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The primary purpose of this research is to demonstrate an efficient replacement double transform named the Laplace-Sumudu
transform (DLST) to unravel integral differential equations. The theorems handling fashionable properties of the Laplace-
Sumudu transform are proved; the convolution theorem with an evidence is mentioned; then, via the usage of these outcomes,

the solution of integral differential equations is built.

1. Introduction

Double integral transform and their characteristics and theo-
ries are nevertheless new and below studies [1-3], in which
the preceding research treated some components of them
along with definitions, simple theories, and the answer of
normal and partial differential equations [4-16]; addition-
ally, some researchers addressed these transforms and com-
bine them with exclusive mathematical method such as
differential transform approach, homotopy perturbation
technique, Adomian decomposition method, and variational
iteration method [7-16] so that we can solve the linear and
nonlinear fractional differential equations.

In this paper, we are ready to spotlight the way during
which the Laplace-Sumudu transform is blend to solve the
integral differential equations.

A wide range of linear integral differential equations are
considered which include the Volterra integral equation
(Section 3.1), the Volterra integro-partial differential
equation (Section 3.2), and the partial integro-differential
equation (Section 3.3).

Definition 1. The double Laplace-Sumudu transform of the
function ¢(x, t) of two variables x >0 and ¢ > 0 is denoted

by L, S,[¢(x, t)] = ¢(p, ) and defined as

LS[9(x. ] =$(p.o) = = JOOJOOE_P"_t/"gb(x, t)dxdt. (1)

0Jo Jo

Clearly, double Laplace-Sumudu transform is a linear
integral transformation as shown below:

1 00 OO

+ —J e P ne(x, t)dxdt (2)
9Jo Jo

= XJ e P17 (x, t)dxdt

8 S

(00

e P (x, t)dxdt

=YL S [@(x, £)] + 1L, S [p(x, 1)),

where y and # are constants.
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Definition 2. The inverse double Laplace-Sumudu transform
L'S;'[¢(p, 0)] = ¢(x, t) is defined by the following form:

1 y+ico
LS Bpo)) =060 = o | edp

271 ), oo

1

SR L o $(p,0)do.
2711} yois O ’

2. Double Laplace-Sumudu Transform of
Basic Functions
(1) Let ¢(x,t)=1,x>0,¢>0, then

_ 1 (o yioe]
d(p,0)=L.S,[1] = ;J J e P17 dxdt

0 Jo

= J e"”‘dxj Zedr=_.
0 09 P
(2) Let ¢(x,t) =x°t%, x> 0,¢ >0, then

_ 1 00 OO
¢(p0)=L,S, [xctd} = —J J e Pt dxdt
0

0 Jo

00 (o) 1
= J e_P"xcde Zetoplgr
0 00

I 1
TN gy 1), Re [ > -1, Re [d] > 1.
pC+

If ¢ and d are positive integral, then

cld!
c+1 ad
P

LS, [xctd] =

(3) Let ¢(x, t) = e**4!, then

_ 1 00 OO
¢(P’ O') — LxSt |:ecx+dt] — _J J e—prt/oechrdtdxdt
0

o 0

1 1
= de — e_(tla_d)tdt = — .
) o (p-0(1-do)

Similarly,

1
(p—ic)(1-ido)
_ (p—cdo) +i(c+dop)
(P2 +)(1+d°0?)

LS, [ei(caﬁ-d t)i| _

X
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Consequently,

c+dop

L.S,[sin (cx +dt)] = )i+ dzaz) >

p—cdo

L,.S,[cos (ex +dt)] = Pl dzaz) .

(4) Let ¢(x, t) = sinh (cx + dt) or cosh (cx + dt).
Recall that

cx+dt _ e—(chrdt)
sinh (cx +dt) = 3 ,cosh (cx + dt)
ecxtdt 4 p=(cx+dt)
- 2
Therefore,
L,S,[sinh (cx + dt)] ¢+ dop
1 = >
o (P2 - ) (1-d’0?)
p+cdo

L.S,[cosh (cx +dt)] =

(PP-)(1-d'0?)
(5) Let ¢(x, t) = J(cv/xt), then

RSO R COE

_ Ool —tlo e —px
—JO L dtj0 e ]O(C\/E)dx (12)

_ lS|:e—th/4p:| _ 4
p 4p +oc2’

where ] (x) is the modified Bessel function of order zero.

(6) Let ¢(x, t) = f(x) g(t), then

8(p.0) = LS 0] = - [ [ e pwg(oydsa

0Jo Jo

= U:Oe‘f”‘ f(x)dx} “:Oée_wg(f)dt]
=L,[f(x)]S:[g()].

(13)

2.1. Existence Condition for the Double Laplace-Sumudu
Transform. If ¢(x,t) is an exponential order, then ¢ and d
as x — 00, — 00., and if 3 a positive constant K such that

Vx> X,t>T, then

|¢(x’ t>| =Kecx+dt’

and we write ¢(x,t)=0e !

equivalently,

(14)

as x —o0o,t— 00. Or,
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lim e ”"|¢(x,t)|=K lim ¢ (prox=(tlo=d)t

X—00,t—00 X—00,—00
(15)

1
=0,p>c¢, — >d.
p o

The function ¢(x, t) is called an exponential order as x —

00, t — 00, and clearly, it does not grow faster than Ke‘**?!
as x — 00, f — 00.

Theorem 3. If a function ¢(x, t) is a continuous function in
every finite interval (0,X) and (0,T) of exponential order
e“**4t  then the double Laplace-Sumudu transform of ¢(x, t)
exists for all p and 1/o provided Re [p] > ¢ and Re [1/0] > d.

Proof. From the Definition 1., we have

el = [ [ e mgts asar

0Jo

(o] (o] 1
SKJ e_<"_c)xdxj -

= e—(t/o—d)tdt (16)
0 0

= WKl—rM)’Re [p] > c,Re B] >d.

Then, from Eq. (16) we have lim |¢(p,0)|=0, or

X—00,t—00
lim ¢(p,0)=0.
X—00,[—00

2.2. Basic Derivative Properties of the Double Laplace-
Sumudu Transform. If ¢(p, o) = L,S,[¢(x, t)], then

0 , _
W L8[ < patp) -sig.0). 7
Proof.
0900 ] _ L[ [ s 28(5)
L"Sf[ ox ]‘EL J, et )
= é Jzoe_”"dtjzoe_f”‘ ng; ! dx.

Using integration by parts, let u=e**, dv=((0¢(x,t))/
0x )dx, then

Ls, [aﬁbé’;’ t)} - 1J°°e”“dt{—¢(o, 0+ mee*PX¢(x, t)dx}

=pp(p>0) — S(¢(0, 1)).

(19)

] - 1%(p.0)- éL(qb(x, 0). (20

o

3
Proof.
L.S aqS(x, t) — l 0 Ooe—px—t/a a¢('x’ t) dxdt
oot alo Jo ot 21)
g e
oJo 0 ot

Using integration by parts, let u= ¢, dv = ((d¢(x, t))/
ot)dt, then L.S,[0¢(x,t)/0t] = 1/0 [’e P dx{~¢(x,0) + 1/o

[oe " g(x, t)dt} = 1/ad(p, 0) = 1/aL($(x,0)).
Similarly, we can prove

LS, F o ”] = P8(p.0) - pS(6(0.1)

Theorem 4. If §(p, o) = L,S,[¢(x, t)], then

LS[¢p(x -8, t—e)H(x -8, t—¢€)] =P "¢(p,0), (23)

where H(x, t) is the Heaviside unit step function defined

by
1, x>6,t>¢
H(x-6,t—¢)= .

(24)
0, otherwise

Proof. We have, by Definition 1.,

L.S,[p(x—0,t—e)H(x—3,t—¢)]

l 00 OO
= —J J e P10 (x 8, t —e)H(x - 8, t — &)dxdt
9Jo Jo

:lj J e P (x 8, t — e)dxd,

0Js Je

(25)
that is, by puttingx -6 =g, t—e=w

1 [0 [
=€_P6_£/07J J e—pq—w/a Jw) dg dw
), . $(q w)dq (26)

— e_P6_6/0$(p, 0.)'



2.3. Convolution Theorem of Double Laplace-
Sumudu Transform

Definition 5. The convolution of ¢(x,t) and y(x,t) is
denoted by (¢=*y)(x, t) and defined by

($rxy)(x. 1) = Ht (x— 0.1 c)y(6,e)ddde.  (27)

0J0

Theorem 6. (convolution theorem) If L.S,[¢(x,t)] = d(p, o)
and L, S,[y(x, t)] =w(p, 0), then

LS [(¢=xy)(x,1)] = 0¢(p, o)y (p 7). (28)

Proof. From the definition 1., we have

LS [(¢x*y)(x1)]

! ijme—f’x-w(gb* #y)(x, t)dxdt

0Jo Jo

_! JOO J " gpetlo { JJt b(x 0,1 - )y (o, e)dads} dxt,

0Jo 0o
(29)

which is, using the Heaviside unit step function,

A e[ earoom

(x=0,t—e)y(S, e)d8ds}dxdt

- moow(a, s)dade{ %Jwre‘ﬂx“%(x —o,t-e)H

0 Jo 0 Jo

“(x—-0,t- s)dxdt},

(30)
that is, by Theorem 4 gives
= J J y(0, s)d@ds{e_”‘s_wa(p, a)}
0Jo
= (p, o)J J e PEI7y (8, €)ddde (31)
0Jo

=0$(p, )y (p, 0).
3. Application of Laplace-Sumudu Transform

(DLST) of Integral Differential Equations

In this section, we apply the double Laplace-Sumudu trans-
form (DLST) method to linear integral differential equations.

3.1. Volterra Integral Equation. Consider the linear Volterra
integral equation as form

d(x, t)=g(x,t) + )tjxjt(p(x -6, t—¢e)y(8,e)ddde,  (32)

0Jo
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where ¢(x, t) is the unknown function, A is a constant, and
g(x,t) and w(x,t) are two known functions. Applying the
double Laplace-Sumudu transform (DLST) with linearity
to both sides of equation (32) and using Theorem 6 (convo-
lution theorem), we get

é(p.0) =3g(p, ) + Aad(p,0)¥(p, 0). (33)
Consequently,
Fo o) = 9P0)
$(p,0) = 1= Aoy(p, o)’ (34)

Taking L.'S;"[¢(p, )] for equation (34), we obtain the
solution ¢(x, t) of equation (32).

¢(x, t)=L'S," {%} . (35)

We illustrate the above method by simple examples.

(a) Solve the equation

P(x, t)=a- ijJt ¢(8, €)ddde. (36)

0J0

where a and A are constant.
Applying the double Laplace-Sumudu transform (DLST)
of equation (36), we get

b(p,0)= = — —(p,0). 3
¢(p0) =25 =~ ¢(p:0) (37)
Consequently,

— a

¢(p0) =

o (38)

Taking L;'S," for equation (38), we obtain the solution
¢(x, t) of equation (36).

$(x, 1) = 'S} [/H%] =aJ, (2@) . (39)

(b) Solve the equation

a’t = JXJI¢(x—8,t—s)¢(8, €)ddde, (40)

0Jo
where a is a constant.

Applying (DLST) of equation (40), we get

= ¢’ (p, ). (41)

a*o
p
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Or

WA®=%; (42)

Taking L,'S;" for equation (42), we obtain the solution
¢(x, t) of equation (40).

$(x,t) = L'S;! [\‘;ﬁ] = \;7_1\2_{ (43)

(c) Solve the equation
Xt
J J 7 P(x — 8, t — €)ddde = xe* ! — xe*. (44)

0J0

Applying (DLST) of equation (44), we get

o(p,0) 1 1

P00+ o) o1y

Simplifying and taking L_'S;' for equation (45), we
obtain

wnﬂzL;&{G;hjz—f. (46)

3.2. Volterra Integro-Partial Differential Equations. Consider
the linear Volterra integro-partial differential equation as
form

20(x1) | (1
ox ot

Xt (47)
=g(xt)+ /\J J ¢(x -3, t—e)y(8, £)ddde,
with the conditions:
$(x, 0) = fo(x), $(0, 1) = hy(t), (48)

where ¢(x, t) is the unknown function, A is a constant, and
g(x, t) and w(x, t) are two known functions.

Applying (DLST) to both sides of (47) and single (LT)
and (ST) for equation (48) and simplification, we get

$(P,0):f0(p)+Uh0(0)2tag(p’0)~ (49)
(1+0p—Ao*y(p, 0))
Applying L_'S; ! to (49), we obtain the solution of (47) in
the form

1
(1+0p— Ao’y (p,0))

$(xt)=L'S [
(50)

[mmw%@+@m®w

We illustrate the above method by a simple example.

(d) Solve the equation

By substituting w(8,¢)=1,A=1,g(x,t) =-1+e" +¢' +
e in (47), we have got

2p(x.t) | 99(x.1)

=-1+e +e +e
ox ot

+ijt¢(x—6,t—s) dé de, o

0Jo

with the conditions:

$(x,0) = €" = fo(x), $(0, 1) = ¢ = ho ). (52)

Substituting
I S B
folp) = 57 hol0) = 7= 9(p:0) .
S U S S 1 (53)
p p-1 p(l-0) (p-1)(1-0)
in (50) and simplifying, we get the solution of (51)
¢(x, t)=L'S;" [;} =, (54)
T le-1(-0)

3.3. Partial Integro-Differential Equation. Consider the linear
partial integro-differential equation as form

0 ¢(x, 0o (x,
P

ot (55)
+ JOJOI//(x -0,t—¢)¢(8,¢)ddde = g(x, 1),
with the conditions:
3(6:0) = o0, 22D = ), 900,)
29(0. 1 56
= hy(1), ox ha (1)

Applying (DLST) to both sides of (55) and single (LT)
and (ST) for equation (56) and simplification, we get

30 o) Jo(P) +fi(p) ~*phy(0) 0 i (0) + 0 §(p, 0)
#(p0) = (1-02p2 + 02+ 3% Y(p,0)) '

(57)



Applying L;IS[1 to (57), we obtain the solution of (55) in
the form

_ 1 [ folp) + 0fi(p) = 0*phy(0) —0* hy(0) +0* g(p, 0)
$x ) =LS (1-02p*+ 02+ 33 y(p,0))

(58)

We illustrate the above method by a simple example.
(e) Solve the equation:

By substituting y(x — 8, t —¢) = ¢, g(x, t) = &' +

xte**! in (55), we have got

I, 1) 0°p(xt) .

at2 aX2 ¢(x’ t) (59)
+ JXJ OGS, ) dS de = & + xt e,
olo
with the conditions:
0¢(x, 0
8(50) = =), 2220 _ o 1, ), 60,1 o
t 0¢(0, t
= ¢ = hy(1), "Séx D e —hy ).
Substituting
_ _ 1 — —
folp)=fi(p) = ﬁ’ho((’) =h(0)
I o) = 1 N o
I (e R P era
(61)
in (58) and simplifying, we get a solution of (59)
_7-1¢-1 1 X+t
d(x, t)=L_"S, {m] =" (62)

4. Conclusion

In this paper, the Laplace-Sumudu transform approach for
solving integral differential equations is studied. We provided
the theorems and popular properties for this new double
transform and furnished some examples. The examples show
that the Laplace-Sumudu transform approach is powerful in
solving the equations of taken into consideration type, and a
couple of advanced problems in linear and nonlinear partial
differential equations and nonlinear integral differential
equations could be discussed during a later paper.
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