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In this paper, we introduce a new iterative method in a real Hilbert space for approximating a point in the solution set of a
pseudomonotone equilibrium problem which is a common fixed point of a finite family of demicontractive mappings. Our result
does not require that we impose the condition that the sum of the control sequences used in the finite convex combination is equal
to 1. Furthermore, we state and prove a strong convergence result and give some numerical experiments to demonstrate the

efficiency and applicability of our iterative method.

1. Introduction

In this paper, we will always take C to be a nonempty closed
and convex subset of a real Hilbert space H endowed with
inner product {-,-) and induced norm ||-||, and F (T') denotes
the set of fixed points of a mapping T: C — C, that is,
F(T) ={x e C: x = Tx}.

Definition 1. A mapping T: C — C is said to be
(1) Nonspreading [1] if

ITx ~Tyl> <ITx - yI* + ITy —xI>, Vx,yeC, (1)

or equivalently

ITx — TyII2 <|lx- y||2 +26{x-Tx,y-Ty), Vx,yeC.

ITx = Tyl < llx = ylI* + llx = Tx = (y = Ty)I?
+2{x-Tx,y-Ty), Vx,yeC.

(3)

(3) B-Strictly pseudocontractive [2] if there exists
B € [0,1) such that

ITx - Tyl* <llx - yII* + Bllx - Tx - (y - Ty)|* Vx,y €C.

(4)

(4) p-Demicontractive [3] if there exists p € [0,1) such
that

ITx - ylI* <llx = yI* + plx = Tx|* Vx € C,y € F(T).
(5)

Obviously, the class of demicontractive mappings is

(2)

(2) x-Strictly pseudononspreading [1] if there exists
k € [0,1) such that

more general than the class of quasi-nonexpansive map-
pings. Moreover, If T is k-strictly pseudononspreading (or
k-strictly pseudocontractive) and F(T) # J, then T is
k-demicontractive.
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Definition 2. A bifunction f: CxC — R is

(i) Strongly monotone on C with modulus S>0
(B-strongly monotone on C) if and only if

fy)+ fOnx)< —Bly-xI>, Vx,yeC; (6)
(ii) monotone on C if and only if
fOoy)+ f(y,x)<0, Vx,y€C; (7)

(iii) pseudomonotone on C if and if

fl,y)20= f(y,x)<0, Vx,yeC. (8)

Let f:CxC— R be a bifunction such that
f(x,x) =0, for all x € C. We consider the equilibrium
problem (EP) in the sense of Blum and Oettli [4], which is to
find

x" € Csuchthat f (x",y)>0, VyeC. 9)

Let EP(C, f) denote the set of solutions of EP (9). If
f(x,y)=(A(x),y-x)Vx,y € C, where A:C— H,
then EP (9) reduces to the variational inequality problem:

find x* € Csuch that (A(x),y —x)>0, VyeC. (10)

EPs form a very important area of research and have
recently been considered in many research papers. EP (9) is
applied in solving problems from optimization, variational
inequality, Kakutani fixed point, Nash equilibria in non-
cooperative game theory, and minimax problems [4, 5].

A popular method that has been applied to solve EP (9)
is the subgradient projection method which is developed
from the steepest descent projection method in smooth
optimization. If bifunction f is convex, subdifferentiable
with respect to the second argument, Lipschitz, and
strongly monotone on C, then regularization parameters
can be chosen such that the subgradient projection method
is linearly convergent [6]. However, when f is only
monotone, the subgradient projection method may not be
convergent. In order to get a method that guarantees
convergence for pseudomonotone equilibrium problems
(that is, equilibrium problems for pseudomonotone
bifunctions) the extragradient (or double projection)
method developed by Korpelevich [7] was extended to
equilibrium problems. However, the extragradient algo-
rithms involve two projections on the admissible set C,
which may be costly to compute if the nature of the ad-
missible set C is complicated. In the light of the need to
obtain a more efficient algorithm, the inexact subgradient
algorithms using only one projection [8, 9] has been
proposed for solving equilibrium problems with para-
monotone equilibrium bifunctions. Some other methods
that have been utilized to solve equilibrium problems in-
clude the auxiliary problem principle method [10], gap
function method [11], and the Tikhonov and proximal
point regularization methods [12-15].
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Recently, the problem of finding a common point in
EP(C, f) and the set of fixed points of mappings has become
an attractive and interesting subject [16-22]. This interest is
because of the possible application of these problems to
mathematical models whose constraints can be present as
fixed points of mappings and/or (EP). Such a problem
occurs, in particular, in the practical problems as signal
processing, network resource allocation, image recovery (see
[23, 24]).

In 2007, Tada and Takahashi [22] proposed the following
iterative algorithm for approximating a common element of
the set of solutions of equilibrium problem for monotone
bifunctions and the set of fixed points of a nonexpansive
mapping T.

Algorithm 1

zj € Csuchthat f(z, y) +%(y -Zz— X 20, VyeC,
k

wy = o Xy + (1 - o) T (2)s

Co=fe € : o -] < -},

Dy ={z € H: {x; — z,x, — x;.y 20},

X1 = Pe_np, (%),

(11)

where A, >0 is the regularization parameter at iteration
k,x, € C and P, is the metric projection onto C. They
assume that f is a monotone bifunction and obtained a
strong convergence result.

Recently, Anh and Muu [25] proposed a new type of
algorithm which uses only one projection and does not
require any Lipschitz condition for the bifunctions for
finding a common point in the solution set of the class of
pseudomonotone equilibrium problems and the set of fixed
points of nonexpansive mappings. More precisely, they gave
an iteration scheme generated as follows.

Algorithm 2. Pick x, € C. At each iteration k = 1,2, ..., do
the following:

[ computew, =9, f (i) (x0),

take y, = max{Ak, Hwk“},

1 =P (12)

>

Yk

i =Pc (xk - ‘kak)’

[ X1 = O + (1= 8)T (1)

Inspired by Anh and Muu [25], Wangkeeree et al. [26]
presented an iterative method for finding hierarchically an
element in F(T) N EP(C, f) with respect to a nonexpansive
mapping. Precisely, they considered the following problems:
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findx € T == F(T)NEP(C, f) such that
13
(x-S(x),x—x)<0, VxeT, (13)

where T and S are nonexpansive mappings.

Other authors have also considered different algo-
rithms which involve either projection mapping or pro-
jection mapping and the construction of sequences of sets
{C,} and {Q,} for approximating a common solution of
pseudomonotone equilibrium problems and fixed point
problems of nonexpansive mappings ( see, for example,
[27-29]). Those methods are tasking and difficult to
compute.

In 2018, Thong and Hieu [30] proposed the following
iterative algorithm for the approximation of a common fixed
point of a finite family of demicontractive operators. Let {x,,}
be a sequence in H defined by

x, € H,
N (14)
Xyl = (1 -y _ﬁn)xn + ﬁn Z wiTixn'
i=1

z?\x]mong other standard assumptions, they assumed that

{w;}.., is a finite sequence of positive numbers such that
N
Yw, =1 (15)

i=1

Let K be a nonempty closed and convex subset of a real
Hilbert space H. Suppose that {T;},, N> 2 is a countable
finite family of mappings T;: K — K. In [31], the authors
consider the horizontal iteration process generated from an

arbitrary x, for the finite family of mappings {T;}., using a
finite family of th{T'}", control sequences {{ai}* }", as
follows.
For N=2,
Xy = (x:’xn +(1 - (x,l,) [(xiTlxn +(1 - ocf,)szn]. (16)
For N=3,
Xy = ocrllxn +(1 - oc:l) [ociTlxn +(1 - (xi) [(xfszxn

+ (1 - ocf,)T3xn”.

For an arbitrary but finite N >2,

(17)

Xy = ocixn +(1 - oc:l) [(xiTlxn +(1 - ocfl) [ocZszn

+ (1 — @) anTy 1%, + (1= ay)Tyx, . . ]]]

N i—1 N
e+ Y [T - @) T + [[(1 - o) T
i =1 =1

n>1.

(18)

L.1. Question. Is it possible to give an iterative algorithm and
obtain a strong convergence result for finding a common
element in the set of fixed points of a finite family of
demicontractive mappings which also solves equilibrium
problems for pseudomonotone bifunctions without im-
posing the type of condition in (15) on the control
sequences?

In this paper, motivated by the works of Anh and Muu
[25] and Wangkeeree et al. [26], we propose an iterative
algorithm for finding a common element in the set of fixed
points of a finite family of demicontractive mappings, which
also solves equilibrium problems for pseudomonotone
bifunctions and prove a strong convergence result which
does not require such condition as in (15) on the control
sequences. We further give a numerical experiment to
demonstrate the performance of our iterative algorithm.

2. Preliminaries

In the sequel, we shall need the following definitions and
lemmas. Let H be a real Hilbert space, and C a nonempty,
closed, and convex subset of H. By P, we denote the metric
projection operator onto C, that is,

Pc(x) € C: |x=Pe(x)|<lx-yl, VyeC. (19)

Lemma 1. Suppose that C is a nonempty, closed, and convex
subset in H. Then, P has the following properties:

lx = yI* = |x = P ()" +|y - Pc ()", VxeH, yeC.
(20)

Lemma 2 (see [32]). Let {a;} and {b;} be two nonnegative
real sequences satisfying the following conditions:

[ Sak+bk kaO,

[ee]
Z bk < +00.
k=1

(21)

Then, lim;__, a; exists.

Lemma 3 (see [33]). Let H be a real Hilbert space, C a closed
convex subset of H, and let T: C — C be a continuous
pseudocontractive mapping, then

(i) F(T) is closed convex subset of C

(ii) (I —T) is demiclosed at zero, i.e., if {x,} is a sequence
in C such that x,—x and Tx,-x,— 0, as
n — o0, then x = T (x)

Lemma 4 (see [1]). Let C be a nonempty, closed, and convex
subset of a real Hilbert space H, and let T: C — C be a
p-strictly pseudononspreading mapping. If F(T) +J, then it
is closed and convex.



Lemma 5 (see [1]). Let C be a nonempty, closed, and convex
subset of a real Hilbert space H, and let T: C — C be a
p-strictly pseudononspreading mapping. Then, (I-T) is
demiclosed at 0.

Definition 3. Let Cbe a nonempty closed and convex subset
of a Hilbert space E. Let f: CxC — R be a bifunction
where f (x,-) is a convex function for each x € C. Then, the
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K

i-1
i

B
=

U
[}

a + (1-a)+[[(1-a;) =1. (23)

1

-
I
—_

j=1

Proof. 'This result has been proved in [31], but for the sake of
completeness, we present the proof again here. For N = 2,
i-1

2 2
e-subdifferential (e-diagonal subdifferential) of f at x a, + Z o; H (1 - ocj) + 1_[ (1 - (Xj)
denoted by o, f (x,-) (x) is given by =2 j=1 =1

O.f (x,)(x) ={we H: f(x,9)— f(x,x)+¢€

(22) = ta(l-a)+(1-a)(l-a) (24)
>(w,y-x), ¥y € Cl.
= o+ (1 —a)[a + (1 - aty)]
Lemma 6. Let {&;}, <R be a countable subset of the set of = +(1-a) =1
real numbers R, where N > 2 is an arbitrary integer. Then, the
following holds: We assume it is true for N and prove for N+ 1.
N+1 -1 N+1 N i-1 N N+1
a; + aln(l—aj)+n(1—aj)=al+2al (l—oc])+ocN+1H(1—(xj)+H(l—(x])
i=2 j=1 j=1 i=2 j=1 j=1 j=1
N i-1 N
:“1+Z“1 (1_“])+H(1_“])[“N+1+(1 ani)] (25)
2 j=1 j=1
N i-1 N+1
:0c1+20c, (l—ocj)+1_[(1—ocj):1
=2 j=1 j=1
N il N O
Remark 1. Lemma 6 holds if {a}~, is replaced with y=at+ Zoc, (1 - ‘xj)vi—l + 1—[(1 - oc])vN (26)
{ai}f\——]O' =2 j=1 =1
Lemma 7 (see also [31]). Let t and u be arbitrary elements of T
a real Hilbert space H, and let N € N be such that 2<N. Let e
(VIN, <H and {a;}Y, < [0,1] be a countable finite subset of
H and R, respectively. Define
N il , N )
Iy — ull® < a,llt - ul* + Z o H(l - oc]-)”vi_l —ul" + H(l - oc]-)"vN — u|
iz j=1 =1
(27)

N i
! Z“i

i=2 Jj=

[0 )= T1(0 -l |

Proof. Letw, = ZfikﬂociH?kO —a)v,_ + Hﬁik (1-a))vy,
k=1,2,...,N—-1and wy = (1 — ay)vy. Observe that, for
k<N -1, w = (1-oa)[a, Ve + W, ] Using the well-
known identity

1Bx + (1 = ByylI* = Blxl* + (1 = Pliyl* - B(1 = Bllx - yII%,

(28)

which holds for all x, y € H and for all ¢ € [0, 1], we have
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i1 2

oclt+§¢x,- (1 )v,1+1—[(1— )VN u

=2 j=1

ly - ul* =

:||ockt+w1 —u||2
= ||oc1t +(1-ay) [y +w,] - u]"2

oIt - ull* + (1- 0‘1)“0‘21/1 +w, — u"z —a(1- ocl)”t — oy, + w2]||2

=allt—ull’ +(1- ocl)[oczuvl - uNz +(1- oc2)||oc3v2 +w; — unz—az (1- 042)"1/1 —[ozv, + w3]||2]

—a (1- “1)[“2”t - V1||2 +(1- 0‘2)||t —[azvy + ws]"z_‘xz (1- “2)”"1 —[azvy + ws]"Z]r

allt = ull® + (1= o)y, —uuf” + (1 - a,) (1 - ay)||azvy + ws —uf = (1= o))ty (1= ) v, =[5, + w5] |
- (1=l v = o (1= @) (1= @)= v + ] Fra (1= a)ay (1= ) = [agw, + 3] |
= ayllt =l + (1 - a)a vy —uf” = oy (1= o))yt = v + (1= o)) (1 = ) |ts vy + wy —
oy (1= ) (1= @)t = [ov, + wil* = (1= ) (1= ;) (1= )|y = [aaw, + 3
(13) = o it = ull’® + (1 = o)y lvy — uif* = &, (1= @)yt = v |* = oy (1= o)) (1 = @) (1 = @,)|| vy = [, + w5
+ (1= 0y) (1= o) oy + w5 — uf* — g (1 - @) (1 - @)t — [, + ws]’

aylit - ull® + (1- 0‘1)“2”"1 _uuz —ay (1= 0‘1)0‘z||t - V1N2 o (1-og)(1-a)(1- 0‘1)“"1 —[azv, + w3]||2

+(1—a) (1~ “2)”“3"2 +(1 =) [oyv; + wy] - ”"2 —ay(1—ay)(1- 0‘2)""‘3"2 + (1= o) [ogvs +wy] - t”z

allt—ul® +(1- ay )ty || vy —u"z - (1- ocl)ocznt - vkuz +(1=a) (1= oy) s, —u||2

P (1= a) (1) (1— a)agrs + wg — uff — (1= o) (1 a)ass (1 - as)|vs — [agvs + wy]
— oy (1-ay) (1 - a)as|v, — ¢
—oy (1= ) (1= ) (1 - a)orgvs + wy — ¢ + @y (1 - o) (1= ay)as (1= ats |, — agvs +wy’
—ap (1= ) (1= o) (1= )|y = [ayvs + wi]|s
= ayllt -l + (1 - a))o vy —uf” = o, (1= o)yt = v + (1= o) (1 = &) a5 |, —
(1= ay) (1 - ) (1= as)|Jogvs + wy — uf = (1= ) (1= a)axs v, = £]* = g (1= ) (1= ;) (1 = a5) et + wy — ¢

oy (1—ap)(1-a) (1~ “1)""1 —[asvy + w3]|’2 “(I-a)(1-a)as (1 - 0‘3)""2 —[agvs + w4]||2,

3 i—-1 3 i-1
=alle—ull + Yo [](1 =) -l = | Yo (l—aj)llt—vf_lllz]
=2 j=1 =2 j=1
3 i
-(1-a) Z“z (1_ )n"iﬂ —[“i+1"i+wi+1]||2
i=2 j=1
3 2 3 2 3 2
100 = o) Tagvs + wy] = =a TT(1 - )t =gy + wy |+ o [[(1 - o)) e = v ]
j=1 j=1 j=1
N i-1 N i-1 5 N 5
= it~ ul’ +Z"‘z (1_“)||V1 1 ”” +H(1_“)|VN “H ‘“I[Z‘xt (1_“j)||t_"i—1|| +H(1‘“1’)"t“’NN
i=2 j=1 i=2 j=1 j=1

Z

-(1-a) &; (1 - 0‘;‘)"":‘4 = [ty + wi+1]”2+"‘N 1_[(1 - 0‘;‘)"" - VN1||2]'

i j=1 j-1

N
]

(29)



3. Main Results

We now give a strong convergence result for the approxi-
mation of a solution of a pseudomonotone equilibrium
problem which is also a common fixed point of a finite
family of demicontractive mappings.

Let f: CxC — R be a bifunction that satisfies the
following conditions: (B1) f is pseudomonotone on C,
f(x,x)=0, and f(x,-) is lower semicontinuous for all
x €C; (B2) f(.y) is sequentially weakly upper semi-
continuous on C for each fixed point y € C,i.e,if{x,} c Cis
a sequence converging weakly to xeC, then
limsup, ., f(x,, ¥)< f(x y); (B3) f(x,-) is convex and
subdifferentiable on E for every fixed x € C; (B4) If {x;} cC
is bounded €, |0 as k — 00, then the sequence {y,} with
Yk € 9, f (x4,°) (x;) is bounded; (B5) f is pseudomonotone
on C with respect to every x € EP(C, f) and satisfies the
strict paramonotonicity property, i.e.,

x € EP(C, f),
y €C, (30)
f(y,x)=0=y € EP(C, f).

It has been proved that under the conditions (B1)-(B3),
the solution set EP ( f, C) of EP (9) is closed and convex [34].

Algorithm 3

Step 1. Let {A}, {Bi} and {,} be sequences of non-
negative real numbers and let T}, i=1,2,...,N, be
p;-demicontractive mappings on C. Suppose that the
following conditions are satisfied:

(1) 0<y <A <A p=max,, nyp; and0<p<a<y,;<b
<1, limy_, 0, = (1/2).

(2) Be>0, Y2 By = +coand T2, B < +00.

(3) Y1 B < +00.

Step 2

x, € C;
Vi €0 f (%> ) ()3

Br
d =
yk”} and o, i

] = max{)tk,i

wy = Po (X = ayi);

N i-1 N
xk+1 = (Sk’lwk + %6k,i 1_11(1 - 6k,j)Ti71wk + l_ll(l — 6k,j)Tka'
i= Jj= J=

(31)

Theorem 1. Let C be a closed and convex subset of a real
Hilbert space H, and let f: C x C — R be a bifunction that
satisfies  conditions  (BI)-(B5). Let T;C—C,
i=12,...,N be a finite family of p;-demicontractive
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mappings such that (I —T;) is demiclosed at 0 for each i and
Q:=EP(C, f)n (NY,F(T,)) #+<. Then, the sequences {x;}
and {w,} generated by Algorithm 3 converges strongly to a
point p € Q, where p =lim;__, Pq (x;).

Proof. Let x* € Q. From wy, € P (x; — ap.yy) and x* € C,
we have

(X — Y — W w — x* ) >0. (32)
Therefore,
(X" —wp, X — W) <Y x" —wy)
= (Yo X7 = x5 + 04 (Yo Xp — W)

<oV x = x) + ock“yk“”xk - wk".

(33)
Since x;, € C, we also have
(X = Y — Wi, Wy — x50 = 0. (34)
From (33) and (34), we have
(X = Wy 25 — Wi = — wkllz
< 4 {Ypo X — W) (35)
< o i lee = i
That is,
i = well < eyl (36)
Therefore,
2
oublls - s el - (B21)
k (37)

= m(%) <B-

Moreover, since x; € C and y; € 0, f (x;,°) (x;), we

have
flxox™) + e = f(x0x") = f (0 x0) + €k (38)
> (Y X = xp).

It then follows from the definitions of &, and y, that

B BB

O == S5 (39)
e mahe D}
Thus, from (33)-(39), we obtain
* % €
(" —wp x —wy) <o f (g x )+M+ﬁi (40)

Ay

But

*

%12

T [ - wk||2 o

26" =Wy, X — Wiy = ”wk -x
(41)
Therefore, from (40) and (41), we get
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oo = I < o = 7| = v = 7l o+ 200 (30 x7)

zﬁkek

+ 2B
(42)

*

||xk+1 -x" ||2 < ‘Sk,l”wk -

i-1
=1

N N
s, [z s [T - )i~ T+ T 11

i
i1

N
< 5k)1”wk - X*HZ + Z (Sk,i

=2 =1

+

=

-
Il
—

N i-1 N
S s (10T we -+ T100
i=2 j=1

(1= 80) o = "+ s o = Ty

Now, from Proposition 2.9, x* € F(T;), and T, is
p;-demicontractive, for i = 1,2,. .., N, we have

= S ITwi - x|
=1

—ak,,-)||wk—Tkan2]
j:I

(43)

(1= 8l = %] + T - wie]

N N
s, [z 60 T1(1 = 80 )wx =T v+ [ 11 = 8, ) e - Tka||2]
i = j=1

i-1
1

<[lw - x"[ - Dy,

where
N i—
Dy _(8k1_P)|:Zak,iH( 5k])||wk T; 1wk"
i=2 j=1 (44)
N
T = 6 Jwic = Tow }
j=1

From (42) and (43), we have
||x,<+1 - x*”2 < ”xk -x" “2 —||xk - wk"2 + 20 f (%, x7)

2
+ P Puér + Zﬁk
A

(45)

Furthermore, since x* € Q, then f(x",x)>0 for all
x € C. Therefore, by the pseudomonotonicity of f with re-
spect to x*, we have f(x,x*)<0, for all x € C. It then
follows from x;, € C that f (x;, x*) < 0. Hence, we have from
(45) that

*

ﬁkek zﬂk (46)

A
Applying Lemma 2 to (46), we obtain the existence of
L= lim f - <7, (47)

Since fis pseudomonotone on C and f(x*,x;) >0, we
have —f (x;, x*) > 0. Thus, from (45), we obtain

0< Dy + 205 [~ f (3 x7)]

2 2ﬁkek (48)

+2p2

<o = I = v -

Summing up the inequality (48), for every k, we have

0< Z Dk + Z 20£k [—f(xk,x*)]
k=1 k=1
(49)
|2 N Brex 2
<|x; - x| +ZZ 3 +22ﬁk.
k=1

Since the sequences {y,} and {A,} are bounded, then
there exists a constant M >0 such that max{A, |y, [} < M.
Thus, we have

Br _ B B

e T L. 0
v maxPhe [y} M (50

Thus, from (49), we obtain

0< ZDk+—Zﬁk

& =

(i x7)]
(51)
< ZDk+2Z(xk[ f(xx")] < +o00.

k=1

Thus, Y2, Dy < +00 and Y32 B[ f (x1 x*)] < +00.
Since Y2, B = 0o and —f (x;, x*) =0, we have that

lim sup f (x, x") = 0. (52)

k—00



For any x* € (), suppose that {xkr} is the subsequence of
{x;} such that

limsup f (x, x") = Tlinoof(xkr’ x"), (53)

k—00

and without loss of generality, we may assume that x; —X as
T — 00 for some X € C.
Next, we show that X is in EP (C, f). Observe that since
f (-, x*) is weakly upper semicontinuous, we have
f(xx")> limsupf(xk ,x") = lim f(xk ,x*)
T—>00 ! T ’
. (54)
= limsup f (x;, x") = 0.
k

But since f is pseudomonotone with respect to x* and
f(x*,%) >0, we have

f(xx")<0. (55)

From (54) and (55), we conclude that f(X,x*)=0.
Thus, by condition B6, we obtain that X is in EP(C, f).
Since )2, D; < +00, we have that

||wk - Tiwk" — 0,k — 00, i=12,..., N.  (56)

Furthermore, with w; = P (x; — o, y,) and x; € C, we
have

||xk - wk”2 <o (Y x" —wpy
< ol el = wi

Y
max{/lk, "J’k"}"yk““ k k”

< Bellxi - wil

|%e1 — Po (’%1)“2 <|xris - Po (wk)"2

Abstract and Applied Analysis

which implies that, and therefore

ka - wk” — 0,k — oo0. (58)

It then follows from x;, —X that wy, —X. Since (I -

T),i=12,..., N are demiclosed at 0, and

ITw, —we || — 0,k — 00,i=1,2,..., N. We have that
X e NN F(T).

Now, observe that
i1

N
ks = wel” < 0w = wil + Y 0 [1(1 - )

=2 =1

7w - wil
N 2
+ H(l - Sk,j)"Tka - wk” — 0, k— o0
j=1
(59)
Consequently,

||xk+1 - xk“ < ||xk+1 - wk” +||wk - Xk” —_— 0, k — 0OO.

(60)
We now show that
Jm x = lm w, = lim Py (x) = . (61)
It follows from (46) that, for all x* € Q,
e =2 < oo = 2" + & (62)

where & = (2B /M) + 267 >0, for all k>0, and

o0
Yo < +o0.
Now, using Lemma 1, we have

N
= 5k,1||wk - Pq (wk)”2 + Z O H(l - 8k,j)"Ti—1wk - Pg (wk)”2

=

+

-
Il
—

N
<8y |lwi — Pg (wk)”2 + Z O

i—

z

1

-y 6,

1
-1

i
()

+

=

-
I
—

i-1
=1

i=2 j

(1= 8T wwi - P (wy)]

i1 ) (63)
(1= 8 )IT i ywie = wi|
i=2 j=1

(1= 8)wi = Pa (wi)|

(1 - 6k’j)||Tka - wk”2 - H(l - 5k,j)||wk - P, (wk)uz.

j=1
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That is,
) , X i1 )
|%k1 = Po ()| < Ok Jwi = P (wi)||” + Z O H(l - 8k,j)”Ti—1wk — wy
i =1
N 2 2
T = 0 ) I Twwic = wil|” = (1 = e )Jwic = Po (i)
i=1
: N i1 (64)
< (25k,1 - 1)"wk - Pg (wk)n2 + Z O (1 - 8k,j)l|Ti—1wk - wk”2
iz =1
N 2
+ H(l - Sk)j)"Tka - wk" — 0, k— o0
=1
For all m>k, since Q is convex, we have
(1/2) (P (x,,,) + P (x1)) € Q. Therefore,
1 2
0 (%) = Po ()" = 2 = Pa (5[ + 202 = Pa (<)l = 4%, =5 (P (%,0) + Par (1)
[Pa ) - P 2
(65)

< zllxm - PQ (xm)“z + zllxm - PQ (xk)||2 - 4||xm - PQ (xm)“Z

= 2], = Po (50l = 2 = Pa ()

Replacing x* with P, (x;) in (62), we have that

% = Po (I < %1 = P ()| + s

< "xm—Z - PQ ('xk)nz tSmat fm—z
: (66)

m—1
< "xk - PQ (xk)"Z + Z E]
j=k

From (65) and (66), we have

1Pa () = Po (x)|I” < %6 = Pa (xi0)|* = 2% = Py ()|

m—1
+ Z Ej.
j=k
(67)
Hence,
lim  [[Po(x,) - Po(x) =0, (68)

m—00,k—00

which implies that {P, (x;)} is a Cauchy sequence. Hence,
{Pq (x;)} strongly converges to some point z € Q). However,
T — 00, we obtain in the limit that
z= lim Py(x;, )=Py(x)=x€Q. (69)
T—00 T

Thus, from (64), we conclude that x;, — oo, and
consequently w, — . O

Corollary 1. Let C be a closed and convex subset of a real
Hilbert space H, and let f: C x C — R be a bifunction that
satisfies conditions (B1)-(B5). Let T;: C — C,i=1,2,
..., N be a finite family of p;-strictly pseudononspreading
mappings, such that Q:=EP(C, f)n (nY,F(T,)+J.
Then, the sequences {x;} and {w,} generated by Algorithm 3
converge strongly to a point p € Q, where p =lim;_
PQ (.xk).

Corollary 2. Let C be a closed and convex subset of a real
Hilbert space H and let f: C x C — R be a bifunction that
satisfies conditions (B1)-(B5). Let T;: C — C,i=1,2,
..., N be a finite family of p;-strictly pseudocontractive
mappings, such that Q:=EP(C, f)n (nY,F(T,)+J.
Then, the sequences {x;} and {w,} generated by Algorithm 3
converge  strongly to a point peQ, where

p = limk_@OPQ (xk).
4. Numerical Example

We now give a numerical example to demonstrate the
performance and efficiency of our proposed iterative algo-
rithm. Let H = Rand C = [-3,1]. Set f (x, y) = 2y — 2x and
define T;: C — C,i=1,2,...,N by

X, if x € [-3,0];
T, (x) = (70)

Observe that Q:=EP(C, f)n (nY,F(T,) = {-3}.
Moreover, p; = (2i — 1/1 + 4i), and thus letting N = 5, we
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FiGURE 1: x; = -1.
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FIGURE 2: x; = 0.
have that p = max,_;_s p; = (3/7). Take A, = 1,6, = 0,0, =

(1/k) and & ; = (k + 4i/2k + 7i). Therefore, (32) is expressed
as an iteration:

x, € C;
-3 if x; — B < = 3;
wy = xk—ﬁk ika_ﬂk € [—3, 1],
<
1, lka - ﬁk > 1,
N il N
Xpp1 = O Wy + %8,0 Hl(l - 6k,j)T,-,1wk + 1_11(1 - 6k>j)Tka.
=2 j= i=
(71)
We make different choices of x; and use

(1% 41 = %, /1, — x,1I) <0.00001 for stopping criterion.
Figures 1-4 are the graphs of the numerical computations of
Algorithm 4.2 (71) corresponding, respectively, to
x;=-1,x,=0,x =1, and x, = -3.
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FIGURE 4: x| = -3.
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