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The primary purpose of this research is to demonstrate an efficient replacement double transform named the Laplace–Sumudu
transform (DLST) to unravel integral differential equations. The theorems handling fashionable properties of the Laplace–
Sumudu transform are proved; the convolution theorem with an evidence is mentioned; then, via the usage of these outcomes,
the solution of integral differential equations is built.

1. Introduction

Double integral transform and their characteristics and theo-
ries are nevertheless new and below studies [1–3], in which
the preceding research treated some components of them
along with definitions, simple theories, and the answer of
normal and partial differential equations [4–16]; addition-
ally, some researchers addressed these transforms and com-
bine them with exclusive mathematical method such as
differential transform approach, homotopy perturbation
technique, Adomian decomposition method, and variational
iteration method [7–16] so that we can solve the linear and
nonlinear fractional differential equations.

In this paper, we are ready to spotlight the way during
which the Laplace–Sumudu transform is blend to solve the
integral differential equations.

A wide range of linear integral differential equations are
considered which include the Volterra integral equation
(Section 3.1), the Volterra integro-partial differential
equation (Section 3.2), and the partial integro-differential
equation (Section 3.3).

Definition 1. The double Laplace–Sumudu transform of the
function ϕðx, tÞ of two variables x > 0 and t > 0 is denoted

by LxSt½ϕðx, tÞ� = ϕðρ, σÞ and defined as

LxSt ϕ x, tð Þ½ � = ϕ ρ, σð Þ = 1
σ

ð∞
0

ð∞
0
e−ρx−t/σϕ x, tð Þdxdt: ð1Þ

Clearly, double Laplace–Sumudu transform is a linear
integral transformation as shown below:

LxSt γϕ x, tð Þ + ηφ x, tð Þ½ �
= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ γϕ x, tð Þ + ηφ x, tð Þ½ �dxdt

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σγϕ x, tð Þdxdt

+ 1
σ

ð∞
0

ð∞
0
e−ρx−t/σηφ x, tð Þdxdt

= γ

σ

ð∞
0

ð∞
0
e−ρx−t/σϕ x, tð Þdxdt

+ η

σ

ð∞
0

ð∞
0
e−ρx−t/σφ x, tð Þdxdt

= γLxSt ϕ x, tð Þ½ � + ηLxSt φ x, tð Þ½ �,

ð2Þ

where γ and η are constants.
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Definition 2. The inverse double Laplace–Sumudu transform
L−1x S−1t ½ϕðρ, σÞ� = ϕðx, tÞ is defined by the following form:

L−1x S−1t ϕ ρ, σð Þ� �
= ϕ x, tð Þ = 1

2πi

ðγ+i∞
γ−i∞

eρx dρ

� 1
2πi

ðω+i∞
ω−i∞

1
σ
et/σ ϕ ρ, σð Þ dσ:

ð3Þ

2. Double Laplace–Sumudu Transform of
Basic Functions

(1) Let ϕðx, tÞ = 1, x > 0, t > 0, then

ϕ ρ, σð Þ = LxSt 1½ � =
1
σ

ð∞
0

ð∞
0
e−ρx−t/σdxdt

=
ð∞
0
e−ρxdx

ð∞
0

1
σ
e−t/σdt = 1

ρ
:

ð4Þ

(2) Let ϕðx, tÞ = xc td , x > 0, t > 0, then

ϕ ρ, σð Þ = LxSt xctd
h i

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σxctddxdt

=
ð∞
0
e−ρxxcdx

ð∞
0

1
σ
e−t/σtddt

= Γ c + 1½ �
ρc+1

σdΓ d + 1½ �, Re c½ � > −1, Re d½ � > −1:

ð5Þ

If c and d are positive integral, then

LxSt xctd
h i

= c!d!
ρc+1

σd: ð6Þ

(3) Let ϕðx, tÞ = ec x+d t , then

ϕ ρ, σð Þ = LxSt ec x+d t
h i

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σec x+d tdxdt

= dx
ð∞
0

1
σ
e− t/σ−dð Þtdt = 1

ρ − cð Þ 1 − dσð Þ :
ð7Þ

Similarly,

LxSt ei c x+d tð Þ
h i

= 1
ρ − icð Þ 1 − idσð Þ

= ρ − cdσð Þ + i c + dσρð Þ
ρ2 + c2ð Þ 1 + d2σ2� � :

ð8Þ

Consequently,

LxSt sin cx + dtð Þ½ � = c + dσρ

ρ2 + c2ð Þ 1 + d2σ2
� � ,

LxSt cos cx + dtð Þ½ � = ρ − cdσ

ρ2 + c2ð Þ 1 + d2σ2� � :
ð9Þ

(4) Let ϕðx, tÞ = sinh ðcx + dtÞ or cosh ðcx + dtÞ:
Recall that

sinh cx + dtð Þ = ec x+d t − e− c x+d tð Þ

2 , cosh cx + dtð Þ

= ec x+d t + e− c x+d tð Þ

2 :

ð10Þ

Therefore,

LxSt sinh cx + dtð Þ½ � = c + dσρ

ρ2 − c2ð Þ 1 − d2σ2
� � ,

LxSt cosh cx + dtð Þ½ � = ρ + cdσ

ρ2 − c2ð Þ 1 − d2σ2� � :
ð11Þ

(5) Let ϕðx, tÞ = J0ðc
ffiffiffiffi
xt

p Þ, then

LxSt J0 c
ffiffiffiffi
xt

p� �h i
= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ J0 c

ffiffiffiffi
xt

p� �
dxdt

=
ð∞
0

1
σ
e−t/σdt

ð∞
0
e−ρx J0 c

ffiffiffiffi
xt

p� �
dx

= 1
ρ
S e−c

2t/4ρ
h i

= 4
4ρ + σc2

,

ð12Þ

where J0ðxÞ is the modified Bessel function of order zero.
(6) Let ϕðx, tÞ = f ðxÞgðtÞ, then

ϕ ρ, σð Þ = LxSt f xð Þg tð Þ½ � = 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ f xð Þg tð Þdxdt

=
ð∞
0
e−ρx f xð Þdx

	 
 ð∞
0

1
σ
e−t/σg tð Þdt

	 

= Lx f xð Þ½ �St g tð Þ½ �:

ð13Þ

2.1. Existence Condition for the Double Laplace–Sumudu
Transform. If ϕðx, tÞ is an exponential order, then c and d
as x→∞, t→∞:, and if ∃ a positive constant K such that
∀x > X, t > T , then

ϕ x, tð Þj j = Kec x+d t , ð14Þ

and we write ϕðx, tÞ =Oec x+d t as x→∞, t→∞: Or,
equivalently,
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lim
x→∞,t→∞

e−ρx−t/σ ϕ x, tð Þj j = K lim
x→∞,t→∞

e− ρ−cð Þx− t/σ−dð Þt

= 0, ρ > c, 1
σ
> d:

ð15Þ

The function ϕðx, tÞ is called an exponential order as x→
∞, t→∞, and clearly, it does not grow faster than Kec x+d t

as x→∞, t→∞.

Theorem 3. If a function ϕðx, tÞ is a continuous function in
every finite interval ð0, XÞ and ð0, TÞ of exponential order
ec x+d t , then the double Laplace–Sumudu transform of ϕðx, tÞ
exists for all ρ and 1/σ provided Re ½ρ� > c and Re ½1/σ� > d:

Proof. From the Definition 1., we have

ϕ ρ, σð Þ�� �� = 1
σ

ð∞
0

ð∞
0
e−ρx−t/σϕ x, tð Þdxdt

����
����

≤ K
ð∞
0
e− ρ−cð Þxdx

ð∞
0

1
σ
e− t/σ−dð Þtdt

= K
ρ − cð Þ 1 − dσð Þ , Re ρ½ � > c, Re 1

σ

	 

> d:

ð16Þ

Then, from Eq. (16) we have lim
x→∞,t→∞

jϕðρ, σÞj = 0, or

lim
x→∞,t→∞

ϕðρ, σÞ = 0.

2.2. Basic Derivative Properties of the Double Laplace–
Sumudu Transform. If ϕðρ, σÞ = LxSt½ϕðx, tÞ�, then

ðIÞ LxSt
∂ϕ x, tð Þ

∂x

	 

= ρϕ ρ, σð Þ − S ϕ 0, tð Þ½ �: ð17Þ

Proof.

LxSt
∂ϕ x, tð Þ

∂x

	 

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ

∂ϕ x, tð Þ
∂x

dxdt

= 1
σ

ð∞
0
e−t/σdt

ð∞
0
e−ρx

∂ϕ x, tð Þ
∂x

dx:

ð18Þ

Using integration by parts, let u = e−ρx, dv = ð ð∂ϕðx, tÞÞ/
∂x Þdx, then

LxSt
∂ϕ x, tð Þ

∂x

	 

= 1
σ

ð∞
0
e−t/σdt −ϕ 0, tð Þ + ρ

ð∞
0
e−ρxϕ x, tð Þdx

� 

= ρϕ ρ, σð Þ − S ϕ 0, tð Þð Þ:

ð19Þ

ðIIÞ LxSt
∂ϕ x, tð Þ

∂t

	 

= 1
σ
ϕ ρ, σð Þ − 1

σ
L ϕ x, 0ð Þð Þ: ð20Þ

Proof.

LxSt
∂ϕ x, tð Þ

∂t

	 

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ

∂ϕ x, tð Þ
∂t

dxdt

= 1
σ

ð∞
0
e−ρxdx

ð∞
0
e−

t
σ
∂ϕ x, tð Þ

∂t
dt:

ð21Þ

Using integration by parts, let u = e−t/σ, dv = ðð∂ϕðx, tÞÞ/
∂tÞdt, then LxSt½∂ϕðx, tÞ/∂t� = 1/σÐ∞0 e−ρxdxf−ϕðx, 0Þ + 1/σÐ∞
0 e−t/σϕðx, tÞdtg = 1/σϕðρ, σÞ − 1/σLðϕðx, 0ÞÞ.
Similarly, we can prove

LxSt
∂2ϕ x, tð Þ

∂x2

" #
= ρ2ϕ ρ, σð Þ − ρS ϕ 0, tð Þð Þ

− S ϕx 0, tð Þð Þ:

ðIIIÞ LxSt
∂2ϕ x, tð Þ

∂t2

" #
= 1
σ2

ϕ ρ, σð Þ − 1
σ2 L ϕ x, 0ð Þð Þ

−
1
σ
L ϕt x, 0ð Þð Þ:

LxSt
∂2ϕ x, tð Þ
∂x∂t

" #
= ρ

σ
ϕ ρ, σð Þ − ρ

σ
L ϕ x, 0ð Þð Þ

ð22Þ

Theorem 4. If ϕðρ, σÞ = LxSt½ϕðx, tÞ�, then

LxSt ϕ x − δ, t − εð ÞH x − δ, t − εð Þ½ � = e−ρδ−ε/σϕ ρ, σð Þ, ð23Þ

where Hðx, tÞ is the Heaviside unit step function defined
by

H x − δ, t − εð Þ =
1, x > δ, t > ε

0, otherwise

( )
: ð24Þ

Proof. We have, by Definition 1.,

LxSt ϕ x − δ, t − εð ÞH x − δ, t − εð Þ½ �
= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σϕ x − δ, t − εð ÞH x − δ, t − εð Þdxdt

= 1
σ

ð∞
δ

ð∞
ε

e−ρx−t/σϕ x − δ, t − εð Þdxd,

ð25Þ

that is, by putting x − δ = q, t − ε =w

= e−ρδ−ε/σ
1
σ

ð∞
0

ð∞
0
e−ρq−w/σϕ q,wð Þ dq dw

= e−ρδ−ε/σϕ ρ, σð Þ:
ð26Þ

3Abstract and Applied Analysis



2.3. Convolution Theorem of Double Laplace–
Sumudu Transform

Definition 5. The convolution of ϕðx, tÞ and ψðx, tÞ is
denoted by ðϕ∗∗ψÞðx, tÞ and defined by

ϕ∗∗ψð Þ x, tð Þ =
ðx
0

ðt
0
ϕ x − δ, t − εð Þψ δ, εð Þdδdε: ð27Þ

Theorem 6. (convolution theorem) If LxSt½ϕðx, tÞ� = ϕðρ, σÞ
and LxSt½ψðx, tÞ� = �ψðρ, σÞ, then

LxSt ϕ∗∗ψð Þ x, tð Þ½ � = σϕ ρ, σð Þ�ψ ρ, σð Þ: ð28Þ

Proof. From the definition 1., we have

LxSt ϕ∗∗ψð Þ x, tð Þ½ �
= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ ϕ∗∗ψð Þ x, tð Þdxdt

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ

ðx
0

ðt
0
ϕ x − δ, t − εð Þψ δ, εð Þdδdε

� 

dxdt,

ð29Þ

which is, using the Heaviside unit step function,

= 1
σ

ð∞
0

ð∞
0
e−ρx−t/σ

�ð∞
0

ð∞
0
ϕ x − δ, t − εð ÞH

� x − δ, t − εð Þψ δ, εð Þdδdε


dxdt

=
ð∞
0

ð∞
0
ψ δ, εð Þdδdε

� 1
σ

ð∞
0

ð∞
0
e−ρx−t/σϕ x − δ, t − εð ÞH

� x − δ, t − εð Þdxdt


,

ð30Þ

that is, by Theorem 4 gives

=
ð∞
0

ð∞
0
ψ δ, εð Þdδdε e−ρδ−ε/σϕ ρ, σð Þ

n o

= ϕ ρ, σð Þ
ð∞
0

ð∞
0
e−ρδ−ε/σψ δ, εð Þdδdε

= σϕ ρ, σð Þ�ψ ρ, σð Þ:

ð31Þ

3. Application of Laplace–Sumudu Transform
(DLST) of Integral Differential Equations

In this section, we apply the double Laplace–Sumudu trans-
form (DLST) method to linear integral differential equations.

3.1. Volterra Integral Equation. Consider the linear Volterra
integral equation as form

ϕ x, tð Þ = g x, tð Þ + λ
ðx
0

ðt
0
ϕ x − δ, t − εð Þψ δ, εð Þdδdε, ð32Þ

where ϕðx, tÞ is the unknown function, λ is a constant, and
gðx, tÞ and ψðx, tÞ are two known functions. Applying the
double Laplace–Sumudu transform (DLST) with linearity
to both sides of equation (32) and using Theorem 6 (convo-
lution theorem), we get

ϕ ρ, σð Þ = �g ρ, σð Þ + λσϕ ρ, σð Þ�ψ ρ, σð Þ: ð33Þ

Consequently,

ϕ ρ, σð Þ = �g ρ, σð Þ
1 − λσ�ψ ρ, σð Þ : ð34Þ

Taking L−1x S−1t ½ϕðρ, σÞ� for equation (34), we obtain the
solution ϕðx, tÞ of equation (32).

ϕ x, tð Þ = L−1x S−1t
�g ρ, σð Þ

1 − λσ�ψ ρ, σð Þ
	 


: ð35Þ

We illustrate the above method by simple examples.

(a) Solve the equation

ϕ x, tð Þ = a − λ
ðx
0

ðt
0
ϕ δ, εð Þdδdε: ð36Þ

where a and λ are constant.
Applying the double Laplace–Sumudu transform (DLST)

of equation (36), we get

ϕ ρ, σð Þ = a
ρ
−
λσ

ρ
ϕ ρ, σð Þ: ð37Þ

Consequently,

ϕ ρ, σð Þ = a
ρ + λσ

: ð38Þ

Taking L−1x S−1t for equation (38), we obtain the solution
ϕðx, tÞ of equation (36).

ϕ x, tð Þ = L−1x S−1t
a

ρ + λσ

	 

= aJ0 2

ffiffiffiffiffiffiffi
λxt

p� �
: ð39Þ

(b) Solve the equation

a2t =
ðx
0

ðt
0
ϕ x − δ, t − εð Þϕ δ, εð Þdδdε, ð40Þ

where a is a constant.
Applying (DLST) of equation (40), we get

a2σ
ρ

= σϕ2 ρ, σð Þ: ð41Þ
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Or

ϕ ρ, σð Þ = affiffiffi
ρ

p : ð42Þ

Taking L−1x S−1t for equation (42), we obtain the solution
ϕðx, tÞ of equation (40).

ϕ x, tð Þ = L−1x S−1t
affiffiffi
ρ

p
	 


= affiffiffi
π

p :
1ffiffiffi
x

p : ð43Þ

(c) Solve the equation

ðx
0

ðt
0
eδ−εϕ x − δ, t − εð Þdδdε = xex−t − xex: ð44Þ

Applying (DLST) of equation (44), we get

σ ϕ ρ, σð Þ
ρ − 1ð Þ 1 + σð Þ =

1
ρ − 1ð Þ2 1 + σð Þ −

1
ρ − 1ð Þ2 : ð45Þ

Simplifying and taking L−1x S−1t for equation (45), we
obtain

ϕ x, tð Þ = L−1x S−1t
−1
ρ − 1ð Þ

	 

= −ex: ð46Þ

3.2. Volterra Integro-Partial Differential Equations. Consider
the linear Volterra integro-partial differential equation as
form

∂ϕ x, tð Þ
∂x

+ ∂ϕ x, tð Þ
∂t

= g x, tð Þ + λ
ðx
0

ðt
0
ϕ x − δ, t − εð Þψ δ, εð Þdδdε,

ð47Þ

with the conditions:

ϕ x, 0ð Þ = f0 xð Þ, ϕ 0, tð Þ = h0 tð Þ, ð48Þ

where ϕðx, tÞ is the unknown function, λ is a constant, and
gðx, tÞ and ψðx, tÞ are two known functions.

Applying (DLST) to both sides of (47) and single (LT)
and (ST) for equation (48) and simplification, we get

ϕ ρ, σð Þ = f0 ρð Þ + σh0 σð Þ + σ�g ρ, σð Þ
1 + σρ − λσ2�ψ ρ, σð Þ� � : ð49Þ

Applying L−1x S−1t to (49), we obtain the solution of (47) in
the form

ϕ x, tð Þ = L−1x S−1t

"
1

1 + σρ − λσ2�ψ ρ, σð Þ� �
� f0 ρð Þ + σh0 σð Þ + σ�g ρ, σð Þ
h i#

:

ð50Þ

We illustrate the above method by a simple example.

(d) Solve the equation

By substituting ψðδ, εÞ = 1, λ = 1, gðx, tÞ = −1 + ex + et +
ex+t in (47), we have got

∂ϕ x, tð Þ
∂x

+ ∂ϕ x, tð Þ
∂t

= −1 + ex + et + ex+t

+
ðx
0

ðt
0
ϕ x − δ, t − εð Þ dδ dε,

ð51Þ

with the conditions:

ϕ x, 0ð Þ = ex = f0 xð Þ, ϕ 0, tð Þ = et = h0 tð Þ: ð52Þ

Substituting

f0 ρð Þ = 1
ρ − 1 , h0 σð Þ = 1

1 − σ
, �g ρ, σð Þ

= −1
ρ

+ 1
ρ − 1 + 1

ρ 1 − σð Þ + 1
ρ − 1ð Þ 1 − σð Þ

ð53Þ

in (50) and simplifying, we get the solution of (51)

ϕ x, tð Þ = L−1x S−1t
1

ρ − 1ð Þ 1 − σð Þ
	 


= ex+t : ð54Þ

3.3. Partial Integro-Differential Equation. Consider the linear
partial integro-differential equation as form

∂2ϕ x, tð Þ
∂t2

−
∂2ϕ x, tð Þ

∂x2
+ ϕ x, tð Þ

+
ðx
0

ðt
0
ψ x − δ, t − εð Þ ϕ δ, εð Þ dδ dε = g x, tð Þ,

ð55Þ

with the conditions:

ϕ x, 0ð Þ = f0 xð Þ, ∂ϕ x, 0ð Þ
∂t

= f1 xð Þ, ϕ 0, tð Þ

= h0 tð Þ, ∂ϕ 0, tð Þ
∂x

= h1 tð Þ:
ð56Þ

Applying (DLST) to both sides of (55) and single (LT)
and (ST) for equation (56) and simplification, we get

ϕ ρ, σð Þ = f0 ρð Þ + σf1 ρð Þ − σ2ρ h0 σð Þ − σ2 h1 σð Þ + σ2 �g ρ, σð Þ
1 − σ2ρ2 + σ2 + σ3 �ψ ρ, σð Þð Þ :

ð57Þ
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Applying L−1x S−1t to (57), we obtain the solution of (55) in
the form

ϕ x, tð Þ = L−1x S−1t
f0 ρð Þ + σf1 ρð Þ − σ2ρ h0 σð Þ − σ2 h1 σð Þ + σ2 �g ρ, σð Þ

1 − σ2ρ2 + σ2 + σ3 �ψ ρ, σð Þð Þ

" #
:

ð58Þ

We illustrate the above method by a simple example.

(e) Solve the equation:

By substituting ψðx − δ, t − εÞ = ex−δ+t−ε, gðx, tÞ = ex+t +
xtex+t in (55), we have got

∂2ϕ x, tð Þ
∂t2

−
∂2ϕ x, tð Þ

∂x2
+ ϕ x, tð Þ

+
ðx
0

ðt
0
ex−δ+t−ε ϕ δ, εð Þ dδ dε = ex+t + x t ex+t ,

ð59Þ

with the conditions:

ϕ x, 0ð Þ = ex = f0 xð Þ, ∂ϕ x, 0ð Þ
∂t

= ex = f1 xð Þ, ϕ 0, tð Þ

= et = h0 tð Þ, ∂ϕ 0, tð Þ
∂x

= et = h1 tð Þ:
ð60Þ

Substituting

f0 ρð Þ = f1 ρð Þ = 1
ρ − 1 , h0 σð Þ = h1 σð Þ

= 1
1 − σ

, �g ρ, σð Þ = 1
ρ − 1ð Þ 1 − σð Þ + σ

ρ − 1ð Þ2 1 − σð Þ2
ð61Þ

in (58) and simplifying, we get a solution of (59)

ϕ x, tð Þ = L−1x S−1t
1

ρ − 1ð Þ 1 − σð Þ
	 


= ex+t: ð62Þ

4. Conclusion

In this paper, the Laplace–Sumudu transform approach for
solving integral differential equations is studied. We provided
the theorems and popular properties for this new double
transform and furnished some examples. The examples show
that the Laplace–Sumudu transform approach is powerful in
solving the equations of taken into consideration type, and a
couple of advanced problems in linear and nonlinear partial
differential equations and nonlinear integral differential
equations could be discussed during a later paper.
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