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)e Bregman Proximal Gradient (BPG) algorithm is an algorithm forminimizing the sum of two convex functions, with one being
nonsmooth. )e supercoercivity of the objective function is necessary for the convergence of this algorithm precluding its use in
many applications. In this paper, we give an inexact version of the BPG algorithm while circumventing the condition of
supercoercivity by replacing it with a simple condition on the parameters of the problem. Our study covers the existing results,
while giving other.

1. Introduction

We consider the following minimization problem:

inf Ψ(x) ≔ f(x) + g(x) : x ∈ R
d

 . (1)

where f is a convex proper lower-semicontinuous (l.s.c.)
function and g is a convex continuously differentiable
function.)is problem arises inmany applications including
compressed sensing [1], signal recovery [2], and phase re-
trieve problem [3]. One classical algorithm for solving this
problem is the proximal gradient (PG) method:

x
n ≔ argmin f(u) + 〈∇g x

n− 1
 , u〉 +

1
2λn

u − x
n− 1����

����
2

 

n ∈ N
∗
.

(2)

where λn is the stepsize on each iteration. )e Proximal
Gradient Method and its variants [4–14] have been one hot
topic in optimization field for a long time due to their simple
forms. A central property required in the analysis of gradient
methods is that of the Lipschitz continuity of the gradient of
the smooth part g. However, in many applications, the
differentiable function does not have such a property, e.g., in
the broad class of Poisson inverse problems. In [15], by

introducing the Bregman distance [16] generated by some
reference convex function h defined by

Dh(x, y) � h(x) − h(y) − 〈x − y,∇h(y)〉, (3)

the authors could replace the intricate question of Lipschitz
continuity of gradients by a convex condition easy to verify,
which we call below LC property. )ereby, they proposed
and studied the algorithm called NoLips defined by

x
n

� argmin f(u) + 〈∇g x
n− 1

 , u〉 +
1
λn

Dh u, x
n− 1

  

n ∈ N
∗
.

(4)

where g � 0. Equation (4) is the Bregman Proximal (BP)
studied in [17–21].

In this article, we give an inexact version of the (BPG)
defined by

x
n ∈ εn − argmin f(u) +〈∇g x

n− 1
 , u〉 +

1
λn

Dh u, x
n− 1

  .

(5)

While circumventing the condition of supercoercivity re-
quired in [15, 22] by replacing it with a simple condition on
the parameters of the problem, our study covers the existing
results, while giving others.
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Our notation is fairly standard, 〈., .〉 is the scalar product
on Rd, and the associated norm ‖·‖. )e closure of the set C
(relative interior) is denoted by C (riC, respectively). For any
convex function f, we denote by

(1) domf � x ∈ Rd, f(x)< +∞  its effective domain
(2) zεf(·) � v, f(y) ≥f(·) + 〈v, y − .〉 − ε,∀y  its ε−

subdifferential
(3) argminf � x ∈ Rd, f(x) � inf f  its argmin f
(4) ε − argminf � x ∈ Rd, f(x)≤ inff + ε  its ε−

argminf

2. Preliminary

In this section, we present the main results of the conver-
gence of NoLips.

Definition 1 (see [23]). Let C be a convex, not empty of Rd.

(i) A convex function h: Rd⟶ ] − ∞, +∞] is of
Legendre on C if it verifies the three following
conditions:

(a) C� int (dom h)
(b) h is differentiable on C
(c) lim‖∇h(xi)‖ � +∞, for any sequence xi  of C

that converges towards a boundary point of C

(ii) )e class of strictly convex functions verifying a, b,
and c is called the class of Legendre’s functions on C
and denoted by E(C).

Definition 2 (see [23]). Let F: Rd⟶ ] − ∞, +∞]; we say
that F is supercoercive if

lim inf
‖x‖⟶∞

F(x)

‖x‖
�∞. (6)

Consider the following assumptions.

Assumption 1

(i) h: X ⊂ Rd⟶ ] − ∞, +∞] is of Legendre type
(ii) g: X⟶ ] − ∞, +∞] is convex proper l.s.c. with

dom h ⊂ domg, which is differentiable on
int(dom h)

(iii) f: X⟶ ] − ∞, +∞] is convex proper lower semi-
continuous (l.s.c.)

(iv) domf∩ int(dom h)≠∅
(v) inf Ψ(x), x ∈ dom h > − ∞

We consider the following minimization problem: (P):
inf Ψ(x) ≔ f(x) + g(x) : x ∈ dom h .

Let the operator Tλ be defined by

Tλ(x) � argmin f(u) +〈∇g(x), u − x〉 +
1
λ
Dh(u, x) .

(7)

Lemma 1 (well-posedness of the method). Under As-
sumption 1, suppose one of the following assumptions holds:

(i) argmin Ψ(x), x ∈ dom h  is nonempty and compact
(ii) ∀λ> 0, h + λf is supercoercive and the map Tλ de-

fined in (7) is nonempty and single-valued from int
(domh) to int (domh).

Definition 3. )e couple (g, h) verified a Lipschitz-like/
Convexity Condition (LC) if ∃L> 0 with Lh-g convex on int
(dom h).

By posing

proxh
λf(x) ≔ argmin f(u) +

1
λ
Dh(u, x) , (8)

they showed that

Tλ(x) � proxh
λf o proxh

λp(x), (9)

where p(u) � 〈∇g(x), u〉. )e operator Tλ thus appears as
composed of two operators prox.)eNoLips algorithm then
becomes

x
n

� Tλn
x

n− 1
 , ∀n ∈ N

∗
. (10)

Assumption 2

(i) argmin Ψ(x), x ∈ dom h  is nonempty and com-
pact or ∀λ> 0, h + λf is supercoercive

(ii) For every x ∈ int(dom h) and r ∈ R, the level set
L1(x, r) � y ∈ int(dom h): Dh(x, y)≤ r  is
bounded

(iii) If xn{ }n converges to some x in int (dom h), then
Dh(x, xn)⟶ 0

(iv) Reciprocally, if x in int (dom h) and if xn{ }n is such
that Dh(x, xn)⟶ 0, then xn⟶ x

(v) ∃ L> 0 with Lh-g convex on int (dom h) (LC)

Theorem 1 (Global Convergence). Assume that

(i) dom h � dom h.
(ii)  λn � +∞ and Assumptions 1 and 2 are satisfied.

/en, the sequence xn{ }n converges to some solution
x∗ of (P).

Our contribution is resumed in two essential points:

(1) Improvements of some assumptions:

(a) Suppose f and g are both are convex (see
[15, 22]), we show that we can reduce this hy-
pothesis by supposing only that Ψ is convex,
which allows to distinguish two interesting cases
that are still not yet studied neither in the case of
the BPG nor in the case PG:
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(i) )e nonsmooth part f is possibly not convex
and the smooth part g is convex

(ii) )e nonsmooth part f is convex and the
smooth part g is possibly not convex

(b) )e assumption is as follows: argmin Ψ(x),{

x ∈ dom h} is compact or ∀λ> 0, h + λf is
supercoercive.

)is is a condition on f and g (see [15]), which
precludes the application of NoLips for the functions
Ψ non-supercoercive. In this work, we show that we
can circumvent this condition by coupling the LC
property with the bounded level sets as follows:

L2(x, r) � y ∈ S; Dh(y, x)≤ r . (11)

It is a condition which relates to the parameter h and
which is verified by most of the interesting Bregman
distances.

(2) Inexact version of NoLips.

We propose an inexact version of NoLips called
ε− NoLips which verifies

x
n

� εn − argmin f(u) +〈∇g x
n− 1

 , u〉 +
1
λn

Dh u, x
n− 1

  ,

n ∈ N
∗
.

(12)

)e convergence result is established in Section 4. )is
study covers the convergence results given for PG and BPG,
by giving new results, in particular, the convergence of the
inexact version of the interior method with Bregman dis-
tance studied in [24]; this result has not been established
until now.

We also note that the convergence of NoLips is given
with the following condition:

dom h � dom h. (13)

It is for that and for the clarity of the hypothesis, we suppose
in what follows that h: S⟶ R, with S being an open convex
set of Rd.

3. Main Results

In order to clarify the status of parameter h, we give the
following definitions. Let S be a convex open subset of Rd

and h: S⟶ R. Let us consider the following hypotheses:

H1: h is continuously differentiable on S.
H2: h is continuous and strictly convex on S.

H3: ∀r≥ 0,∀x ∈ S, the sets below are bounded

L2(x, r) � y ∈ S; Dh(y, x)≤ r . (14)

H4: ∀r≥ 0,∀x ∈ S, the sets below are bounded

L2(x, r) � y ∈ S; Dh(y, x)≤ r . (15)

H5: if xn{ }n ⊂ S, then xn⟶ x∗ ∈ S, so

Dh x
∗
, x

n
( ⟶ 0. (16)

H6: if xn{ }n ⊂ S, then Dh(x∗, xn)⟶ 0, so

x
n⟶ x

∗
. (17)

Definition 4

(i) h: S⟶ R is a Bregman function on S or“D-func-
tion” if h verifies H1, H2, H3, H4, H5, and H6.

(ii) Dh(., .): SXS⟶ R such that ∀x ∈ S, ∀y ∈ S:

Dh(x, y) � h(x) − h(y) − 〈x − y,∇h(y)〉. (18)

Eq. (18) is called Bregman distance if h is a Bregman
function. We put the following conditions:

A(S) � h: S⟶ R verifingH1, H2 

B(S) � h: S⟶ R verifingH1, H2, H3, H4, H5 andH6 

E(S) � h: S⟶ R, the Legendre type of S 

Proposition 1. Let h and h′ verify H1.

∀λ, Dλh+h′(., .) � λDh(., .) + Dh′(., .). (19)

Lemma 2. ∀h ∈ A(S), ∀a ∈ S, and ∀b, c ∈ S:

Dh(a, b) + Dh(b, c) − Dh(a, c) � 〈a − b,∇h(c) − ∇h(b)〉.

(20)

Example 1. If S0 � Rd and h0(x) � (1/2)‖x‖2, then

Dh0
(x, y) �

1
2
‖x − y‖

2
. (21)

Example 2. If S1 � Rd
++ ≔ x ∈ Rd/xi > 0, i � 1, . . . , d  and

h1(x) � 
i�d

i�1
xilog xi, ∀x ∈ S1, (22)

with the convention 0 log 0 � 0, then ∀(x, y) ∈ S1XS1:

Dh1
(x, y) � 

d

i�1
xilog

xi

yi

+ yi − xi. (23)

Example 3. If S2 � ]− 1, 1]d and h2(x) � − 
i�d
i�1

�����
1 − x2

i


,

thenDh2
(x, y) � h2(x) + 

d
i�11 − xiyi/y2

i , ∀(x, y) ∈ S2XS2.
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Proposition 2 (see [19]). hi ∈ B(Si)∩E(Si), i � 0, 1, 2. We
consider the following minimization problem:

(p): inf Ψ(x) ≔ f(x) + g(x) : x ∈ S . (24)

)e following assumptions on the problem’s data are
made throughout the paper (and referred to as the blanket
assumptions).

Assumption 3

(i) h ∈ A(S)∩E(S)

(ii) g: Rd⟶ ]− ∞, +∞] is proper (l.s.c.) with
S ⊂ domg, which is and continuously differentiable
on S

(iii) f: Rd⟶ ]− ∞, +∞] is proper (l.s.c.)
(iv) ri(domΨ)∩ S≠∅
(v) Ψ∗ ≔ inf Ψ(x), x ∈ S > − ∞

We consider the operator Tλ defined by ∀x ∈ S:

Tλ(x) � argmin f(u) +〈∇g(x), u − x〉

+
1
λ
Dh(u, x), u ∈ S.

(25)

We give in the following a series of lemmas allowing
establishment of )eorem 2, which assures the well-pos-
edness of the method proposed in Section 4.

Lemma 3. ∀λ> 0 and ∀x ∈ S:

Tλ(x) � argmin Ψ(u) +
1
λ
Dh− λg(u, x), u ∈ S . (26)

Proof. ∀x ∈ S ⊂ domg:

(25)⟹ Tλ(x) � argmin f(u) + g(x) +〈∇g(x), u − x〉

+
1
λ
Dh(u, x), u ∈ S.

(27)

When∀u ∈ S ⊂ domg, we have

f(u) + g(x) + 〈∇g(x), u − x〉 +
1
λ
Dh(u, x)

� Ψ(u) + g(x) − g(u) + 〈∇g(x), u − x〉 +
1
λ
Dh(u, x)

� Ψ(u) − Dg(u, x) +
1
λ
Dh(u, x)

� Ψ(u) +
1
λ
Dh− λg(u, x).

(28)
□

Lemma 4. If the pair (g, h) verified the condition (LC), then
∃ L> 0, ∀x ∈ S, ∀u ∈ S:

(i) Dg(u, x)≤LDh(u, x)

(ii) ∀λ ∈ ]0, 1/L[, Dh− λg(u, x)≥ 0

Proof

(i) If Lh-g is convex on S, then

DLh− g(u, x)≥ 0, ∀x ∈ S, ∀u ∈ S. (29)

Let u ∈ (S/S). )ere exists a sequence un{ }n ⊂ S such
that un⟶ u; then, we have

DLh− g u
n
, x( ≥ 0, (30)

Lh-g is continuous in S; then, DLh− g(u, x)≥ 0.

(ii) Let λ ∈ ]0, 1/L[:

DLh− g(u, x)≥ 0⟹ LDh(u, x)≥Dg(u, x)

⟹
1
λ
Dh(u, x)≥Dg(u, x)

⟹Dh− λg(u, x)≥ 0.

(31)

□

Lemma 5. If h is the Legendre on S, then h − λg is also the
Legendre on S, for all λ such that 0< λ< (1/L).

Proof. Conditions (a) and (b) of Definition 1 being verified,
let us demonstrate that the condition (c) is verified too. Let
xi  be xi⟶ x∗ ∈ Fr(S) � (S/S):

∇h xi(  − λ∇g xi( 
����

����
2 ≥ ∇h xi( 

����
���� ∇h xi( 

����
���� − 2λ ∇g xi( 

����
���� 

+ λ2 ∇g xi( 
����

����
2
.

(32)

)en,

lim
xi⟶x∗∈Fr(S)

∇(h − λg) xi( 
����

���� � +∞. (33)

h − λg is strictly convex in S. Indeed, let x, y ∈ S, x≠y; we
have Dh− λg(x, y)≥ 0:

Dh− λg(x, y) � 0⟹Dh(x, y)

� λDg(x, y)⟹Dh(x, y)≤ λLDh(x, y),

(34)

h is strongly convex on S, x, y ∈ S, x≠y; then,
Dh(x, y)≠ 0⟹1≤ λL which is absurd. Hence, h − λg is
strictly convex in S. □

Lemma 6. Consider the following:
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∀λ ∈ 0,
1
L

 , ∀u ∈ S, z Dh− λg(., u)  x
∗

( 

�
∇(h − λg) x∗( ) − ∇(h − λg)(u) , if x∗ ∈ S,

∅, if not.

⎧⎪⎨

⎪⎩

(35)

Proof. Since h − λg is a Legendre function on S, Dh− λg(., u)

is also a Legendre. By application of )eorem 26.1 in [23],
z(Dh− λg(.; u)) verifies the following:

(i) If x∗ ∈ int(domDh− λg(., u)) � S, then

z Dh− λg(., u)  x
∗

(  � ∇Dh− λg(., u) x
∗

(  . (36)

(ii) If x∗ ∉ S, then z(Dh(., u))(x∗) � ∅. □

Theorem 2 (well-posedness of the method). We assume
that

(i) Ψ is convex.
(ii) /e pair (g, h) verified the condition (LC).
(iii) ∀r≥ 0, ∀x ∈ S, the sets below are bounded:

L2(x, r) � y ∈ S; Dh(y, x)≤ r . (37)

Then, ∀λ ∈ ]0, (1/L)[ and the map Tλ defined in (25) is
nonempty and single-valued from S to S.

Proof. ∀x ∈ S and Tλ(x) is nonempty; for this, it is enough
to demonstrate that ∀r ∈ R:

L(x, r) � u ∈ S : Ψ(u) + λ− 1
Dh− λg(u, x)≤ r , (38)

which is closed and is bounded when it is nonempty:

u ∈ L(x, r)⟹Ψ(u) + λ− 1
Dh− λg(u, x)≤ r

⟹Dh− λg(u, x)≤ λ r − Ψ∗( 

⟹Dh(u, x)≤ λ r − Ψ∗(  + λDg(u, x)

⟹Dh(u, x)≤ λ r − Ψ∗( 

+ LλDh(u, x)

⟹Dh(u, x)≤
λ r − Ψ∗( )

1 − Lλ
.

(39)

It follows that

L(x, r) ⊂ L2 x,
λ r − Ψ∗( )

1 − Lλ
 , (40)

thanks to H4; L2(x, (λ(r − Ψ∗)/1 − Lλ)) is bounded, which
leads that L(x, r) is bounded too, which shows that

Tλ(x)≠∅. (41)

Let x∗ ∈ Tλ(x). Let us suppose that x∗ ∈ S(26)⟹ 0 ∈
z(Ψ(·) + 1/λDh− λg(., x))(x∗), since ri(domΨ)∩ ri(domDh− λg

(., x)) � ri(domΨ)∩ ri(S) � ri(domΨ)∩ S≠∅, from [10],
which allows to write that

0 ∈ zΨ x
∗

(  + z
1
λ
Dh− λg(., x)  x

∗
( . (42)

It follows that

∃u ∈ zΨ x
∗

( , (43)

such that

− λu ∈ zDh− λg(., x) x
∗

(  (44)

is in contradiction with Lemma 6. )en, Tλ(x) ⊂ S.

On the other hand, h − λg is strictly convex in S and Ψ is
convex, so Ψ(·) + Dh− λg(., x) is strongly convex in S. )en,
Tλ(x) has a unique value for all x ∈ S. □

Remark 1. )is result is liberated from the supercoercivity
of Ψ and the simultaneous convexity of f and g, as required
by Lemma 2 [15].

Proposition 3. ∀x ∈ S,∀λ ∈ ]0, (1/L)[
∇(h − λg)(x) − ∇(h − λg) Tλ(x)( 

λ
∈ zΨ Tλ(x)( , (45)

∃x ∈ S,
∇(h − λg)(x) − ∇(h − λg)(x)

λ
∈ zεΨ(x). (46)

Proof. Since Tλ(x) ∈ S, we have

0 ∈ z Ψ(·) +
1
λ
Dh− λg(., x)  Tλ(x)( 

⟹ − ∇
1
λ
Dh− λg(., x)  Tλ(x)( (  ∈ z Ψ Tλ(x)( ( 

⟹ (45).

(47)

For (46), just take x � Tλ(x), since

zΨ Tλ(x)(  ⊂ zεΨ Tλ(x)( . (48)
□

Proposition 4. ∀x ∈ S,∀λ ∈ ]0, (1/L)[ :

Tλ(x) � proxh− λg

λΨ (x) � proxh
λf o proxh

λp(x), (49)

where p(u) � 〈∇g(x), u〉.

Proof. )e first equality is due to Lemma 3. )e second is
established in [15]. □

)e first equality played a decisive role in the devel-
opment of this paper.

4. Analysis of the ε−NoLips Algorithm

In this section, we propose an Inexact Bregman Proximal
Gradient Algorithm (IBPG), which is an inexact version of
the BPG algorithm described in [15, 22]; the IBPG

Abstract and Applied Analysis 5



framework allows an error in the subgradient inclusion by
using the error εn. We study two algorithms:

(i) Algorithm 1: inexact Bregman Proximal Gradient
(IBPG) algorithm without relative error criterion

(ii) Algorithm 2: inexact Bregman Proximal Gradient
(IBPG) algorithm with relative error criterion which
we call ε− NoLips

We establish the main convergence properties of the
proposed algorithms. In particular, we prove its global rate
of convergence, showing that it shares the claimed sublinear
rate O(1/n) of basic first-order methods such as the classical
PG and BPG. We also derive a global convergence of the
sequence generated by NoLips to a minimizer of (P).

Assumptions 4

(i) h ∈ B(S)∩E(S)

(ii) Ψ is convex
(iii) )e pair (g, h) verified the condition (LC)
(iv) Argmin Ψ≠∅

In our analysis, Ψ is supposed to be a convex function; it
allows to distinguish two interesting cases:

(i) )e nonsmooth part f is possibly not convex, and the
smooth part g is convex

(ii) )e nonsmooth part f is convex, and the smooth part
g is possibly not convex

In what follows, the choice of the sequence λn  depends
of the convexity of g.

Let λ such that 0< λ< (1/L), λ0 ≔ 0.

If g is not convex, then we choose

λn � λ, (0< λ≤ λ), n � 1 . . . . (50)

If g is convex, then we choose

λn ≤ λn+1 ≤ λ, n � 1 . . . . (51)

In those conditions, we easily show that
∀x, y ∈ S, ∀n ∈ N, 0< λn ≤ λ, such that

λn+1 − λn( Dg(x, y)≥ 0, (52)

We pose

hn � h − λng, n � 1 . . . . (53)

Proposition 5. /e sequence xn{ }n defined by (IBPG) exists
and is verified for all n ∈ N∗:

x
n ∈ εn − argmin Ψ(u) +

1
λn

Dhn
u, x

n− 1
 , u ∈ S . (54)

Proof. Existence is deduced trivially from (45):

Ωn ≔
∇hn xn− 1(  − ∇hn xn( )

λn

∈ zεn
Ψ x

n
( 

⟹Ψ(u)≥Ψ x
n

(  +〈u − x
n
,Ωn〉 − εn.

(55)

By applying Lemma 2, we have

Ψ(u)≥Ψ x
n

(  + λ− 1
n Dhn

u, x
n

(  + Dhn
x

n
, x

n− 1
  − Dhn

u, x
n− 1

   − εn,

⟹Ψ x
n

(  + λ− 1
n Dhn

x
n
, x

n− 1
 ≤Ψ(u) + λ− 1

n Dhn
u, x

n− 1
  + εn, ∀u ∈ S

⟹ x
n ∈ T

εn

λn
x

n− 1
 ,

(56)

where Tε
λ(x) � ε − argmin Ψ(u) + (1/λ)Dh− λg(u, x) . □

Remark 2. )is result shows that IBPG is an inexact version
of BPG and this is exactly the BPG when εn � 0, i.e.:

(i) xn ∈ T
εn

λn
(xn− 1)⟹ xn ≃Tλn

(xn− 1)

(ii) εn � 0⟹ xn � Tλn
(xn− 1)

Proposition 6. For all n ∈ N∗,

(i) Ψ x
n

(  − Ψ x
n− 1

  ≤ − Dhn
x

n
, x

n− 1
  + λnεn, (57)

(ii) Dh x
n
, x

n− 1
  + Dh x

n− 1
, x

n
 ≤

λ
1 − λL
Ψ x

n− 1
 

− Ψ x
n

(  +
λnεn

1 − λL
.

(58)

Proof

(55)⟹λn Ψ x
n

(  − Ψ(u)( ≤ Dhn
u, x

n− 1
  − Dhn

u, x
n

(  − Dhn
x

n
, x

n− 1
   + εnλn. (59)
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We put u � xn− 1 in (59), we get (57)
(ii) Put u � xn− 1 in (59), we have

Dhn
x

n
, x

n− 1
  + Dhn

x
n− 1

, x
n

 ≤ λn Ψ x
n− 1

  − Ψ x
n

(   + λnεn

⟹Dh x
n
, x

n− 1
  + Dh x

n− 1
, x

n
 ≤ λn Ψ x

n− 1
  − Ψ x

n
(   + λnεn + λnDg x

n
, x

n− 1
  + λnDg x

n− 1
, x

n
 

⟹Dh x
n
, x

n− 1
  + Dh x

n− 1
, x

n
 ≤ λ Ψ x

n− 1
  − Ψ x

n
(   + λnεn + λL Dh x

n
, x

n− 1
  + Dh x

n− 1
, x

n
  

⟹Dh x
n
, x

n− 1
  + Dh x

n− 1
, x

n
 ≤

λ
1 − λL
Ψ x

n− 1
  − Ψ x

n
(   +

λnεn

1 − λL
.

(60)

□
Corollary 1

(i) If εn � 0, the sequence Ψ(xn){ }n is nonincreasing
(ii) Summability: if 

∞
n�1λnεn < +∞, then 

∞
n�1

Dh(xn, xn− 1)< +∞ and 
∞
n�1Dh(xn− 1, xn)< +∞

Proof

(i) From (57), Dhn
(xn, xn− 1)≥ 0⟹Ψ(xn)≤Ψ(xn− 1),

∀n ∈ N∗.
(ii) From (58), 

n�p
n�1Dh(xn, xn− 1) + Dh(xn− 1, xn)≤ :

λ
1 − λL



n�p

n�1
Ψ x

n− 1
  − Ψ x

n
(   +

1
1 − λL



n�p

n�1
λnεn

⟹

n�p

n�1
Dh x

n
, x

n− 1
  + Dh x

n− 1
, x

n
 

≤
λ

1 − λL
Ψ x

0
  − Ψ∗  +

1
1 − λL



n�p

n�1
λnεn.

(61)

□

In the following, we pose

tp ≔ 

n�p

n�1
λn, ∀p ∈ N

∗
, t0 � λ0 � 0,

An(u) � Dhn
u, x

n
( , ∀u ∈ S, ∀n ∈ N

∗
,

Φ x
p

(  ≔ min Ψ x
k

 , 1≤ k≤p , ∀p ∈ N
∗
.

(62)

Proposition 7 (Global Estimate in Function Values). (a) For
all u ∈ S and ∀p ∈ N∗,

Φ x
p

(  − Ψ(u)≤
1
tp

Dh u, x
0

  + 
∞

n�1
λnεn

⎡⎣ ⎤⎦. (63)

Proof. We have Dhn
(u, xn− 1) � An− 1(u) − (λn − λn− 1)Dg

(u, xn− 1); from (59), we have

λn Ψ x
n

(  − Ψ(u)( ≤An− 1(u) − An(u) − Dhn
x

n
, x

n− 1
 

− λn − λn− 1( Dg u, x
n− 1

  + λnεn.

(64)

From (52), we have

λn Ψ x
n

(  − Ψ(u)( ≤An− 1(u) − An(u) + λnεn

⟹

n�p

n�1
λn Ψ x

n
(  − Ψ(u)( ≤ 

n�p

n�1
An− 1(u) − An(u) + 

n�p

n�1
λnεn

⟹

n�p

n�1
λn Ψ x

n
(  − Ψ(u)( ≤A0(u) − Ap(u) + 

n�p

n�1
λnεn

⟹ Φ x
p

(  − Ψ(u)(  
n�1

n�p

λn ≤A0(u) − Ap(u) + 

n�p

n�1
λnεn,

(65)

A0(u) � Dh(u, x0) (λ0 � 0), so

Φ x
p

(  − Ψ(u)≤
1
tp

Dh u, x
0

  + 
∞

n�1
λnεn

⎡⎣ ⎤⎦. (66)

□

)is theorem covers the evaluation of the global con-
vergence rate given in [6, 12], as shown by the following
corollary.

Corollary 2. We assume that

(a) εn � 0, n � 1, . . .

(b) λn � λ � 1/2L, n � 1, . . .

(c) x∗ ∈ argminΨ

/en,

Ψ x
p

(  − Ψ∗ ≤
2L

p
Dh x
∗
, x

0
 , (67)

i.e., Ψ(xp) − Ψ∗ � O(1/p)

Proof. Immediate consequence of Proposition 7. □

Now, we derive a global convergence of the sequence
generated by Algorithm 1 to a minimizer of (P).
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Theorem 3. We assume that  λnεn < +∞, if one of the
following assumptions holds:

(i) ∃ λ > 0 such that λ ≤ λn ≤ λ, n � 1, . . .

(ii) /e sequence Ψ(xn){ } is nonincreasing and
 λn � +∞; then, (a) Ψ(xn)⟶ inf Ψ and (b)
xn⟶ x∗ ∈ argminΨ

Proof

(a) Suppose

(i) Let x∗ ∈ argminΨ and we put u � x∗ in (69), we
have

λ Ψ x
n

(  − Ψ x
∗

( ( ≤An− 1 x
∗

(  − An x
∗

(  + λnεn,

(68)

An x
∗

( ≤An− 1 x
∗

(  + λnεn, (69)

 λnεn < +∞⟹An x
∗

( ⟶ l ∈ R. (70)

(68) and (suppose (69))⟹Ψ(xn)⟶ inf Ψ.

Suppose (ii)

Φ x
p

(  � min Ψ x
k

 , 1≤ k≤p  � Ψ x
p

( . (71)

For u � x∗ ∈ argminΨ in (63), we have 0≤
Ψ(xp) − Ψ(x∗) ≤ (1/tp)[Dh(x∗, x0) + 

∞
n�1λnεn],

so  λn � +∞⟹Ψ(xn)⟶ inf Ψ.

(b) (69)⟹∃α> 0, An(x∗)≤ αAn(x∗) � Dhn
(x∗, xn) �

Dh(x∗, xn) − λnDg(x∗, xn), so

Dh x
∗
, x

n
( ≤ α + λnDg x

∗
, x

n
( 

⇓

Dh x
∗
, x

n
( ≤

α
1 − λL

.

(72)

Then, Dh(x∗, xn)  is bounded, and from H3, xn{ } is
bounded as well. Let u∗ ∈ Adh xn{ }; there exists then a
subsequence xni{ } of xn{ } such that xni⟶ u∗ ∈ S. From H5,
Dh(u∗, xni )⟶ 0. On the other hand,

0≤Dg u
∗
, x

ni( ≤L · Dh u
∗
, x

ni( , (73)

so Dg(u∗, xni )⟶ 0;u∗ ∈ argminΨ. Indeed,

inf Ψ≤Ψ u
∗

( ≤ lim Ψ x
ni(  � inf Ψ

⇓

inf Ψ � Ψ u
∗

( ,

(74)

which shows that⟹u∗ ∈ argminΨ. )en,

Dhni
u
∗
, x

ni(  � Dh u
∗
, x

ni(  − λni
Dg u

∗
, x

ni( ⟶ 0. (75)

Since Dhni
(u∗, xni )⟶ 0 and u∗ ∈ argminΨ, we have

Dhn
u
∗
, x

n
( ⟶ 0. (76)

We have

Dh u
∗
, x

n
(  � Dhn

u
∗
, x

n
(  + λnDg u

∗
, x

n
( 

≤Dhn
u
∗
, x

n
(  + L · λDh u

∗
, x

n
( ,

(77)

so (1 − L · λ)Dh(u∗, xn)≤Dhn
(u∗, xn); then,

Dh u
∗
, x

n
( ⟶ 0, (78)

And from H6, we have xn⟶ u∗ ∈ argminΨ. □
)e IBPG algorithm generates a sequence such that
Ψ(xn){ }n does not necessarily be nonincreasing; for this
reason and for improvement of the global estimate in
function values, we now propose ε− NoLips which is an
inexact version of BPG with a relative error criterion. Let σ
such that 0≤ σ < 1 be given as follows.

In what follows, we will derive a convergence rate result
()eorem 4) for the ε− NoLips framework. First, we need to
establish a few technical lemmas. □

In the following, xn{ }n denotes the sequence generated
by ε− NoLips.

Lemma 7. For every u ∈ S, for all n ∈ N∗,

λn Ψ x
n

(  − Ψ(u)( ≤An− 1(u) − An(u)

− (1 − σ)(1 − λL)Dh x
n
, x

n− 1
 .

(79)

Proof. Since (λn − λn− 1)Dg(u, xn− 1)≥ 0, we have from (62),

λn Ψ x
n

(  − Ψ(u)( ≤ − Dhn
x

n
, x

n− 1
  + An− 1(u)

&9; − An(u) + λnεn.
(80)

From Algorithm 2, we have

λn Ψ x
n

(  − Ψ(u)( ≤An− 1(u) − An(u) + (σ − 1)Dhn
x

n
, x

n− 1
 .

(81)

From the condition LC, we have

λn Ψ x
n

(  − Ψ(u)( ≤An− 1(u) − An(u)

− (1 − σ)(1 − λL)Dh x
n
, x

n− 1
 .

(82)
□

Remark 3. We now notice that Ψ(xn){ }n is nonincreasing.
Just replace u with xn− 1 in (79).

Lemma 8. For every n ∈ N∗ and x∗ ∈ argminΨ, we have

tn Ψ x
n

(  − Ψ∗(  + λ− 1
n tn(1 − σ)(1 − λL)Dh x

n
, x

n− 1
 

≤ tn− 1 Ψ x
n− 1

  − Ψ∗  + An− 1 x
∗

(  − An x
∗

( .

(83)

Proof. Replacing u by xn− 1 in (79), and since An(xn− 1)≥ 0
and An− 1(xn− 1) � 0, we have

8 Abstract and Applied Analysis



tn− 1 Ψ x
n

(  − Ψ∗(  + tn− 1λ
− 1
n (1 − σ)(1 − λL)Dh x

n
, x

n− 1
 

≤ tn− 1 Ψ x
n− 1

  − Ψ∗ .

(84)

Replacing u by x∗ in (79), we have

λn Ψ x
n

(  − Ψ x
∗

( (  +(1 − σ)(1 − λL)Dh x
n
, x

n− 1
 

+ ≤An− 1 x
∗

(  − An x
∗

( .
(85)

Since tn− 1 + λn � tn, by adding (84) and (85), we have
(83). □

Lemma 9. For every k ∈ N∗

tk Ψ x
k

  − Ψ∗  +(1 − σ)(1 − λL) 
n�k

n�1
λ− 1

n tnDh x
n
, x

n− 1
 

≤A0 x
∗

(  − Ak x
∗

( .

(86)

Proof. )is result is obtained by adding inequality (83) from
1 to k (t0 � λ0 � 0). □

We are now ready to state the convergence rate result for
the ε− NoLips framework. )is result improves and com-
pletes the one given in the Proposition 7.

Theorem 4. For every k ∈ N∗, the following statements hold:
we pose ρk ≔ 

n�k
n�1λ

− 1
n tn. Consider

(a)Ψ x
k

  − Ψ∗ ≤
Dh x∗, x0( 

tk

 , (87)

(b) ck ≔ min
1≤n≤k

Dh x
n
, x

n− 1
 ≤

Dh x∗, x0( 

(1 − σ)(1 − λL)ρk

 .

(88)

Proof. From (86) and since A0(x∗) � Dh(x∗, x0)(λ0 � 0)

and Ak(x∗)≥ 0, we immediately have (87) and (88). □

Corollary 3. Consider an instance of the ε− NoLips frame-
work with λn � λ for every n ∈ N∗./en, for every k ∈ N∗, the
following statements hold:

(a)Ψ x
k

  − Ψ∗ � O
1
k

 , (89)

(b) ck � min
1≤n≤k

Dh x
n
, x

n− 1
  � O

1
k2 . (90)

Proof. tk � kλ and (87)⟹ (90):

ρk �
k(k + 1)

2
≥

k2

2
. (91)

and (88)⟹ (90). □

Remark 4. (87) and (89) represent exactly the convergence
rate established in [15, 22]. (90) is a new result not estab-
lished in [15, 22]; this result shows that ck converges to zero
at a rate of O(1/k2).

Theorem 5. If  λn � +∞, then

(a) Ψ(xn)⟶ inf Ψ
(b) xn⟶ x∗ ∈ argminΨ

Proof. Replacing u by x∗ in (81), we have

(1 − σ)Dhn
x

n
, x

n− 1
 ≤An− 1 x

∗
(  − An x

∗
( . (92)

By adding the inequality (92) from 1 to k, we have

(1 − σ) 
n�k

n�1
Dhn

x
n
, x

n− 1
 ≤A0 x

∗
(  − Ak x

∗
( . (93)

Ak(x∗)≥ 0, so 
∞
n�1Dhn

(xn, xn− 1)< +∞. From (69), we have



∞

n�1
λnεn < +∞. (94)

Since Ψ(xn){ }n is nonincreasing and (94), by applying
the )eorem 3 (ii), we have the results of )eorem 5. □

5. Application to Nonnegative Linear
Inverse Problem

In Poisson inverse problems (e.g., [25, 26]), we are given a
nonnegative observation matrix A ∈ Rm×d

+ and a noisy
measurement vector b ∈ Rm

+ , and the goal is to reconstruct
the signal x ∈ Rd

+ such that Ax≃ b. We can naturally adopt
the distance D(Ax, b) to measure the residuals between two
nonnegative points, with

(1) Input: x0 ∈ S∩ ri(domΨ)

(2) For n � 1, 2, . . . with εn > 0, we obtain (∇hn(xn− 1) − ∇hn(xn)/λn) ∈ zεn
Ψ(xn)

ALGORITHM 1: Inexact Bregman Proximal Gradient (IBPG).
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D(Ax, b) � 
m

i�1
〈ai, x〉log

〈ai, x〉
bi

+ bi − 〈ai, x〉, (95)

where ai denotes the ith line of A.
In this section, we propose an approach for solving the

nonnegative linear inverse problem defined by

Pα( : inf α‖x‖1 + D(Ax, b) : x ∈ R
d
+ , (α> 0). (96)

We take

f(x) ≔ α‖x‖1,

g(x) ≔ D(Ax, b)

h(x) ≔ h1(x) � 
d

i�1
xi logxi.

(97)

It is shown in [15] that the couple (g, h) verified a
Lipschitz-like/Convexity Condition (LC) on Rd

+ for any L
such that

L≥ max
1≤j≤d



m

i�1
aij � max

1≤j≤d
Aj

�����

�����1
, (98)

where Aj denotes the jth column of A.
For λn ≔ λ, ∀n, )eorem 3 is applicable and global

warrant of Algorithm 1 convergence to an optimal solution
of (Pα).

Given xn ∈ Rd
++, the iteration

x
n+1≃Tλ x

n
(  (99)

amounts to solving the one-dimensional problem:
For j � 1, . . . d,

x
n+1
j ≃ argmin αt + cjt +

1
λ

t log
t

xn
j

+ x
n
j − t⎛⎝ ⎞⎠, t> 0

⎧⎨

⎩

⎫⎬

⎭,

(100)

where cj is the jth component of ∇g(xn).

6. Conclusion

)e proposed algorithms constitute a unified frame for the
existing algorithms BPG, BP, and PG, by giving others, in
particular, the inexact version of the interior method with
Bregman distance studied in [24]. More precisely,

(i) When εn � 0, ∀n ∈ N∗, our algorithm is the NoLips
studied in [15, 22]

(ii) When g � 0, our algorithm is the inexact version of
Bregman Proximal (BP) studied in [19]

(iii) When εn � 0, ∀n ∈ N∗, and g � 0, our algorithm is
the Bregman Proximal (BP) studied in [17, 21]

(iv) When f � 0, our algorithm is the inexact version of
the interior method with Bregman distance studied
in [24]

(v) When f � 0 and εn � 0, ∀n ∈ N∗, our algorithm is
the interior method with Bregman distance studied
in [24]

(vi) When h � (1/2)‖·‖2, our algorithm is the proximal
gradient method (PG) and its variants [4–14, 27]

Our analysis is different and more simple than the one
given in [15, 22] and allows to reduce some hypothesis, in
particular, the supercoercivity of Ψ as well as the simulta-
neous convexity of f and g.

Data Availability

No data were used to support this study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information /eory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear
optimization: optimality conditions and algorithms,” SIAM
Journal on Optimization, vol. 23, no. 3, pp. 1480–1509, 2013.

[3] D. R. Luke, “Phase retrieval, what’s new,” SIAG/OPT Views
and News, vol. 25, no. 1, pp. 1–5, 2017.

[4] A. Auslender, “Numrrical methods for non-differentiable
convex optimization,” inMathematical Programming Studies,
J. P. Vial and C. B. Nguyen, Eds., vol. 30, pp. 102–126,
Springer, Berlin, Germany, 1987.

[5] A. I. Chen and A. Ozdaglar, “A fast distributed proximal-
gradient method,” in Proceedings of the 2012 50th Annual
Allerton Conference on Communication, Control, and Com-
puting (Allerton), pp. 601–608, IEEE, Monticello, IL, USA,
October 2012.

[6] J. B. Hiriart-Urruty, “ε-subdifferentiel calculs. Convex anal-
ysis and optimization,” in Research Notes in Mathematics.
Series, Vol. 57, Pitman Publishers, London, UK, 1982.

[7] K. Jiang, D. Sun, and K.-C. Toh, “An inexact accelerated
proximal gradient method for large scale linearly constrained
convex SDP,” SIAM Journal on Optimization, vol. 22, no. 3,
pp. 1042–1064, 2012.

(1) Input: x0 ∈ S∩ ri(domΨ)

(2) Choose λn > 0 and find xn ∈ S, σn ∈ [0, σ] and εn ≥ 0 such that
((∇hn(xn− 1) − ∇hn(xn))/λn) ∈ zεn

Ψ(xn),

λnεn ≤ σnDhn
(xn, xn− 1)

(3) Set n⟵ n + 1 and go to step 1

ALGORITHM 2: ε− NoLips.

10 Abstract and Applied Analysis



[8] B. Lemaire, “About the convergence of the proximal method ,
proceedings 6th French German conference on optimisation,”
in 1991 Advances in Optimization Lecture Notes, pp. 39–51,
Springer, Berlin, Germany, 1992.

[9] B. Lemaire, “)e proximal algorithm,” International Series of
Numerical Mathematics, vol. 87, pp. 73–87, 1989.

[10] B. Martinet, “Perturbation des méthodes d’optimisation-
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