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In this paper, we establish the existence of nontrivial positive solution to the following integral-infinite point boundary-value
problem involving ¢-Laplacian operator D§. ¢(x, D'gu(x)) +f(x,u(x)) =0,x€(0,1),D5 u(0) = D€+u(0) =0,u(l) = f(l) g(tu(t)dt
+ Y12 a,u(n,), where ¢ : [0, 1] x R — R is a continuous function and Df. is the Riemann-Liouville derivative for p € {a, 3,0}.

n=1

By using some properties of fixed point index, we obtain the existence results and give an example at last.

1. Introduction

Our aim in this article is to study the existence of a non-
trivial positive solution to the following integral and infinite
point boundary-value problem involving a two-dimensional
¢-Laplacian operator

Dgﬁqﬁ(x, D@u(x)) +f(xu(x))=0, x€(0,1),

D.u(0) = Db u(0) =0, (1)

u(v)= [ glou(eydc+ Z au(1y):

0

where DY, is the Riemann-Liouville derivative for p € {a, 8, 7},
0<a<l<f<2and

0 ifl<pf<2,
o= (2)
1 iff=1,

and «,,, 7, € (0,1) for n > 1 such that

n=+00

Z a, < 00. (3)

n=1

Throughout this paper, we assume that the following
conditions are satisfied;
(A1) n,=0<n,<n,,, <1 forneN with

lim 5, =n<1. (4)

n—+00

(A2) f :[0,1] xR —» R" is continuous and g : [0,1] —
R* is an integrable function.

(A3) [, tF g(t)dt+ 207 ot < 1.

(A4) ¢ : [0,1] x R — R is continuous and for f € 0, 1], the
function ¢(t,.) is odd and increasing, ¢! (£,.) is the inverse
function of ¢(t,.) denoted by y(¢,.) where v : [0,1] xR — R
is continuous.

(A5) There exist p*, p~ € R with p* > p~ > 1 such that

¢ (x) < ¢(.x) < @™ (x)for(t,x) €0, 1] X R, (5)
with

. (x)ifx € 0,1|U(-00,-1],
¢(x)=<¢p<> €0.1]u(-c01]

¢, (x)ifx € -1, 0]Ul,+00),
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¢, (x)ifx € 0,1} U(—co,-1],
¢7(x) = (7)
¢, (x)ifxe-1, 0} U1,+00).

Boundary value problems involving a p(t)-Laplacian
operator have attracted a great deal of attention in the last
ten years (see [1] [2-9]). At the same time, boundary value
problems with fractional-order differential equations involv-
ing p(t)-Laplacian are of great importance and are an inter-
esting class of problems. Such kind of BVPs in Banach
space has been studied by many authors, see, for example
[10-13] and the references therein. Noting that the general-
ized ¢-Laplacian operator can turn into the well-known

p(t)-Laplacian operator when we replace ¢ by ¢, (x) =

|x|? 2%, so our results extend and enrich some existing
papers.

By using the homotopy deformation property of the fixed
point index, our paper aims at investigating the existence of
at least one positive solution for bvp 1.

The paper is organized as follows. In the first section, we
recall some lemmas giving fixed point index calculations. In
the second section, we present a fixed point formulation for
bvp (1), and we close this section by some lemmas making
use of homotopical arguments. After that, we give our main
results and their proofs and we end by giving as an example,
a problem involving a sum of many p(¢)-Laplacian operators.

2. Preliminaries

For the sake of completeness, let us recall some basic facts
needed in this paper. Let E be a real Banach space equipped
with its norm noted ||.||, L(E) is the set of all linear continu-
ous mapping from E into E . For L € L(E), (L) =lim,,_, |l
L"[|'"™ denotes the spectral radius of L. A nonempty closed
convex subset K of E is said to be a cone if KN (-K) =0
and (tK) c K for all t > 0.

Let K be a cone in E. A cone K induces a partial ordering
“<”, defined so that x <y if and only if y —x € K.

K is said to be normal if there exists a positive constant N
such that for all u,v € K,

u<v implies|lu| < N|v]|. (8)

L € L(E) is said to be positive in K if L(K) c K, it is said to
be strongly positive in K if int (K)# @ and L(K{0})c
int (K), and it is said to be K-normal if for all u,v €K,

u<v implies|Lu||<|Lv|. 9)

Let E be a real Banach space and let K be a cone.

Let R > 0, B(0, R) be the ball of radius R in E and A : K,
— K a completely continuous mapping, where K = B(0, R)
NK. We will use the following lemmas concerning
computations of the fixed point index, i, for a compact map
A (see [14]).
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Lemma 1. If |Ax|<|x| for all x € 0B(0, R) N K, then

i(A, K, K) = 1. (10)
Lemma 2. If | Ax||>|x| for all x € 0B(0, R) N K, then

i(A, K, K) = 0. (11)
Lemma 3. If Ax>x for all x € 9B(0, R) N K, then

i(A, K K) = 1. (12)
Lemma 4. If Ax<x for all x € B(0,R) N K, then

i(A, Kg, K) = 0. (13)
Lemma 5. If Ax + Ax for all x € 90B(0,R) N K and A > 1, then

i(A, K K) = 1. (14)

3. Related Lemmas

Let N: E— E be an operator and K be a cone of a real
Banach space E, and consider the partial ordering “<” in E,
defined so that x <y if and only if y —x € K.
Let p € K*, and consider the following cone.
P=K(p)={ueK:ux|ul|p} and the positive value

Ay (K) =inf A™(K), (15)
where

A7 (K)={A=0: thereexists u € KN dB(0, 1) such that Nu < Au}.

(16)

Remark 6. It is clear that If N is completely continuous, then
from Lemmas 4 and 5, there exist A > 1 such that A € A™(K).

Lemma 7. Assume that N : E — E is increasing, positively 1-
homogeneous, and completely continuous, such that N(K{0})
cK\{o0}.

If there exist p € K* such that NK c P=K(p), then

Ap(K) = Ay(P) > 0. (17)
Proof. In first, we claim A, (K) = A,(P).
Let A>0,u € KNoB(0,1) such that Nu < Au . Since NK

C P, N is strictly increasing and positively 1-homogenuous,
we have

Nu Nu
¥ (gwa) <M "
then
A (K)c A (P), (19)
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with P ¢ K we deduce

and so
Ao(K) = Ay (P). (21)
Now, we show that
Ao(P) > 0. (22)

In the contrary, we assume that there exist (A,) € R* and
u, € PN0B(0, 1), with lim,_, A, = 0. Such that

n—o0°"'n

Nu, <A,u,. (23)
ForneN,
Ayity = Nuy = N([1, 1) = N(p), (24)
and so
Au,—N(p)eK. (25)
Then,
lim,_, A,u, — N(p) =-N(p) € K, and we obtain

N(p)=0, (26)
which is a contradiction.

Remark 8. If K is a normal cone in a Banach space E, with the
constant of normality n =1 (i.e, ||Ju|| = ||v|| if u>v > 0), then

Ao(K) = [|N(p) |- (27)
Since for A € A(P),u € PN B(0,1)
A Nuz N(ullp) = N(p). (28)

In the following lemma, we assume that N, : E— E is a
positively 1-homogeneous and completely continuous opera-
tor, and N : E— E is a completely continuous, increasing
and positively 1-homogeneous operator, such that

N(K\{0}) c P\ {0}, (29)

where P=K(p), p € K*, and K is a normal cone in a Banach
space E, with the constant of normality n =1.

Lemma 9. Let Q,Q,, G, : K— K be continuous mappings
with

[|Qull

[[u|=+oo || ul]

1G] . i IQu

flul]—+oo |||

< +00

< < +00,
lluf=+oo |

(30)

3
such that
NQu - G,u <Ny Quu, foru € K. (31)
Suppose that there exist A, € R* and G, : K — K with
u
=N % I G2)
such that
Qu=Au-G,(u), for uek. (33)
If
A > AN (K), (34)
then there exist R, > 0 such that for all R> R,
i(NyQq» Kg» K) = i(NQ, Py, P). (35)
Moreover, if
A > (INGe)I™ (36)
then there exist R, > 0 such that for all R> R,
i(NyQq» Kg» K) = 0. (37)

Proof. In first, we show that there exist R, > 0 such that for all
R>R,

i(NQ, Ky, K) = i(NyQy» K, K). (38)
We consider the homotopy
H(t,u) =tNyQuu + (1 - t)NQu. (39)

We show that there exist R, >0 such that for all R>R,
the equation H(t, u) = u has not solutions in [0, 1] X (KN o
B(0, R)). In the contrary, we assume that for all n € N, there
exist R, > n and (t,, u,)€0,1] x (K N 0B(0,R,)) such that

u,=H(t,u,)=t,NoQuu,+ (1-1,)NQu,. (40)

n

By dividing the above equation by ||u,||, we obtain

_ un _ QO”n) (Qun>
y, =t N, +(1-t,)N . (a1
o °<|un|| =tN\G) @Y

llm ||Q0unH

n—00 ||u

<00, (42)

all

then the sequences (Qyu,,/||u,1]),, (Qu,/||u,]||), are bounded,

and we deduce from the compactness of N and Ny, that (v,,)

admits a convergent subsequence also denoted by (v,),,.
Let v=1lim, v, € KN9B(0,1) and t =lim,_, ¢

n—oo0 "' n n—oo"n*

n



By using the conditions (31) and (33), it follows from 12

that for all n e N
%ZN(Q%>_%GwmZN<M%_<%%>_%Gﬂm,
4] 4] 4l 4]

(43)
With the fact that
lim 1% g 92 (44)
nveo ([uy[| - nmseo [fu|
we have

v=A,Nv, (45)

and so
At e AT(K), (46)

where

A" (K)={A20; thereexists u € KN 0B(0, 1) such that Nu < Au}.
(47)

Then
A= 4(K), (48)
which contradicts (10).
Then, there exist R; > 0 such that for all R > R, the equa-
tion H(t, u) = u has not the solutions in

0,1] x (KN 9B(0, R)), (49)

and by invariance property of fixed point index, we deduce
that for all R> R,

i(NQ, K, K) = i(NoQq, K, K). (50)

By the fact that NQ(K) c P, we have from the excision
property of the fixed point index that

i(NQ,Kg,K)=i(NQ, Pg, P). (51)
Then
i(NyQp> K K) = i(NQ, Py, P). (52)
Now, we assume that the condition (36) holds.
By using Lemma 4, we prove that there exists R, > 0 such
that, for all R> R,
i(NQ, Py, P) =0. (53)

In the contrary, we assume that for all # € N, there exist
R, >nand u, € PN 9B(0, R,) such that
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u, > NQu,,. (54)
By the condition (33), we have

u

y = tn 2N<Qu”)—tnG2u” >N
(|4, |4 | [,

n

(Alvn _ Gl(un)) —t, GZun ,
4] 4l

(55)
with
G G
1(”11) — lim 2(“1’!) =0. (56)
n—oo |, || n—eo |lu, ||
As
uy, 2 pllu,], (57)
we have
G, (u,) G,u
>N(Ap- -l ¢ 271 58
oz (p- ) - 58)
Set
G, (u,) G,u
An:N<A p— L ) —t, =" ~N(Ap). (59)
Tl (A '
We have
lim A, =0,

v,—A,=2N(A;p)20.

Since K is normal with the constant of normality N =1,
then for n € N,

1V = Aull 2 IN(A1p) [l (61)
and so
L= lim [lv,)| = lim v, -4, 24, N[, (62)
then
L= [IN(p)l (63)

which contradicts (10).
Consequently, for R > R, = max {R;, R},

i(NyQq, Ky, K) =i(NQ, Pg, P) = 0. (64)

Definition 10. [10, 11] The Riemann-Liouville fractional inte-
gral of order p > 0 of f € L'([a, b], R") is defined by

m¢m=§@ﬁw%VVMM (65)

where I' is the gamma function.
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Definition 11. [10, 11] The Riemann-Liouville fractional
derivative of order p > 0 of a function f is defined by

Dh.f(x)= ;—;IZIP (x),n=[a] +1, (66)

where [n] is the integer part of a.

Remark 12. If p € N, then

617
Dif= o f. (67)
and for p=1,
1@ = s (68)

Lemma 13. [15] Let p > 0, and let u(t) be an integrable func-
tion in [a, b).

E.D0u(x)=u(x) +c;(x—a) "+ c,(x—ayf - +c,(x —a)f ",

wherec, € R, ke {1,2,---,n}, n=[a] + 1 and [n] is the integer
part of a.

Lemma 14. Let he L(0,1), 0<a< 1< f<2and

0 ifl<B<2,
(1 ifp=1.

Then the unique solution of
Dg+</>(x, Dﬁu(x)) +h(x)=0, x€(0,1),

DF.u(0) = D u(0) = 0, u(l):J g(tyu(t)dt + Zm a,u(1,),

is given by

with

HO =y (b s || =9 ). )

5
and
PG, (1) - (x - 1,‘)/3’l if0 <t <min {x, 7},
1| G, () - (k-0 ifp<t<x,
G(x, t) = ——
L) | x1G,, (1) ifx<t<p,
x'B_lGn(t) ift > max {x, 71}
(74)
with
n=limgy,, (75)
n—00
and m € IN* such that
Mm-1 st< N> (76)
where
."l(t) B anm “n(nn B t)ﬁi1
L) = >
Gm( ) 1 _ L
= & 77
1
U0 = (-0 = | =0 g,
t
with
1
L= Z an! +J P lg(s)ds < 1. (78)
n=1 0
Proof. By Lemma 13, equation
D5 (. Df.u(x)) + h(x) =0, (79)
gives
=I5, (h)(x) + ¢ x* 7! ifo<ac<l,
¢(oDpu) = | .
I (h)(x) + ¢, +ox  ifa=1.
(80)
Since Dg+u(0) =0, we have that ¢, =¢, =0 and
DE.u(t)=-H(t), (81)

with



And also from Lemma 13, we have

( I H(x) +d P+ dpxF 1< B<2,
ux)=
~IBH(x) +dx+d, +dyxt iff=2.

(83)

If B # 1, then the condition #(0) = 0leads d, = d; =0, and

if =1, the equation Dy, u = (8u/dx) = —H leads
u(x) =-IyH(x) +d, (84)
with
d, = u(0). (85)
Then
u(x) = —I@H(x) +d P forfe,2). (86)

In addition, from equation

Zocunn

n>1

J (Ju(s)ds,  (87)

we deduce that

FE0 D=3 j (1, - t)F H(t)dt - J a0

Jt (t—s)ﬁ_lH(s)dsdt+J (1

0 0

—t)F H(t)dt,
(88)

with L=Y,. a7 + J(l) P1g(s
gives

)ds . The Fubini’s theorem

Jl H(t)Jl (s = t)F ' g(s)dsdt = Jl H(t)J1 (s — t)F ' g(s)dsdt.

t (89)

C.xP1

u(x):m[l_L —Jx(x—t)ﬁ‘lH(t)dt], (90)

0
where

1

C= Jl (1) H(t)dt - J H(t)Jl (t—s)F ' g(s)dsdt

_ZJ

n=1

0

L~ OF T H(n)dt.

(o1)
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Consequently, the solution of (19) is

1
u(x) :J G(x, t)H(t)dt, (92)
0
with
xﬁ_le(t) - (x- t)ﬁ’1 if0 <t <min {x, 7},
1 xﬁ_lGn(t)— (x—l‘)/”’1 ifn<t<x,
G(x,t) = ——
L) | xb-1G, (1) ifx<t<y,
xﬁ_lGﬂ(t) ift > max {x, 1},
(93)
with
n=limgy,, (94)
and m € N* such that
nm IStSnm’ (95)
where
M(t) B anrn &, (nn ~ t)ﬁ_l
t) = ,
Gm( ) 1 _ L
(1)
= 96
G,(6)= 12, (96)
1
(0= (-0 = [ (5= g(e)ds
t
This finishes the proof.
Lemma 15. For x, t € [0, 1], we have
hy(6)xP < G(x, t) < hy() %P, (97)
where
(I-1) sP1g(s)ds
o=
(98)
u(t)
hy(t) =
O T
with
:J F1g(s)ds + Z ant . (99)
n>1
Proof. It is clear that the right hand inequality
G(x, t) < hy (£)xF, (100)

is obvious.
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Now, we show that

G(x, t) = hy (£)xP, (101)
where
(1= t)F1 [0 P g(s)ds
t)= , 102
with
1
L= J sP1g(s)ds + Z anft (103)
0 n>1
Let x,t €0, 1].
For n € N*, as t > tr7, and t > tx, we have
— OB < BT — B
t < 1-t¢ ,
(1, =)™ =<, ) (104)
(x—t)F <P (1 - 1)F T,
and t > ts gives
Lo g [ o
J (s=t) " g(s)ds< (1 -t)" J P g(s)ds. (105)
t t

For t, x € 0, 1], we have

xﬁ_l (1 - t)!%1 1- Ll Sﬂ_lg(s)ds - anl anrlf_l
G(x, t) = ) [ 1T -11,

(106)

and with x#~! > xP leads

XB-t)f [ [ P g(s)ds— [} P g(s)ds
G(x, t) = T(B) l 1 ,
(107)
then
G(x, t) = xPhy(t). (108)

Remark 16. The function G : [0,1] x[0,1] > R defined by
(20) is continuous, and from Lemma 15, we have G(x,t)
>0.

According to Lemma 14, u is solution of 1 if and only if u
is a fixed point of the operator

1 t

Tu(x) = L G(x, l’)l//(t, 1"(10c)L (t- s)""lf(s, u(s))ds) dt.
(109)

7
T can be written as
T =N,Qp, (110)
where
1
Nou(x) = J G(x, t)u(t)dt
0 (111)

t

Quult) =y (1 s [ (=9 rts u(e)as ).

Remark 17. Let E = C(]0, 1]) be the Banach space equipped
with the sup-norm [|ul| = sup,, j|u(x)|, and the cone

K=E'={ucE;ux0}. (112)
We have from 2 of the condition (A5) that
v (x) Sy(.x) <y (x)fort € [0, 1], (113)

where y~, y* are the inverse functions of ¢~, ¢, respectively,
defined by

(¥ W)ifx € [0, 1]u(-c0,-1],
v (Wp(x)ifxe [-1,0] U [1,+00), (114)
and
i - [V €0, 1]U(-00-1)
Y7 115
v (x) <WP+(x)ifx€ [1,0] U [1,4+00). (115)

where y* is the inverse function of ¢* defined in the condi-
tion (A5).

Remark 18. There exist ¢, e > 0 such that for all (¢, x) € [0, 1]
xR,

Y, () +ezy(tx) 2y, (x) —c (116)
Remark 19. By Lemma 15 and Remark 18, we have for u € K

NyQuu=NQu-G,u, (117)

where

1 t

Nu(x) :xﬁL (DY, <F(1“> L (t- s)“1¢p+(u(s))ds> dt,
(118)
and

Qu(x) =y, (f (%, u(x))), (119)



with

Gyu(x) = c.xﬁJ1 hy(t)dt,

0

(120)

Moreover, the linear operator N, : E — E is compact,
and N : E— E is completely continuous, increasing, posi-
tively 1- homogeneous and verifying

N(K\{0})c P\ {0}, (121)
where
P=K(p)={ueKsu=pllul}, (122)
with
p(x)=xP eK*. (123)
4. Main Results
Set
A=¢, U:) Iy (£)y (ﬁ) dt} N (124)

Theorem 20. Assume that there exist r,> 0,7, > 0 and

y> e (IN(PIT), (125)
such that

f(t:x) <A, (x), for(t, x) € [0, 1] x [0, 7], (126)

and
f(t:2) 2y, (x), for(t, x) € [0, 1] X [r)+00),  (127)

with
1 tz;g]{f(f,x)} . o)

gy ()

then problem 1 has at least one nontrivial positive solution.

Proof. In first, we show that i(T, K,, K) =1 where

r = min {ro, 1, Yy (F(“; 1)} (129)
From (25), we have
f(t,x) <A¢, (%), (1, x)€0, 1]x 0, 7]. (130)
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For u € 0B(0,r) N K,

1 t

Tu(x) = x)y(t, ﬁ (t=35)""f(s, u(s))ds) dt

IA
><
=
§
H~
S~—
<
7N
J‘"

(t—s)" f(s, u(s))ds) dt

< w( @ ;t—s“lf(s,u(s))ds>dt
<[ o (s | =97 20 s
< w(r e () )de

(131)

and from the definition of the constant r, we have that

<ﬁ t"‘/\gbﬁ(?’))) <1, (132)
then
Tu(x) < Jo hz(l‘)wp+ <ﬁ t"‘/\(pp+ (r))) dt. (133)
Then,
([ Tuf| < |lef]- (134)
By Lemma 1,
i(T,K,, K)=1. (135)

Now, by using Lemma 9, we show that there exists R >0
such that
i(T, Ky, K) =0. (136)

In first, we have from Remark 19 that

T=N,Q,>NQ-G,, (137)

where
Gyu=c. (138)
Aslim 1o (G,(u)/[|u]|) = 0, then the condition (31) of

Lemma 9 is satisfied.
Now, we have from (26), for x > r,

v, (F(62) 2 4%, (139)
with

A=y, (1) > IN()[ (140)
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Then, there exists d € R such that

¥, (f(t, X)) 2 A1x = d, forx > 0. (141)
and set
G, (u)=d (142)
We have for u € K
Q(u)(t) 2 Ayu(t) = Gy (u)(1), (143)
with
G _, (144)

lufl =0 ||ua]]
Moreover, from Remark 18, for u € K,

Qu(t) = Yy (f(tu(t)) < v, (f(t,u(t))) +e+c fort €0,1],

(145)
and
1 ' a-1
Quu) =¥ (1 s | (69 Fls uts)s
| ’ (146)
<Y, (t, ) Jo (t=35)""f(s, u(s))ds) +e.
Then, from (27), we have
1] <ooand lim 1ol <oo. (147)
Ju=voo|[ul] Jul=veoJu]
By Lemma 9, there exist R > r,, such that
i(NyQp> Ko K) = 0. (148)

Consequently, T = N, Q, has at least one fixed point u in
K n (B(0,R) \ B(0,r)), which is a nontrivial positive solution
for problem 1.

Set
s [ ()]

1

(149)
and

N, (u)(x) = xﬁJ hi (D), (ﬁ Jt (t- s)“"1¢p(u(s))ds> dt.

0 0

(150)
Theorem 21. Assume that there exist r, > 0,1; > 0 and

y> o, (IN2(P)17), (151)

9
such that
f(tx) <Ay¢, (x), for(t, x) € [0, 1] X [r,+00), (152)
and
f(6x) 28, () for(bx) €[0, 1) x [0,r)),  (153)

then problem 1 has at least one nontrivial positive solution.

Proof. In first, by using Lemma 3, we show that there exists
R>r, such that i(T, Py, P) = 1. In the contrary, we assume
that there exists a sequence (u,,), in P with

Tim 1| = co, (154)
such that
Tu, >u, (155)
From (28), there exist ¢ > 0 and b € R such that
flt,x)< (A, - s)(pp, (x) + b, (t,x)€0,1] x 0,400).  (156)
Then, forn e N
! 1 ‘ a-1
u, <Tu,(x)= L G(t x)w(t, WL (t=s)""f(s un(s))ds) dt
< Oxﬁ"lhz(t)q/ t r%x)ﬁ) (t=9)"f(su (s))ds)dt
1 1 t el 1
< . hy (D), (mj (t=s5)""f(s u,,(s))ds) dt + eJO h,(t)dt

Jo (t—s)" [(/\ =€), (uy(s)) + b} ds) dt

IN
(=]
=
8]
—
-
=
S
Y
=
K
=

1

v j hy()dt < uunuwpfu—ajo hy(t)y,

: <ﬁ£ (t—5)"1(1+ rn)ds> dt+ eJ:) Iy (1),
(157)
where

b
= g -9 (138)

Then,

sy, 0-9)| o, (5 || =9 @en s
(159)

with

Uh,(t)dt
limrn:O: hmM

n—-00 n—0oo ‘ | ui’l ||

, (160)
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it follows the following contradiction

1<y, (A-e)y, (A7) <1. (161)
Then, there exists R > r, such that
i(T, Py, P) = 1. (162)
Now, we prove that i(T, P, , P) =0.
Let u € PN 0B(0, 1), with
7o = min {1, 3V, <F((XY+ 1)> } (163)

We have u > pl|u|, and from (29)
Tu(1) 2 JO hl(t)y/(t, ﬁj{) (t-s5)*" (yqﬁp(u(s)))ds) dt

> [ 0wy (g || =97 (v G ) e

(164)
Then,
|Tulzv, DINS ) |[Il> . (165)
From Lemma 1, we have
i(T,P,,P)=0. (166)

Consequently, T = N,Q, has at least one fixed point u in
K n(B(0,R)\ B(0,7,)), which is a nontrivial positive solu-
tion for problem 1.

Example 22. We consider the following (p, (x), p,(x), -+, p,,
(x))-Laplacian boundary value problem

k

I
Z

D9y, (% (Dh(x)) + hiv u(x)) = 0, € (0, 1),

k=1

DJ.u(0) = DE.u(0) =0

1) = | gloyuleyde+ Z ayu(n,):
(167)

where ¢, ) is the p;(t)-Laplacian operator defined in [0, 1]
x R as

$p (1) (1 %) = x| x, fork € {1,2, -, N}, N € N*, (168)
with

Piey € C' ([0, 1], (1,+00)). (169)

Abstract and Applied Analysis

We consider the problem 1 with f(#,x) =h(t,x)/N and
o(t,x) = 1INYY ¢y, () (1> X). We assume that the conditions

(A1), (A2), and (A3) are satisfied, and ¢ verifies (A4) and
(A5) with

pr=max {p,(t),t€[0,1],kel,2,.,N}, (170)
and
p =min {p,(t),t€[0,1],kel,2,.,N}. (171)
Set
1 toc -1
A=¢,. || ma(tyw, dr|
o)l
1 ta -1
s [ )]
and
yo =max { g (IN(p)[ ). ¢, (INa(p) ) - (173)

We deduce from Theorems 20 and 21 that, if there exist
Ry>0,R; >0 and y >y, such that h verifies one of the
following conditions;

(H1)
h(t,x) < NA@,, (x), for(t, x) € [0, 1] x [0, Ry).
h(t,x) = Ny, (x), for(t, x) € [0, 1] x [R+00), (174)
and
sup {h(t, )}
lim % <0, (175)
" (H2)
h(t,x) < NAyg, (x), for(t, x) € [0,1] x [R;,+c0),  (176)
and
h(t,x) = Nyg, (x), for(t,x) € [0, 1] x [0, R, (177)

then problem (30) has at least one nontrivial positive
solution.
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