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In this paper, we study the split feasibility problem in Banach spaces. At first, we prove that a solution of this problem is a solution of
the equivalent equation defined by using a metric projection, a generalized projection, and sunny generalized nonexpansive
retraction, respectively. Then, using the hybrid method with these projections, we prove strong convergence theorems in
mathematical programing in order to find a solution of the split feasibility problem in Banach spaces.

Dedicated to the late Professor Wataru Takahashi with our respect

1. Introduction

Bregman proposed a generalization for the cyclic metric
projection method of computing points in the intersection
of linear closed subspaces of a Hilbert space in [1], invented
by von Neumann [2]. Alber and Butnariu achieve distinction
of the study of this Bregman projection and the result of the
properties. They used this cyclic Bregman projection method
for finding the solution of the consistent convex feasibility
problem of computing a common point of the closed convex
subspaces in a reflexive Banach space [3]. Some fruitful
results have been introduced with respect to the sequential
algorithm with successive Bregman projection for computing
a solution of the convex feasibility problem [4, 5] and so on.
Ibaraki and Takahashi studied the properties of a generalized
projection which is a special case of Bregman projection and
a sunny generalized nonexpansive retraction in Banach
spaces [6].

Alsulami, Latif, and Takahashi treated with the following
convex feasibility problem [7]: Let H be a Hilbert space; let E
be a strictly convex, reflexive, and smooth Banach space; let A
be a bounded linear operator from H into E; let C and D be

convex and closed subsets of H and E, respectively. Then,
find a point z ∈ C ∩ A−1ðDÞ. In particular, such a problem is
called the split feasibility problem. Using the methods with
metric projections in mathematical programing, they showed
strong convergence theorems for finding a solution of the
split feasibility problem. In the case of finite dimensional
spaces, Byrne treated with the iterative algorithm [8]: xn+1
= PCðxn + rATðPD − IÞAxnÞ, where n ∈ℕ and a linear opera-
tor A is represented as a matrix which can be selected to
impose consistency with measured data. With respect to
examples in this case, there are results by Landweber [9]
and Gordon, Bender, and Herman [10]. In [11], Takahashi
treated with this problem of a linear bounded operator A
from E into F, where E and F are uniformly convex and
smooth Banach spaces. In that paper, it is shown that z ∈ C
∩ A−1ðDÞ is equivalent to

z = PC IE − rJ−1E A∗ J F IF − PDð ÞA� �
z, ð1Þ

where PC and PD are metric projections on subsets C of E and
D of F, respectively; IE and IF are the identity mappings on E
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and F, respectively; JE and J F are duality mappings on E and
F, respectively; r ∈ ð0,∞Þ. Furthermore, the following con-
vergence theorem is proved by the hybrid method with met-
ric projections: Let E and F be uniformly convex and smooth
Banach spaces; let C and D be nonempty, closed, and convex
subsets of E and F, respectively; let JE and J F be duality map-
pings on E and F, respectively; let A be a bounded linear
operator from E into F with A ≠ 0; let A∗ be the adjoint oper-
ator of A; let r ∈ ð0,∞Þ. Suppose that C ∩ A−1ðDÞ ≠∅. Let
x1 ∈ E and let fxng be a sequence generated by

zn = IE − rJ−1E A∗ J F IF − PDð ÞA� �
xn,

Cn = z ∈ C ∣ zn − z, JE xn − znð Þh i ≥ 0f g,
Qn = z ∈ C ∣ xn − z, JE x1 − xnð Þh i ≥ 0f g,
xn+1=PCn∩Qn

x1

8>>>>><
>>>>>:

ð2Þ

for any n ∈ℕ. Then, fxng is strongly convergent to a
point z0 ∈ C ∩ A−1ðDÞ for any r ∈ ð0, kAk−2Þ, where z0 =
PC∩A−1ðDÞx1.

In this paper, for uniformly convex and smooth Banach
spaces E and F, we study the split feasibility problem of a
bounded linear operator A from E to F. First, we give the
diversity of equivalent equations regarding equation (1) with
respect to metric projections, generalized projections, and
sunny generalized nonexpansive retractions, respectively.
Then, using the hybrid methods with these projections, we
prove the strong convergence theorems in mathematical pro-
graming in order to find a solution of the split feasibility
problem in Banach spaces.

2. Preliminaries

We know that the following hold; for instance, see [12–14].
(T1) Let E be a Banach space, let E∗ be the topological

dual space of E, and let JE be the duality mapping on E
defined by

JEx = x∗ ∈ E∗∣ xk k2 = x, x∗h i = x∗k k2
n o

ð3Þ

for any x ∈ E. Then, E is strictly convex if and only if JE is
injective; that is, x ≠ y implies JEx ∩ JEy =∅.

(T2) Let E be a Banach space, let E∗ be the topological
dual space of E, and let JE be the duality mapping on E.
Then, E is reflexive if and only if JE is surjective; that is,S

x∈E JEx = E∗.
(T3) Let E be a Banach space and let JE be the duality

mapping on E. Then, E is smooth if and only if JE is single-
valued.

(T4) Let E be a Banach space and let JE be the duality
mapping on E. Then, E is strictly convex if and only if

1 − x, y∗h i > 0 ð4Þ

for any x, y ∈ E with x ≠ y and kxk = kyk = 1 and for any
y∗ ∈ JEy.

(T5) Let E be a Banach space and let E∗ be the topological
dual space of E. Then, E is reflexive if and only if E∗ is
reflexive.

(T6) Let E be a Banach space and let E∗ be the topological
dual space of E. If E∗ is strictly convex, then E is smooth.
Conversely, if E is reflexive and smooth, then E∗ is strictly
convex.

(T7) Let E be a Banach space and let E∗ be the topological
dual space of E. If E∗ is smooth, then E is strictly convex.
Conversely, if E is reflexive and strictly convex, then, E∗ is
smooth.

(T8) If E is uniformly convex, that is, for any ε ∈ ð0, 2�
there exists δ ∈ ð0, 1� such that kxk = kyk = 1 and kx − yk ≥
ε implies kðx + yÞ/2k ≤ 1 − δ, then E is reflexive.

(T9) Let E be a Banach space, let E∗ be the topological
dual space of E, and let JE be the duality mapping on E. If
E has a Fréchet differentiable norm, then JE is norm-to-
norm continuous.

(T10) Let E be a Banach space and let E∗ be the topolog-
ical dual space of E. Then, E is uniformly smooth, that is, E
has a uniformly Fréchet differentiable norm, if and only if
E∗ is uniformly convex.

Definition 1. Let E be a smooth Banach space, let JE be the
duality mapping on E, and let VE be the mapping from E ×
E into ½0,∞Þ defined by

VE x, yð Þ = xk k2 − 2 x, JEyh i + yk k2 ð5Þ

for any x, y ∈ E.

Since by (T3) JE is single-valued, VE is well-defined. It is
obvious that x = y implies VEðx, yÞ = 0. Conversely, by (T4),

(T11) If E is also strictly convex, thenVEðx, yÞ = 0 implies
x = y.

Let E be a strictly convex and smooth Banach space. By
(T1) and (T3), JE is a bijective mapping from E onto JEðEÞ.
In particular, if E is also reflexive, then by (T2), JE is a bijec-
tive mapping from E onto E∗. If E is strictly convex, reflexive,
and smooth, then by (T5), (T6) and (T7) E∗ is also strictly
convex, reflexive, and smooth. Furthermore, since E is reflex-
ive, E∗∗ = E holds and the duality mapping on E∗ is J−1E .

We use the following lemmas in this paper. The following
is shown in [14].

Lemma 2. Let E be a Banach space and let JE be the duality
mapping on E. Then, hx − y, x∗ − y∗i ≥ 0 for any x, y ∈ E, for
any x∗ ∈ JðxÞ, and for any y∗ ∈ JEy. Furthermore, if E is
strictly convex and smooth, then hx − y, x∗ − y∗i = 0 if and
only if x = y.

Definition 3. Let E be a strictly convex, reflexive, and smooth
Banach space and let C be a nonempty, closed, and convex
subset of E. We know that for any x ∈ E there exists a unique
element z ∈ C such that kx − zk =miny∈Ckx − yk. Such a z is
denoted by PCx, and PC is called the metric projection of E
onto C.
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The following holds.

Lemma 4. Let E be a strictly convex and smooth Banach space,
let C be a nonempty closed subset of E, and let JE be duality
mapping on E. Then, for any ðx, zÞ ∈ E × C, z = PCx if and
only if hz − y, JEðx − zÞi ≥ 0 for any y ∈ C.

Definition 5. Let E be a strictly convex, reflexive, and smooth
Banach space and let C be a nonempty, closed, and convex
subset of E. We know that for any x ∈ E, there exists a unique
element z ∈ C such that VEðz, xÞ =miny∈CVEðy, xÞ. Such a z
is denoted by ΠCx, and ΠC is called the generalized projec-
tion of E onto C.

The following is shown in [15].

Lemma 6. Let E be a strictly convex and smooth Banach space;
let C be a nonempty, closed, and convex subset of E; let JE be
the duality mapping on E. Then, the following hold.

(i) For any ðx, zÞ ∈ E × C, z =ΠCx if and only if hz − y,
JEx − JEzi ≥ 0 for any y ∈ C ;

(ii) VEðy,ΠCxÞ +VEðΠCx, xÞ ≤VEðy, xÞ for any x ∈ E
and for any y ∈ C:

Definition 7. Let C be a nonempty subset of a smooth Banach
space E. A mapping T from C into E is said to be generalized
nonexpansive [6] if the set of all fixed points of T is non-
empty and

VE Tx, yð Þ ≤VE x, yð Þ ð6Þ

for any x ∈ C and for any fixed point y of T . Let C be a non-
empty subset of a Banach space E. A mapping R from E onto
C is said to be sunny if

R Rx + t x − Rxð Þð Þ = Rx ð7Þ

for any x ∈ E and for any t ∈ ½0,∞Þ. A mapping R from E
onto C is called a retraction or a projection if Rx = x for any
x ∈ C.

The following are shown in [16].

Lemma 8. Let E be a strictly convex, reflexive, and smooth
Banach space and let C be a nonempty and closed subset of
E. Then, the following are equivalent:

(i) There exists a sunny generalized nonexpansive
retraction of E onto C ;

(ii) There exists a generalized nonexpansive retraction of
E onto C ;

(iii) JEðCÞ is closed and convex.

Lemma 9. Let E be a strictly convex, reflexive, and smooth
Banach space, let C be a nonempty and closed subset of E,
and ðx, zÞ ∈ E × C. Suppose that there exists a sunny general-
ized nonexpansive retraction RC of E onto C. Then, the follow-
ing are equivalent:

(i) z = RCx ;
(ii) VEðx, zÞ =miny∈CVEðx, yÞ.

The following are shown in [6].

Lemma 10. Let E be a strictly convex and smooth Banach
space and let C be a nonempty and closed subset of E. Suppose
that there exists a sunny generalized nonexpansive retraction
of E onto C. Then, the sunny generalized nonexpansive retrac-
tion is uniquely determined.

Lemma 11. Let E be a strictly convex and smooth Banach
space, let C be a nonempty and closed subset of E, and let JE
be the duality mapping on E. Suppose that there exists a sunny
generalized nonexpansive retraction RC of E onto C. Then, the
following hold.

(i) For any ðx, zÞ ∈ E × C, z = RCx if and only if hx − z,
JEz − JEyi ≥ 0 for any y ∈ C:

(ii) VEðRCx, yÞ +VEðx, RCxÞ ≤VEðx, yÞ for any x ∈ E
and for any y ∈ C:

Definition 12. Let p ∈ ð1,∞Þ. Define a mapping Jp from E
into E∗ by

Jpx = x∗ ∈ E∗ ∣ x, x∗h i = xk kp and x∗k k = xk kp−1� � ð8Þ

for any x ∈ E. Then, Jp is called the generalized duality map-
ping on E. In particular, J2 = JE.

The following are shown in [17].

Lemma 13. Let E be a Banach space. Then, the following are
equivalent:

(i) E is uniformly convex;

(ii) For any p ∈ ð1,∞Þ and for any ρ ∈ ð0,∞Þ, there
exists a continuous, strictly increasing, and convex
function gp,ρ from ½0,∞Þ into ½0,∞Þ such that
gp,ρð0Þ = 0 and

x + yk kp ≥ xk kp + p y, x∗h i + gp,ρ yk kð Þ ð9Þ

for any x, y ∈ BρðEÞ= def fz ∈ E∣kzk ≤ ρg and for
any x∗ ∈ Jpx ;

(iii) For any p ∈ ð1,∞Þ and for any ρ ∈ ð0,∞Þ, there
exists a continuous, strictly increasing, and convex
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function gp,ρ from ½0,∞Þ into ½0,∞Þ such that
gp,ρð0Þ = 0 and

x − y, x∗ − y∗h i ≥ gp,ρ x − yk kð Þ ð10Þ

for any x, y ∈ BρðEÞ, for any x∗ ∈ Jpx, and for any
y∗ ∈ Jpy:

Lemma 14. Let E be a smooth Banach space. Then, the follow-
ing are equivalent:

(i) E is uniformly smooth;

(ii) For any q ∈ ð1,∞Þ and for any ρ ∈ ð0,∞Þ, there
exists a continuous, strictly increasing, and convex
function g∗q,ρ from ½0,∞Þ into ½0,∞Þ such that
g∗
q,ρð0Þ = 0 and

x + yk kq ≤ xk kq + q y, Jqx
� �

+ g∗
q,ρ yk kð Þ ð11Þ

for any x, y ∈ BρðEÞ ;
(iii) For any q ∈ ð1,∞Þ and for any ρ ∈ ð0,∞Þ, there

exists a continuous, strictly increasing, and convex
function g∗q,ρ from ½0,∞Þ into ½0,∞Þ such that
g∗
q,ρð0Þ = 0 and

x − y, Jqx − Jqy
� �

≤ g∗q,ρ x − yk kð Þ ð12Þ

for any x, y ∈ BρðEÞ:

The following is shown in [18].

Lemma 15. Let E be a uniformly convex and smooth Banach
space and let ρ ∈ ð0,∞Þ. Then, there exists a continuous,
strictly increasing, and convex function gρ from ½0,∞Þ into
½0,∞Þ such that gρð0Þ = 0 and

gρ x − yk kð Þ ≤VE x, yð Þ ð13Þ

for any x, y ∈ BρðEÞ.

3. Equivalent Conditions to the
Existence of Solutions

In this section, we consider equivalent conditions to the
existence of solutions of the split feasibility problem.

Theorem 16. Let E and F be strictly convex, reflexive, and
smooth Banach spaces; let IE and IF be the identity mappings
on E and F, respectively; let JE and J F be duality mappings on
E and F, respectively; let C and D be nonempty, closed, and
convex subsets of E and F, respectively; let A be a bounded lin-
ear operator from E into F; let A∗ be the adjoint operator of A;

let r ∈ ð0,∞Þ. Suppose that C ∩ A−1ðDÞ ≠∅. Consider the fol-
lowing condition:

(i) z ∈ C ∩ A−1ðDÞ.

The following are equivalent to (i):

(ii) z = PCðIE − rJ−1E A∗ J FðIF − PDÞAÞz ;
(iii) z = PCðIE − rJ−1E A∗ðJ F − J FΠDÞAÞz ;
(iv) z =ΠC J

−1
E ðJE − rA∗ J FðIF − PDÞAÞz ;

(v) z =ΠC J
−1
E ðJE − rA∗ðJ F − J FΠDÞAÞz:

Proof. The equivalence of (i) and (ii) is shown in [11, Lemma
3.1]. We show the rest.

Suppose that (i) holds. Since Az ∈D, PDAz =ΠDAz = Az
holds. Therefore,

J F IF − PDð ÞAz = J F − J FΠDð ÞAz = 0, ð14Þ

and hence,

the right side of iiið Þ = PCz,
the right sides of ivð Þ and vð Þ =ΠCz:

ð15Þ

Since z ∈ C, we obtain

the right sides of iiið Þ, ivð Þ, and vð Þ = z: ð16Þ

Conversely, suppose that (iii), (iv), or (v) holds. Since
these equations have the form of z = PCx or z =ΠCx, z ∈ C
holds. We show z ∈ A−1ðDÞ.

In the case of (iii): By Lemma 4, we obtain

0 ≤ z − y, JE IE − rJ−1E A∗ J F − J FΠDð ÞA� �
z − z

� �� �
= −r z − y, A∗ J F − J FΠDð ÞAzh i
= −r Az − Ay, J F − J FΠDð ÞAzh i

ð17Þ

for any y ∈ C. Therefore,

Az − Ay, J F − J FΠDð ÞAzh i ≤ 0: ð18Þ

On the other hand, by Lemma 6, we obtain

ΠDAz − v, J FAz − J FΠDAzh i ≥ 0 ð19Þ

for any v ∈D. Since C ∩ A−1ðDÞ ≠∅, there exists z0 ∈ C ∩ A−1

ðDÞ. Putting y = z0 and v = Az0, y ∈ C and v ∈D hold. Therefore,

Az − Az0, J F − J FΠDð ÞAzh i ≤ 0,
ΠDAz − Az0, J FAz − J FΠDAzh i ≥ 0,

ð20Þ
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and hence,

Az −ΠDAz, J FAz − J FΠDAzh i ≤ 0: ð21Þ

By Lemma 2, we obtainΠDAz = Az, and hence,Az ∈D; that
is, z ∈ A−1ðDÞ.

In the case of (iv): By Lemma 6, we obtain

0 ≤ z − y, JE − rA∗ J F IF − PDð ÞAð Þz − JEzh i
= −r z − y, A∗ J F IF − PDð ÞAzh i
= −r Az − Ay, J F IF − PDð ÞAzh i,

ð22Þ

for any y ∈ C. Therefore,

Az − Ay, J F IF − PDð ÞAzh i ≤ 0: ð23Þ

On the other hand, by Lemma 4, we obtain

PDAz − v, J F Az − PDAzð Þh i ≥ 0 ð24Þ

for any v ∈D. Since C ∩ A−1ðDÞ ≠∅, there exists z0 ∈ C ∩ A−1

ðDÞ. Putting y = z0 and v = Az0, y ∈ C and v ∈D hold. Therefore,

Az − Az0, J F IF − PDð ÞAzh i ≤ 0,
PDAz − Az0, J F Az − PDAzð Þh i ≥ 0,

ð25Þ

and hence,

Az − PDAz, J F Az − PDAzð Þh i = Az − PDAzk k2 ≤ 0: ð26Þ

Therefore, we obtain PDAz = Az, and hence, Az ∈D; that is,
z ∈ A−1ðDÞ.

In the case of (v): By Lemma 6, we obtain

0 ≤ z − y, JE J−1E JE − rA∗ J F − J FΠDð ÞAð Þz − JEz
� �

= −r z − y,A∗ J F − J FΠDð ÞAzh i
= −r Az − Ay, J F − J FΠDð ÞAzh i,

ð27Þ

for any y ∈ C. Therefore,

Az − Ay, J F − J FΠDð ÞAzh i ≤ 0: ð28Þ

On the other hand, by Lemma 6, we obtain

ΠDAz − v, J FAz − J FΠDAzh i ≥ 0 ð29Þ

for any v ∈D. Since C ∩ A−1ðDÞ ≠∅, there exists z0 ∈ C ∩
A−1ðDÞ. Putting y = z0 and v = Az0, y ∈ C and v ∈D hold.
Therefore,

Az − Az0, J F − J FΠDð ÞAzh i ≤ 0,
ΠDAz − Az0, J FAz − J FΠDAzh i ≥ 0,

ð30Þ

and hence,

Az −ΠDAz, J FAz − J FΠDAzh i ≤ 0: ð31Þ

By Lemma 2, we obtain ΠDAz = Az, and hence, Az ∈D;
that is, z ∈ A−1ðDÞ.

Remark 17. Since in [11, Lemma 3.1] only the metric projec-
tion was used, only Lemma 4 was used for proving the equiv-
alence between (i) and (ii). In Theorem 16, both of the metric
projection and the generalize projection are used. Therefore,
we have to use both of Lemmas 4 and 6 for proving the equiv-
alence between (i) and (iii), and (iv) and (iv).

Theorem 18. Let E and F be strictly convex, reflexive, and
smooth Banach spaces; let F∗ be the dual space of F, let IE
and IF∗ be the identity mappings on E and F∗, respectively;
let JE and J F be duality mappings on E and F, respectively;
let C and D be nonempty, closed, and convex subsets of E
and F, respectively; let A be a bounded linear operator from
E into F; let A∗ be the adjoint operator of A; let r ∈ ð0,∞Þ.
Suppose that C ∩ A−1ðDÞ ≠∅. Consider the following
condition:

(i) z ∈ C ∩ A−1ðDÞ.

If J FðDÞ is closed, then the following are equivalent to (i):

(vi) z = PCðIE − rJ−1E A∗ðIF∗ − RJFðDÞÞJ FAÞz;
(vii) z =ΠC J

−1
E ðJE − rA∗ðIF∗ − RJFðDÞÞJ FAÞz.

If JEðCÞ is closed, then the following are equivalent to (i):

(viii) z = J−1E RJEðCÞðJE − rA∗ J FðIF − PDÞAÞz;
(ix) z = J−1E RJEðCÞðJE − rA∗ðJ F − J FΠDÞAÞz.

If JEðCÞ and J FðDÞ are closed, then the following is equiv-
alent to (i):

(x) z = J−1E RJEðCÞðJE − rA∗ðIF∗ − RJ FðDÞÞJ FAÞz.

Proof. Suppose that (i) holds. Since Az ∈D,

PDAz =ΠDAz = Az and RJF Dð Þ J FAz = J FAz ð32Þ

hold. Therefore,

J F IF − PDð ÞAz = J F − J FΠDð ÞAz = IF∗ − RJF Dð Þ
� 	

J FAz = 0,

ð33Þ

and hence,

the right side of við Þ = PCz,
the right side of viið Þ =ΠCz,

the right sides of viiið Þ, ixð Þ, and xð Þ = J−1E RJE Cð Þ JEz:

ð34Þ
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Since z ∈ C, we obtain

the right sides of við Þ, viið Þ, viiið Þ, ixð Þ, and xð Þ = z: ð35Þ

Conversely, suppose that (vi), (vii), (viii), (ix), or (x)
holds. Since these equations have the form of z = PCx, z =
ΠCx, or z = J−1E RJEðCÞx, z ∈ C holds. We show z ∈ A−1ðDÞ.

In the case of (vi): By Lemma 4, we obtain

0 ≤ z − y, JE IE − rJ−1E A∗ IF∗ − RJF Dð Þ
� 	

J FA
� 	

z − z
� 	D E

= −r z − y, A∗ IF∗ − RJ F Dð Þ
� 	

J FAz
D E

= −r Az − Ay, IF∗ − RJ F Dð Þ
� 	

J FAz
D E

,

ð36Þ

for any y ∈ C. Therefore,

Az − Ay, IF∗ − RJF Dð Þ
� 	

J FAz
D E

≤ 0: ð37Þ

On the other hand, by Lemma 11, we obtain

J−1F RJ F Dð Þ J FAz − J−1F v, J FAz − RJF Dð Þ J FAz
D E

≥ 0 ð38Þ

for any v ∈ J FðDÞ. Since C ∩ A−1ðDÞ ≠∅, there exists
z0 ∈ C ∩ A−1ðDÞ. Putting y = z0 and v = J FAz0, y ∈ C and
v ∈ J FðDÞ hold. Therefore,

Az − Az0, IF∗ − RJF Dð Þ
� 	

J FAz
D E

≤ 0,

J−1F RJ F Dð Þ J FAz − Az0, J FAz − RJF Dð Þ J FAz
D E

≥ 0,
ð39Þ

and hence,

Az − J−1F RJ F Dð Þ J FAz, J FAz − RJF Dð Þ J FAz
D E

≤ 0: ð40Þ

By Lemma 2, we obtain RJFðDÞ J FAz = J FAz, and hence,

J FAz ∈ J FðDÞ; that is, z ∈ A−1ðDÞ.
In the case of (vii): By Lemma 6, we obtain

0 ≤ z − y, JE J−1E JE − rA∗ IF∗ − RJ F Dð Þ
� 	

J FA
� 	

z − JEz
D E

= −r z − y, A∗ IF∗ − RJF Dð Þ
� 	

J FAz
D E

= −r Az − Ay, I F∗ − RJF Dð Þ
� 	

J FAz
D E

,

ð41Þ

for any y ∈ C. Therefore,

Az − Ay, IF∗ − RJF Dð Þ
� 	

J FAz
D E

≤ 0: ð42Þ

On the other hand, by Lemma 11, we obtain

J−1F RJ F Dð Þ J FAz − J−1F v, J FAz − RJ F Dð Þ J FAz
D E

≥ 0 ð43Þ

for any v ∈ J FðDÞ. Since C ∩ A−1ðDÞ ≠∅, there exists
z0 ∈ C ∩ A−1ðDÞ. Putting y = z0 and v = J FAz0, y ∈ C and
v ∈ J FðDÞ hold. Therefore,

Az − Az0, IF∗ − RJ F Dð Þ
� 	

J FAz
D E

≤ 0,

J−1F RJ F Dð Þ J FAz − Az0, J FAz − RJ F Dð Þ J FAz
D E

≥ 0,
ð44Þ

and hence,

Az − J−1F RJ F Dð Þ J FAz, J FAz − RJF Dð Þ J FAz
D E

≤ 0: ð45Þ

By Lemma 2, we obtain RJ FðDÞ J FAz = J FAz, and hence,

J FAz ∈ J FðDÞ; that is, z ∈ A−1ðDÞ.
In the case of (viii): By Lemma 11, we obtain

0 ≤ J−1E JEz − J−1E y, JE − rA∗ J F IE − PDð ÞAð Þz − JEz
� �

= −r z − J−1E y, A∗ J F IE − PDð ÞAz� �
= −r Az − AJ−1E y, J F IE − PDð ÞAz� �

,
ð46Þ

for any y ∈ JEðCÞ. Therefore,

Az − AJ−1E y, J F IE − PDð ÞAz� �
≤ 0: ð47Þ

On the other hand, by Lemma 4, we obtain

PDAz − v, J F Az − PDAzð Þh i ≥ 0 ð48Þ

for any v ∈D. Since C ∩ A−1ðDÞ ≠∅, there exists z0 ∈ C ∩
A−1ðDÞ. Putting y = JEz0 and v = Az0, y ∈ JEðCÞ and v ∈D
hold. Therefore,

Az − Az0, J F IE − PDð ÞAzh i ≤ 0,
PDAz − Az0, J F Az − PDAzð Þh i ≥ 0,

ð49Þ

and hence,

Az − PDAz, J F Az − PDAzð Þh i = Az − PDAzk k2 ≤ 0: ð50Þ

Therefore, we obtain PDAz = Az, and hence, Az ∈D; that
is, z ∈ A−1ðDÞ.

In the case of (ix): By Lemma 11, we obtain

0 ≤ J−1E JEz − J−1E y, JE − rA∗ J F − J FΠDð ÞAð Þz − JEz
� �

= −r z − J−1E y, A∗ J F − J FΠDð ÞAz� �
= −r Az − AJ−1E y, J F − J FΠDð ÞAz� �

,
ð51Þ
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for any y ∈ JEðCÞ. Therefore,

Az − AJ−1E y, J F − J FΠDð ÞAz� �
≤ 0: ð52Þ

On the other hand, by Lemma 6, we obtain

ΠDAz − v, J FAz − J FΠDAzh i ≥ 0 ð53Þ

for any v ∈D. Since C ∩ A−1ðDÞ ≠∅, there exists
z0 ∈ C ∩ A−1ðDÞ. Putting y = JEz0 and v = Az0, y ∈ JEðCÞ
and v ∈D hold. Therefore,

Az − Az0, J F − J FΠDð ÞAzh i ≤ 0,
ΠDAz − Az0, J FAz − J FΠDAzh i ≥ 0,

ð54Þ

and hence,

Az −ΠDAz, J FAz − J FΠDAzh i ≤ 0: ð55Þ

By Lemma 2, we obtain PDAz = Az, and hence, Az ∈D;
that is, z ∈ A−1ðDÞ.

In the case of (x): By Lemma 11, we obtain

0 ≤ J−1E JEz − J−1E y, JE − rA∗ IF∗ − RJ F Dð Þ
� 	

J FA
� 	

z − JEz
D E

= −r z − J−1E y, A∗ IF∗ − RJ F Dð Þ
� 	

J FAz
D E

= −r Az − AJ−1E y, IF∗ − RJF Dð Þ
� 	

J FAz
D E

,

ð56Þ

for any y ∈ JEðCÞ. Therefore,

Az − AJ−1E y, IF∗ − RJ F Dð Þ
� 	

J FAz
D E

≤ 0: ð57Þ

On the other hand, by Lemma 11, we obtain

J−1F RJ F Dð Þ J FAz − J−1F v, J FAz − RJF Dð Þ J FAz
D E

≥ 0 ð58Þ

for any v ∈ J FðDÞ. Since C ∩ A−1ðDÞ ≠∅, there exists
z0 ∈ C ∩ A−1ðDÞ. Putting y = JEz0 and v = J FAz0, y ∈ JEðCÞ

and v ∈ J FðDÞ hold. Therefore,

Az − Az0, IF∗ − RJF Dð Þ
� 	

J FAz
D E

≤ 0,

J−1F RJ F Dð Þ J FAz − Az0, J FAz − RJ F Dð Þ J FAz
D E

≥ 0,
ð59Þ

and hence,

Az − J−1F RJ F Dð Þ J FAz, J FAz − RJF Dð Þ J FAz
D E

≤ 0: ð60Þ

By Lemma 2, we obtain RJ FðDÞ J FAz = J FAz, and hence,

J FAz ∈ J FðDÞ; that is, z ∈ A−1ðDÞ.

4. Strong Convergence Theorems to Solutions

In this section, we consider strong convergence theorems to
solutions of the split feasibility problem.

Lemma 19. Let E be a uniformly convex and smooth Banach
space and let u, v ∈ E. Put

g ρð Þ =
g2,max ∥u∥,∥v∥f g

∥u−v∥
1ð Þ if u = v and ρ ∈ 0, max ∥u∥,∥v∥f g

∥u − v∥


 �
,

g2,ρ 1ð Þ if u = v or ρ ∈
max ∥u∥,∥v∥f g

∥u − v∥
,∞

� �
8>>><
>>>:

ð61Þ

for any ρ ∈ ð0,∞Þ, where g2,ρ as in Lemma 13. Then,

u − v, JEu − JEvh i ≥ g ρð Þ∥u − v∥2 ð62Þ

holds for any ρ ∈ ð0,∞Þ.

Proof. If u = v, then for arbitrary gðρÞ, we obtain

u − v, JEu − JEvh i = 0 = g ρð Þ∥u − v∥2: ð63Þ

In particular, the above equation holds for gðρÞ = g2,ρð1Þ.
If u ≠ v, then, since ð1/ð∥u − v∥Þu, ð1/∥u − v∥Þv ∈ BρðEÞ for
any ρ ∈ ½max f∥u∥,∥v∥g/∥u − v∥,∞Þ, we obtain

1
∥u − v∥

u −
1

∥u − v∥
v, 1

∥u − v∥
JEu −

1
∥u − v∥

JEv
 �

  ≥
g2,max ∥u∥,∥v∥f g/∥u−v∥

1
∥u − v∥

u −
1

∥u − v∥
v

����
����


 �
if ρ ∈ 0, max ∥u∥,∥v∥f g

∥u − v∥


 �
,

g2,ρ
1

∥u − v∥
u −

1
∥u − v∥

v
����

����

 �

if ρ ∈ max ∥u∥,∥v∥f g
∥u − v∥

,∞
� �

8>>><
>>>:

                      = g ρð Þ:
ð64Þ
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Therefore, we obtain

u − v, JEu − JEvh i ≥ g ρð Þ∥u − v∥2: ð65Þ

Lemma 20. Let E be a uniformly smooth Banach space and let
u, v ∈ E. Put

g∗ r, ρð Þ =
g∗2, ∥u∥ð Þ/ ∥v∥ð Þð +r rð Þ if v ≠ 0 and ρ ∈ 0, ∥u∥

∥v∥
+ r


 �
,

g∗2,ρ rð Þ if v = 0 or ρ ∈
∥u∥
∥v∥

+ r,∞
� �

8>>><
>>>:

ð66Þ

for any r ∈ ð0,∞Þ and for any ρ ∈ ð0,∞Þ, where g∗
2,ρ as in

Lemma 14. Then,

v, JE u − rvð Þ − JEuh i ≥ −
g∗ r, ρð Þ

r
vk k2 ð67Þ

holds for any r ∈ ð0,∞Þ and for any ρ ∈ ð0,∞Þ.

Proof. If v = 0, then for arbitrary g∗ðr, ρÞ, we obtain

v, JE u − rvð Þ − JEuh i = 0 = −
g∗ r, ρð Þ

r
vk k2: ð68Þ

In particular, the above equation holds for g∗ðr, ρÞ =
g∗
2,ρðrÞ. If v ≠ 0, then, since ð1/kvkÞðu − rvÞ, ð1/kvkÞu ∈

Bð∥u∥/∥v∥Þ+rðEÞ, we obtain

Therefore, we obtain

v, JE u − rvð Þ − JEuh i ≥ −
g∗ r, ρð Þ

r
vk k2: ð70Þ

We consider the following condition for a uniformly con-
vex and smooth Banach space:

(∗1) infρ∈ð0,∞Þg2,ρð1Þ > 0.
We consider the following condition for a uniformly

smooth Banach space:
(∗2) There exist r0 ∈ ð0,∞Þ and α ∈ ð1,∞Þ such that

supr∈ð0,r0Þ, ρ∈ð0,∞Þðg∗2,ρðrÞ/rαÞ <∞.

Example 1.We consider each of examples satisfying the con-
ditions (∗1) and (∗2), respectively.

Let E be a Banach space. The modulus of convexity δE of
E is defined by

δE εð Þ = inf 1 − 1
2 x + yk k

���� xk k = yk k = 1, x − yk k = ε

� �
ð71Þ

for any ε ∈ ½0, 2�. Let p ∈ ð1,∞Þ. E is said to be p-uniformly
convex if there exists a constant c ∈ ð0,∞Þ such that δEðεÞ
≥ cεp for any ε ∈ ½0, 2�. Furthermore, we know that E is uni-

formly convex if and only if δEðεÞ > 0 for any ε ∈ ð0, 2�. Let
Jp be the generalized duality mapping on a Banach space E.
By [17, Corollary 1], E is p-uniformly convex if and only if
there exists a constant c ∈ ð0,∞Þ such that

x − y, x∗ − y∗h i ≥ c x − yk kp ð72Þ

for any x, y ∈ E, for any x∗ ∈ Jpx, and for any y∗ ∈ Jpy. There-
fore, if E is 2-uniformly convex and smooth, then we can put
g2,ρðrÞ = cr2 for any ρ ∈ ð0,∞Þ. We obtain

inf
ρ∈ 0,∞ð Þ

g2,ρ 1ð Þ = c > 0: ð73Þ

The modulus of smoothness ρE of E is defined by

ρE tð Þ = sup 1
2 x + yk k + x − yk kð Þ − 1

���� xk k = 1, yk k = t
� �

ð74Þ

for anyt ∈ ð0,∞Þ. Let q ∈ ð1,∞Þ. E is said to be q-uniformly
smooth if there exists a constant c ∈ ð0,∞Þ such that ρEðtÞ
≤ ctq for any t ∈ ð0,∞Þ. Furthermore, we know that E is
uniformly smooth if and only if limt↓0ðρEðtÞ/tÞ = 0. Let

−
r
vk k v,

1
vk k JE u − rvð Þ − 1

vk k JEu
 �

  ≤

g∗
2, ∥u∥/∥v∥ð Þ+r −

r
vk k v

����
����


 �
if ρ ∈ 0, uk k

vk k + r

 �

,

g∗
2,ρ −

r
vk k v

����
����


 �
if ρ ∈ uk k

vk k + r,∞
� �

8>>>><
>>>>:

 

= g∗ r, ρð Þ:

ð69Þ
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Jq be the generalized duality mapping on a smooth
Banach space E.

By [17, Corollary 1 ;′], E is q-uniformly smooth if and
only if there exists a constant c ∈ ð0,∞Þ such that

x − y, Jqx − Jqy
� �

≤ c x − yk kq ð75Þ
for any x, y ∈ E. Therefore, if E is 2-uniformly smooth, then
we can put g∗

2,ρðrÞ = cr2 for any ρ ∈ ð0,∞Þ. Let r0 ∈ ð0,∞Þ
and let α ∈ ð1, 2�. Then, we obtain

sup
r∈ 0,r0ð Þ, ρ∈ 0,∞ð Þ

g∗2,ρ rð Þ
rα

= cr2−α0 <∞: ð76Þ

Lemma 21. Let E be a uniformly convex and smooth Banach
space, let F be a uniformly smooth Banach space, and let M
∈ ð0,∞Þ. Suppose that E satisfies the condition (∗1) and F
satisfies the condition (∗2). Then, there exists rM ∈ ð0,∞Þ
such that gðρÞr −Mg∗ðr, ρÞ > 0 for any r ∈ ð0, rMÞ and for
any ρ ∈ ð0,∞Þ, where gðρÞ as in Lemma 19 and g∗ðr, ρÞ as
in Lemma 20.

Proof. We obtain

g ρð Þr −Mg∗ r, ρð Þ

≥ inf
ρ∈ 0,∞ð Þ

g2,ρ 1ð Þ

 �

r −M sup
r∈ 0,r0ð Þ, ρ∈ 0,∞ð Þ

g∗
2,ρ rð Þ
rα

 !
rα

= r inf
ρ∈ 0,∞ð Þ

g2,ρ 1ð Þ −M sup
r∈ 0,r0ð Þ, ρ∈ 0,∞ð Þ

g∗2,ρ rð Þ
rα

 !
rα−1

 !

ð77Þ

for any r ∈ ð0, r0Þ. Put

rM =min
inf

ρ∈ 0,∞ð Þ
g2,ρ 1ð Þ

M sup
r∈ 0,r0ð Þ, ρ∈ 0,∞ð Þ

g∗2,ρ rð Þ/rα� �
0
B@

1
CA

1/ α−1ð Þ

, r0

8><
>:

9>=
>;:

ð78Þ

Then, we obtain gðρÞr −Mg∗ðr, ρÞ > 0 for any r ∈ ð0, rMÞ
and for any ρ ∈ ð0,∞Þ.

Theorem 22. Let E be a uniformly convex and smooth Banach
space; let F be a strictly convex, reflexive, and uniformly
smooth Banach space; let JE and J F be duality mappings on
E and F, respectively; let C and D be nonempty, closed, and
convex subsets of E and F, respectively; let A be a bounded
and linear operator from E into F with A ≠ 0; let A∗ be the
adjoint operator of A; let r ∈ ð0,∞Þ. Suppose that E∗ satisfies
the condition (∗2), F∗ satisfies the condition (∗1) and C ∩

A−1ðDÞ ≠∅. Let x1 ∈ E and let fxng be a sequence generated
by

zn = J−1E JE − rA∗ J F − J FΠDð ÞAð Þxn,
Cn = z ∈ C ∣ zn − z, JExn − JEznh i ≥ 0f g,
Dn = z ∈Dn−1 ∣ xn − z, JEx1 − JExnh i ≥ 0f g,
xn+1=ΠCn∩Dn

x1

8>>>>><
>>>>>:

ð79Þ

for any n ∈ℕ, where D0 = C. Then, there exists r∥A∥2 ∈ ð0,∞Þ
such that fxng is strongly convergent to a point z0 ∈ C ∩ A−1

ðDÞ for any r ∈ ð0, r∥A∥2Þ, where z0 =ΠC∩A−1ðDÞx1.

Proof. For the sake of the proof, we confirm the following
facts. Since E is uniformly convex, by (T8) E is reflexive. Since
E is uniformly convex and smooth, by (T10) E∗ is uniformly
smooth. Since F is reflexive and uniformly smooth, by (T10)
F∗ is uniformly convex. Since F is strictly convex and reflex-
ive, by (T7) F∗ is smooth.

It is obvious that Cn ∩Dn is closed and convex for any n
∈ℕ. We show that C ∩ A−1ðDÞ ⊂ Cn for any n ∈ℕ. Let z ∈
C ∩ A−1ðDÞ. If Axn = 0 or Axn ∈D, then we obtain zn = xn,
and hence,

zn − z, JExn − JEznh i = 0 ; ð80Þ

that is, z ∈ Cn. If Axn ≠ 0 and Axn ∉D, then

zn − z, JExn − JEznh i
= r J−1E JExn − rA∗ J F − J FΠDð ÞAxnð Þ − xn,

��
A∗ J F − J FΠDð ÞAxni

+ xn − z, A∗ J F − J FΠDð ÞAxnh iÞ
= r J−1E JExn − rA∗ J F − J FΠDð ÞAxnð Þ − xn,

��
A∗ J F − J FΠDð ÞAxni

+ Axn −ΠDAxn, J F − J FΠDð ÞAxnh i
+ ΠDAxn − Az, J F − J FΠDð ÞAxnh iÞ

= r J−1E JExn − rA∗ J F − J FΠDð ÞAxnð Þ − J−1E JExn,
��
A∗ J F − J FΠDð ÞAxni

+ J−1F J FAxn − J−1F J FΠDAxn, J FAxn − J FΠDAxn
� �

+ ΠDAxn − Az, J FAxn − J FΠDAxnh iÞ:
ð81Þ

By Lemma 21, there exists r∥A∥2 ∈ ð0,∞Þ such that gðρÞr
− ∥A∥2g∗ðr, ρÞ > 0 for any r ∈ ð0, r∥A∥2Þ and for any ρ ∈ ð0,
∞Þ. Put

ρn ∈ max ∥xn∥
∥A∗ J F − J FΠDð ÞAxn∥

+ r, ∥Axn∥
∥J FAxn − J FΠDAxn∥

,
��

∥ΠDAxn∥
∥J FAxn − J FΠDAxn∥

�
,∞
�
: ð82Þ
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Since E∗ is uniformly smooth, by Lemma 20, we obtain

J−1E JExn − rA∗ J F − J FΠDð ÞAxnð Þ − J−1E JExn, A∗ J F − J FΠDð ÞAxn
� �

≥ −
g∗ r, ρnð Þ

r
∥A∗ J F − J FΠDð ÞAxn∥2 

≥ −
∥A∥2g∗ r, ρnð Þ

r
∥ J F − J FΠDð ÞAxn∥2:

ð83Þ

Since F∗ is uniformly convex and smooth, by Lemma 19,
we obtain

J−1F J FAxn − J−1F J FΠDAxn, J FAxn − J FΠDAxn
� �

≥ g ρnð Þ J FAxn − J FΠDAxnk k2:
ð84Þ

By Lemma 6, we obtain

ΠDAxn − Az, J FAxn − J FΠDAxnh i ≥ 0: ð85Þ

Therefore, we obtain

zn − z, JExn − JEznh i ≥ g ρnð Þr − Ak k2g∗ r, ρnð Þ� �
� J F − J FΠDð ÞAxnk k2 ≥ 0 ;

ð86Þ

that is, z ∈ Cn. We show that C ∩ A−1ðDÞ ⊂Dn for any n ∈ℕ.
Since

D1 = z ∈ C ∣ x1 − z, JEx1 − JEx1h i ≥ 0f g = C, ð87Þ

it is obvious that C ∩ A−1ðDÞ ⊂D1. Suppose that there exists
k ∈ℕ such that C ∩ A−1ðDÞ ⊂Dk. Then, C ∩ A−1ðDÞ ⊂ Ck ∩
Dk. Since xk+1 =ΠCk∩Dk

x1, by Lemma 6, we obtain

xk+1 − z, JEx1 − JExk+1h i ≥ 0 ð88Þ

for any z ∈ Ck ∩Dk, and hence, the above inequality holds for
any z ∈ C ∩ A−1ðDÞ; that is, we obtain C ∩ A−1ðDÞ ⊂Dk+1. We
obtain C ∩ A−1ðDÞ ⊂Dn for any n ∈ℕ. Therefore, fxng is
well-defined.

It is obvious that C ∩ A−1ðDÞ is nonempty, closed, and
convex. Therefore, ΠC∩A−1ðDÞ is well-defined.

By the definition ofDn, we obtain xn =ΠDn
x1. By Lemma 6,

VE z, xnð Þ +VE xn, x1ð Þ ≤VE z, x1ð Þ ð89Þ

for any z ∈Dn. Let m ∈ℕ with m ≥ n. Since xm ∈Dm ⊂Dn, we
obtain

VE xm, xnð Þ + VE xn, x1ð Þ ≤ VE xm, x1ð Þ, ð90Þ

and hence,

VE xm, xnð Þ ≤VE xm, x1ð Þ −VE xn, x1ð Þ: ð91Þ

Since xn =ΠDn
x1, we obtain

VE xn, x1ð Þ ≤ VE z, x1ð Þ ð92Þ

for any z ∈Dn. Since xn+1 =ΠCn∩Dn
x1, we obtain xn+1 ∈ Cn ∩

Dn. Since xn+1 ∈Dn, we obtain

VE xn, x1ð Þ ≤ VE xn+1, x1ð Þ, ð93Þ

and hence, fVEðxn, x1Þg is bounded and nondecreasing; that
is, there exists the limit of fVEðxn, x1Þg. From (91), we obtain

lim
m,n→∞

VE xm, xnð Þ = 0: ð94Þ

By Lemma 15, fxng is a Cauchy sequence. Since E is
complete, there exists z0 ∈ E such that limn→∞xn = z0. Since
xn+1 =ΠCn∩Dn

x1, by Lemma 6, we obtain

xn+1 − z, JEx1 − JExn+1h i ≥ 0 ð95Þ

for any z ∈ Cn ∩Dn. Since C ∩ A−1ðDÞ ⊂ Cn ∩Dn, the above
inequality holds for any z ∈ C ∩ A−1ðDÞ. Taking n⟶∞,
since by (T9) JE is norm-to-norm continuous, we obtain

z0 − z, JEx1 − JEz0h i ≥ 0 ð96Þ

for any z ∈ C ∩ A−1ðDÞ. By Lemma 6, we obtain z0 =
ΠC∩A−1ðDÞx1.

Theorem 23. Let E be a uniformly convex and smooth Banach
space; let F be a strictly convex, reflexive, and uniformly
smooth Banach space; let IF∗ be the identity mapping on F∗;
let JE and J F be duality mappings on E and F, respectively;
let C and D be nonempty, closed, and convex subsets of E
and F such that J FðDÞ is closed, respectively; let A be a
bounded and linear operator from E into F with A ≠ 0; let
A∗ be the adjoint operator of A; let r ∈ ð0,∞Þ. Suppose that
E∗ satisfies the condition (∗2), F∗ satisfies the condition (∗1)
and C ∩ A−1ðDÞ ≠∅. Let x1 ∈ E and let fxng be a sequence
generated by
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zn = J−1E JE − rA∗ IF∗ − RJF Dð Þ
� 	

J FA
� 	

xn,

Cn = z ∈ C ∣ zn − z, JExn − JEznh i ≥ 0f g,
Dn = z ∈Dn−1 ∣ xn − z, JEx1 − JExnh i ≥ 0f g,
xn+1= J

−1
E RJE Cn∩Dnð Þ JEx1

8>>>>>><
>>>>>>:

ð97Þ

for any n ∈ℕ, where D0 = C. Then, there exists r∥A∥2 ∈ ð0,∞Þ
such that fxng is strongly convergent to a point z0 ∈ C ∩ A−1

ðDÞ for any r ∈ ð0, r∥A∥2Þ, where z0 = J−1E RJEðC∩A−1ðDÞÞ JEx1.

Proof. For the sake of the proof, we confirm the following
facts. Since E is uniformly convex, by (T8), E is reflexive.
Since E is uniformly convex and smooth, by (T10), E∗ is uni-
formly smooth. Since F is reflexive and uniformly smooth, by
(T10), F∗ is uniformly convex. Since F is strictly convex and
reflexive, by (T7), F∗ is smooth. Since E∗ and F∗ have Fréchet
differentiable norms, by (T9), J−1E and J−1F are norm-to-norm
continuous. Therefore, JEðCÞ and JEðCn ∩DnÞ are closed.

It is obvious that Cn ∩Dn is closed and convex for any
n ∈ℕ. We show that C ∩ A−1ðDÞ ⊂ Cn for any n ∈ℕ. Let z
∈ C ∩ A−1ðDÞ. If Axn = 0 or Axn ∈D, then we obtain zn = xn,
and hence,

zn − z, JExn − JEznh i = 0 ; ð98Þ

that is, z ∈ Cn. If Axn ≠ 0 and Axn ∉D, then

zn − z, JExn − JEznh i
= r J−1E JExn − rA∗ IF∗ − RJ F Dð Þ

� 	
J FAxn

� 	D�
− xn, A∗ IF∗ − RJ F Dð Þ

� 	
J FAxn

E
+ xn − z, A∗ I F∗ − RJ F Dð Þ

� 	
J FAxn

D E	
= r J−1E JExn − rA∗ IF∗ − RJ F Dð Þ

� 	
J FAxn

� 	D�
− xn, A∗ IF∗ − RJ F Dð Þ

� 	
J FAxn

E
+ Axn − J−1F RJ F Dð Þ J FAxn, IF∗ − RJ F Dð Þ

� 	
J FAxn

D E
+ J−1F RJ F Dð Þ J FAxn − Az, I F∗ − RJ F Dð Þ

� 	
J FAxn

D E	
= r J−1E JExn − rA∗ IF∗ − RJ F Dð Þ

� 	
J FAxn

� 	D�
− J−1E JExn, A∗ I F∗ − RJ F Dð Þ

� 	
J FAxn

E
+ J−1F J FAxn − J−1F RJ F Dð Þ J FAxn, J FAxn
D

− RJ F Dð Þ, J FAxn
E
+ J−1F RJ F Dð Þ J FAxn
D

− J−1F J FAz, J FAxn − RJ F Dð Þ, J FAxn
E	

:

ð99Þ

By Lemma 21, there exists r∥A∥2 ∈ ð0,∞Þ such that gðρÞr
− ∥A∥2g∗ðr, ρÞ > 0 for any r ∈ ð0, r∥A∥2Þ and for any ρ ∈ ð0,
∞Þ. Put

Since E∗ is uniformly smooth, by Lemma 20, we obtain

J−1E JExn − rA∗ I F∗ − RJ F Dð Þ
� 	

J FAxn
� 	

− J−1E JExn, A∗ IF∗ − RJ F Dð Þ
� 	

J FAxn
D E

≥ −
g∗ r, ρnð Þ

r
A∗ IF∗ − RJ F Dð Þ
� 	

J FAxn
��� ���2

≥ −
∥A∥2g∗ r, ρnð Þ

r
IF∗ − RJ F Dð Þ
� 	

J FAxn
��� ���2:

ð101Þ

Since F∗ is uniformly convex and smooth, by Lemma 19,
we obtain

J−1F J FAxn − J−1F RJ F Dð Þ J FAxn, J FAxn − RJF Dð Þ J FAxn
D E

≥ g ρnð Þ J FAxn − RJF Dð Þ J FAxn
��� ���2:

ð102Þ

By Lemma 11, we obtain

J−1F RJ F Dð Þ J FAxn − J−1F J FAz, J FAxn − RJ F Dð Þ J FAxn
D E

≥ 0:

ð103Þ

Therefore, we obtain

zn − z, JExn − JEznh i ≥ g ρnð Þr − Ak k2g∗ r, ρnð Þ� �
� IF∗ − RJF Dð Þ
� 	

J FAxn
��� ���2 ≥ 0 ;

ð104Þ

that is, z ∈ Cn. We show that C ∩ A−1ðDÞ ⊂Dn for any n ∈ℕ.
Since

D1 = z ∈ C ∣ x1 − z, JEx1 − JEx1h i ≥ 0f g = C, ð105Þ

it is obvious that C ∩ A−1ðDÞ ⊂D1. Suppose that there exists
k ∈ℕ such that C ∩ A−1ðDÞ ⊂Dk. Then, C ∩ A−1ðDÞ ⊂ Ck ∩

ρn ∈ max xnk k
A∗ IF∗ − RJF Dð Þ
� 	

J FAxn
��� ��� + r, Axnk k

J FAxn − RJF Dð Þ J FAxn
��� ���

8<
:

2
64 , 

∥RJF Dð Þ J FAxn∥
∥J FAxn − RJF Dð Þ J FAxn∥

)
,∞
!
: ð100Þ
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Dk. Since xk+1 = J−1E RJEðCk∩DkÞ JEx1, by Lemma 11, we obtain

xk+1 − J−1E z, JEx1 − JExk+1
� �

≥ 0 ð106Þ

for any z ∈ JEðCk ∩DkÞ, and hence, the above inequality
holds for any z ∈ JEðC ∩ A−1ðDÞÞ; that is, we obtain C ∩ A−1

ðDÞ ⊂Dk+1. We obtain C ∩ A−1ðDÞ ⊂Dn for any n ∈ℕ.
Therefore, fxng is well-defined.

It is obvious that JEðC ∩ A−1ðDÞÞ is nonempty, closed,
and convex and C ∩ A−1ðDÞ is closed. Therefore,
RJEðC∩A−1ðDÞÞ is well-defined.

By the definition of Dn, we obtain xn = J−1E RJEðDnÞ JEx1. By
Lemma 11,

VE∗ JExn, zð Þ +VE∗ JEx1, JExnð Þ ≤VE∗ JEx1, zð Þ ð107Þ

for any z ∈ JEðDnÞ. Letm ∈ℕwithm ≥ n. Since xm ∈Dm ⊂Dn
, we obtain

VE∗ JExn, JExmð Þ +VE∗ JEx1, JExnð Þ ≤VE∗ JEx1, JExmð Þ,
ð108Þ

and hence,

VE∗ JExn, JExmð Þ ≤VE∗ JEx1, JExmð Þ − VE∗ JEx1, JExnð Þ:
ð109Þ

Since xn = J−1E RJEðDnÞ JEx1, by Lemma 9, we obtain

VE∗ JEx1, JExnð Þ ≤VE∗ JEx1, zð Þ ð110Þ

for any z ∈ JEðDnÞ. Since xn+1 = J−1E RJEðCn∩DnÞ JEx1, we obtain
xn+1 ∈ Cn ∩Dn. Since xn+1 ∈Dn, we obtain

VE∗ JEx1, JExnð Þ ≤VE∗ JEx1, JExn+1ð Þ, ð111Þ

and hence, fVE∗ðJEx1, JExnÞg is bounded and nondecreas-
ing; that is, there exists the limit of fVE∗ðJEx1, JExnÞg. From
(109), we obtain

lim
m,n→∞

VE∗ JExn, JExmð Þ = 0: ð112Þ

By Lemma 15, fJExng is a Cauchy sequence. Since by
(T9) J−1E is norm-to-norm continuous, fxng is also a Cauchy
sequence. Since E is complete, there exists z0 ∈ E such that
limn→∞xn = z0. Since xn+1 = J−1E RJEðCn∩DnÞ JEx1, by Lemma
11, we obtain

xn+1 − J−1E z, JEx1 − JExn+1
� �

≥ 0 ð113Þ

for any z ∈ JEðCn ∩DnÞ. Since C ∩ A−1ðDÞ ⊂ Cn ∩Dn, the
above inequality holds for any z ∈ JEðC ∩ A−1ðDÞÞ. Taking n
⟶∞, since by (T9) JE is norm-to-norm continuous, we
obtain

z0 − J−1E z, JEx1 − JEz0
� �

≥ 0 ð114Þ

for any z ∈ JEðC ∩ A−1ðDÞÞ. By Lemma 11, we obtain z0 =
J−1E RJEðC∩A−1ðDÞÞ JEx1.

Remark 24. In this paper, we consider only two strong con-
vergence theorems with respect to (v) in Theorem 16 and
(x) in Theorem 18. The strong convergence theorem with
respect to (ii) is shown in [11, Theorem 3.2]. Of course, we
can consider other strong convergence theorems with respect
to (iii), (iv) in Theorem 16, and (vi), (vii), (viii), and (ix) in
Theorem 18. They will be described in the next paper.
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