝑟,

𝑉 (𝑇𝑥, 𝑇𝑦) 󳨀→ 0,

𝑉 (𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦) 󳨀→ 0 as 󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 󳨀→ 0.

(57)

From Lemma 16, we have that

0 ≤ 𝑔 (
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩) ≤ 𝑉 (𝑇𝑥, 𝑇𝑦) . (58)

Therefore, we have from (57) that lim
‖𝑥−𝑦‖→0

𝑔(‖𝑇𝑥 − 𝑇𝑦‖) =

0. From the definition of 𝑔, we obtain that

lim
‖𝑥−𝑦‖→0

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 = 0. (59)

Remark 24. If 𝑥 ∈ 𝐸 satisfies that ‖𝑇𝑥‖ < 𝑟
0
for 𝑟
0
>0, the (57)

implies that ‖𝑇𝑦‖ < 𝑟
0
+ 1 for 𝑦 in the neighborhood of 𝑥.
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We will prove the following existence theorem by using
Theorem 14.

Theorem 25. Let 𝐸 be a reflexive, strictly convex, and smooth
Banach space and 𝐶 a nonempty, bounded, closed, and convex
subset of 𝐸. Suppose 𝑇 : 𝐶 → 𝐶 is a 𝑉-strongly nonexpansive
and 𝐽-dissipative mapping. Then, there exists a unique fixed
point of 𝑇.

Proof. At first, we will show that there exists 𝑦
0
∈ 𝐶 such that

{𝑥 ∈ 𝐶 : 𝑉 (𝑥, 𝑇𝑥) < 𝑉 (𝑦
0
, 𝑇𝑥)} = 0. (60)

Assume that, for all 𝑦 ∈ 𝐶,

{𝑥 ∈ 𝐶 : 𝑉 (𝑥, 𝑇𝑥) < 𝑉 (𝑦, 𝑇𝑥)} ̸= 0. (61)

Let 𝐴𝑥 = {𝑦 ∈ 𝐶 : 𝑉(𝑥, 𝑇𝑦) < 𝑉(𝑦, 𝑇𝑦)} and 𝐵𝑥 = {𝑦 ∈

𝐶 : 𝑉(𝑥, 𝑇𝑥) < 𝑉(𝑦, 𝑇𝑥)} for all 𝑥 ∈ 𝐶. Then, from the
assumption, 𝐵−1𝑦 is nonempty for all 𝑦 ∈ 𝐶. Since 𝑇 is 𝐽-
dissipative, Theorem 21 implies that

𝑉 (𝑥, 𝑇𝑦) − 𝑉 (𝑦, 𝑇𝑦) ≤ 𝑉 (𝑥, 𝑇𝑥) − 𝑉 (𝑦, 𝑇𝑥) (62)

for all 𝑦 ∈ 𝐵𝑥. This means that 𝐵𝑥 ⊂ 𝐴𝑥 for any 𝑥 ∈ 𝐶. For
any 𝑦 ∈ 𝐶, let V

𝑗
∈ 𝐴
−1
𝑦 with 𝑗 ∈ {1, 2, . . . , 𝑛}, and suppose

that V = ∑
𝑛

𝑗=1
𝛼
𝑗
V
𝑗
and ∑

𝑛

𝑗=1
𝛼
𝑗
= 1 with 𝛼

𝑗
> 0. From the

convexity of 𝑉, we have

𝑉 (V, 𝑇𝑦) = 𝑉(

𝑛

∑

𝑗=1

𝛼
𝑗
V
𝑗
, 𝑇𝑦) ≤

𝑛

∑

𝑗=1

𝛼
𝑗
𝑉(V
𝑗
, 𝑇𝑦)

≤

𝑛

∑

𝑗=1

𝛼
𝑗
𝑉 (𝑦, 𝑇𝑦) = 𝑉 (𝑦, 𝑇𝑦) .

(63)

Thus, we obtain that 𝐴−1𝑦 is convex for all 𝑦 ∈ 𝐶. Since it is
obvious that 𝐵𝑥 is open for each 𝑥 ∈ 𝐶, Theorem 14 implies
that there exists a point 𝑥

0
∈ 𝐶 such that 𝑥

0
∈ 𝐴𝑥

0
. This

means that

𝑉 (𝑥
0
, 𝑇𝑥
0
) < 𝑉 (𝑥

0
, 𝑇𝑥
0
) . (64)

This is a contradiction. Thus, we have for some 𝑦
0
∈ 𝐶 that

{𝑥 ∈ 𝐶 : 𝑉 (𝑥, 𝑇𝑥) < 𝑉 (𝑦
0
, 𝑇𝑥)} = 0. (65)

This means that there exists 𝑦
0
∈ 𝐶 such that

𝑉 (𝑦
0
, 𝑇𝑥) ≤ 𝑉 (𝑥, 𝑇𝑥) (66)

for all 𝑥 ∈ 𝐶.
Furthermore, we will show 𝑉(𝑦

0
, 𝑇𝑦
0
) ≤ 𝑉(𝑥, 𝑇𝑦

0
) for all

𝑥 ∈ 𝐶 if𝑦
0
satisfies (66). Let𝑦

𝑡
= (1−𝑡)𝑦

0
+𝑡𝑥 for any 𝑡 ∈ (0, 1)

and 𝑥 ∈ 𝐶. Since 𝐶 is convex, then 𝑦
𝑡
∈ 𝐶. Thus, we obtain

that

𝑉 (𝑦
0
, 𝑇𝑦
𝑡
) ≤ 𝑉 (𝑦

𝑡
, 𝑇𝑦
𝑡
)

= 𝑉 ((1 − 𝑡) 𝑦
0
+ 𝑡𝑥, 𝑇𝑦

𝑡
) .

(67)

From the convexity of 𝑉(⋅, 𝑦) for 𝑦 ∈ 𝐶,

𝑉 (𝑦
0
, 𝑇𝑦
𝑡
) ≤ (1 − 𝑡) 𝑉 (𝑦

0
, 𝑇𝑦
𝑡
) + 𝑡𝑉 (𝑥, 𝑇𝑦

𝑡
) (68)

and we have 𝑉(𝑦
0
, 𝑇𝑦
𝑡
) ≤ 𝑉(𝑥, 𝑇𝑦

𝑡
). From the definition of

𝑉(⋅, ⋅), we have that
󵄨󵄨󵄨󵄨𝑉 (𝑥, 𝑇𝑦

𝑡
) − 𝑉 (𝑥, 𝑇𝑦

0
)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑦𝑡
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑇𝑦0

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥, 𝐽𝑇𝑦
𝑡
− 𝐽𝑇𝑦

0
⟩
󵄨󵄨󵄨󵄨󵄨

≤ (
󵄩󵄩󵄩󵄩𝑇𝑦𝑡

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑦0

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑇𝑦𝑡 − 𝑇𝑦

0

󵄩󵄩󵄩󵄩 + 2 ‖𝑥‖
󵄩󵄩󵄩󵄩𝐽𝑇𝑦𝑡 − 𝐽𝑇𝑦

0

󵄩󵄩󵄩󵄩 .

(69)

Therefore, we have, byTheorem 23 and the continuity of 𝐽 on
a smooth Banach space, that lim

𝑡→0+
𝑉(𝑥, 𝑇𝑦

𝑡
) = 𝑉(𝑥, 𝑇𝑦

0
)

and

𝑉 (𝑦
0
, 𝑇𝑦
0
) = lim
𝑡→0+

𝑉 (𝑦
0
, 𝑇𝑦
𝑡
)

≤ lim
𝑡→0+

𝑉 (𝑥, 𝑇𝑦
𝑡
) = 𝑉 (𝑥, 𝑇𝑦

0
)

(70)

for all 𝑥 ∈ 𝐶. Letting 𝑥 = 𝑇𝑦
0
, we have that

𝑉 (𝑦
0
, 𝑇𝑦
0
) ≤ 𝑉 (𝑇𝑦

0
, 𝑇𝑦
0
) = 0. (71)

Hence, 𝑉(𝑦
0
, 𝑇𝑦
0
) = 0. This implies that

󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑇𝑦0

󵄩󵄩󵄩󵄩

2

= 2 ⟨𝑦
0
, 𝐽𝑇𝑦
0
⟩ ≤ 2

󵄩󵄩󵄩󵄩𝑦0
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑇𝑦0
󵄩󵄩󵄩󵄩 ,

(72)

and then we obtain that

(
󵄩󵄩󵄩󵄩𝑦0

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑇𝑦0

󵄩󵄩󵄩󵄩)
2

≤ 0. (73)

Thus, we have ‖𝑦
0
‖ = ‖𝑇𝑦

0
‖ and we have by (72) that ‖𝑦

0
‖
2
=

⟨𝑦
0
, 𝐽𝑇𝑦
0
⟩. Since 𝐽 is one-to-one on a strictly convex Banach

space, 𝐽𝑇𝑦
0
= 𝐽𝑦
0
implies that 𝑇𝑦

0
= 𝑦
0
. Therefore, we have

the conclusion.

Finally, we will prove a strong convergence theorem for
finding fixed points of a𝑉-strongly nonexpansive mapping 𝑇

in a Banach space, without the assumption that 𝐹(𝑇) ̸= 0.

Theorem26. Let𝐸 be a smooth and uniformly convex Banach
space, and let 𝐶 be a nonempty, compact, and convex subset of
𝐸. Suppose that 𝑇 : 𝐶 → 𝐶 is 𝐽-dissipative and 𝑉-strongly
nonexpansive with 𝜆. One defines a Mann iterative sequence
{𝑥
𝑛
} as follows: for any 𝑥

1
∈ 𝐶 and 𝑛 ≥ 1,

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
, (74)

where {𝛽
𝑛
} ⊂ (0, 1) and lim

𝑛→∞
𝛽
𝑛
= 0. Then, there exists a

unique fixed point 𝑝
0
∈ 𝐶 such that 𝑥

𝑛
→ 𝑝
0
and 𝑇𝑥

𝑛
→ 𝑝
0
.

Proof. From Theorem 25, we have that 𝐹(𝑇) ̸= 0. As in the
proof of Theorem 18, we obtain that lim

𝑛→∞
𝑉(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0

and that there exists a point 𝑝
0
∈ 𝐹(𝑇) such that 𝑥

𝑛
⇀ 𝑝
0
and

𝑇𝑥
𝑛
⇀ 𝑝
0
. Since 𝑇 is 𝐽-dissipative, Theorem 21 implies that

0 ≤ 𝑉 (𝑥
𝑛
, 𝑇𝑝
0
) + 𝑉 (𝑝

0
, 𝑇𝑥
𝑛
) ≤ 𝑉 (𝑥

𝑛
, 𝑇𝑥
𝑛
) + 𝑉 (𝑝

0
, 𝑇𝑝
0
) .

(75)
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From 𝑇𝑝
0
= 𝑝
0
, we have for 𝑛 ≥ 1 that

0 ≤ 𝑉 (𝑥
𝑛
, 𝑝
0
) + 𝑉 (𝑝

0
, 𝑇𝑥
𝑛
)

≤ 𝑉 (𝑥
𝑛
, 𝑇𝑥
𝑛
) + 𝑉 (𝑝

0
, 𝑝
0
) = 𝑉 (𝑥

𝑛
, 𝑇𝑥
𝑛
) .

(76)

Since lim
𝑛→∞

𝑉(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0, we have that

lim
𝑛→∞

𝑉 (𝑥
𝑛
, 𝑝
0
) = lim
𝑛→∞

𝑉 (𝑝
0
, 𝑇𝑥
𝑛
) = 0. (77)

By Lemma 17, we obtain that 𝑥
𝑛

→ 𝑝
0
and 𝑇𝑥

𝑛
→ 𝑝
0
. We

have the conclusion.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author would like to thank the reviewers of this paper
for their enduring reading and Professor N. Hirano and
Professor A. T. Lau for their encouragement. Finally, the
author deeply appreciates hermotherAyako’s hearty support.

References

[1] W. Takahashi, Nonlinear Functional Analysis, Fixed Point The-
ory and its Applications, Yokohama Publishers, Yokohama,
Japan, 2000.

[2] Y. I. Alber and S. Guerre-Delabriere, “Principle of weakly con-
tractive maps in Hilbert spaces,” in New Results in Operator
Theory and Its Applications, vol. 98 ofOperatorTheory: Advances
and Applications, pp. 7–22, Birkhäuser, Basel, Switzerland, 1997.

[3] D. Butnariu and E. Resmerita, “Bregman distances, totally
convex functions, and a method for solving operator equations
in Banach spaces,” Abstract and Applied Analysis, vol. 2006,
Article ID 84919, 39 pages, 2006.

[4] T. Ibaraki andW.Takahashi, “Anewprojection and convergence
theorems for the projections in Banach spaces,” Journal of
Approximation Theory, vol. 149, no. 1, pp. 1–14, 2007.

[5] H. Manaka, “Convergence theorems for a maximal monotone
operator and a 𝑉-strongly nonexpansive mapping in a Banach
space,” Abstract and Applied Analysis, vol. 2010, Article ID
189814, 20 pages, 2010.

[6] S. Reich, “Iterative methods for accretive sets,” in Nonlinear
Equations in Abstract Spaces, pp. 317–326, Academic Press, New
York, NY, USA, 1978.

[7] H. H. Bauschke, “Fenchel duality, Fitzpatrick functions and the
extension of firmly nonexpansive mappings,” Proceedings of the
AmericanMathematical Society, vol. 135, no. 1, pp. 135–139, 2007.

[8] R. E. Bruck and S. Reich, “Nonexpansive projections and
resolvents of accretive operators in Banach spaces,” Houston
Journal of Mathematics, vol. 3, no. 4, pp. 459–470, 1977.

[9] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point
Theory, vol. 28 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, UK, 1990.

[10] H. Manaka, Convergence theorems for fixed points with iterative
methods in Banach spaces [Thesis], Yokohama National Univer-
sity, 2011.

[11] W. Takahashi, “Fixed point, minimax, and Hahn-Banach the-
orems,” Proceedings of Symposia in Pure Mathematics, vol. 45,
part 2, pp. 419–427, 1986.

[12] H. K. Xu, “Inequalities in Banach spaces with applications,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 16, no.
12, pp. 1127–1138, 1991.

[13] S. Kamimura and W. Takahashi, “Strong convergence of a
proximal-type algorithm in a Banach space,” SIAM Journal on
Optimization, vol. 13, no. 3, pp. 938–945, 2002.

[14] S. Reich, “Approximating zeros of accretive operators,” Proceed-
ings of the AmericanMathematical Society, vol. 51, no. 2, pp. 381–
384, 1975.

[15] F. E. Browder, “Fixed point theorems for nonlinear semicontrac-
tivemappings in Banach spaces,”Archive for RationalMechanics
and Analysis, vol. 21, no. 4, pp. 259–269, 1966.

[16] H. O. Fattorini, Encyclopedia of Mathematics and its Applica-
tions, vol. 18 ofEncyclopedia ofMathematics and its Applications,
Addison-Wesley, New York, NY, USA, 1983.

[17] I. Miyadera, Hisenkei hangun (Kinokuniya Suugaku gansyo 10),
Kinokuniya shoten, 1977 (Japanese).



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


