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In this paper, the authors studied oscillatory behavior of solutions of fourth-order delay difference equation
Δ(c3(n)Δ(c2(n)Δ(c1(n)Δu(n)))) + p(n)f(u(n − k)) � 0 under the conditions 

∞
n�n0

ci(n)<∞, i � 1, 2, 3. New oscillation
criteria have been obtained which greatly reduce the number of conditions required for the studied equation. Some examples are
presented to show the strength and applicability of the main results.

1. Introduction

In this paper, we are concerned with the fourth-order delay
difference equation of the form

D4u(n) + p(n)f(u(n − k)) � 0, n≥ n0 ≥ 0, (1)

where

D0u � u,

Diu � ci(n)Δ Di− 1u( , i � 1, 2, 3,

D4u � Δ D3u( .

(2)

In the sequel, we will assume the following:

(H1) {c1(n)}, {c2(n)} and {c3(n)} are the positive real
sequence for all n≥ n0 and satisfy

wi n0(  � 

∞

n�n0

1
ci(n)
<∞, i � 1, 2, 3. (3)

(H2) {p(n)} is a nonnegative real sequence and does not
vanish eventually.
(H3) f ∈ C(R,R) is nondecreasing, and
(f(x)/x)≥M1 > 0 for all x≠ 0.

(H4) k is a nonnegative integer.

Under a solution of (1), we mean a real-valued sequence
{u(n)} defined for all n≥ n0 − k and satisfies equation (1) for
all n≥ n0. We restrict our attention to only those solutions of
(1) which exist for all n≥N≥ n0 and satisfy the following
condition:

sup |u(n)|: n≥N1 > 0 for anyN1 ≥N. (4)

A solution {u(n)} of (1) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Other-
wise, it is said to be nonoscillatory. *e equation itself is
termed oscillatory if all its solutions oscillate.

Fourth-order difference equations naturally appear in
discrete-type models concerning physical, biological, and
chemical phenomena (see for example [1]). In mechanical and
engineering problems, questions concerning the existence of
oscillatory solutions play an important role. During the last
several years, there has been a constant interest in getting
sufficient conditions for oscillatory behavior of different classes
of fourth-order difference equations with or without deviating
arguments, (see [2–19], and the references cited therein). In
particular, the authors in [5, 8, 13, 15, 18, 19] established
oscillation results for (1) under the following assumptions:
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c1(n) � c2(n) � 1 andw3 n0( <∞,

c1(n) � c3(n) � 1 andw2 n0( <∞,
(5)

respectively.
In [3, 4, 6, 7, 9–12, 14, 16, 17], the authors studied the

oscillation properties of solutions of equation (1) under the
following condition:

wi n0(  �∞, i � 1, 2, 3. (6)

From the review of the literature, it seems that there is
nothing known about the oscillation of equation (1) when
condition (3) holds. Inspired by the ideas adopted in [20],
our main aim is to fill this gap by presenting easily verifiable
criteria for the oscillation of all solutions of (1). Examples
illustrating the importance of the results obtained are
presented.

2. Main Results

For the sake of convenience, we use the following notations
throughout the paper. We denote

w12(n) � 
∞

s�n

w2(s)

c1(s)
,

w23(n) � 
∞

s�n

w3(s)

c2(s)
,

w123(n) � 

∞

s�n

w23(s)

c1(s)
,

B(n, N) � 
n− 1

s�N

1
c2(s)



s− 1

i�N

1
c3(i)



i− 1

t�N

p(t),

B(n, N) � 
n− 1

s�N

p(s)w123(s − k)

c3(s − k)
,

(7)

where n≥N≥ n0. In what follows, we only need to consider
eventually positive solutions of (1), since if {u(n)} satisfies
(1), then so does {− u(n)}.

Lemma 1. Let {u(n)} be an eventually positive solution of (1).
6en, there is an integer n1≥ n0 such that {u(n)} satisfies one
of the following cases:

(i) u(n)> 0, D1u(n)> 0, D2u(n)> 0, D3u(n)> 0, and
D4u(n)≤ 0

(ii) u(n)> 0, D1u(n)> 0, D2u(n)> 0, D3u(n)< 0, and
D4u(n)≤ 0

(iii) u(n)> 0, D1u(n)> 0, D2u(n)< 0, D3u(n)> 0, and
D4u(n)≤ 0

(iv) u(n)> 0, D1u(n)> 0, D2u(n)< 0, D3u(n)< 0, and
D4u(n)≤ 0

(v) u(n)> 0, D1u(n)< 0, D2u(n)> 0, D3u(n)> 0, and
D4u(n)≤ 0

(vi) u(n)> 0, D1u(n)< 0, D2u(n)> 0, D3u(n)< 0, and
D4u(n)≤ 0

(vii) u(n)> 0, D1u(n)< 0, D2u(n)< 0, D3u(n)> 0,
D4u(n)≤ 0

(viii) u(n)> 0, D1u(n)< 0, D2u(n)< 0, D3u(n)< 0, and
D4u(n)≤ 0
for all n≥ n1.

Proof. *e proof is quite obvious, and hence, we omit it.
First, we start with a lemma which ensures the nonex-

istence of solutions of types (i) − (iv). □

Lemma 2. Let {u(n)} be a positive solution of (1). If

B ∞, n0(  �∞, (8)

then cases (i) − (iv) of Lemma 1 are not possible.

Proof. From (H1) and (8), one can see that



∞

n�n0

1
c3(n)



n− 1

s�n0

p(s) � 
∞

n�n0

p(n) �∞. (9)

Now, let us assume that {u(n)} is an eventually positive
solution of (1) satisfying one of the cases (i) − (iv) from
Lemma 1 and there is an integer n1≥ n0 such that u(n − k)> 0
for n≥ n1. Since {u(n)} is increasing, there is a constantM> 0
and an integer n2≥ n1 such that u(n − k)≥M for all n≥ n2.
Substituting this in (1), one gets

− D4u(n)≥f(M)p(n), n≥ n2. (10)

Summing (10) from n2 to n − 1, one can find

− D3u(n) + D3u n2( ≥f(M) 
n− 1

s�n2

p(s). (11)

If we assume that {u(n)} belongs to either case (i) or case
(iii), then from (9) and (11), we obtain

D3u n2( ≥f(M) 

n− 1

s�n2

p(s)⟶∞ as n⟶∞, (12)

which contradicts the fact that D3u(n) is nonincreasing.
Next, assume that case (ii) holds. From (11), we have

− D3u(n)≥f(M) 
n− 1

s�n2

p(s), (13)

or

− Δ D2u(n)( ≥
f(M)

c3(n)


n− 1

s�n2

p(s). (14)

Summing (14) from n2 to n − 1, we have

D2u n2(  − D2u(n)≥f(M) 
n− 1

s�n2

1
c3(s)



s− 1

t�n2

p(t), (15)
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which, in view of (9), yields

D2u n2( ≥f(M) 

n− 1

s�n2

1
c3(s)



s− 1

t�n2

p(t)⟶∞ as t⟶∞,

(16)

which obviously contradicts the fact that D2u(n) is
decreasing.

Finally, we assume that case (iv) holds. Proceeding the
same way as in the above case, we get (15), that is,.

− Δ D1u(n)( ≥
f(M)

c2(n)


n− 1

s�n2

1
c3(s)



s− 1

t�n2

p(t). (17)

Summing this inequality from n2 to n − 1, one obtains

D1u n2(  − D1u(n)≥f(M) 

n− 1

s�n2

1
c2(s)



s− 1

t�n2

1
c3(t)



t− 1

j�n2

p(j)

� f(M)B n, n2( ,

(18)

which in view of (8) implies that D1u(n2)≥ f(M)B(n,
n2)⟶∞ as n⟶∞, which contradicts the fact that
D1u(n) is decreasing. *is completes the proof.

In our first main result with a simple condition, we show
that any nonoscillatory solution of (1) converges to zero as
n⟶∞. □

Theorem 1. If



∞

n�n0

B n, n0( 

c1(n)
�∞, (19)

then any solution of (1) is oscillatory or converges to zero as
n⟶∞.

Proof. Let {u(n)} be a nonoscillatory solution of (1). With no
loss of generality, we may take n1≥ n0 such that u(n)> 0 and
u(n − k)> 0 for all n≥ n1. From Lemma 1, one may have
eight possible cases for n≥ n1.

From (19) and (H1), we see that 
∞
n�n0

B(n, n0) cannot be
bounded, and by Lemma 2, case (i) − (iv) are impossible.

Now, let us assume that one of the cases (v) − (viii) holds.
Since {u(n)} is decreasing, there is a finite nonnegative limit
u(∞)� limn⟶∞u(n)�M. Assume that M> 0. *en, there
is a n2≥ n1 such that u(n − k)≥M for n≥ n2 and inequality
(10) holds. *en, one can arrive at contradiction to (12) in
cases (v) and (vii) and a contradiction to (16) in case (vi).
*us, we conclude that M� 0.

If we assume that case (viii) holds, then we get (18), that
is,

− D1u(n)≥f(M)B n, n2( 

or − Δu(n)≥
f(M)

c1(n)
B n, n2( .

(20)

Summing the last inequality from n2 to n, we obtain

u n2( ≥f(M) 
n

s�n2

B s, n2( 

c1(s)
. (21)

But the term on the right side of the above inequality
tends to∞ as n⟶∞ due to (19), which contradicts the fact
that {u(n)} is decreasing. *is completes the proof.

In the following, we present oscillation criteria for
(1). □

Theorem 2. If

lim
n⟶∞

supA(n, N)>
1

M1
, (22)

for any N≥ n0, where
A(n, N) � min w1(n)B(n, N), w3(n)B(n, N) , (23)

then (1) oscillates.

Proof. Let {u(n)} be a nonoscillatory solution of (1). With no
loss of generality, we may take n1≥ n0 such that u(n)> 0 and
u(n − k)> 0 for all n≥ n1. By Lemma 1, eight possible cases
may occur for all n≥ n1.

First, we note that, in view of (H1), it is necessary for the
validity of (22) that

B ∞, n0(  � B ∞, n0(  �∞. (24)

In view of Lemma 2, the above condition implies that
cases (i) − (iv) of Lemma 1 are not possible. Next, we shall
consider the remaining possible cases (v) − (viii) separately.

Assume that case (v) holds. From the monotonicity of
D2u(n), we have

− D1u(n)≥D1u(∞) − D1u(n) � 

∞

s�n

1
c2(s)

D2u(s)≥w2(n)D2u(n),

(25)

that is,

− Δu(n)≥D2u(n)
w2(n)

c1(n)
. (26)

Summing the above inequality from n to ∞, one gets

u(n)≥D2u(n) 
∞

s�n

w2(s)

c1(s)
� D2u(n)w12(n). (27)

Using (27) and the increasing property of D2u(n) in (1),
there is a constant M> 0 and an integer n2≥ n1 such that
− D4u(n) � p(n)f(u(n − k))≥M1p(n)D2u(n − k)w12(n − k)

≥M2p(n)w12(n − k), n≥ n2,

(28)

whereM2 �MM1. Summing the above inequality from n2 to
n − 1, we have

D3u n2( ≥D3u(n) + M2 

n− 1

s�n2

p(s)w12(s − k). (29)

From (H1) and (24), one can easily see that

Abstract and Applied Analysis 3



∞ � B ∞, n0(  � 
∞

n�n0

p(n)w123(n − k)

w3(n − k)
≤ 
∞

n�n0

p(n)w12(n − k).

(30)

Using (30) in (29), we arrive at a contradiction with the
fact that {D3u(n)} is nonincreasing.

Assume that case (vi) holds. From the monotonicity of
D3u(n), we have

D2u(n) − D2u(∞) � − 
∞

s�n

1
c3(s)

D3u(s)≥ − D3u(n)w3(n).

(31)

*erefore,

Δ
D2u(n)

w3(n)
  �

D3u(n)w3(n) + D2u(n)

w3(n)w3(n + 1)c3(n)
≥ 0, (32)

which implies that D2u(n)/w3(n)  is nondecreasing. Using
this property, one obtains

− D1u(n)≥ 
∞

s�n

1
c2(s)

D2u(s)≥
D2u(n)

w3(n)


∞

s�n

w3(s)

c2(s)
�

D2u(n)

w3(n)
w23(n).

(33)

Hence,

Δ −
D1u(n)

w23(n)
  �

− D2u(n)w23(n) − D1u(n)w3(n)

w23(n + 1)w23(n)c2(n)
≥ 0,

(34)

and so − (D1u(n)/w23(n)) is nondecreasing. Finally, we get

u(n)≥ − 
∞

s�n

1
c1(s)

D1u(s)≥ −
D1u(n)

w23(n)


∞

s�n

w23(s)

c1(s)
� −

D1u(n)

w23(n)
w123(n).

(35)

Using (33) in the above inequality, we get

u(n)≥
D2u(n)

w3(n)
w123(n). (36)

*erefore,

− D4u(n) ≥M1p(n)u(n − k)≥M1
p(n)w123(n − k)

w3(n − k)
D2u(n − k).

(37)

Summing this inequality from n1 to n − 1 and using the
monotonicity of D2u(n), we obtain

− D3u(n)≥ 

n− 1

s�n1

M1
p(s)w123(s − k)

w3(s − k)
D2u(s − k)

≥M1D2u(n − k) 
n− 1

s�n1

p(s)w123(s − k)

w3(s − k)

≥M1D2u(n)B n, n1( .

(38)

From (31) and (38), one obtains

− D3u(n)≥ − M1D3u(n)B n, n1( w3(n). (39)

Dividing the above inequality by − D3u(n) and then
taking the lim sup on both sides, one arrives at a contra-
diction with (22).

Assume that case (vii) holds. From the decreasing
property of D1u(n), one obtains

u(n)≥ u(n) − u(∞) � − 
∞

s�n

1
c1(s)

D1u(s)≥ − w1(n)D1u(n).

(40)

*us,

Δ
u(n)

w1(n)
  �

D1u(n)w1(n) + u(n)

w1(n)w1(n + 1)c1(n)
≥ 0, (41)

which means that u(n)/w1(n)  is nondecreasing. Summing
(1) from n1 to n − 1 and using the above property of
u(n)/w1(n) , we obtain

D3u n1( ≥D3u(n) + M1 

n− 1

s�n1

p(s)u(s − k)≥
u n1( 

w1 n1( 
M1

· 
n− 1

s�n1

p(s)w1(s).

(42)

Furthermore, on using (H1) and (30), it is easy to see that
for any constant b> 0,

∞ � 
∞

n�n1

p(s)w12(s)≤ b 
∞

n�n1

p(s)w1(s). (43)

*is, by virtue of (42), contradicts the fact that {D3u(n)}
is nonincreasing.

Finally, assume that case (viii) holds. Summing (1) from
n1 to n − 1, we have

− D3u(n)≥M1 

n− 1

s�n1

p(s)u(s − k)≥M1u(n − k) 
n− 1

s�n1

p(s).

(44)

Dividing both sides of the above inequality by c3(n) and
summing the resulting inequality again from n1 to n − 1, one
obtains

− D2u(n)≥M1u(n − k) 
n− 1

s�n1

1
c3(s)



s− 1

t�n1

p(t). (45)

Similarly, we obtain
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− D1u(n)≥M1u(n − k) 
n− 1

s�n1

1
c2(s)



s− 1

t�n1

1
c3(t)



t− 1

j�n1

p(j)

� M1u(n − k)B n, n1( 

≥M1u(n)B n, n1( 

≥ − M1D1u(n)w1(n)B n, n1( 

or
1

M1
≥w1(n)B n, n1( ,

(46)

which contradicts (22). *is completes the proof.
Finally, we obtain an oscillation criterion using classical

Riccati-type transformation technique. □

Theorem 3. If for all sufficiently large N≥ n0,

lim
n⟶∞



n

s�N

M1p(s)w123(s + 1) −
w23(s)

4c1(s)w123(s + 1)
  �∞, (47)

lim
n⟶∞

sup 
n

s�N

M1w1(s + 1)

c2(s)


s− 1

t�N

1
c3(t)



t− 1

j�N

p(j) −
1

4w1(s + 1)c1(s)
⎛⎝ ⎞⎠ �∞, (48)

then equation (1) oscillates.

Proof. Assume the contrary that {u(n)} is a nonoscillatory
solution of (1) for all n≥ n0. With no loss of generality, we
may take n1≥ n0 such that u(n)> 0 and u(n − k)> 0 for all
n≥ n1. By Lemma 1, eight possible cases may occur for all
n≥ n1. From (48), one may see that



∞

n�n0

w1(n)

c2(n)


n− 1

s�n1

1
c3(s)



s− 1

t�n1

p(t) �∞, (49)

which in view of (H1) implies that B(∞, n0)�∞. So by
Lemma 2, cases (i) − (iv) from Lemma 1 are not possible.
*erefore, it is enough to consider cases (v) − (viii).

First, assume that case (v) holds. From (47), we have

∞ � 
∞

n�n0

p(n)w123(n + 1)≤ 
n�n0

p(n)w123(n). (50)

*en, arguing as in the proof of *eorem 2 case (v), we
obtain a contradiction.

Next, assume case (vi) holds. Define the function

y(n) �
D3u(n)

u(n)
< 0. (51)

In view of (31) and (36), one can obtain

u(n)≥D3u(n)w123(n), (52)

and hence,

− 1≤y(n)w123(n)< 0. (53)

Also, arguing as in the proof of *eorem 2 case (vi), we
obtain from (31) and (33) that

Δu(n)≥ − D3u(n)
w23(n)

c1(n)
. (54)

By (1), (54), and the monotonicity of u(n), we conclude
that

Δy(n) �
D4u(n)

u(n + 1)
−

D3u(n)Δu(n)

u(n)u(n + 1)

≤ − M1p(n)
u(n − k)

u(n + 1)
−

D3u(n)( 
2
w23(n)

c1(n)u(n)u(n + 1)

≤ − M1p(n) − y
2
(n)

w23(n)

c1(n)
,

orΔy(n) + M1p(n) + y
2
(n)

w23(n)

c1(n)
≤ 0.

(55)

Multiplying the above inequality by w123 (n+ 1) and
summing the resulting inequality from n1 to n − 1, we obtain



n− 1

s�n1

w123(s + 1)Δy(s) + 
n− 1

s�n1

M1w123(s + 1)p(s)

+ 
n− 1

s�n1

w123(s + 1)y
2
(s)

w23(s)

c1(s)
≤ 0.

(56)

Now, applying the summation by parts formula and then
rearranging, we obtain

y(n)w123(n) − y n1( w123 n1(  + 
n− 1

s�n1

M1w123(s + 1)p(s)

+ 
n− 1

s�n1

y(s)
w23(s)

c1(s)

+ 
n− 1

s�n1

y
2
(s)

w23(s)w123(s + 1)

c1(s)
≤ 0.

(57)
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*erefore, in view of (53) that



n− 1

s�n1

M1w123(s + 1)p(s) −
w23(s)

4c1(s)w123(s)
 ≤y n1( w123 n1(  + 1,

(58)

which contradicts (47).
Assume now that case (vii) holds. Note that



∞

n�n0

p(n)w123(n) �∞ (59)

is necessary for (47). *en, for any constant M> 0, we have

∞ � 
∞

n�n0

p(n)w123(n)≤M 
∞

n�n0

p(n)w12(n). (60)

Proceeding as in the proof of *eorem 2 case (vii), we
obtain a contradiction.

Finally, assume that case (viii) holds. Define

v(n) �
D1u(n)

u(n)
< 0. (61)

From (45), we have

− D2u(n)≥M1u(n + 1) 
n− 1

s�n1

1
c3(s)



s− 1

t�n1

p(t). (62)

On the other hand, from the monotonicity of D1u(n), we
have

u(∞) − u(n) � 
∞

s�n

D1u(s)

c1(s)
≤D1u(n)w1(n), (63)

or

− 1≤ v(n)w1(n)< 0. (64)

*en, using (62), we have

Δv(n) �
D2u(n)

c2(n)u(n + 1)
−

D1u(n)( 
2

c1(n)u(n)u(n + 1)

≤ −
M1

c2(n)


n− 1

s�n1

1
c3(s)



s− 1

t�n1

p(t) −
v2(n)

c1(n)
.

(65)

Now, multiplying the last inequality by w1 (n+ 1) and
then summing from n1 to n − 1, one obtains

v(n)w1(n) − v n1( w1 n1(  + 
n− 1

s�n1

v(s)

c1(s)
+ 

n− 1

s�n1

M1w1(s + 1)

c2(s)

· 
s− 1

t�n1

1
c3(t)



t− 1

j�n1

p(j) + 
n− 1

s�n1

w1(s + 1)
v2(s)

c1(s)
≤ 0.

(66)

Hence, in view of (64),



n− 1

s�n1

M1w1(s + 1)

c2(s)


s− 1

t�n1

1
c3(t)



t− 1

j�n1

p(j) −
1

4w1(s + 1)c1(s)
⎛⎝ ⎞⎠

≤ v n1( w1 n1(  + 1,

(67)

which contradicts (48). *e proof is now complete. □

3. Examples

In this section, we provide some examples to illustrate the
applicability and strength of the results obtained in the
previous section.

Example 1. Let us consider the following fourth-order delay
difference equation:

Δ n
2Δ n

2Δ n
2Δu(n)    + q0n

2
u(n − k) � 0, n≥ 1,

(68)

where q0> 0 and k is a positive integer. It is easy to verify that
condition (19) is satisfied and by *eorem 1, one can
conclude that any nonoscillatory solution of (68) converges
to zero as n⟶∞.

Example 2. Consider the following fourth-order delay dif-
ference equation:

Δ(n(n + 1)Δ(n(n + 1)Δ(n(n + 1)Δu(n)))) + q0n
2
u(n − k) � 0,

n≥ 1,

(69)

where q0> 0 and k is a positive integer. By simple calculation,
we see that w1(n) � w2(n) � w3(n) � (1/n) and
B(n, 1) ≈ q0(n/6). Hence, by *eorem 2, equation (69) is
oscillatory if q0> 6. *e same conclusion follows from
*eorem 3 if q0 > (3/2).
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