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Existing literature in nonparametric regression has established a model that only applies one estimator to all predictors. This study
is aimed at developing a mixed truncated spline and Fourier series model in nonparametric regression for longitudinal data. The
mixed estimator is obtained by solving the two-stage estimation, consisting of a penalized weighted least square (PWLS) and
weighted least square (WLS) optimization. To demonstrate the performance of the proposed method, simulation and real data
are provided. The results of the simulated data and case study show a consistent finding.

1. Introduction

Regression analysis is aimed at modeling the association
between the predictor and the response. If the data pattern
shows an unknown regression curve, nonparametric regres-
sion is used [1]. However, if the form of the regression curve
is known, parametric regression can be applied [2]. Addition-
ally, nonparametric regression has high flexibility because the
data is expected to find its regression curve estimation form
without being influenced by the researcher’s subjectivity
[3]. In this study, we have analyzed several models such as
kernel, spline [4–7], and Fourier series [8].

A spline estimator, which has an excellent ability to han-
dle data with changes at subspecified intervals [9], was
obtained using penalized least square optimization [10] and
the Bayesian approach [11]. A spline estimator can be
applied for cross-sectional data as well as longitudinal data.
Additionally, several studies on nonparametric regression
for longitudinal data have been addressed using kernel esti-
mator [12, 13], generalized spline regression [14], and
mixed-effects model [7]. Fourier series, which is useful to
explain curves that show sine and cosine waves, is generally
used if the data pattern is unknown and there is a tendency
to iterate.

A considerable amount of research has used only one
estimator for each predictor. However, because each predic-
tor can have a different pattern, it was proposed to develop
a mixed estimator. Recently, Sudiarsa et al. [15] discussed a
study of the mixed estimator of the truncated spline and Fou-
rier series. The study, which only discussed cross-sectional
data, did not obtain a model for each subject as it did not
include longitudinal data. Consequently, this study cannot
be used to investigate response behavior based on the time
change.

Although some research has been carried out on a mixed
estimator, no studies have explored multisubject data so far.
This paper proposes a new methodology for a mixed estima-
tor of the truncated spline and Fourier series in the nonpara-
metric regression for longitudinal data. This study addresses
the gap in previous research by obtaining a mixed estimator
of the truncated spline and Fourier series in the nonparamet-
ric regression for longitudinal data and applying it to simu-
lated data and a case study.

This study is organized as follows. We briefly explain the
materials and methods used in our study in Section 2. Section
3 consists of three subsections: the developed theory, simula-
tion study, and case study. We present the developed non-
parametric regression theory for longitudinal data with a
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mixed estimator of the truncated spline and Fourier series
with two-stage estimation in Section 3.1. In Section 3.2, we
conduct a simulation study based on the developed theory
to assess the proposed estimator’s behavior. To illustrate
the applicability of the model, we use a dataset of patients
with pulmonary tuberculosis in Section 3.3. Section 4 pre-
sents the conclusion.

2. Materials and Methods

Longitudinal data has n independent subjects and T observa-
tions for each subject. Given paired data ðx1it ,⋯, xpit , z1it ,
⋯, zqit , yitÞ, which consist of p and q predictors with n sub-
jects, each subject has T observations. The relationship
between x1it ,⋯, xpit , z1it ,⋯, zqit and yit , which followed a
nonparametric regression model for longitudinal data, is as
follows:

yit = μit x1it ,⋯, xpit , z1it ,⋯, zqit
� �

+ εit , i = 1, 2,⋯, n, t = 1, 2,⋯, T:
ð1Þ

Each regression curve is additive so that the model can be
expressed as

μit x1it ,⋯, xpit , z1it ,⋯, zqit
� �

= 〠
p

j=1
f ji xjit
� �

+ 〠
q

k=1
gki zkitð Þ, i = 1, 2,⋯, n, t = 1, 2,⋯, T:

ð2Þ

∑p
j=1 f jiðxjitÞ is the truncated spline component and ∑q

k=1gki

ðzkitÞ is the Fourier series component.
This study’s first objective is to obtain the mixed estima-

tor of the truncated spline and Fourier series in nonparamet-
ric regression for longitudinal data. To achieve this, we
propose a two-stage estimation method. The first stage is esti-
mating the components of the Fourier series using the penal-
ized weighted least square (PWLS) method. The second stage
is estimating the truncated spline component using the
weighted least square (WLS) method. For the second goal,
that is, a simulation study, we generate functions that meet
the truncated spline and Fourier series characteristics. In
the third step, we apply the developed theory to a dataset of
patients with pulmonary tuberculosis.

3. Results and Discussion

3.1. Mixed Model of Truncated Spline and Fourier Series with
Two-Stage Estimation. Lemmas and theorems are used to
obtain a nonparametric regression model for longitudinal
data with a mixed estimator. The regression curve compo-
nent that is approximated by the Fourier series estimator is
presented in Lemma 1 and the penalty component for the
Fourier series function is presented in Lemma 2. Following
the PWLS form in Lemma 3, we estimate the Fourier series
component by using PWLS in Theorem 4. The regression
curve component that is approximated by the truncated
spline estimator is presented in Lemma 5, and we estimate
the truncated spline component using the WLS method in
Theorem 6. The results are summarized as follows:

Lemma 1. If gkiðzkitÞ is approached by the Fourier series func-
tion, then the goodness of fit is

N−1 〠
n

i=1
〠
T

t=1
wit y∗it − 〠

q

k=1
〠
T

t=1
gki zkitð Þ

 !2

=N−1 y∗ − Zcð Þ′W y∗ − Zcð Þ,

ð3Þ

where N = n × T and W is the nT × nT weighting matrix.

Proof. The regression curve gkiðzkitÞ is a regression curve of
an unknown shape and is contained in continuous space Cð
0, πÞ. The component of gkiðzkitÞ, k = 1, 2,⋯, q, in Equation
(2) is approximated by the Fourier series function with the
trend line as follows:

gki zkitð Þ = dkizkit +
1
2 c0ki + 〠

H

h=1
chki cos hzkit ð4Þ

If the regression curve g in Equation (4) involves only one
predictor, then it can be written as follows:

g = g1′g2′⋯ gn′
� �

′, ð5Þ

gi = gki zki1ð Þgki zki2ð Þ⋯ gki zkiTð Þð Þ′, i = 1, 2,⋯, n: ð6Þ

By using Equation (4), Equation (6) can be written in the
form of a matrix as follows:

gi =

gki zki1ð Þ
gki zki2ð Þ

⋮

gki zkiTð Þ

26666664

37777775 =

dkizki1 +
1
2 c0ki + c1ki cos 1zki1 + c2ki cos 2zki1+⋯+cHki cos Hzki1

dkizki2 +
1
2 c0ki + c1ki cos 1zki2 + c2ki cos 2zki2+⋯+cHki cos Hzki2

⋮

dkizkiT + 1
2 c0ki + c1ki cos 1zkiT + c2ki cos 2zkiT+⋯+cHki cos HzkiT

266666666664

377777777775

=

zki1
1
2 cos 1zki1 cos 2zki1 ⋯ cos Hzki1

zki2
1
2 cos 1zki2 cos 2zki2 ⋯ cos Hzki2

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

zkiT
1
2 cos 1zkiT cos 2zkiT ⋯ cos HzkiT

266666666664

377777777775

dki

c0ki

c1ki

c2ki

⋮

cHki

266666666666664

377777777777775
= Zkicki:

ð7Þ

The Fourier series function in the nonparametric regres-
sion component for longitudinal data with predictor q can be
expressed in the following form:

gi = 〠
q

k=1
Zkicki = Z1ic1i + Z2ic2i+⋯+Zqicqi = Zici: ð8Þ
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So,

g =

g1′

g2′

⋮

gn′

2666664

3777775 =

Z1c1
Z2c2
⋮

Zncn

2666664

3777775 =

Z1 0 ⋯ 0
0 Z2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Zn

2666664

3777775
c1
c2
⋮

cn

2666664

3777775 = Zc:

ð9Þ

Z is a nT × ð2 +HÞnq matrix as follows:

Z =

Z1 0 ⋯ 0
0 Z2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ Zn

2666664

3777775, ð10Þ

with

Whereas, c is a ð2 +HÞnq × 1 vector given by

To estimate the Fourier series component, the nonpara-
metric regression model in Equation (1) can be written as

yit − 〠
p

j=1
f ji xjit
� �

= 〠
q

k=1
gki zkitð Þ + εit , ð13Þ

y∗it = 〠
q

k=1
gki zkitð Þ + εit , i = 1, 2,⋯, n, t = 1, 2,⋯, T: ð14Þ

The model in Equation (14) can be written in matrix
form:

y∗ = g + ε: ð15Þ

Then, a goodness of fit for the model is formed as follows:

N−1 〠
n

i=1
〠
T

t=1
wit y∗it − 〠

q

k=1
gki zkitð Þ

 !2

, ð16Þ

with N = n × T . If the function gkiðzkitÞ is approached by a
Fourier series function as in Equation (4), then the goodness

of fit can be presented in the form

N−1 〠
n

i=1
〠
T

t=1
wit y∗it − 〠

q

k=1
〠
T

t=1
gki zkitð Þ

 !2

=N−1 〠
n

i=1
〠
T

t=1
wit y∗it − 〠

q

k=1
〠
T

t=1
dkizkit +

1
2 c0ki + 〠

H

h=1
chki cos hzkit

 ! !2

=N−1 y∗ − Zcð Þ′W y∗ − Zcð Þ,
ð17Þ

withW as a weighting matrix for the regression of longitudi-
nal data.

Lemma 2. If the Fourier series is given, then the penalty com-
ponent is

〠
q

k=1
λk

ðπ
0

2
π

gki ′′ zkð Þ
� �2

dzk = 〠
q

k=1
λk

ðπ
0

2
π

gki
′′ zkð Þ

� �2
dzk = c′D λð Þc:

ð18Þ

Proof. The penalty component∑q
k=1λk

Ð π
0 ð2/πÞðgki

′′ðzkÞÞ
2
dzk

Zi =

z1i1
1
2 cos z1i1 cos 2z1i1 ⋯ cos Hz1i1

z1i2
1
2 cos z1i2 cos 2z1i2 ⋯ cos Hz1i2

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

z1iT
1
2 cos z1iT cos 2z1iT ⋯ cos Hz1iT

⋯

⋯

⋯

⋯

zqi1
1
2 cos zqi1 cos 2zqi1 ⋯ cos Hzqi1

zqi2
1
2 cos zqi2 cos 2zqi2 ⋯ cos Hzqi2

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

zqiT
1
2 cos zqiT cos 2zqiT ⋯ cos HzqiT

26666666664

37777777775
: ð11Þ

c =

c1
c2
⋮

cn

2666664

3777775, ci = d1i c01i c11i c21i ⋯ cH1i ⋯ dqi c0qi c1qi c2qi ⋯ cHqi
� �′: ð12Þ

3Abstract and Applied Analysis



in the PWLS optimization based on Equation (4) can be
obtained as follows:

gki
′′ zkð Þ = d

dzk

d
dzk

dkizkit +
1
2 c0ki + 〠

H

h=1
chki cos hzkit

 !" #

= −〠
H

h=1
h2chki cos hzkit:

ð19Þ

As a result,

Pk gkð Þ =
ðπ
0

2
π

〠
H

h=1
h2chki cos hzkit

 !2

dzk

= 2
π

ðπ
0

〠
H

h=1
h2chki cos hzkit

 !2"

+ 2 〠
H

h<m
h2chki cos hzkit
� �

m2cmki cos mzkit
� �#

dzk:

ð20Þ

To simplify, we defined

A = 2
π
〠
H

h=1

ðπ
0
h2chki cos hzkit
� �2

dzk,

B = 2
π
2〠

H

h<l

ðπ
0
h2chki cos hzkit
� �

l2clki cos lzkit
� �

dzk:

ð21Þ

The value of A will be obtained as follows.

A = 2
π
〠
H

h=1

ðπ
0
h2chki cos hzkit
� �2

dzk

= 1
π
〠
H

h=1
h4c2hki zkit +

2
h
sin hzkit

� 	π
0
= 〠

H

h=1
h4c2hki:

ð22Þ

Furthermore, the value of B is given by

B = 2
π
2〠

H

h<l

ðπ
0
h2chki cos hzkit
� �

l2clki cos lzkit
� �

dzk

= 4
π
〠
H

h<l
hlð Þ2chkiclki

ðπ
0
cos hzkit cos lzkitdzk = 0:

ð23Þ

Based on Equations (22) and (23), it can be written as fol-
lows:

Pk gkð Þ = A + B = 〠
H

h=1
h4c2hki: ð24Þ

For i = 1, 2,⋯, n, we obtained

〠
q

k=1
λkPk gkð Þ = 〠

n

i=1
ci′D λð Þci

= c1′D λð Þc1 + c2′D λð Þc2+⋯+cn′D λð Þcn
= c′D λð Þc,

ð25Þ

where

D λð Þ =

D λ1ð Þ 0 ⋯ 0
0 D λ2ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ D λq
� �

2666664

3777775,

D λið Þ =

0 0 λi14 λi24 ⋯ λiH
4

0 0 λi14 λi24 ⋯ λiH
4

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 λi14 λi24 ⋯ λiH
4

2666664

3777775::
ð26Þ

Thus, the penalty component can be expressed in a
matrix form as follows:

〠
q

k=1
λk

ðπ
0

2
π

gki ′′ zkð Þ
� �2

dzk = c′D λð Þc: ð27Þ

Lemma 3. If the goodness of fit component is presented in
Lemma 1 and the penalty component is given by Lemma 2,
then the PWLS is

N−1 y∗ − Zcð Þ′W y∗ − Zcð Þ + c′D λð Þc: ð28Þ

In general, PWLS is defined as follows:

N−1 〠
n

i=1
〠
T

t=1
wit y∗it − 〠

q

k=1
gki zkitð Þ

 !2

+ 〠
q

k=1
λk

ðπ
0

2
π

gki ′′ zkð Þ
� �2

dzk, 0 < λk <∞:

ð29Þ

Besides, PWLS can be presented in the form of a matrix
as follows:

N−1 y∗ − Zcð Þ′W y∗ − Zcð Þ + c′D λð Þc: ð30Þ

The next step is to obtain a Fourier series estimator in
nonparametric regression for longitudinal data derived in
Theorem 4.

Theorem 4. If paired data are given, which follows the non-
parametric regression model for longitudinal data, then the
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mixed estimator that minimizes PWLS in Lemma 3,

min
gk∈C 0,πð Þ

N−1 〠
n

i=1
〠
T

t=1
wit y∗it − 〠

q

k=1
〠
T

t=1
gki zkitð Þ

 !2(

+ 〠
q

k=1
λk

ðπ
0

2
π

gk
′′ zkð Þ

� �2
dzk

)
,

ð31Þ

is ĝðk,h,λÞðx, zÞ = Ly∗ with y∗ = y − f and L = Z
½Z′WZ +NDðλÞ�−1Z′W.

Proof. The first estimation step in the mixed estimator of the
truncated spline and Fourier series in the nonparametric
regression model for longitudinal data is performed by esti-
mating the form of the Fourier series estimator by using the
PWLS method. The PWLS in Equation (29) can be written
in the form of a matrix as follows:

Q cð Þ =N−1 y∗ − Zcð Þ′W y∗ − Zcð Þ + c′D λð Þc =N−1y∗′Wy∗

− 2N−1c′Z′Wy∗ +N−1c′Z′WZc + c′D λð Þc:
ð32Þ

Next, we complete PWLS optimization using the follow-
ing steps:

min
c∈R 2+Hð Þnq

Q cð Þf g = min
c∈R 2+Hð Þnq

N−1y∗′Wy∗ − 2N−1c′Z′Wy∗
n

+N−1c′Z′WZc + c′D λð Þc
o
:

ð33Þ

To complete the optimization, the estimators are
obtained by performing a partial derivative of QðcÞ concern-
ing c and the results are equaled to zero. The given results are

ĉ = Z′WZ +ND λð Þ
h i−1

Z′Wy∗: ð34Þ

By substituting ĉ into Equation (9), we get

ĝ k,h,λð Þ x, zð Þ = Zĉ = Z Z′WZ +ND λð Þ
h i−1

Z′Wy∗ = Ly∗:

ð35Þ

So, the model in Equation (15) can be written as

y∗ = ĝ k,h,λð Þ x, zð Þ = Ly∗, ð36Þ

with y∗ = y − f and L = Z½Z′WZ +NDðλÞ�−1Z′W.

Lemma 5. If f jiðxjitÞ is approached with the truncated spline
function, then the WLS is

I − Lð Þy − I − Lð ÞMγ½ �′W I − Lð Þy − I − Lð ÞMγ½ �: ð37Þ

W is a nT × nT weighting matrix.

Proof. f jiðxjitÞ, j = 1, 2,⋯, p, is a truncated spline estimator
component. The component regression curve f is a linear
truncated spline function defined as follows:

f ji xjit
� �

= αjixjit + 〠
s

u=1
βuji xjit − Kuji

� �
+, ð38Þ

with truncated function

xjit − Kuji

� �
+ =

xjit − Kuji

� �
, xjit ≥ Kuji,

0, xjit < Kuji:

(
ð39Þ

If the component of the regression curve f involves one
predictor, then it can be written as follows:

f = f1′ f2′⋯ fn′
� �

′, ð40Þ

fi = 〠
p

j=1
f ji xji1
� �

〠
p

j=1
f ji xji2
� �

⋯ 〠
p

j=1
f ji xjiT
� � !

′, i = 1, 2,⋯, n:

ð41Þ

By using Equation (41), it can be described in the form of
a matrix as follows:

fi =

f ji xji1
� �

f ji xji2
� �
⋮

f ji xjiT
� �

266666664

377777775
=

xji1

xji2

⋮

xjiT

26666664

37777775αji

+

xji1 − K1 ji
� �1

+ xji1 − K2ji
� �1

+ ⋯ xji1 − Ksji

� �1
+

xji2 − K1 ji
� �1

+ xji2 − K2ji
� �1

+ ⋯ xji2 − Ksji

� �1
+

⋮ ⋮ ⋱ ⋮

xjiT − K1 ji
� �1

+ xjiT − K2ji
� �1

+ ⋯ xjiT − Ksji

� �1
+

266666664

377777775

β1ji

β2ji

⋮

βsji

266666664

377777775
=X jiαji + Sjiβji:

ð42Þ

The truncated spline function in the nonparametric
regression component for longitudinal data with p predictors
can be expressed in the following form:

fi = 〠
p

j=1
X jiαji + Sjiβji

h i
=Xiαi + Siβi: ð43Þ

5Abstract and Applied Analysis



So,

f =

f1′

f2′

⋮

fn′

26666664

37777775 =

X1α1

X2α2

⋮

Xnαn

26666664

37777775 +

S1β1

S2β2

⋮

Snβn

26666664

37777775 =

X1 0 ⋯ 0

0 X2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Xn

26666664

37777775

α1

α2

⋮

αn

26666664

37777775

+

S1 0 ⋯ 0

0 S2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Sn

26666664

37777775

β1

β2

⋮

βn

26666664

37777775 =Xα + Sβ:

ð44Þ

Furthermore, it can be written as follows:

f =

X1 0 ⋯ 0

0 X2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Xn















S1 0 ⋯ 0

0 S2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Sn

26666664

37777775

α1

α2

⋮

αn

β1

β2

⋮

βn

26666666666666666666664

37777777777777777777775
= XjS½ �

α

β

" #
=Mγ:

ð45Þ

M is a nT × ð1 + sÞnp matrix and γ is a ð1 + sÞnp × 1 vector.
The mixed model of nonparametric regression for longi-

tudinal data in Equation (1) can be written in a matrix as fol-
lows:

y = f + g + ε: ð46Þ

By substituting Equation (36) with Equation (46), we get

y = f + Ly∗ + ε: ð47Þ

The truncated spline component can be written as

y − Ly∗ = f + ε,
y − L y − fð Þ = f + ε,
y − Ly + Lf = f + ε,
y − Ly = f − Lf + ε,
I − Lð Þy = I − Lð Þf + ε:

ð48Þ

Substituting Equation (45) with Equation (48), we obtain

I − Lð Þy = I − Lð ÞMγ + ε: ð49Þ

If the function f jiðxjitÞ is approximated by the truncated
spline function as in Equation (38), then

ε = I − Lð Þy − I − Lð ÞMγ: ð50Þ

Therefore, we obtain the WLS by

ε′ε = I − Lð Þy − I − Lð ÞMγ½ �′W I − Lð Þy − I − Lð ÞMγ½ �, ð51Þ

where W is a weighting matrix for the regression of longitu-
dinal data. Next, the truncated spline estimator in the non-
parametric regression for longitudinal data is derived in
Theorem 6.

Theorem 6. If paired data which follows the nonparametric
regression model for longitudinal data is given, then the mixed
estimator that minimizes WLS in Lemma 5,

min
γ∈R 1+sð Þnp

I − Lð Þy − I − Lð ÞMγ½ �′W I − Lð Þy − I − Lð ÞMγ½ �
n o

,

ð52Þ

is f̂ðk,h,λÞðx, zÞ =MJ−1Ky with J = ð2 − L′ÞWLM −WM and

K = ½ðL′ − IÞWðI − LÞ�:.

Proof. The second estimation stage of the mixed estimator of
the truncated spline and Fourier series in the nonparametric
regression model for longitudinal data is performed using the
WLS method. The estimator can be obtained by completing
the WLS optimization as follows:

min
γ∈R 1+sð Þnp

I − Lð Þy − I − Lð ÞMγ½ �′W I − Lð Þy − I − Lð ÞMγ½ �
n o

= min
γ∈R 1+sð Þnp

Q γð Þf g:

ð53Þ

The estimators are obtained by performing a partial
derivative of QðγÞ and the results are equaled to zero. The
partial derivative results are as follows:

bγ = 2 − L′
� �

WLM −WM
h i−1

L′ − I
� �

W I − Lð Þ
h i

y = J−1Ky,

ð54Þ

where J = ð2 − L′ÞWLM −WM and K = ½ðL′ − IÞWðI − LÞ�.
By substituting bγ into the form of a truncated spline esti-

mator component as in Equation (45), we obtain

f̂ k,h,λð Þ x, zð Þ =Mbγ =MJ−1Ky, ð55Þ

f̂ k,h,λð Þ x, zð Þ =A k, h, λð Þy: ð56Þ
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After obtaining bγ , we obtain ĉ by substituting Equation
(56) with Equation (34).

ĉ = Z′WZ +ND λð Þ
h i−1

Z′Wy∗

= Z′WZ +ND λð Þ
h i−1

Z′W y − f̂ð Þ

= Z′WZ +ND λð Þ
h i−1

Z′W y −Mbγð Þ

= Z′WZ +ND λð Þ
h i−1

Z′W y −MJ−1Ky
� �

,

ĉ = Z′WZ +ND λð Þ
h i−1

Z′W I −MJ−1K
� �

y: ð57Þ

So,

ĝ k,h,λð Þ x, zð Þ = Zĉ = Z Z′WZ +ND λð Þ
h i−1

Z′W

� I −MJ−1K
� �

y = L I −MJ−1K
� �

y,

ĝ k,h,λð Þ x, zð Þ = B k, h, λð Þy: ð58Þ

By substituting bγ and ĉ into the mixed estimator of the

truncated spline and the Fourier series in the nonparametric
regression for longitudinal data, the following estimation
results are obtained.

bμ k,h,λð Þ = f̂ k,h,λð Þ + ĝ k,h,λð Þ =Mbγ + Zĉ =MJ−1Ky + L
� I −MJ−1K
� �

y = MJ−1K + L I −MJ−1K
� �� �

y,

μ̂ k,h,λð Þ =C k, h, λð Þy, ð59Þ

Table 1: Model for the simulation study.

Subject Model

1 y1t = 8:25 x1t − 1ð Þ 1 − x1tð Þ2 + sin 2πz1tð Þ + cos 2πz1tð Þ + ε1t

2 y2t = 9:55 x2t − 1ð Þ 1 − x2tð Þ2 + sin 2πz2tð Þ + cos 2πz2tð Þ + ε2t

3 y3t = 6:75 x3t − 1ð Þ 1 − x3tð Þ2 + sin 2πz3tð Þ + cos 2πz3tð Þ + ε3t

4 y4t = 3:25 x4t − 1ð Þ 1 − x4tð Þ2 + sin 2πz4tð Þ + cos 2πz4tð Þ + ε4t

5 y5t = 5:55 x5t − 1ð Þ 1 − x5tð Þ2 + sin 2πz5tð Þ + cos 2πz5tð Þ + ε5t

6 y6t = 7:75 x6t − 1ð Þ 1 − x6tð Þ2 + sin 2πz6tð Þ + cos 2πz6tð Þ + ε6t

7 y7t = 4:25 x7t − 1ð Þ 1 − x7tð Þ2 + sin 2πz7tð Þ + cos 2πz7tð Þ + ε7t

8 y8t = 8:55 x8t − 1ð Þ 1 − x8tð Þ2 + sin 2πz8tð Þ + cos 2πz8tð Þ + ε8t

9 y9t = 9:75 x9t − 1ð Þ 1 − x9tð Þ2 + sin 2πz9tð Þ + cos 2πz9tð Þ + ε9t

10 y10t = 4:75 x10t − 1ð Þ 1 − x10tð Þ2 + sin 2πz10tð Þ + cos 2πz10tð Þ + ε10t
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Figure 1: Scatterplot of simulated data for each subject and predictor: (a) truncated spline; (b) Fourier series.

Table 2: Summary of simulation results.

Knots Oscillation λ GCV

1

1 0.033 3.112

2 1.715 3.142

3 0.967 3.116

2

1 0.033 3.197

2 1.800 3.209

3 0.950 3.158

3

1 0.001 3.452

2 0.100 3.471

3 0.001 3.441
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with L = Z½Z′WZ +NDðλÞ�−1Z′W, J = ð2 − L′ÞWLM −WM
, and K = ½ðL′ − IÞWðI − LÞ�.

The mixed estimator depends on the optimum knot
point, oscillation parameter, and smoothing parameter. To
obtain the best model, it is essential to select the optimum
parameter. One of the criteria to select the optimum param-
eter is the generalized cross-validation (GCV) method [11].
The GCV function of the nonparametric regression model
for longitudinal data is as follows:

GCV Kopt,Hopt, λopt
� �

= N−1 I − C k, h, λð Þk k2
N−1trace I − C k, h, λð Þð Þ� �2 : ð60Þ

The optimum knot point, oscillation parameter, and
smoothing parameter are obtained by solving the minimum
optimization, as presented in Equation (60).

3.2. Simulation Study. To demonstrate the performance of
the proposed method, we created one sample size n = 10 with
t = 13. For the simulation study, we considered ten models
for each subject. The models are generated from the formula
that contains two different functions to represent the trun-
cated spline and Fourier series pattern. A polynomial func-
tion is used to present the truncated spline, while a
trigonometry function is used to present the Fourier series.
Additionally, xit and zit are generated from Uð0, 1Þ distribu-

tion, and random errors εit are generated from a multivariate
normal distribution.

Using ten subjects and two predictors, the formula for
generated data is stated as follows:

yit = f it xitð Þ + git zitð Þ + εit , i = 1, 2,⋯, 10, t = 1, 2,⋯, 13:
ð61Þ

The simulation study is applied based on these models, as
shown in Table 1.

Figure 1 illustrates the partial relationship between the
response and each predictor variable. It can be seen that the
relationship between predictor x and the response for each
subject tends to change at certain subintervals, which is suit-
able for the truncated spline estimator. The relationship
between z and the response for each subject has a repetitive
pattern with a particular trend line, which is suitable for the
Fourier series estimator.

Wu and Zhang [7] stated that a regression’s performance
strongly depends on good knot locations and a good choice
of the number of knots. In general, the number of knots is
smaller than the sample size n. Considering the scatterplot
of simulated data and computational convenience, our study
uses three knots ðK = 1, 2, 3Þ and three oscillation parameters
ðH = 1, 2, 3Þ. To choose the optimum parameter, we use the
minimum GCV criteria. Table 2 provides a summary of the
GCV for varying knots and oscillations. What is remarkable
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Figure 2: Scatterplot between suPAR levels with each predictor for the subject: (a) minimal lesion; (b) mod advance; (c) far advance; (d) KP
Miller.
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is that using one knot and one oscillation with λ = 0:033, we
obtain the best model with the lowest GCV, 3.112. This
model yields satisfactory results with a root mean square
error (RMSE) of 0.837.

3.3. Case Study. After conducting the simulation, we applied
the proposed model to the case to confirm the results of the
previous simulation. The data for this research was obtained
from a study conducted by Fernandes and Solimun [16], that
is, patients with pulmonary tuberculosis disease. Pulmonary
tuberculosis is a contagious disease caused byMycobacterium
tuberculosis, which can attack various organs, particularly the
lungs. This disease is typical among women in their produc-
tive years (ages 15-50 years). TheWorld Health Organization
(WHO) declared tuberculosis a global emergency in 1992
[17]. WHO report in 2013 stated that there were 8.6 million
tuberculosis cases in 2012, of which 40% of the cases were in
Southeast Asia. In a further report, Indonesia was noted as
the country with the second-largest number of cases, 2.8 mil-
lion, in 2015.

This study’s dataset consists of four patients ðn = 4Þ that
represent radiological images of the thorax (stadium), which
areminimal lesion,mod advance, far advance, and KPMiller.
suPAR level as a response ðyÞ with mL units in several obser-
vation periods every two weeks for six months of treatment
ðt = 13Þ is observed. The predictor variables are the erythro-
cyte sedimentation rate ðxÞ with mm/hour units and body
mass index ðzÞ with kg/m3 units.

The partial relationship between the suPAR level and each
predictor variable for each subject is presented in Figure 2.
There were changes in data patterns in the four subjects
observed for six months with measurements taken every
two weeks. The plot in Figure 2 shows a different pattern
for each predictor. For this reason, we propose a nonpara-
metric regression approach based on a mixed estimator for
longitudinal data. The erythrocyte sedimentation rate ðxÞ will
be approached by a truncated spline estimator, while the
body mass index ðzÞ will be approached by a Fourier series
estimator.

In this case study, similar to the simulation study, only
three knot points and three oscillation parameters were used.
From the various knots and oscillation parameter results, we
obtained the GCV values listed in Table 3. Interestingly, the
data in this table is that the minimum GCV achieved one

oscillation parameter under the same conditions as the simu-
lation study, that is, one knot point. However, it has a differ-
ent smoothing parameter, λ = 1:25. This model provides a
GCV value of 0.239 with a RMSE of 0.197. The knot point
location and the results of the parameter estimation for each
subject of patients with pulmonary tuberculosis are pre-
sented in Tables 4 and 5, respectively.

Based on the optimal knot points in Table 3 and the
parameter estimation for each subject in Table 4, the non-
parametric regression model based on a mixed estimator
for longitudinal data can be written as follows:

(1) Model estimation for subject minimal lesion:

Table 4: Knot point location for each subject.

Subject Knot point location

Minimal lesion 6.184

Mod advance 12.449

Far advance 18.816

KP Miller 57.714

Table 3: Summary of case study results.

Knots Oscillation λ GCV

1

1 1.250 0.239

2 0.030 0.250

3 0.100 0.321

2

1 0.065 0.259

2 0.025 0.261

3 0.975 0.266

3

1 0.025 0.259

2 0.025 0.261

3 1.150 0.266

Table 5: The results of parameter estimation.

Subject Parameter Estimation

Minimal lesion

α01 -0.481

α11 0.105

β111 -0.119

d11 0.004

c011 -0.849

c111 5:6 × 10−6

Mod advance

α02 0.441

α12 -0.038

β112 0.041

d12 -0.069

c012 4.642

c112 1:1 × 10−7

Far advance

α03 -0.073

α13 0.004

β113 -0.004

d13 0.008

c013 -1.903

c113 1:4 × 10−6

KP Miller

α04 -0.407

α14 0.073

β114 -0.009

d14 0.058

c014 -0.513

c114 1:6 × 10−6
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ŷ1t = −0:481 + 0:105x11t − 0:119 x11t − 6:184ð Þ+
+ 0:004z11t − 0:849 + 5:6 × 10−6 cos z11t

= −1:33 + 0:105x11t − 0:119 x11t − 6:184ð Þ+
+ 0:004z11t + 5:6 × 10−6 cos z11t

ð62Þ

(2) Model estimation for subject mod advance:

ŷ2t = 0:441 − 0:038x12t + 0:041 x12t − 12:449ð Þ+ − 0:069z12t
+ 4:642 + 1:1 × 10−7 cos z12t = 5:083 − 0:038x12t
+ 0:041 x12t − 12:449ð Þ+ − 0:069z12t
+ 1:1 × 10−7 cos z12t

ð63Þ

(3) Model estimation for subject far advance:

ŷ3t = −0:073 + 0:004x13t − 0:004 x13t − 18:816ð Þ+
+ 0:008z13t − 1:903 + 1:4 × 10−6 cos z13t

= −1:976 + 0:004x13t − 0:004 x13t − 18:816ð Þ+
+ 0:008z13t + 1:4 × 10−6 cos z13t

ð64Þ

(4) Model estimation for subject KP Miller:

ŷ4t = −0:407 + 0:073x14t − 0:009 x14t − 57:714ð Þ+
+ 0:058z14t − 0:513 + 1:6 × 10−6 cos z14t

= −0:92 + 0:073x14t − 0:009 x14t − 57:714ð Þ+
+ 0:058z14t + 1:6 × 10−6 cos z14t

ð65Þ

4. Conclusions

Based on the simulation study and the case study, we selected
the best model by using the minimum GCV. The higher knot
point or oscillation parameter does not produce a high GCV
and vice versa. Therefore, we tried several combinations of
knot points and the oscillation parameter to choose the best
model. The result of the case study of patients suffering from
pulmonary tuberculosis is similar to the simulation study.
This study found that the best model uses a one knot point
and one oscillation with different λ. It can be concluded that
the simulation study supports the results of the case study.

A limitation of this study is that it does not investigate
other sample sizes. Consequently, we cannot compare the
performance of the developed theory for different sample
sizes. Despite its limitations, the study certainly adds to our
understanding of the mixed estimator’s new theory in non-
parametric regression for longitudinal data.
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