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In this paper, we study the split feasibility problem in Banach spaces. At first, we prove that a solution of this problem is a solution of
the equivalent equation defined by using a metric projection, a generalized projection, and sunny generalized nonexpansive
retraction, respectively. Then, using the hybrid method with these projections, we prove strong convergence theorems in

mathematical programing in order to find a solution of the split feasibility problem in Banach spaces.

1. Introduction

Bregman proposed a generalization for the cyclic metric
projection method of computing points in the intersection
of linear closed subspaces of a Hilbert space in [1], invented
by von Neumann [2]. Alber and Butnariu achieve distinction
of the study of this Bregman projection and the result of the
properties. They used this cyclic Bregman projection method
for finding the solution of the consistent convex feasibility
problem of computing a common point of the closed convex
subspaces in a reflexive Banach space [3]. Some fruitful
results have been introduced with respect to the sequential
algorithm with successive Bregman projection for computing
a solution of the convex feasibility problem [4, 5] and so on.
Ibaraki and Takahashi studied the properties of a generalized
projection which is a special case of Bregman projection and
a sunny generalized nonexpansive retraction in Banach
spaces [6].

Alsulami, Latif, and Takahashi treated with the following
convex feasibility problem [7]: Let H be a Hilbert space; let E
be a strictly convex, reflexive, and smooth Banach space; let A
be a bounded linear operator from H into E; let C and D be
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convex and closed subsets of H and E, respectively. Then,
find a point z€ CN A™ (D). In particular, such a problem is
called the split feasibility problem. Using the methods with
metric projections in mathematical programing, they showed
strong convergence theorems for finding a solution of the
split feasibility problem. In the case of finite dimensional
spaces, Byrne treated with the iterative algorithm [8]: x,,,,
=Pc(x, + rAT(P, - I)Ax,), where n € N and a linear opera-
tor A is represented as a matrix which can be selected to
impose consistency with measured data. With respect to
examples in this case, there are results by Landweber [9]
and Gordon, Bender, and Herman [10]. In [11], Takahashi
treated with this problem of a linear bounded operator A
from E into F, where E and F are uniformly convex and
smooth Banach spaces. In that paper, it is shown that ze C
NA™Y(D) is equivalent to

z2=Pc(Iz—r]5' A" (I - Pp)A)z, (1)

where P and P, are metric projections on subsets C of E and
D of F, respectively; I, and I are the identity mappings on E
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and F, respectively; ] and ] are duality mappings on E and
F, respectively; r € (0, 00). Furthermore, the following con-
vergence theorem is proved by the hybrid method with met-
ric projections: Let E and F be uniformly convex and smooth
Banach spaces; let C and D be nonempty, closed, and convex
subsets of E and F, respectively; let J; and ] be duality map-
pings on E and F, respectively; let A be a bounded linear
operator from E into F with A # 0;let A* be the adjoint oper-
ator of A; let r € (0, 00). Suppose that CN A~ (D) # &. Let
x; € E and let {x,} be a sequence generated by

Zy = (IE - r];:lA*]F(IF _PD)A)xn’
Cn = {ZE Cl <Zn _Z’]E(xn _Zn)> 20}’

)
Qn = {Z € Cl <xn _Z’]E(xl _xn)> 20}’

*p1=Pc,ng,%1

for any neN. Then, {x,} is strongly convergent to a
point z, € CNA™'(D) for any re (0, ||A|| ), where z,=
Pena-(pyX1-

In this paper, for uniformly convex and smooth Banach
spaces E and F, we study the split feasibility problem of a
bounded linear operator A from E to F. First, we give the
diversity of equivalent equations regarding equation (1) with
respect to metric projections, generalized projections, and
sunny generalized nonexpansive retractions, respectively.
Then, using the hybrid methods with these projections, we
prove the strong convergence theorems in mathematical pro-
graming in order to find a solution of the split feasibility
problem in Banach spaces.

2. Preliminaries

We know that the following hold; for instance, see [12-14].

(T1) Let E be a Banach space, let E* be the topological
dual space of E, and let J; be the duality mapping on E
defined by

Jpx={x" eEllx| = (nx) = |} ()

for any x € E. Then, E is strictly convex if and only if Ji is
injective; that is, x # y implies Jpx N Jpy = .

(T2) Let E be a Banach space, let E* be the topological
dual space of E, and let J; be the duality mapping on E.
Then, E is reflexive if and only if J is surjective; that is,
Uer J EX= E*.

(T3) Let E be a Banach space and let ], be the duality
mapping on E. Then, E is smooth if and only if ] is single-
valued.

(T4) Let E be a Banach space and let ], be the duality
mapping on E. Then, E is strictly convex if and only if

1-{xy")>0 (4)

for any x,y € E with x#y and |x||=||y||=1 and for any
v ey
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(T5) Let E be a Banach space and let E* be the topological
dual space of E. Then, E is reflexive if and only if E* is
reflexive.

(T6) Let E be a Banach space and let E* be the topological
dual space of E. If E* is strictly convex, then E is smooth.
Conversely, if E is reflexive and smooth, then E* is strictly
convex.

(T7) Let E be a Banach space and let E* be the topological
dual space of E. If E* is smooth, then E is strictly convex.
Conversely, if E is reflexive and strictly convex, then, E* is
smooth.

(T8) If E is uniformly convex, that is, for any € € (0, 2]
there exists & € (0, 1] such that ||x||=||y||=1 and ||x - y| >
€ implies ||(x + ¥)/2|| < 1 - &, then E is reflexive.

(T9) Let E be a Banach space, let E* be the topological
dual space of E, and let J; be the duality mapping on E. If
E has a Fréchet differentiable norm, then ], is norm-to-
norm continuous.

(T10) Let E be a Banach space and let E* be the topolog-
ical dual space of E. Then, E is uniformly smooth, that is, E
has a uniformly Fréchet differentiable norm, if and only if
E* is uniformly convex.

Definition 1. Let E be a smooth Banach space, let J; be the
duality mapping on E, and let V, be the mapping from E x
E into [0, 00) defined by

V(o y) = [|%]* = 205 Jey) + 2] (5)

for any x, y € E.

Since by (T3) Ji is single-valued, V is well-defined. It is
obvious that x = y implies V(x, ) = 0. Conversely, by (T4),

(T11) If E is also strictly convex, then V(x, y) = 0 implies
xX=y.

Let E be a strictly convex and smooth Banach space. By
(T1) and (T3), J is a bijective mapping from E onto J;(E).
In particular, if E is also reflexive, then by (T2), ] is a bijec-
tive mapping from E onto E*. If E is strictly convex, reflexive,
and smooth, then by (T5), (T6) and (T7) E* is also strictly
convex, reflexive, and smooth. Furthermore, since E is reflex-
ive, E** = E holds and the duality mapping on E* is J;.

We use the following lemmas in this paper. The following
is shown in [14].

Lemma 2. Let E be a Banach space and let ] be the duality
mapping on E. Then, (x —y,x* —y*) >0 for any x, y € E, for
any x* € J(x), and for any y* € Jpy. Furthermore, if E is
strictly convex and smooth, then (x —y,x* —y*)=0 if and

only if x=y.

Definition 3. Let E be a strictly convex, reflexive, and smooth
Banach space and let C be a nonempty, closed, and convex
subset of E. We know that for any x € E there exists a unique
element z € C such that [|x - z| = min ¢[[x - y||. Such a z is
denoted by P.x, and P is called the metric projection of E
onto C.
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The following holds.

Lemma 4. Let E be a strictly convex and smooth Banach space,
let C be a nonempty closed subset of E, and let ] be duality
mapping on E. Then, for any (x,z) € ExC, z=P.x if and
only if (z—y, Jp(x—2)) > 0 for any y € C.

Definition 5. Let E be a strictly convex, reflexive, and smooth
Banach space and let C be a nonempty, closed, and convex
subset of E. We know that for any x € E, there exists a unique
element z € C such that V(z, x) = min . Vg(y, x). Such a z
is denoted by IT-x, and I1 is called the generalized projec-
tion of E onto C.

The following is shown in [15].

Lemma 6. Let E be a strictly convex and smooth Banach space;
let C be a nonempty, closed, and convex subset of E; let ] be
the duality mapping on E. Then, the following hold.

(i) For any (x,z) € ExC, z=II-x if and only if (z—y,
Jgx —Jgz) = 0 for any y € C;

(i) Vy(y, I cx) + V(I ex, x) < Vig(y, x) for any x€E
and for any y € C.

Definition 7. Let C be a nonempty subset of a smooth Banach
space E. A mapping T from C into E is said to be generalized
nonexpansive [6] if the set of all fixed points of T is non-
empty and

Vp(Txy) < Vi(xy) (6)

for any x € C and for any fixed point y of T. Let C be a non-
empty subset of a Banach space E. A mapping R from E onto
C is said to be sunny if

R(Rx +t(x— Rx)) =Rx (7)

for any x € E and for any f € [0, 00). A mapping R from E
onto C is called a retraction or a projection if Rx = x for any
x€C.

The following are shown in [16].

Lemma 8. Let E be a strictly convex, reflexive, and smooth
Banach space and let C be a nonempty and closed subset of
E. Then, the following are equivalent:

(i) There exists a sunny generalized nonexpansive
retraction of E onto C

(ii) There exists a generalized nonexpansive retraction of
E onto C;

(iii) J5(C) is closed and convex.

Lemma 9. Let E be a strictly convex, reflexive, and smooth
Banach space, let C be a nonempty and closed subset of E,
and (x,z) € E x C. Suppose that there exists a sunny general-
ized nonexpansive retraction R of E onto C. Then, the follow-
ing are equivalent:

(i) z=Rex;

(ii) Vi(x,z) = minyecVE(x,y).

The following are shown in [6].

Lemma 10. Let E be a strictly convex and smooth Banach
space and let C be a nonempty and closed subset of E. Suppose
that there exists a sunny generalized nonexpansive retraction
of E onto C. Then, the sunny generalized nonexpansive retrac-
tion is uniquely determined.

Lemma 11. Let E be a strictly convex and smooth Banach
space, let C be a nonempty and closed subset of E, and let J,
be the duality mapping on E. Suppose that there exists a sunny
generalized nonexpansive retraction R, of E onto C. Then, the
following hold.

(i) For any (x,z) € Ex C, z=Rcx if and only if (x -z,
Jpz—Jgy) 20 forany y € C.

(ii) Vg(Rex,y) + Vy(x,Rex) < Vig(x,y) for any x€E
and for any y € C.

Definition 12. Let p € (1,00). Define a mapping J, from E
into E* by

Jpx={x" €E"| (x,x") = ||x|[P and " = ||} (8)

for any x € E. Then, ], is called the generalized duality map-
ping on E. In particular, J, = J.

The following are shown in [17].

Lemma 13. Let E be a Banach space. Then, the following are
equivalent:
(i) E is uniformly convex;

(ii) For any p € (1,00) and for any p € (0,00), there
exists a continuous, strictly increasing, and convex
function g, , from [0,00) into [0,00) such that
9y,,(0) =0 and

X+ 1P = [[%]” + p{y x") + g, (V1) (9)
for any x,yEBP(E):def{Z€E|||Z||Sp} and for
any x* € J,x;

(iii) For any p € (1,00) and for any p € (0,00), there
exists a continuous, strictly increasing, and convex



function g, , from [0,00) into [0,00) such that
9,,(0) =0 and

(x=yx"=y") 2 g,,([x =) (10)

for any x,y € B,(E), for any x* € ] x, and for any
y*e Jpy-

Lemma 14. Let E be a smooth Banach space. Then, the follow-
ing are equivalent:

(i) E is uniformly smooth;

(ii) For any qe€ (1,00) and for any p € (0,00), there
exists a continuous, strictly increasing, and convex
function g , from [0,00) into [0,00) such that

9,,(0)=0 and
2+ < x|+ aly Jgx) + gg, (Il (11)

for any x,y € BP(E) ;

(iii) For any q € (1,00) and for any p € (0,00), there
exists a continuous, strictly increasing, and convex
function g , from [0,00) into [0,00) such that

g;,p(O) =0 and
=y Jpx=Ty)<gp,(lx=y)  (12)

for any x,y € B,(E).

The following is shown in [18].

Lemma 15. Let E be a uniformly convex and smooth Banach
space and let p € (0,00). Then, there exists a continuous,
strictly increasing, and convex function g, from [0, 00) into

[0, 00) such that g,(0) =0 and
gp([[x=y[l) < Ve(xy) (13)

for any x,y € B,(E).

3. Equivalent Conditions to the
Existence of Solutions

In this section, we consider equivalent conditions to the
existence of solutions of the split feasibility problem.

Theorem 16. Let E and F be strictly convex, reflexive, and
smooth Banach spaces; let I, and 1, be the identity mappings
on E and F, respectively; let ], and ] . be duality mappings on
E and F, respectively; let C and D be nonempty, closed, and
convex subsets of E and F, respectively; let A be a bounded lin-
ear operator from E into F; let A* be the adjoint operator of A;

Abstract and Applied Analysis

let r € (0, 00). Suppose that C N A~ (D) # @. Consider the fol-
lowing condition:

(i) ze CNnATY(D).

The following are equivalent to (i):

(i) z=Pc(Ip—rJ5'A*Jp(Ip - Pp)A)z;
(iii) z=Pc(Iy—rJ5'A*(Jp — JpIIp)A
(iv) z=IHJ5 (Jg - rA*Jp(Ip - Pp)A

V) z=IcJ;' (Jp—rA"(Jp = JplIp)A)z.

)z
)

Z;

Proof. The equivalence of (i) and (ii) is shown in [11, Lemma
3.1]. We show the rest.

Suppose that (i) holds. Since Az € D, PpAz =I1,Az = Az
holds. Therefore,

Je(Ip—Pp)Az=(Jp - Jpllp)Az =0, (14)
and hence,

the right side of (iii) = Pz,

15
the right sides of (iv) and (v) = IT-z. 15)
Since z € C, we obtain
the right sides of (iii), (iv), and (v) = z. (16)

Conversely, suppose that (iii), (iv), or (v) holds. Since
these equations have the form of z=Pox or z=1IIox, z€ C
holds. We show z € A} (D).

In the case of (iii): By Lemma 4, we obtain

0<(z=yJp((Iz - ] A (Jp — Jellp)A)z - 2))
=—r(z-y, A" (Jp — JpIlp)Az) (17)
=-r{Az = Ay, (Jp = JplIp)Az)

for any y € C. Therefore,
(Az - Ay, (Jp—JpIIp)AzZ) <0. (18)

On the other hand, by Lemma 6, we obtain

(ITpAz —v, JpAz — ] II,Az) 20 (19)

for any v € D. Since CN A™! (D) # &, there exists z, € CN A™
(D). Putting y = z;, and v = Az, y € Cand v € D hold. Therefore,
(Az—Azy, (Jp — JpIIp)Az) <0

’ (20)
(ITpAz - Az, J pAz — ] (11 Az) > 0,
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and hence,
(Az - TIpAz, JpAz - JpITHAzZ) <0. (21)
By Lemma 2, we obtain IT;,Az = Az, and hence, Az € D; that

is,ze AY(D).
In the case of (iv): By Lemma 6, we obtain

0<(z=y,(Jp—rA"Jp(Ip = Pp)A)z — Jz)

=—r{z—y, A" (I — Pp)Az) (22)
=-1(Az = Ay, Jp(Iy - Pp)Az),
for any y € C. Therefore,
(Az - Ay, J p(Iz - Pp)Az) <O0. (23)

On the other hand, by Lemma 4, we obtain
(PpAz —v, Jp(Az — PpAz)) 20 (24)

for any v € D. Since CN A™! (D) # &, there exists z, € CN A™
(D). Putting y = z, and v = Az, y € Cand v € Dhold. Therefore,

(Az - Azy, Jp(Ir — Pp)Az) <0,

25
(PpAz — Az, Jp(Az — PpAz)) 20, 25)

and hence,

(Az - PpAz, ] p(Az - PpAz)) = ||Az — PpAz||* <0.  (26)
Therefore, we obtain P,,Az = Az, and hence, Az € D; that is,
ze A7'(D).
In the case of (v): By Lemma 6, we obtain

<(z=yJpJg U = rA"(Jp = JpIIp)A)z ~ ] 2)

—r(z =y, A" (Jp —Jpllp)Az) (27)
—r{Az = Ay, (Jp ~ Jpllp)Az),
for any y € C. Therefore,
(Az— Ay, (J — ] pI1p,)Az) <0. (28)

On the other hand, by Lemma 6, we obtain
(ITpAz — v, J pAz — JpI1pAz) > 0 (29)

for any v € D. Since CNA™(D) # &, there exists z, € CN
A7Y(D). Putting y =z, and v=Az,, y € C and v €D hold.
Therefore,

(Az = Azy, (Jp - Jpllp)Az) <

0,
(30)
(MTpAz - Az, ] pAz - ] pITpAZ) > 0,

and hence,

(Az - IIpAz, JpAz - JpITHAZ) <0. (31)

By Lemma 2, we obtain I1,Az = Az, and hence, Az € D;
that is, z € A™}(D).

Remark 17. Since in [11, Lemma 3.1] only the metric projec-
tion was used, only Lemma 4 was used for proving the equiv-
alence between (i) and (ii). In Theorem 16, both of the metric
projection and the generalize projection are used. Therefore,
we have to use both of Lemmas 4 and 6 for proving the equiv-
alence between (i) and (iii), and (iv) and (iv).

Theorem 18. Let E and F be strictly convex, reflexive, and
smooth Banach spaces; let F* be the dual space of F, let I,
and I« be the identity mappings on E and F*, respectively;
let Jp and ] be duality mappings on E and F, respectively;
let C and D be nonempty, closed, and convex subsets of E
and F, respectively; let A be a bounded linear operator from
E into F; let A* be the adjoint operator of A; let r € (0,00).
Suppose that CNA™'(D)+@. Consider the following
condition:

(i) ze CNATY(D).

If J (D) is closed, then the following are equivalent to (i):
(vi) z=Po(Iy —rJ' A* (I = Ry p

(vil) z= HC]E (Jg—rA* (Ips

) pA)z;
~ Ry, p)JFA)z.
If Jg(C) is closed, then the following are equivalent to (i):

(viii) z=J5'Ry (o)(Jp — rA* T (I

(]E —rA*(Jp -

- Pp)A)z;
(ix) z=J3" Ry (c JeIIp)A)z.

If J;(C) and J z(D) are closed, then the following is equiv-
alent to (i):

(xX) z2=J5' Ry (o) Jp = rA* (I = Ry (1)) ] pA)z.

Proof. Suppose that (i) holds. Since Az € D,
PpAz=IIpAz=Az and R; ) JpAz =] Az (32)

hold. Therefore,
Jr(lp = Pp)Az=(Jp = Jpllp)Az = (IF* - RJF(D))]FAZ =0,
(33)

and hence,

the right side of (vi) = Pz,
the right side of (vii) =
the right sides of (viii), (ix), and (x) =

Iz,
J5' Ry, 0] 67



Since z € C, we obtain

the right sides of (vi), (vii), (viii), (ix),and (x) =z.  (35)

Conversely, suppose that (vi), (vii), (viii), (ix), or (x)
holds. Since these equations have the form of z=P.x, z=

Iex, or z=J5'R; ()%, z € C holds. We show z € ATY(D).
In the case of (vi): By Lemma 4, we obtain

0< <z — T ( (IE — A (IF* - R]F(D)>]FA)Z - z) >
- —r<z —y, A (IF* - R]F(D))]FAZ>

_ —r<Az ~ Ay, (IF* - R,F(D)>]FAZ>,

for any y € C. Therefore,
<Az — Ay, (IF* - R,F@)) ]FAz> <0. (37)
On the other hand, by Lemma 11, we obtain
<];1R,F(D)]FAz—];lv, ]FAz—R,F(D)]FAz> >0 (38)
for any veJp(D). Since CNA™'(D)# @, there exists

zy € CNA™Y(D). Putting y=z, and v=J Az, y€C and
v € Jp(D) hold. Therefore,

<Az - Az,, (IF* - R,F(D)) ]FAz> <0,

(39)
< Ji'R;, p)] Az ~ Az, JpAz ~ R, (1) ]FAZ> >0,

and hence,
<Az ~Ji'Ry, ) Az T pAZ - R]F(D)]FAZ> <0.  (40)

By Lemma 2, we obtain R; ) JpAz =] pAz, and hence,

JpAz € ] (D); that is, z € A™H(D).
In the case of (vii): By Lemma 6, we obtain

0 (z=y.JuJ5* (Jo = A" (In- = Ry )T )2 = J12)
- —r<z — ), A (IF* - R,F(D)) ]FAz>

- J<Az - Ay, (IF* N R’F(D))]FAZ>’
(41)

for any y € C. Therefore,

<Az—Ay, (IF* —R,F<D))]FAZ> <0. (42)
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On the other hand, by Lemma 11, we obtain
<];1R]F(D)]FAZ T TpAz— R,F(D)]FAZ> >0 (43)

for any veJp(D). Since CNA™'(D)#d, there exists
zy € CNA™Y(D). Putting y=z, and v=JpAz, y€C and
v € Jp(D) hold. Therefore,

<Az ~ Az,, (IF* ~R ,F(m) ]FAz> <0,
(44)
< Ji'R;, )] Az ~ Az, J Az~ R, 1 ]FAz> >0,

and hence,
<Az ~Ji'R, ) pAZ, ] pAZ - R]F(D>]FAZ> <0.  (45)

By Lemma 2, we obtain R]F(D) JpAz = JzAz, and hence,

JpAz € J(D); that is, z € A™1(D).
In the case of (viii): By Lemma 11, we obtain

0<(J ez =T5'y, Jg = rA* T p(Ig — Pp)A)z — ] p2)
=—r(z—J5'y, A" Jp(Ig - Pp)Az) (46)
=—r(Az-AJ;'y, Jp(Iz - Pp)Az),

for any y € J5(C). Therefore,
(Az-AJg'y, Jp(Iy - Pp)Az) <O0. (47)
On the other hand, by Lemma 4, we obtain
(PpAz - v, ] o(Az — PpAz)) >0 (48)
for any v € D. Since CN A~ (D) # @, there exists z, € CN
A7Y(D). Putting y=Jpz, and v=Az,, y€J;(C) and veD

hold. Therefore,

(Az - Az, J (I — Pp)Az) <0,

49
(PpAz — Az, Jp(Az — PpAz)) 20, )

and hence,
(Az - PpAz, Jp(Az - PpAz)) = ||Az — PpAz||* <0.  (50)

Therefore, we obtain P,Az = Az, and hence, Az € D; that
is,ze A7(D).
In the case of (ix): By Lemma 11, we obtain

0<(J5' gz =T g~ rA"(Jp = JpIlp)A)z = J2)

:_”<Z_]1_-:1)’>A*(]F_]FHD)AZ> (51)
=-r(Az- AJg'y, (Jp - JpIp)Az),
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for any y € J;(C). Therefore,

(Az-AJg'y, (Jp - ] eI1p)Az) <O0. (52)

On the other hand, by Lemma 6, we obtain
(ITpAz —v, JpAz — ] II,Az) 2 0 (53)
for any veD. Since CNA'(D)#+J, there exists

zy € CNA™Y(D). Putting y=Jpz, and v=Az, ye€J(C)
and v € D hold. Therefore,

(Az = Az, (Jp — Jpllp)Az) <

0,
(54)
(ITpAz - Az, J pAz = ] II,Az) >0,

and hence,
(Az —IIpAz, J Az — JpIIpAz) <O0. (55)
By Lemma 2, we obtain P,Az = Az, and hence, Az € D;

that is, z € A™(D).
In the case of (x): By Lemma 11, we obtain

R]F(D)) ]FA)Z - ]Ez>
(D)>]FAZ> (56)

) #AZ),

0< <];;1]Ez—]gly, <]E - rA” (IF* -

- —r<z ~ T3y, A <1F* - R,

= —r<Az - ATy, (IF* - Ry

for any y € J;(C). Therefore,
<Az — AT, (IF - D>) ]FAZ> <0. (57)
On the other hand, by Lemma 11, we obtain

<];1RIF(D)IFAZ —J5v, JpAz - R,F(D)]FAz> >0  (58)

for any veJp(D). Since CNA'(D)#, there exists
zy € CNAY(D). Putting y =]z, and v=]zAz,, y € Jz(C)

< 1 1 1 ;
u-— v, u-—-
flu—vl lu=vll "~ u—v]"F IIu

g2p

‘Q

G2 max {lul Ivl}/u-vi <

Ilu " m H)

and v € J (D) hold. Therefore,

<Az - Az,, (IF* - R,F(D)) ]FAZ> <0
(59)
<]}1R]F(D)]FAZ - Az, JpAz — R]F(D>]FA2> >0,
and hence,

<Az T3 Ry, )] Az J Az~ R 1) ]FAz> <0.  (60)

By Lemma 2, we obtain R;
JpAz € ] o(D); that is, z € A™(D).

)J pAz = ] pAz, and hence,

4. Strong Convergence Theorems to Solutions

In this section, we consider strong convergence theorems to
solutions of the split feasibility problem.

Lemma 19. Let E be a uniformly convex and smooth Banach
space and let u,v € E. Put

g(p) =
; max {[lul,[vI
92,(1) ifu=vorpe [Hz{tfvn}’cxo
(61)

for any p € (0, 00), where g, , as in Lemma 13. Then,

(u=v, Jgu—Jgv) > g(p)lu—v|? (62)
holds for any p € (0, 00).
Proof. If u = v, then for arbitrary g(p), we obtain

(u=v, Jpu—Jgv)y=0=g(p)llu—v|*. (63)

In particular, the above equation holds for g(p) = gZ,p(l)'
If u+v, then, since (1/(flu—vl)u, (1/lu-vl)ve BP(E) for
any p € [max {{lull,[vll}/u - v],00), we obtain

1 1 . max{nuu,nvu})
B ifpe (0, ———— ),
l—vi" "~ Tu—vl H) P ( Tu—vl

e [max{uuu,nvn},oo>

flu—vl

(64)



Therefore, we obtain
(= v,y Jv) 2 g o)~ 1. (65)
Lemma 20. Let E be a uniformly smooth Banach space and let
u,v € E. Put
lul )
[
(L1
ifv=0orpe T " 1, 00
(66)

Go vy (r) i v#Oandp e (
g (rnp)=
95,(1)

for any r € (0, 00) and for any p € (0, c0), where g5, as in
Lemma 14. Then,

r 1
-——v, — Jg(u—rv
<|v|| e ||v||

=9°(

Therefore, we obtain

(v, Jg(u—=rv) = Jgu) = v]|*. (70)

g (rp)
r

We consider the following condition for a uniformly con-
vex and smooth Banach space:

(1) inf (g 00) G2, (1) > 0.

We consider the following condition for a uniformly
smooth Banach space:

(#2) There exist ry € (0,00) and «a € (1,00) such that

SUP,¢(0,1,). pe(000) (G5 (T)/77) < 00

Example 1. We consider each of examples satisfying the con-
ditions (*1) and (*2), respectively.

Let E be a Banach space. The modulus of convexity 6 of
E is defined by

Og(e) =inf {1 - %Hx +l

0= Ipl=1 -y = e}
(71)
for any € € [0, 2]. Let p € (1, 00). E is said to be p-uniformly

convex if there exists a constant ¢ € (0, c0) such that §;(¢)
> ce for any ¢ € [0, 2]. Furthermore, we know that E is uni-

Abstract and Applied Analysis

[0 (67)

(v, Jg(u—rv) = Jpu) Z_M

holds for any r € (0, 00) and for any p € (0, 00).

Proof. If v =0, then for arbitrary g*(r, p), we obtain

IvI”. (68)

(v, Jg(u—rv) = Jgu) =0=_M

In particular, the above equation holds for g*(r, p) =
g;"P(r). If v#0, then, since (1/||v||)(u—rv), (1/|v|)ue
Bjuviys- (E)> we obtain

. e
gz (llull/ivl)+ H || [ H) 1fp€< W+r )
% H vl H>

ifpe {|u| +r oo) (69)
Il

formly convex if and only if §;(¢) > 0 for any € € (0, 2]. Let
J, be the generalized duality mapping on a Banach space E.

By [17, Corollary 1], E is p-uniformly convex if and only if
there exists a constant ¢ € (0, 00) such that

(x=px" =) zellx =yl (72)
for any x, y € E, for any x* € ] .x, and for any y* € ] ,y. There-
fore, if E is 2-uniformly convex and smooth, then we can put

9a,p(1) = cr? for any p € (0, 00). We obtain

inf g,,(1)=c>0. (73)

p€(0,00)

The modulus of smoothness p, of E is defined by

el =1,y = t}

(74)

1
putt) =sup {3 (71 + 51D -1

for anyt € (0, 00). Let g € (1, 00). E is said to be g-uniformly
smooth if there exists a constant ¢ € (0, 00) such that p,()
< ct? for any t € (0, c0). Furthermore, we know that E is
uniformly smooth if and only if lim,,(p,(t)/t) =0. Let
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J, be the generalized duality mapping on a smooth
Banach space E.

By [17, Corollary 1 ;'], E is g-uniformly smooth if and
only if there exists a constant ¢ € (0, c0) such that

(x=yJpx=Jpy) <cllx—y||* (75)

for any x, y € E. Therefore, if E is 2-uniformly smooth, then
we can put g; ,(r) = cr? for any p € (0,00). Let r, € (0, 00)
and let « € (1, 2]. Then, we obtain
S (r
sup gzL‘x() =crg* < 0. (76)
re(0,r), pe(0,00) T

Lemma 21. Let E be a uniformly convex and smooth Banach
space, let F be a uniformly smooth Banach space, and let M
€ (0,00). Suppose that E satisfies the condition (%1) and F
satisfies the condition (%2). Then, there exists 1) € (0,00)
such that g(p)r—Mg*(r, p) >0 for any r € (0,7),) and for
any p € (0,00), where g(p) as in Lemma 19 and g*(r, p) as
in Lemma 20.

Proof. We obtain

g(p)r—Mg"(r. p)
> (r
2( inf g2p<1))r—M wp  Lisl0)) s
pe(0,00)7 r€(0,ry), p€(0,00) re

> (r
=r 11'1f gZP(l) _M Sup gz,P( ) r“71
pe(0,00) 7% re(0r) pe(000) 1

(77)
for any r € (0, 7,). Put
. 1/(a-1)
inf 1
1) = min Pe(om)gzyp( : To
M sup (g;p(r)/r“)
r€(0,ry), p€(0,00)

(78)

Then, we obtain g(p)r — Mg*(r, p) > 0 forany r € (0, 7,)
and for any p € (0, 00).

Theorem 22. Let E be a uniformly convex and smooth Banach
space; let F be a strictly convex, reflexive, and uniformly
smooth Banach space; let Ji and ] be duality mappings on
E and F, respectively; let C and D be nonempty, closed, and
convex subsets of E and F, respectively; let A be a bounded
and linear operator from E into F with A+ 0; let A* be the
adjoint operator of A; let r € (0, 00). Suppose that E* satisfies
the condition (x2), F* satisfies the condition (*1) and CN

A

AT(D)# @. Let x, € E and let {x,} be a sequence generated
by

Zn = ]I_El (]E - rA* (]F - ]FHD)A)xn’

C,={z¢€Cl{(z, -z Jpx, - Jpz,) =2 0},

Dn = {Z € Dn—] | <xn _Z’]Exl _]Exn> = 0}’

X

(79)

nwe1=1Ic,np, %1

for any n € N, where D, = C. Then, there exists 142 € (0, 00)

such that {x,} is strongly convergent to a point zy€ CN A™!
(D) for any r € (0, 752), where 2y = I cpp-1(p)X;-

Proof. For the sake of the proof, we confirm the following
facts. Since E is uniformly convex, by (T8) E is reflexive. Since
E is uniformly convex and smooth, by (T10) E* is uniformly
smooth. Since F is reflexive and uniformly smooth, by (T10)
F* is uniformly convex. Since F is strictly convex and reflex-
ive, by (T7) F* is smooth.

It is obvious that C,, N D,, is closed and convex for any n
€ N. We show that CNA™'(D) c C, for any n€ N. Let z €
CnA™Y(D). If Ax, =0 or Ax, € D, then we obtain z, = x,,
and hence,

<zn_z’]Exn_IEZn>:0; (80)
thatis, z€ C,,. If Ax, # 0 and Ax,, ¢ D, then

<Zn -z ]Exn - ]Ezn>
= r(<]}_51(]Exn —rA*(Jp = Jpllp)Ax,) = x,,
A*(Jp = JpIlp)Ax,)
+ <xn -% A” (]F - ]FHD)Axn>)
= 7‘(<];31 (]Exn —rA* (]F - ]FHD)Axn) X
A™(Jp = JpIlp)Ax,)
+(Ax, — IIpAx,, (Jp — JpIIp)Ax,)
+(IIpAx, — Az, (Jp — Jpllp)Ax,))
= r(<]}_21(]Exn —rA*(Jp = Jpllp)Ax,) - ]Elexns
A™(Jp = JpIlp)Ax,)
+ (J§ TpAx, = 5 eI pAx,,, ] pAx, = ] pITpAx,, )
+ (ITpAx, — Az, ] pAx, — T TIHAX,)).
(81)
By Lemma 21, there exists 742 € (0, 00) such that g(p)r

~|Al*g*(r, p) > 0 for any r € (0, rjap2) and for any p € (0,
©0). Put

A, [T Ax,

P € [max {"A*(]F = JpIIp)Ax, |

" , bco) (52)
”]FAxn - ]FHDAxn” "]prn - ]FHDAxn I
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Since E* is uniformly smooth, by Lemma 20, we obtain

(Jg' Ugx, = A" (Jp = JeIlp)Ax,) = J5' TgX,s A* (Jp = JeI1p) Ax, )

*(r, .
> - Oy g, - g,
Al g* (r,
Z_M”UF_JFHD)A’%"Z'

(83)

Since F* is uniformly convex and smooth, by Lemma 19,
we obtain

<];“1]FAxn - JJ_DIJFHDA"W JrAx, - ]FHDAxn>

(84)
> g(p,) 1] pAx, = T pTTpAx,||.
By Lemma 6, we obtain
(I, Ax, — Az, ] pAx, — ] ITpAx,) > 0. (85)
Therefore, we obtain
(2w =Jaza) 2 (9P = IAIPG" (5 2) g

N(Tp=Tep)Ax,|* 2 0;

that is, z € C,. We show that Cn A™!(D) ¢ D, for any n € N.
Since

D, ={zeC|(x; -z Jgx, - Jpgx,) 20} =C,  (87)

it is obvious that CN A™' (D) ¢ D,. Suppose that there exists
k € N such that Cn A™'(D) ¢ D;. Then, CnA™'(D) cC,n
Dy. Since x;,; = I1¢ p, x;, by Lemma 6, we obtain

(Xpe1 — 2 Jpxy = JpXpepq) 20 (88)

for any z € C, N Dy, and hence, the above inequality holds for
any z € CN A™!(D); that is, we obtain CN A™!(D) € Dy,,. We
obtain CNA™'(D) ¢ D, for any n € N. Therefore, {x,} is
well-defined.

It is obvious that CN A™'(D) is nonempty, closed, and
convex. Therefore, I15-1(p) is well-defined.

By the definition of D,,, we obtain x,, = ITj, x;. By Lemma 6,

V(2 x,) + V(X X1) < V(2 %)) (89)

for any z € D,,. Let m € N with m > n. Since x,, € D,, ¢ D,, we
obtain

Abstract and Applied Analysis
VE(xm’xn) + VE(xn’xl) < VE(xm’xl)’ (90)

and hence,

VE(xm’xn)SVE(xm’xl)_VE(xn’xl)‘ (91)

Since x,, = I, x;, we obtain
:

V(% X1) < V(2 x7) (92)

for any z € D,. Since x,,,; = Il p x;, we obtain x,,; € C, N
D,. Since x,,,, € D,,, we obtain

V(% %1) < V(X005 %1)s (93)

and hence, {V(x,, x;)} is bounded and nondecreasing; that
is, there exists the limit of {V(x,,, x;) }. From (91), we obtain

lim Vi(x,,x,)=0. (94)

m,n—00

By Lemma 15, {x,} is a Cauchy sequence. Since E is

complete, there exists z, € E such that lim,_, x, = z,. Since
X1 =g ap %> by Lemma 6, we obtain
(Fn1 =2 Jp%1 = JpXpn) 20 (95)

for any z € C, N D,. Since CNA™!(D) c C, N D,, the above
inequality holds for any ze CnA™(D). Taking n — oo,
since by (T9) ] is norm-to-norm continuous, we obtain

(20 =2 Jgx; = Jpzg) 20 (96)

for any ze CNA™Y(D). By Lemma 6, we obtain z,=

I eng ()X

Theorem 23. Let E be a uniformly convex and smooth Banach
space; let F be a strictly convex, reflexive, and uniformly
smooth Banach space; let I - be the identity mapping on F*;
let Jp and ] be duality mappings on E and F, respectively;
let C and D be nonempty, closed, and convex subsets of E
and F such that Jp(D) is closed, respectively; let A be a
bounded and linear operator from E into F with A+ 0; let
A* be the adjoint operator of A; let r € (0,00). Suppose that
E* satisfies the condition (x2), F* satisfies the condition (x1)
and CNA™!(D) + @. Let x, €E and let {x,} be a sequence
generated by



Abstract and Applied Analysis

znzj,-;(]E—rA (IF ~R;,p )JFA)
C,={z€Cl(z,~z Jpx, - Jgz,) 20},
Dn:{ZEDn—1|<x _IExn>20}’

(97)
n" % ]Exl

-1
Xn1=JE Ry np,) JEX1

for any n € N, where D, = C. Then, there exists 1,2 € (0,00)
such that {x,} is strongly convergent to a point z,€ CNA™
(D) for any r € (0,7, ), where z,= ]EIR]E(CHA4<D))]Ex1.

Proof. For the sake of the proof, we confirm the following
facts. Since E is uniformly convex, by (T8), E is reflexive.
Since E is uniformly convex and smooth, by (T10), E* is uni-
formly smooth. Since F is reflexive and uniformly smooth, by
(T10), F* is uniformly convex. Since F is strictly convex and
reflexive, by (T7), F* is smooth. Since E* and F* have Fréchet
differentiable norms, by (T9), ]}}1 and J }1 are norm-to-norm
continuous. Therefore, J;(C) and Jz(C, N D,)) are closed.

It is obvious that C, N D, is closed and convex for any
n € N. We show that CNA™'(D) c C,, for any n€ N. Let z
€ CNA™Y(D). If Ax, = 0 or Ax,, € D, then we obtain z, = x,,
and hence,

<Zn_z>]E'xn_]Ezn>:0; (98)

p, € | max

[ A%,

11

thatis, z€ C,. If Ax, # 0 and Ax,, ¢ D, then

<va —2 ]Exn - ]EZVI>

= ({15 (oo = A" (1p = Ry, 0 ) T4,
—x,, A" (IF ~Ryp >]FAx>
+<xn—z,A (Il, ~Ry,p )]tAx >)
= ({15 (Joxa -~ A" (1p = Ry ) ) T,
—x,, A* (IF ~Ry,p >]FAx>
+ (A%, = TRy, o] 5% (T = Ry, ) )T A%, ) (99)
+ < J#'Ry, p) ) pAx, ~ Az, (IF‘ -R (D)) ]FAxn>>
(5 (et (- Ry 185
— T g, A” (IF, - R,F(D)) ]FAxn>
+ (T T pA%, = T3 Ry, ) p A%, T A,
Ry, (o) J A%, > <J;1R, )] A,

)

—]F]FAz JpAx, —R]

By Lemma 21, there exists 7, € (0,00) such that g(p)r
= lAIPg*(r, p) > 0 for any r € (0, r,,) and for any p € (0,
00). Put

R JrAx,
IR, o) || 100)

Since E* is uniformly smooth, by Lemma 20, we obtain

<]gl (]Ex,, —rA* (IF -Ryp )]pAX ) T2, A" (IF‘ _RIF(D)>]FAXW>

g (. p,) A*( Ry )]FAx

r
(S )]FAx

>

_IAPg* (. p,)
r

(101)

Since F* is uniformly convex and smooth, by Lemma 19,
we obtain
<];’1]FAxn ~ T Ry (b)) pA%,, T pAX, ~ R]F(D)]FAxn>

Zg(pn) R]F(D)]FAxn

(102)

R (D)]FAan IV, =

Sy

By Lemma 11, we obtain

< Ji'R; )] pAx, = T3 1Az, T pAx, = Ry gy ]FAxn> >

(103)
Therefore, we obtain
(0= e~ Js2) 2 (9(pa)r = 411" ()
2
. H(IF* _R]F(D)>]FAxn >0;
(104)

that is, z € C,. We show that Cn A™(D) ¢ D,, for any n € N.
Since

D, ={zeC|(x; -z, Jpx, — Jpx,) 20} =C, (105)
it is obvious that CN A™' (D) ¢ D,. Suppose that there exists
k € N such that Cn A™' (D) ¢ D;. Then, CnA™'(D) c C, N



12

Dy. Since Xy, = J5' Ry (¢, np,)Jp%1> by Lemma 11, we obtain

(Xt = J5 2 T px1 = JpXean) 20 (106)
for any z € J;(C, N D), and hence, the above inequality
holds for any z € J(Cn A™(D)); that is, we obtain CN A™!
(D) ¢ Dy,,. We obtain CNA™Y(D)cD, for any neN.
Therefore, {x,} is well-defined.

It is obvious that J;(CNA™'(D)) is nonempty, closed,
and convex and CNA'(D) is closed. Therefore,
Ry (cna-1(py) 1s well-defined.

By the definition of D, we obtain x,, = Jg'R; (p \Jpx,. By
Lemma 11,

Vi (JgXps 2) + Vi (JeXp Jpx,) < Vi (Jpxo5 2) (107)
foranyz € J;(D,). Let m € N with m > n. Since x,, € D,, C D,
, we obtain

Vi (JgXp> JgXm) + Vi (Jpxis Jpx,) < Vi (Jpxys JgXom)s
(108)

and hence,

Vi (JgXp JgXm) < Vi (Jpxps Jpxp) = Vi (JgX15 Jpxy)-
(109)

Since x,, = ]ElR]E(Dn)]Exl, by Lemma 9, we obtain

Vi (Jpx1, Jex,) < Vi (Jpx, 2) (110)
for any z € J;(D,,). Since x,,,, = ]glR]E(CnnDn>]Ex1, we obtain
X,.1 € C,ND,. Since x,,, € D,, we obtain

Ve (Jpxps Jpxn) < Vg (Jexn JpXan)s (111)
and hence, {V . (Jpx;, Jpx,)} is bounded and nondecreas-

ing; that is, there exists the limit of { V- (Jzx;, Jpx,) }. From
(109), we obtain

lim Vg (Jpx,, Jgx,,) =0.

(112)
m,n—oo
By Lemma 15, {Jzx,} is a Cauchy sequence. Since by
(T9) Jz' is norm-to-norm continuous, {x, } is also a Cauchy
sequence. Since E is complete, there exists z,, € E such that
lim,_,,x, =2y. Since x,,; =J3'R; ¢ ap,)Jp%;> by Lemma
11, we obtain
<xn+l -Ji's % _]Exn+1> 20 (113)
for any z€J,(C,nD,). Since CNA™'(D)cC,NnD,, the
above inequality holds for any z € J;(C N A™'(D)). Taking n

— 00, since by (T9) ] is norm-to-norm continuous, we
obtain

Abstract and Applied Analysis

(20~ T5'% Jpx1 = J20) 2 0 (114)

for any z € J(CNA™(D)). By Lemma 11, we obtain z, =

];JIR]E(CHA’I(D))]Exl'

Remark 24. In this paper, we consider only two strong con-
vergence theorems with respect to (v) in Theorem 16 and
(x) in Theorem 18. The strong convergence theorem with
respect to (ii) is shown in [11, Theorem 3.2]. Of course, we
can consider other strong convergence theorems with respect
to (iii), (iv) in Theorem 16, and (vi), (vii), (viii), and (ix) in
Theorem 18. They will be described in the next paper.
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