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In this paper, we construct a connected path of real roots of odd-degree real polynomials depending on parameters continuously,
which joins with all parameters. Moreover, most of the points on the path are odd-multiple real roots except for at most countable
even-multiple real roots. Furthermore, some geometrical features of the path can be seen easily from the construction.

1. Problem

The problem of real roots of approximating real polynomials
(small perturbations of real polynomials) with parameters is
not only an elementary problem in theory but also a very
important one in application. On the one hand, it is very
interesting to understand the topological structure of the set
of real roots of (approximating) real polynomials with
parameters. On the other hand, it can arise in the study of
small perturbations of degenerate systems such as in [1–5].
For example, when we consider the persistence of degenerate
elliptic lower dimensional invariant tori in Hamiltonian sys-
tems, we must solve real roots of approximating real polyno-
mials with a small parameter; moreover, we require to know
how these real roots depend on the small parameter, which is
very important for us to deal with the problem of small
divisors in the KAM theory. It is well known that the small
divisor condition in the KAM theory is usually guaranteed
by adjusting some parameters. For this purpose, it is neces-
sary to know the dependence of the frequencies on the
parameter. This problem is the main motivation of this
paper. We will understand it more precisely in a forthcoming
paper, in which we will prove the persistence of degenerate
elliptic lower dimensional invariant tori in Hamiltonian sys-
tems by the results obtained in this paper.

If an approximating polynomial depends on a small
parameter, by some division theorems in [6–10], it can
decompose into a product of a polynomial and a nonzero
factor. Thus, in this paper, we mainly consider odd-degree
real polynomials. We should first note that by the Leray-

Schauder continuation theorem [11, 12], we can also have a
path in the set of real roots of f joining with all parameters.
However, we have no more information about the geometri-
cal structure of the path. This is because the continuation the-
orem does not require too much smoothness assumption. In
this paper, we construct a path in the set of all the real roots
which joins with all parameters; moreover, it includes at most
countable even-multiple real roots. From the proof, we can
know more information about the geometrical structure of
the path. This is what we are interested in.

2. Main Results

Consider a real polynomial of degree 2d + 1:

f ξ, xð Þ = x2d+1 + 〠
2d+1

j=1
cj ξð Þx2d+1−j, ð1Þ

where the coefficients fcj, 1 ≤ j ≤ 2d + 1g depend continu-
ously on a parameter ξ ∈ ½a, b�. It is easy to know that f has
at least one real root for every ξ. Moreover, it is well known
(see [13]) that there exist 2d + 1 complex roots continuously
depending on ξ, which are also called 2d + 1 continuous bifur-
cations of roots. More precisely, we have the following result.

Lemma 1 (see [12]). Consider an m -degree polynomial

f ξ, xð Þ = xm + 〠
1≤j≤m

cj ξð Þxm−j, ð2Þ
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where fcjg are continuous on ½a, b�. Then, there exist m con-
tinuous complex-valued functions.

x1 ξð Þ, x2 ξð Þ,⋯xm ξð Þ ξ ∈ a, b½ �, ð3Þ

such that the set

ξ, xj ξð Þ� �
ξ ∈ a, b½ �, j = 1, 2,⋯mj� �

, ð4Þ

consists of all roots of f ðξ, xÞ for ξ ∈ ½a, b�.

However, it is possible that there does not exist any con-
tinuous bifurcation of real roots for ξ on ½a, b�. But by our
observation, we find that for a family of parameterized odd-
degree real polynomial f ðξ, xÞ, there exists a connected path
of real roots on the ðξ, xÞ-plane, which joins with two odd-
multiple real roots on the lines ξ = a and ξ = b, respectively.
This shows that the set of real roots of f ðξ, xÞ contains a path
which can connect all parameters ξ ∈ ½a, b�. Moreover, the
path includes at most countable even-multiple real roots; in
other words, almost everywhere, points on the path are
odd-multiple real roots.

To state our result, we first introduce some notations and
definitions.

If x0 is an m-multiple real root of f ðξ0, xÞ, that is,

f kð Þ
x ξ0, x0ð Þ = 0, k = 0, 1,⋯,m − 1, f mð Þ

x ξ0, x0ð Þ ≠ 0, ð5Þ

we call ðξ0, x0Þ an m-multiple real root of f .
Let

af , a,b½ � = ξ, xð Þ ∈ a, b½ � ×ℝ f ξ, xð Þ = 0, ξ ∈ a, b½ �jf g, ð6Þ

be the set which consists of all real roots of f . Sometimes, we
write A = Af , ½a, b� for simplicity if f and ½a, b� are fixed. Let

Aodd = P ∈ A Pj is an odd‐multiple real rootf g,
Aeven = P ∈ A Pj is an even‐multiple real rootf g:

ð7Þ

Let

A ξð Þ = Af , a,b½ � ξð Þ = Af , a,b½ � ∩ ξf g ×ℝ:: ð8Þ

Obviously, AðξÞ consists of all real roots of the polyno-
mial f ðξ, xÞ. Our result is given as follows.

Theorem 2. There exists a continuous mapping

γ : t ∈ 0, 1½ �⟶ γ tð Þ = ξ tð Þ, x tð Þð Þ ∈ A ⊂ℝ2, ð9Þ

such that γð0Þ ∈ AðaÞ and γð1Þ ∈ AðbÞ are odd-multiple real
roots. Moreover, let

γ = γ tð Þ t ∈ 0, 1½ �jf g, Tp = t ∈ 0, 1½ � γ tð Þ = Pjf g, ð10Þ

then for P ∈ γ, we have

T#
p ≤ themultiplicity of P, ð11Þ

where T#
P indicates the cardinality of the set TP. Furthermore,

the sets fP ∈ γ ∣ TP
# ≥ 2g and γ ∩ Aeven are at most countable.

Remark 3. Theorem 2 describes some information of topo-
logical structure of the set of real roots of f . Obviously, the
continuous curve fγðtÞ ∣ t ∈ ½0, 1�g is usually not unique.
However, it is possible that γ consists of all real roots of f ,
that is, fγðtÞ ∣ t ∈ ½0, 1�g = A. So the result in Theorem 2 is
optimal. Moreover, (11) implies that

t ∈ 0, 1½ � ξ tð Þ = ηjf g# ≤ 2d + 1, ∀η ∈ a, b½ �: ð12Þ

Thus, there exists an at most countable subset I ⊂ ½0, 1�
such that γ : t ∈ ½0, 1� \ I ⟶ γðtÞ ∈ A is an injective mapping.

The result of Theorem 2 is a global property of real roots
of odd-degree real polynomials. For some local property of
real roots of real polynomials, we refer to [14] and the refer-
ences therein.

3. Proof of Theorem 2

In order to prove Theorem 2, we give some important
definitions.

3.1. Definitions. Below, we first define paths of odd-multiple
real roots, crossing points, basis points, and reflecting points.

Definition 4 (paths of odd-multiple real roots). Let

γ : t ∈ 0, 1½ �⟶ γ tð Þ = ξ tð Þ, x tð Þð Þ ∈ A ⊂ℝ2, ð13Þ

be a continuous mapping with P0 = γð0Þ = ðξ0, x0Þ and P1 =
γð1Þ = ðξ1, x1Þ. γ is called a path of odd-multiple real roots
with endpoints P0 and P1 if the following hold:

(i) Let t0 ∈ ð0, 1Þ and P = γðt0Þ = ðξ∗, x∗Þ, then one of
the following holds true:

(1) There exists δ0 > 0 such that

ξ tð Þ < ξ∗, ∀t ∈ t0 − δ0, t0ð Þ and ξ tð Þ > ξ∗, ∀t ∈ t0, t0 + δ0ð Þ,
ð14Þ

or

ξ tð Þ > ξ∗, ∀t ∈ t0 − δ0, t0ð Þ and ξ tð Þ < ξ∗, ∀t ∈ t0, t0 + δ0ð Þ
ð15Þ

Moreover, such t0 is unique for the point P if it
exists.
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(2) There exists δ0 > 0 such that

ξ tð Þ < ξ∗, ∀0 < t − t0j j < δ0, or ξ tð Þ > ξ∗, ∀0 < t − t0j j < δ0:

ð16Þ

(ii) Let ~Tp = ft ∈ ð0, 1Þ ∣ γðtÞ = Pg. If P ∈ γ is an odd-
multiple real root such that there exists a unique
t0 ∈ ~Tp such that (1) holds, then such P is called

a crossing point at t0. Moreover, for t0′ ∈ ~Tp, if t0′ ≠
t0, the result (2) holds at t0′; such P is called a basis
point at t0′. If P is a crossing point at t0 and a basis
point at t0′, we say that the basis point P at t0′ is based
on the crossing point P at t0. If P ∈ γ is an odd-
multiple real root such that the result (2) holds for
all t0 ∈ ~Tp, then P is a basis point, but not a crossing
point; such P is called a pure basis point

(iii) If P ∈ γ is an even-multiple real root, then only the
result (2) holds. An even-multiple real root on γ is
called a reflecting point

(iv) If P0 = P1 is an odd-multiple real root and it is not a
crossing point, then there exists δ > 0 such
that fγðtÞ, 0 < t < δg and fγðtÞ, 1 − δ < t < 1g are
on the same side of ξ = ξ0 = ξ1

(v) If P0 = P1 is an odd-multiple real root and it is a
crossing point, then there exists δ > 0 such that
fγðtÞ, 0 < t < δg and fγðtÞ, 1 − δ < t < 1g are on
different sides of ξ = ξ0 = ξ1

(vi) If P0 = P1 is an even-multiple real root, then there
exists δ > 0 such that fγðtÞ, 0 < t < δg and fγðtÞ,
1 − δ < t < 1g are on different sides of ξ = ξ0 = ξ1

(vii) All basis points and reflecting points on γ are at
most countable; thus, the points on γ are odd-
multiple real roots almost everywhere

A path of odd-multiple real roots is also called a path in
brief if without any confusion (see Figure 1).

By definition, an odd-multiple real root on a path can be
both a crossing point and a basis point. Moreover, a path can
have no pure basis point, and all odd-multiple real roots on
the path can be crossing points except for its endpoints. This
kind of special path is very important for the extension of
paths in our problem.

Definition 5. Let γ = fγðtÞ ∣ 0 ≤ t ≤ 1g be a path with end-
points P0 = γð0Þ and P1 = γð1Þ. Let γ∘ = fγðtÞ ∣ t ∈ ð0, 1Þg,
which is called the interior point of γ. If for all P ∈ γ° ∩
Aodd, P is a crossing points of γ, γ is called a regular path. A
regular path has no pure basis point.

Let ½a, b� ⊂ ½0, 1�. The set γ½a, b� = fγðtÞ ∣ t ∈ ½a, b�g is
called a segment of γ. By definition, it is easy to see that a seg-
ment of a path is still a path, but a segment of a regular path
may not be regular. For P ∈ γ, P may be a crossing point on
one segment and a pure basis point on another (also see
Figure 1).

An endpoint of a path is such a point that the path can be
extended longer at this point.

Let P1 ≠ P0. There exists a small δ > 0 such that for all
0 < t ≤ δ, ξðtÞ is on the same side of ξ0. It is easy to see
that we can always extend γ to cross P0. The same is true
for P1.

However, when the two endpoints of a path collide into
one point, the path may not be extended again at the point;
in this situation, the endpoints disappear. To avoid the end-
points losing their property as endpoints, we suggest the con-
ditions (iv), (v), and (vi). More precisely, when two endpoints
meet, they still keep the property of endpoints only after they
collide into a pure basis point along the same side, into a
crossing point along different sides, or into a reflecting point
along different sides.

Usually, we can extend a path at an endpoint, but the
direction of extension about the parameter ξmay be restricted.
For this problem, we define directions of endpoints.

Definition 6 (simple endpoints and directions of endpoints).
Let

γ : t ∈ 0, 1½ �⟶ γ tð Þ = ξ tð Þ, x tð Þð Þ ∈ A ⊂ℝ2, ð17Þ

Reflecting 
point Basis

point

Regular path: 𝛾1, 𝛾
Not regular path: 𝛾2

Odd-multiple
endpoint

Crossing
point

Even-multiple
endpoint

Reflecting
point

Reflecting
point

𝜉

P1+P0

P1

𝛾1 = P0P1

𝛾= 𝛾1∪𝛾2

𝛾2 = P1P1+

𝛾1 𝛾2

x

Figure 1: Path of odd-multiple real roots.
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be a path of odd-multiple real roots with endpoints P0 =
ðξ0, x0Þ and P1 = ðξ1, x1Þ.

We only consider P0 since P1 can be considered similarly.
If P0 is neither a crossing point, nor a basis point, nor a
reflecting point, we call it a simple endpoint. Moreover, if P0
is an odd(even)-multiple real root, we call it an odd(even)-
multiple endpoint.

Below, we define the direction of endpoints in two cases
of P0 ≠ P1 and P0 = P1. First, note that there exists a suffi-
ciently small δ0 > 0 such that either ξðtÞ > ξ0 for all t ∈ ð0,
δ0Þ or ξðtÞ < ξ0 for all t ∈ ð0, δ0Þ. That means that for suffi-
ciently small t, γðtÞ are on the same side of ξ = ξ0.

Case 1 (P0 ≠ P1). If P0 is not a crossing point of the path γ and
γðtÞ are on the left side (or right side) of ξ = ξ0 for all suffi-
ciently small t > 0, P0 is called a right (or left) endpoint. If
P0 is a crossing point of γ and γðtÞ are on the left side (or
right side) of ξ = ξ0 for all sufficiently small t > 0, P0 is called
a left (or right) endpoint.

If P0 is an even-multiple real root and for all sufficiently
small t > 0, and γðtÞ are on the left side (or right side)
of ξ = ξ0, P0 is called a left (or right) endpoint. For P1,
we have the same statement and we omit the details.

Case 2 (P0 = P1). In the condition (iv) of Definition 4, if there
exists δ > 0 such that the set fγðtÞ ∣ 0 < t < δg is on the right
(left) side of ξ = ξ0 = ξ1, we call P0 a left (right) endpoint
and P1 a right (left) endpoint.

In the condition (v) of Definition 4, if the set fγðtÞ ∣ 0 <
t < δg is on the right (left) side of ξ = ξ0 = ξ1, we call P0 a right
(left) endpoint and P1 a left (right) endpoint.

In the condition (vi) of Definition 4, if the set fγðtÞ ∣ 0
< t < δg is on the right (left) side of ξ = ξ0 = ξ1, we call P0 a
right (left) endpoint and P1 a left (right) endpoint.

Remark 7. A left (or right) endpoint means that the path can
be extended to the left (or right) of ξ = ξ0 at the endpoint. In
view of this point, in the cases of (iv)–(vi), we can define
different directions of the endpoints. We choose the above
definition of directions of endpoints for convenience in the
extension of paths.

Definition 8 (compatibility of paths). Let γ1, γ2,⋯γn ⊂ A be
paths of odd-multiple real roots and

E = γj 0ð Þ, γj 1ð Þ 1j ≤ j ≤ n
n o

, ð18Þ

be the set of all endpoints of fγ jg. Let G = γ1 ∪ γ2 ∪⋯∪γn
and G

° = γ° 1 ∪ γ° 2 ∪⋯∪γ° n.
If for all P ∈ G

°
∩ Aodd, there exists a unique γj such that P

is a crossing point of γj; moreover, if P ∈ γ°k with k ≠ j, P is a
pure basis point of γk, then we say fγjg are compatible (at P).

If P ∈ G
°
∩ Aeven, P is always a reflecting point and we also say

fγjg are compatible at P.

Let D be a domain of rectangles. If for all P ∈D ∩ G
°
, fγjg

are compatible at P, we say fγjg are compatible on D or G is
regular on D.

Let fγjg be compatible paths and γ be a path of odd-
multiple real roots with two endpoints P0 = γð0Þ and P1 =
γð1Þ. If γ, γ1,⋯γn are compatible, we say γ is compatible
with fγjg. Let bγ be a path of odd-multiple real roots with

two endpoints P̂0 = bγ = ð0Þ and P̂0 = bγð1Þ. Let P̂0 = P1 ∉ E:
If γ+ = γ ∪ bγ is a path with two endpoints P0 and P̂1 and
it is also compatible with fγjg, we say γ+ is a compatible
extension of γ with fγjg and bγ is the prolonged segment.

Obviously, if P1 ∉ G
°
, then P1 must be a crossing point of

γ+; if P1 ∈ G
°
, then P1 must be a pure basis point of γ+.

Remark 9. When fγ, γ1,⋯γng are compatible, formally, we
can regard γ ∪ γ1 ∪⋯∪γn as a generalized regular path,
because it may not be connected and can have many end-
points. In particular, if G = γ1 ∪⋯∪γn =∅, then γ is a regu-
lar path.

Let γ and bγ be two compatible paths. Let P be an end-
point of both γ and bγ with P = γð1Þ = bγð0Þ. If P ∈ Aodd and
it has opposite endpoint directions for γ and bγ , or if
P ∈ Aeven and it has the same endpoint direction, then
γ+ = γ ∪ bγ is a compatible extension of γ.

Now suppose γ : t ∈ ½0, 1�⟶ γðtÞ ∈ A and bγ : t ∈
½1, 2�⟶ bγðtÞ ∈ A and P∗ = γð1Þ = bγð1Þ, where we usebγðt + 1Þ in place of the above bγðtÞ given by standard
definition without confusion.

Note that we can require a path to be defined on any
interval ½a, b� instead of ½0, 1� by rescaling the parameter of
paths.

If γð1Þ and bγð1Þ are not crossing points, we can define
γ+ = γ ∪ bγ as a regular path by

γ+ tð Þ = γ tð Þ, 0 ≤ t ≤ 1,

γ+ tð Þ = bγ tð Þ, 1 ≤ t ≤ 2:
ð19Þ

By definition, it is easy to see that γ+ is well defined.
If both γð1Þ and bγð1Þ are crossing points and they have

different directions of endpoints, then γ+ as defined above
may not satisfy the definition of paths. The above definition
may result in γ+ðtÞ crossing itself at P∗ more than 1 time.
To avoid P∗ being crossed repeatedly, we can rearrange the
parameter at P∗ so that γ+ = γ ∪ bγ can be defined as a regular
path, but here, we omit the details.

Compatibility of paths is very important for extension of
paths. It makes the extension of a path to not overlap any
small segment of existing paths so that the extension cannot
have any circulation.

When we extend a regular path, we require the path to
keep the compatibility with the other existing paths. So at
the first time when the path meets a new odd-multiple real
root, we always let it go through the odd-multiple real root
such that it becomes a crossing point of the path. When the
path meets itself or some existing path at a crossing point,
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it must reflect at this point, and then it becomes a basis point.
That means a new odd-multiple real root usually first
becomes a crossing point and then a basis point. When the
path meets an even-multiple real root, it is always extended
by reflecting at this point.

We usually start a compatible extension of a regular path
with a simple endpoint and require the prolonged segment to
end also at a simple endpoint, so that we can easily see the
extension to be compatible.

Definition 10 (closed paths). Let γ be a path of odd-multiple
real roots with endpoints P0 and P1. We call γ a closed path
of odd-multiple real roots, if P0 = P1 with the following hold-
ing true:

(1) If P0 is a crossing point and there exists a sufficiently
small δ0 > 0 such that fγðtÞ ∣ t ∈ ð0, δ0Þg and fγðtÞ ∣
t ∈ ð1 − δ0, 1Þg are on the same side of ξ = ξ0, then P0
is a crossing point of the closed path

(2) If P0 is not a crossing point and there exists a suffi-
ciently small δ0 > 0 such that fγðtÞ ∣ t ∈ ð0, δ0Þg and
fγðtÞ ∣ t ∈ ð1 − δ0, 1Þgare on different sides of ξ = ξ0,
then P0 is a crossing point of the closed path

(3) If P0 is not a crossing point and there exists a suffi-
ciently small δ0 > 0 such that fγðtÞ ∣ t ∈ ð0, δ0Þg and
fγðtÞ ∣ t ∈ ð1 − δ0, 1Þg are on the same side of ξ = ξ0,
then P0 is a pure basis point of the closed path

(4) If P0 is an even-multiple real root and there exists a
sufficiently small δ0 > 0 such that fγðtÞ ∣ t ∈ ð0, δ0Þg
and fγðtÞ ∣ t ∈ ð1 − δ0, 1Þg are on the same side of
ξ = ξ0, then P0 is a reflecting point of the closed path

When γ is a closed path, we can regard γ as a continuous
mapping: ℝ/ℤ = T ⟶ A, which is from the unit circle T to
A. P0 = P1 can be a crossing point or a pure basis point of
the closed path (see Figure 2).

If a closed path γ : t ∈ T =ℝ/ℤ⟶ γðtÞ ∈ A ⊂ℝ2 has no
pure basis point, we call γ a closed regular path; see Figure 3.

A closed regular path is a circulation and it cannot be
extended longer.

3.2. Idea of Construction of Paths. Below, we give a more
detailed description of the construction of paths.

Let f ðξ, xÞ be a polynomial of degree 2d + 1 as in (1) and

A2d+1 = ξ, xð Þ xj is a 2d + 1ð Þ‐multiple real root of f ξ, xð Þ,f
 ξ ∈ a, b½ �g,

B2d+1 = ξ ξ, xð Þ ∈ A2d+1jf g:
ð20Þ

Obviously, f ð2dÞx ðξ, xÞ = 0 determines a simple continuous
curve

l : x = −
1

2d + 1 c1 ξð Þ, ξ ∈ a, b½ �: ð21Þ

Moreover, A2d+1 ⊂ ℓ. Since L = ða, bÞ \ B2d+1 is an open
set of R, then L = ∪n≥1In, where In = ðan, bnÞ ⊂ ða, bÞ, which
are disjointed each other.

Let ℓn be the segment of ℓ corresponding to ℓn. We want
to find a path γn in Af ,½an ,bn� in place of ℓn.

Moreover, we also find paths γ± in Af ,½a±,b±� for ξ ∈ ½a−, b−�
and ξ ∈ ½a+, b+�, respectively, where a− = a, b− =min fξ ∈
B2d+1g and a+ = max fξ ∈ B2d+1g, b+ = b, if a or b does not
belong to B2d+1. Let ℓ± be the two segments of l on ða−, b−Þ
and ða+, b+Þ. Then, if we replace ln and ℓ± in l with γn and
γ±, respectively, we obtain a path of odd-multiple real roots
for ξ on ½a, b�.

The most important is to construct a path γn on ½an, bn�.
Then, the path γ is obtained by grafting the simple continu-
ous curve l with countable paths fγng and ℓ±, where γn and
ℓ± are composed of at most countable paths of polynomials
of lower degree, maybe in a little complicated way. Moreover,
each γn and ℓ± include at most countable reflecting points
and basis points.

To consider γn on ½an, bn�, for shorting of notation, we
drop the subscripts n. Then, suppose f ða, xÞ and f ðb, xÞ have
ð2d + 1Þ-multiple real roots and f ðξ, xÞ has no ð2d + 1Þ
-multiple real root for ξ ∈ ða, bÞ. Now we explain how to con-
struct a path γ on ½a, b�.

The construction of γ is based on extension of paths and
induction for the degree of polynomials.

First note that an odd-multiple real root is never isolated
and usually it breaks into some lower-multiple real roots
about the parameter. However, an even-multiple real root
can be isolated, near to which there may be no other real
roots. But, if there exists an odd-multiple real root near an
even-multiple real root, there must be another odd-multiple
real root near the even-multiple real root, that is, odd-
multiple real roots always appear in pairs near an even-

Even-multiple 
root Odd-multiple

root

Closed (not regular) path

𝜉

x

Figure 2: Closed path.

Even-
multiple 
root

Even-
multiple 
root

Even-

multiple root

Closed regular path
x

Odd-multiple root

Figure 3: Closed regular path.
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multiple real root. Thus, when a path arrives at an even-
multiple real root, it can always reflect into some odd-
multiple real roots at the even-multiple real root. So we
define a path to be such a continuous curve that it is allowed
to go through an odd-multiple real root and reflect when it
meets an even-multiple real root.

A path of odd-multiple real roots can be a little compli-
cated near to a real root of higher-multiplicity; it can zigzag
along the direction of the x-axes and have several recurrences
at some parameters to approximate the real root of higher
multiplicity. However, the times of the recurrence are no
more than the multiplicity of the real root.

Now, we first construct a regular path to join to Pb. Let
a < ξ0 < b. Now, take an odd-multiple real root on Dðξ0Þ.
By induction assumption, there exists a local regular path
across the odd-multiple real root. Then, we extend the local
regular path to the right. Since f ðξ, xÞ has no ð2d + 1Þ-mul-
tiple real root for ξ ∈ ða, bÞ, the real roots near any an odd-
multiple real root can be all the real roots of a real polynomial
of lower degree, and so we can extend it locally longer by
induction assumption.We can extend the path until it arrives
at Pb or ξ = ξ0. In the first situation, we have a desired path;
otherwise, the path is extended to arrive at a new odd-
multiple real root on Dðξ0Þ. By induction assumption, we
can extend the path across ξ = ξ0 to the left a little and then
have a regular path with two endpoints on the left of Dðξ0Þ.

Then, take another odd-multiple real root on Dðξ0Þ and
do the same way. If we cannot have a desired path, we have
another compatible path with the previous path with two
endpoints on the left of Dðξ0Þ. In this way, after at most d
steps, only one odd-multiple real root is left on Dðξ0Þ. Take
a path across this odd-multiple real root and extend it to
the right, since all the odd-multiple real roots on Dðξ0Þ are
occupied by the previous compatible paths and the path can-
not go back to Dðξ0Þ. Finally, it must go to Pb, and then we
obtain a regular path joining to Pb.

Then, we extend the path joining to Pb to the left. If it is
not extended to Pa, it must go back to Pb to form a closed
path with Pb as a pure basis point. Then, take an odd-
multiple real root on Dðξ0Þ and do the same way as above
to obtain a compatible path joining to Pb. In the same way,
we extend the compatible path joining to Pb to the left. If
we cannot have a desired path, we must have one more com-
patible closed path with Pb as a pure basis point. But we can-
not have more than d number of these compatible closed
paths, so after at most d iterations, the extension of the com-
patible path cannot go back to Pb; it has to go to Pa. Thus, the
extension of the compatible path joins with the previous sev-
eral compatible closed paths to form a regular path γ joining
to Pa and Pb.

We should also note that if two 2d-multiplicity real
roots are sufficiently close, the two corresponding simple
real roots to the two 2d-multiplicity real roots can be con-
nected by a saturation path of simple real roots. So a path
cannot meet two 2d-multiplicity real roots which are very
close; in other words, all 2d-multiplicity real roots on a
path are discrete. Thus, the path γ can include at most
countable 2d-multiple real roots. Moreover, γ can only have
Pa or Pb as ð2d + 1Þ-multiple basis points. This fact is very

important for a path to contain at most countable basis
points and reflecting points.

3.3. Lemmas. Below, we prove some lemmas which are
required in the construction of paths.

We first note that in Definition 4, the conditions (1) of (i)
and (vii) are very important; they guarantee that any small
segment of a path cannot be overlapped one more times by
the path itself. Moreover, a path cannot recur too many times
about a fixed parameter.

Lemma 11. Let fγðtÞ = ðξðtÞ, xðtÞÞ ∣ t ∈ ½0, 1�g be a path of
real roots. For any two intervals I = ðt1, t2Þ ⊂ ð0, 1Þ and I ′ =
ðt1′ , t2′Þ ⊂ ð0, 1Þ, if I ∩ I ′ = ϕ, then the set γI ∩ γI ′ is at most
countable. Moreover, T#

ξ0
≤ 2d + 1, where Tξ0 = ft ∈ ½0, 1� ∣

ξðtÞ = ξ0g.

Proof. If γI ∩ γI ′ is not countable, by the condition (vii) of the
definition of paths, there exists a point P ∈ fγðtÞ ∣ t ∈ Ig ∩
fγðtÞ ∣ t ∈ I ′g such that P is neither a basis point nor an
even-multiple real root, then P is a pure crossing point. Again,
there exist t0 ∈ I and t0′ ∈ I ′ such that P = γðt0Þ = γðt0′Þ, but
t0 ≠ t0′, which contradicts with the fact that P can be crossed
only once.

If there are several segments of the path crossing the
parameter ξ0, the condition (vii) implies that there exists
ξn ⟶ ξ0 such that each segment crossing ξ = ξ0 does
not meet the other segments on the line ξ = ξn. Otherwise,
if for all ∣η − ξ0 ∣ <δ0, at least two segments have an inter-
secting point Pη on ξ = η, these segments can intersect on
fPηj jη − ξ0∣≤δ0g, which has the cardinal number of the
continuum and contradicts with the condition (vii).

Since the number of segments crossing the line ξ = ξ0 is
no more than that of points of these segments on ξ = ξ0,
which is no more than 2d + 1, so the path oscillates for the
parameter around ξ0 no more than 2d + 1 times, which
implies T#

ξ0
≤ 2d + 1.

This lemma means that a path cannot intersect itself
everywhere on a nonempty segment, which guarantees a path
to recur to a fixed parameter ξ0 no more than 2d + 1 times.
Moreover, an m-multiple real root can be used by a path at
most m-times. If the multiplicity is considered and an m-
multiple real root is regarded as m different real roots, then
a compatible extension can be thought to consist of new real
roots and a path can be thought to consist of different real
roots.

For the construction of paths, we consider how a path can
intersect with a line ξ = ξ0. For this purpose, we have the fol-
lowing lemma.

Lemma 12. Let γ be a path of odd-multiple real roots with two
endpoints P1 = ðξ1, x1Þ and P2 = ðξ2, x2Þ with ξ1 < ξ2. Then,
the following hold true:

(1) If ξ1 < ξ0 < ξ2, then γ ∩ fξ0g ×ℝ has an odd number
of crossing points
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(2) If ξ0 < ξ1 or ξ0 > ξ2, then γ ∩ fξ0g ×ℝ has an even
number of crossing points.

Proof.

(1) By definition, we can move P1 continuously to P2
along the path γ, and in the process, we go through
odd-multiple real roots only one time.

Without loss of generality, suppose P1 and P2 are left and
right endpoints, respectively. Then, the path starts with P1
to go to the right. Since ξ0 ∈ ðξ1, ξ2Þ, it must intersect with
fξ0g ×ℝ at some odd-multiple real root Q1. If it goes back
across fξ0g ×ℝ at some odd-multiple real root Q2, then
Q1 ≠Q2 since they can only be crossed only once. Then,
it must cross fξ0g ×ℝ at another odd-multiple real root
Q3; otherwise, it cannot arrive to P2. In this way, it is easy
to see that the path must cross fξ0g ×ℝ an odd number
of times.

(2) This case can be considered similarly and we omit the
detail

Let

D = ξ, xð Þ a ≤ ξ ≤ b, c < x < djf g, ð22Þ

be a rectangle domain of the ðξ, xÞ-plane. Let DðξÞ = fξg ×
ðc, dÞ be a section of D at ξ.

Let the boundary

∂D = l−x ∪ l+x ∪ l−ξ ∪ l+ξ , ð23Þ

where

l−x = a, b½ � × cf g, l+x = a, b½ � × df g, l−ξ =D að Þ, l+ξ =D bð Þ: ð24Þ

Obviously, the rectangle D is open at the up-down sides
l±x and closed at the left-right sides l±ξ . Let D

∘ = ða, bÞ × ðc, dÞ
be the interior of D.

Lemma 13. Let γ be a path of odd-multiple real roots with
endpoints P1 and P2 and γ ∩ l±x = ϕ. Suppose P1, P2 ∉D. Then,
the number of crossing points in γ ∩DðξÞ has the same odevity
for all ξ ∈ ½a, b�. In particular, if γ does not go through D, then
the number of crossing points in γ ∩DðξÞ is even; if γ goes
through D, then the number of crossing points in γ ∩DðξÞ
is odd.

Proof. By definition of paths, it follows easily and we omit the
details.

By the implicit function theorem, for a simple real root
P0, there exists a path crossing P0, which only includes
simple real roots. Below, we consider the maximal one
among these paths.

Lemma 14. Suppose that both f ða, xÞ and f ðb, xÞ have a
ð2d + 1Þ -multiple real root. Fix ξ0 ∈ ða, bÞ. Let

f ξ0, x0ð Þ = 0, f x ξ0, x0ð Þ ≠ 0: ð25Þ

There exists a unique continuous function x = xðξÞ, ξ ∈
ða0, b0Þ ⊂ ða, bÞ such that

x0 = x ξ0ð Þ, f ξ, x ξð Þð Þ = 0, f x ξ, x ξð Þð Þ ≠ 0, ∀ξ ∈ a0, b0ð Þ:
ð26Þ

Moreover,

f a0, xa0
� �

= f x a0, xa0
� �

= f b0, xb0
� �

= f x b0, xb0
� �

= 0,

f a0, xa0
� �

= f x a0, xa0
� �

= f b0, xb0
� �

= f x b0, xb0
� �

= 0:

ð27Þ

The continuous curve γ : fðξ, xðξÞÞ ∣ ξ ∈ ða0, b0Þg is
called a maximal (or saturation) path of the simple root
P0 = ðξ0, x0Þ.

Proof. By the implicit function theorem, there exists δ0 > 0
and a unique implicit function x = xðξÞ, ξ ∈ ðξ0 − δ, ξ0 + δÞ
such that

x ξ0ð Þ = x0, f ξ, x ξð Þð Þ = 0, f x ξ, x ξð Þð Þ ≠ 0, ξ ∈ ξ0 − δ, ξ0 + δð Þ:
ð28Þ

Below, we extend the continuous function x = xðξÞ from
ðξ0 − δ, ξ0 + δÞ to an interval as big as possible.

Let

J = �a, �b
� �

there exists a unique function x = x ξð Þ, ξ ∈j �a, �b
� �

,
�
such that x ξ0ð Þ = x0, f ξ, x ξð Þð Þ = 0, f x ξ, x ξð Þð Þ ≠ 0,
ξ ∈ �a, �b

� ��
:

ð29Þ

Obviously, ξ0 ∈ ð�a, �bÞ. Let

a0 = inf =
�a,�b½ �∈J

�a, b0 = sup
�a,�b½ �∈J

�b: ð30Þ

For ξ ∈ ða0, b0Þ, we define x∗ðξÞ = xðξÞ, ξ ∈ ð�a, �bÞ.
We prove that x∗ðξÞ is well defined on ða0, b0Þ. In fact,

xðξÞ, ξ ∈ ½�a, �b� is determined uniquely by ðξ0, x0Þ. It is easy
to see that there exists α > 0 such that

f x ξ, x ξð Þð Þj j ≥ α > 0, ξ ∈ �a, �b
� �

: ð31Þ

By the implicit function theorem, there exists δ > 0 such
that for all η ∈ ð�a, �bÞ, on the interval ½η − δ, η + δ�, there
uniquely determines an implicit function xðξÞ such that

f ξ, x ξð Þð Þ = 0, ξ ∈ η − δ, η + δ½ �: ð32Þ
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This implies that x = xðξÞ can be obtained uniquely by
extension of x = xðξÞ from ξ ∈ ðξ0 − δ, ξ0 + δÞ to [�a, �b].

Below, we prove lim
ξ→a+0

x∗ðξÞ = xa0 . Note that f ðξ, x∗ðξÞÞ =
0, f xðξ, x∗ðξÞÞ ≠ 0. First, we prove the existence of the limit.

If not so, there exist ξð1Þj ⟶ a+0 and ξð2Þj ⟶ a+0 such that x∗
ðξð1Þj Þ⟶ x1 and x∗ðξð2Þj Þ⟶ x2 with x1 < x2.

Take x∗1 , x∗2 such that x1 < x∗1 < x∗2 < x2. Without loss of
generality, suppose

x∗ ξ
1ð Þ
j

� 	
≤ x∗1 , x∗ ξ

2ð Þ
j

� 	
≥ x∗2 : ð33Þ

Since x∗ðξÞ is continuous, for all x∗ such that x∗1 ≤ x∗ ≤ x∗2 ,

there exists ξj
∗ between ξð1Þj and ξð2Þj such that x∗ðξ∗j Þ = x∗.

Also note ξ∗j ⟶ a+0 . By f ðξj∗, x∗ðξj∗ÞÞ = 0, it follows that

f a0, x∗ð Þ = 0, ∀x∗ ∈ x∗1 , x∗2½ �: ð34Þ

Thus, all x∗ ∈ ½x∗1 , x∗2 � are real roots of f ða0, xÞ. Since
f ða0, xÞ = 0 has at most 2d + 1 real roots, this is a contra-
diction, which implies the existence of lim

ξ→a+0
x∗ðξÞ.

Similarly, lim
ξ→b−0

x∗ðξÞ also exists.

Obviously, we have f ða0, x∗ða0ÞÞ = 0. If f xða0, x∗ða0ÞÞ ≠
0, we can extend x∗ðξÞ at ξ = a0 to a small neighbourhood
of a0, which contradicts with the definition of a0.

The case of ξ = b0 can be discussed similarly.

Remark 15. Let ∣f xðξ0, x0Þ ∣ ≥α and f ðξ, xÞ is continuous on
D = ½a, b� × ½−1, 1� and j f xðξ, xÞj ≤M, ∣f xxðξ, xÞ ∣ ≤M,∀ðξ, xÞ
∈ ½a, b� × ½−1, 1�. By the proof of the implicit theorem, it is
easy to see that there exists constant δ > 0, which is indepen-
dent of ðξ0, x0Þ and only depends on α, M, and the property
of uniform continuity of f onD, such that xðξÞ, the implicit
function across ðξ0, x0Þ, is defined for ξ ∈ ðξ0 − δ, ξ0 + δÞ ⊂
ða0, b0Þ. In general, the bigger the derivative j f xðξ0, x0Þj,
the longer the interval ða0, b0Þ. Moreover, we have that
δ⟶ 0 as f xðξ0, x0Þ⟶ 0.

3.4. 3-Degree Polynomials. The proof of our result is strongly
based on induction; for this purpose, we first consider 3-
degree polynomials. Let

f ξ, xð Þ = x3 + c1 ξð Þx2 + c2 ξð Þx + c3 ξð Þ, ð35Þ

where cjðj = 1, 2, 3Þ are continuous on ½a, b�.
Let

Am = ξ, xð Þ ξ, xð Þ is anm‐multiple real root of f , ξ ∈ a, b½ �jf g,
Bm = ξ ξ, xð Þ ∈ Amjf g, m = 1, 2, 3:

ð36Þ

Let A = A1 ∪ A2 ∪ A3, which is the set of all real roots of f .
For ξ ∈ B2, let P1

ξ = ðξ, x1ξÞ and P2
ξ = ðξ, x2ξÞ be, respec-

tively, the simple real root and the 2-multiple real root

of f ðξ, xÞ. For ξ ∈ A3, let Pξ = ðξ, xÞ be the unique 3-
multiple real root of f ðξ, xÞ.

Lemma 16. Assume A3 =∅ and B2 = fa, bg. Then, there
exists a regular path in A joining with P1

a and P1
b.

Proof. Denote by ℓP1
a
the maximal path across the simple root

P1
a. By Lemma 14, it must end at some multiple real root.

Since there is no multiple real root between ξ = a and ξ = b,
on the right side, ℓP1a goes through P1

b or ends at P
2
b = ðb, x2bÞ.

If ℓP1a does not reach P1
b, it must go to P2

b. Note that P
2
b is a

2-multiple real root, f has a simple real root ðξ0, x0Þ such that
a < ξ0 < b and ðξ0, x0Þ ∉ ℓP1

a
; moreover, ðξ0, x0Þ is sufficiently

close to P2
b. Then, the maximal path across ðξ0, x0Þ ends at

P2
b and P2

a. Denote the path by ℓP2
b ,P2

a
.

On the other hand, since the maximal path ℓP1b across P
1
b

cannot go to P1
a, it must end at P2

a on the left. Thus, ℓP1
a
∪

ℓP2
b ,P2

a
∪ ℓP1b forms a path joining with P1

a and P1
b.

If ℓP1
a
goes across P1

b, then it is just a path joining with P1
a

and P1
b.

Obviously, the path has no basis point and so it is a
regular path. Thus, the lemma is proven.

Lemma 17. Assume that A3 =∅ and a, b ∈ B2. Then, there
exists a regular path between ξ = a and ξ = b, which joins with
P1
a and P1

b. Moreover, it includes at most finitely many 2-
multiple real roots.

Proof. Obviously, if B2 = fa, bg, it is just the case in Lemma
16. Assume B2 \ fa, bg ≠∅.

Let d0 = inf ξ∈B2 ∣ x
2
ξ − x1ξ ∣ .

We first claim that there exists ξ0 ∈ B2 such that d0 = ∣
x2ξ0 − x1ξ0 ∣ >0.

In fact, we first have d0 > 0. If not so, there exist ξn ∈ B2
such that jx1ξn − x1ξn j⟶ 0. Without loss of generality, assume

x2ξn ⟶ x0, x1ξn ⟶ x0, ξn ⟶ ξ0. Then, ðξ0, x0Þ is a 3-

multiple real root of f , which is a contradiction.
Now take ξn ∈ B2 such that jx2ξn − x1ξn j⟶ d0. Since B2 is

closed, there exists a subsequence ξnk ⟶ ξ0 ∈ B2. Without
loss of generality, assume ξn ⟶ ξ0. Since ∣x2ξ0 − x1ξ0 ∣ ≥d0,
the maximal path across P1

ξ0
= ðξ0, x1ξ0Þ, lP1ξ0 , exists for ∣ξ − ξ0

∣ ≤δ0, where δ0 is a small constant. Let z1ðξÞ, z2ðξÞ, z3ðξÞ be
the three continuous bifurcations of roots of f . Then, lP1

ξ0
must be on a continuous bifurcation. Without loss of gener-
ality, assume

lP1
ξ0
⊂ ξ, z1 ξð Þð Þ ξ ∈ a, b½ �jf g: ð37Þ

Then, z1ðξ0Þ = x1ξ0 . It follows that

x1ξn = z1 ξnð Þ⟶ z1 ξ0ð Þ = x1ξ0 : ð38Þ
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Noting that z2ðξ0Þ = z3ðξ0Þ = x2ξ0 and

x2ξn = z2 ξnð Þ = z3 ξnð Þ⟶ z2 ξ0ð Þ = z3 ξ0ð Þ = x2ξ0 , ð39Þ

we have jx2ξn − x1ξn j⟶ jx2ξ0 − x1ξ0 j and then jx2ξ0 − x1ξ0 j = d0.
Moreover, it follows easily that

f x ξ, x1ξ
� �

 

 ≥ d20, ∀ξ ∈ B2: ð40Þ

By Lemma 14 and Remark 15, there exists δ > 0, which is
independent of ξ ∈ B2, such that for any η ∈ B2, a maximal
path ℓðη,x1ηÞ is defined well for ∣ξ − η ∣ ≤δ. More precisely,

ðη − δ, η + δÞ is included in the definition interval of the
maximal path.

Let a = ξ0 < ξ1 <⋯ξn = b such that jξj − ξj−1j ≤ δ, j = 1,
2⋯ n.

If ½ξj−1, ξj� ∩ B2 ≠∅, let

aj =min ξ ξ ∈ B2 ∩ ξj−1, ξj
� �

� �

, bj =max ξ ∈B2 ∩ ξj−1, ξj
� �

� �

:

ð41Þ

Obviously, ξj−1 ≤ aj ≤ bj ≤ ξj and bj − aj ≤ δ. By Lemma
14 and using the same notation as in Lemma 16, the maximal
path ℓP1

aj
joins with P1

aj
and P1

bj
. Denote by �ℓj = ℓP1aj ,P1

bj
the seg-

ment of ℓP1aj
joining with P1

aj
and P1

bj
. If aj = bj, we let lP1aj

= P1
aj
.

Obviously, there is no 2-multiple real root on the path ℓP1
aj
.

If ½ξj−1, ξj� ∩ B2 =∅, we have no such path.
All these paths can be arranged as flp1ajk g

m

k=1
with m ≤ n

and

a = aj1 ≤ bj1 ≤⋯ajk ≤ bjk ≤ ajk+1 ≤ bjk+1 ≤ ajm ≤ bjm = b: ð42Þ

In particular, if ξ ∈ ðbjk , ajk+1Þ, f ðξ, xÞ has no 2-multiple
real root. By Lemma 16, there exists a regular path

~ℓjk = ℓP1b jk
,P1

ajk+1
, ð43Þ

such that ~ℓjk joins with P1
bjk

and P1
ajk+1

.

If ajk+1 − bjk < δ, then ~ℓjk is a segment of the maximal path
of the simple real root Pbjk

, on which there is no 2-multiple

real root. Only if ajk+1 − bjk < δ can the 2-multiple real roots

P2
bjk

and P2
ajk+1

be on ~ℓjk , k = 1, 2,⋯m − 1.
It is easy to see that all the paths

�ℓj1 , ~ℓj1 ,⋯�ℓjk , ~ℓjk ⋯ �ℓjm ,~ℓjm , ð44Þ

can be continuously connected to form a regular path joining
with P1

a and P1
b. Moreover, it includes at most these 2-

multiple real roots fP2
bjk
, P2

ajk+1
gm
k=1

.

By rescaling the parameter of the paths, we can define the
path as a continuous mapping from ½0, 1� to A, but we omit

the details and refer to the proof of Lemma 26 below, where
a more general case is considered.

Lemma 18. Assume B3 = fa, bg. Then, there exists a regular
path ℓ in A joining with Pa and Pb; moreover, ℓ includes at
most countable 2-multiple real roots.

Proof. Case 1.
Assume that B2 =∅. Let ξ0 ∈ ða, bÞ and ðξ0, x0Þ ∈ A. Since

f xðξ0, x0Þ ≠ 0, by Lemma 14, the maximal path across ðξ0, x0Þ
must join with Pa and Pb.

Case 2. Assume B2 ≠∅. Let

�a = inf ξ ∈ B2f g, �b = sup ξ ∈ B2f g: ð45Þ

If �a > a and �b < b, then �a, �b ∈ B2. By Lemma 17, there
exists a path joining with P1

�a and P1
�b. Moreover, the maximal

path across P1
�a reaches to ξ = a on the left and the maximal

path across P1
�b reaches to ξ = b on the right. It is easy to see

that three paths on ½a, �a�, ½�a, �b�, and ½�b, b� form a regular path
between ξ = a and ξ = b. Now we consider the case that �a = a
or �b = b.

Let �a = a. Take ξ0 ∈ B2 and a sequence fajg ⊂ B2 such that

ξ0 = a0 > a1 > a2 >⋯ > aj > aj+1 ⟶ a: ð46Þ

Moreover, P1
aj
⟶ Pa, P2

aj
⟶ Pa. By Lemma 17, on

½aj−1, aj�, we have a path ℓj joining with P1
aj−1

and P1
aj
. Then,

all the paths fℓjgj≥0 can define a path joining with P1
a0

and

Pa; for more details, we also refer to the proof of Lemma 26.
If �b = b, in the same way, we can define a path connected

with P1
a0
and Pb. These two paths can be connected to form a

regular path joining with Pa and Pb.

Below, we consider the set of 3-multiple roots.

Lemma 19. For all ðξ, xÞ ∈ A3, we have x = xðξÞ = −ðc1ðξÞ/
3Þ, ξ ∈ ½a, b�. That means, all 3-multiple real roots of f are
on the continuous curve

l∗ : ξ, xð Þ x = −
c1 ξð Þ
3

, a ≤ ξ ≤ b






� �
: ð47Þ

Proof. Note that for ðξ, xÞ ∈ A3, we have f xxðξ, xÞ = 6x + 2
c1ðξÞ = 0; the result holds obviously.

Now, we prove the following important lemma.

Lemma 20. There exists a regular path ℓ ⊂ A with two odd-
multiple endpoints on AðaÞ and AðbÞ, respectively.

Proof. We first claim that B3 is a closed set.
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Let ξn ⟶ ξ0, ξn ∈ B3. Then, there exists a subsequence
xðξnkÞ of xðξnÞ, such that xðξnkÞ⟶ x0. Since f ðξ, xÞ, f xðξ,
xÞ, f xxðξ, xÞ are continuous, by ξnk ⟶ ξ0 we have

f ξ0, x0ð Þ = f x ξ0, x0ð Þ = f xx ξ0, x0ð Þ = 0: ð48Þ

Thus, ξ0 ∈ B3 and so B3 is closed.
Let �a =min fξ ∣ ξ ∈ B3g, �b =max fξ ∣ ξ ∈ B3g. Then, we

have ½�a, �b� \ B3 = ∪j≥1ðaj, bjÞ where fðaj, bjÞ ∣ j = 1, 2,⋯g are
disjointed open intervals of each other.

By Lemma 18, there exists a regular path ℓj between ξ = aj
and ξ = bj such that Paj

, Pbj
∈ ℓj.

Moreover, if a < �a, in the same way as the proof of
Lemma 18, where we take ξ0 = a and b = �a, then there exists
a regular path ℓl, which joins with P�a and P∗

a , where P
∗
a is a

simple root of f ða, xÞ. In the same way, if �b < b, we have a reg-
ular path ℓr , which joins with P�b and Pb

∗, where Pb
∗ is a sim-

ple root of f ðb, xÞ. Now, we construct a path ℓ as follows:

l = l j, ξ ∈ aj, bj
� �

, j ≥ 1,
l = l∗, ξ ∈ B3,
l = ll, ξ ∈ a, �a½ �,
l = lr , ξ ∈ �b, b

� �
,

8>>>>><
>>>>>:

ð49Þ

where l∗ðξÞ = ðξ,−ð1/3Þc1ðξÞÞ. Thus, ℓ is a path joining with
P∗
a and P∗

b .
Note that if a = �a (or b = �b), we have no path ℓl (or ℓr).
Below, we explain the continuity of ℓ. Let P0 = ðξ0, x0Þ ∈

A3. By uniform continuity of continuous bifurcations of
roots, it is easy to see that for any ϵ > 0, there exists δ > 0 such
that if ∣ξ − ξ0 ∣ ≤δ and ðξ, xÞ is a real root of f , then jx − x0j
≤ ϵ. By this fact, the continuity of ℓ can be proven in the
same way as in the extension of a continuous function on a
closed set on ℝ to ℝ; here, we omit the details.

Moreover, ℓjðj ≥ 1Þ, ℓl, ℓr include at most countable 2-
multiple real roots; thus, the path ℓ includes at most count-
able 2-multiple real roots.

Furthermore, by the above construction, it is easy to see
that the path ℓ has no basis point. Then, ℓ is a regular path
in A, which connects from AðaÞ to AðbÞ.
3.5. ð2d + 1Þ-Degree Polynomials. In this subsection, we will
prove our main results in the general case. To make an induc-
tion, we first give some definitions.

Definition 21 (room of real roots and passage of odd-multiple
real roots).

(1) LetD = ½a, b� × ðc, dÞ be a rectangle in the ðξ, xÞ-plane
and D° = ða, bÞ × ðc, dÞ be the interior of D. Let I0 =
½a0, b0� ⊂ I = ½a, b� and DI0

= I0 × ðc, dÞ, where DI can
be regarded as restriction of D for ξ to I0. Denote
the section of D at ξ by DðξÞ = fξg × ðc, dÞ ⊂ℝ2. In
particular, DðaÞ and DðbÞ are called the left side and
the right side of D, respectively

(2) Let I = ½a, b� and D be a rectangle as given above. A
group ð f ,m,D, IÞ is called a room of real roots of f ;
it means that f ðξ, xÞ is a real polynomial of degree
m with respect to x and depends continuously in
the parameter ξ on I; moreover, all real roots of
f ðξ, xÞ fall into D for all ξ ∈ I. If f has an m-
multiple real root on D, ð f ,m,D, IÞ is called a
minimal room of real roots of f

(3) If the left (right) side of D contains an odd-multiple
real root of f , the side is called a door of odd-
multiple real roots. If a room of real roots of f has a
door of odd-multiple real roots, it is called a passage
of odd-multiple real roots. Otherwise, if the left (right)
side of D contains no odd-multiple real root of f , the
side is called a separating wall of odd-multiple real
roots. If both the left side and the right side are
separating walls of odd-multiple real roots, we call
ð f ,m,D, IÞ an insulator of odd-multiple real roots.
Let ð f , 2d + 1,D, IÞ be a room of real roots. If f ða, xÞ
and f ðb, xÞ have 2d + 1-multiple real roots, ð f , 2d +
1,D, IÞ is called a one-way-passage of odd-multiple real
roots

(4) If D∘ contains no any real root of f , ð f ,m,D, IÞ is
called a separating block of real roots

(5) If ð f ,m,D, IÞ is a passage of odd-multiple real roots
and f has an m-multiple real root in D, we call ð f ,
m,D, IÞ a minimal passage of odd-multiple real roots.
A minimal passage of odd-multiple real roots cannot
be decomposed into smaller passages

A room of real roots is either a passage of odd-multiple
real roots, or an insulator of odd-multiple real roots, or a sep-
arating block of real roots. Also, note that once a path enters
into a one-way passage of odd-multiple real roots from one
side, it can only go out of the one-way passage from the other
side.

Note that an odd-multiple real root is never isolated and
an even-multiple real root can be isolated. Thus, there are a
lot of odd-multiple real roots near to a door of odd-
multiple real roots, so a passage is always neighbouring with
some rooms of real roots. A separating block of real roots has
no use in our problem, so it is usually ignored.

Lemma 22 (decomposition of minimal rooms of real roots).
Let ð f ,m,D, IÞ be a room of real roots of f . Assume f has
no any m-multiple root for all ξ ∈ I. Then, there exists δ > 0,
such that for any η ∈ I, if f ðη, xÞ has a real root, there exist real
polynomials f jðξ, xÞ ðj = 1, 2Þ, with their degrees mj <m,
which continuously depend on the parameter

ξ ∈ I0 = η − 2δ, η + 2δ½ � ∩ I, ð50Þ

and disjointed rectangles Dj ⊂D, j = 1, 2, such that

f ξ, xð Þ = f1 ξ, xð Þf2 ξ, xð Þ, ξ ∈ I0, ð51Þ
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and all real roots of f j fall into Dj, j = 1, 2. Moreover, f and f j
have the same real roots on Dj, j = 1, 2.

Remark 23. In brief, the above statement can be written as

f ,m,DI0
, I0

� �
= f1,m1D1, I0ð Þ × f2,m2,D2, I0ð Þ: ð52Þ

Let ð f ,m,D, IÞ be a room of real roots. If ð f j,mj,Dj, I0Þ is
a room of real roots, we call it a subroom of real roots of
ð f ,m,D, IÞ. Similarly, we can define subpassage.

Also note that ð f j,mj,Dj, I0Þ may not be a passage of
odd-multiple real roots. In fact, ð f j,mj,Dj, I0Þ may be a sep-
arating block of real roots, which is usually ignored in our
problem.

Proof. We first consider the case that m = 2d + 1. Let fxjðξÞ
, 1 ≤ j ≤mg be m continuous bifurcations of roots of f for ξ
on I. Since f has nom-multiple real root, it follows that there
exists α > 0 such that

max
i≠j

xj ξð Þ − xi ξð Þ

 

 ≥ 2d + 1ð Þα, ∀ξ ∈ I: ð53Þ

Let xj1ðηÞ be a real root of f ðη, xÞ. Then, there exist δ >
0, c ≥ 0, 1 ≤ r <m and two groups fxj1 ,⋯,xjrg and fxjr+1 ,⋯,
xjmg such that

xjk ξð Þ − xj1 ηð Þ



 


 < c, ∀ξ ∈ I0,∀1 ≤ k ≤ r <m,

xjk ξð Þ − xj1 ηð Þ



 


 > c + α, ∀ξ ∈ I0,∀r + 1 ≤ k ≤m,

ð54Þ

where I0 = ½η − 2δ, η + 2δ� ∩ I. Since all xjðξÞ are uniformly
continuous in ξ on I, so δ can be independent of η ∈ I.

Note that for r + 1 ≤ k ≤m, if ∣ Re ðxjkðξÞÞ − xj1ðηÞ ∣ <
c + α, then xjkðξÞ is a complex root.

Let x0 = xj1ðηÞ and M be a constant such that jxjðξÞj ≤
M, ∀ξ ∈ I, j = 1, 2,⋯m.

Now we divide fxjr+1 ,⋯xjmg into two groups:

xjk Re xjk

� 	
≤ x0, r + 1 ≤ k ≤m




n o
= ~xj 1 ≤ j ≤~r ≤m − rj� �

,

xjk Re xjk

� 	
> x0, r + 1 ≤ k ≤m




n o
= ~xj ~r + 1 ≤ j ≤m − rj� �

:

ð55Þ

It is easy to see that for 1 ≤ j ≤~r, if ~xj is a real root, then
~xj ≤ x0 − c − α, and for ~r + 1 ≤ j ≤m − r, if ~xj is a real root,
then ~xj > x0 + c + α.

Let

g1 ξ, xð Þ = x − xj1 ξð Þ
� 	

⋯ x − xjr ξð Þ
� 	

,

g2 ξ, xð Þ = x − ~x1 ξð Þð Þ⋯ x − ~x~r ξð Þð Þ,
g3 ξ, xð Þ = x − ~xr+1 ξð Þð Þ⋯ x − ~xm−r ξð Þð Þ:

ð56Þ

Since xj1ðηÞ is a real number, it follows that xjkðξÞ, ~xjðξÞ,
and their conjugate complex roots belong to the same group;
thus, all gj ðj = 1, 2, 3Þ are real polynomials.

If ~r ≥ 1, let

f1 = g1g3, f2 = g2,D1 = I0 × −M, x0 + cð Þ,D2 = I0 × x0 + c + α,M½ �:
ð57Þ

If ~r = 0, let

f1 = g1, f2 = g3,D1 = I0 × x0 − c, x0 + cð Þ,D2 = I0 × −M, x0 − c − αð Þ:
ð58Þ

The case that m = 2d can be considered in the same way
by taking x0 = xj1ðηÞ to be a real root of f ðη, xÞ, which is
available by assumption.

If f has an m-multiple real root, the room of real roots
ð f ,m,D, IÞ cannot be decomposed into smaller ones.

The fact that δ is independent of η guarantees a finite par-
tition of ½a, b� such that, on each small interval, we have the
above decomposition. If some smaller room is not minimal,
we can use the above lemma again until all small rooms are
minimal. This result concerns with the following lemma.

Lemma 24. Consider ð f0, 2d + 1,D0, I0Þ and let ð f ,m,D, IÞ
with I = ½a, b� be a subroom of ð f0, 2d + 1,D0, I0Þ with m ≤
2d + 1,D ⊂D0, I ⊂ I0. Assume that f and f0 have same real
roots on D; moreover, f has no any m-multiple root for all
ξ ∈ ½a, b�. Then, there exists finitely many minimal rooms of
real roots of f , fð f j,mj,Dj, I jÞgNj=1 with I j = ½aj, bj�, such that

the following hold true:

(1) f and f j have same real roots on Dj

(2) mj <m and f j has at least one mj-multiple real root
on Dj

(3) If aj ≠ a and the left side DjðajÞ contains a real root P
of f j, then there is a room of real roots ð f i,mi,Di, IiÞ,
which is neighboured with ð f j,mj,Dj, I jÞ such that P

∈D
°
i and ai < aj < bi. For the right side, if bj ≠ b and

DjðbjÞ contains a real root of f j, we have a similar
result. Let δij =min fjai − bjj, jbi − bjjg, then we have
δij > 0. Since i, j ≤N , the smallest distance of such δij is
also positive
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(4) Every ð f j,mj,Dj, I jÞ is a minimal passage of odd-
multiple real roots or an insulator of odd-multiple real
roots; moreover, any real root of f onD is a real root of
some f j on Dj

The conclusion (3) is very important in extending of
paths. By induction, a path can be always extended from an
initial point in a passage of real roots Dj to arrive at an
odd-multiple real root on a door of Dj. The new odd-
multiple endpoint on the door of Dj is already in the interior
of some Di. Then, we can do extension again inDi to arrive at
another odd-multiple endpoint on a door of Di; in this pro-
cess, the path must cross at least δij length of ξ. Since a path
can only cross at most ð2d + 1Þðb − aÞ length about the
parameter, the extension can repeat at most finitely many
times before it cannot be extended again, which can only
happen when the path has become a closed regular path or
it arrives the boundary of the domain.

Among the sequence of minimal rooms fð f j,mjDj, I jÞgNj=1
in this lemma, there may be some minimal room which is
completely included in a bigger one. In this case, we can drop
away some smaller minimal rooms and the lemma still
holds for the rest. So, without loss of generality, we can sup-
pose Di \Dj ≠∅ for all i ≠ j.

Proof of Lemma 24. By assumption, f has no any m-multiple
real root. By Lemma 22, there exists δ > 0 such that for
η ∈ ½a, b�, if f ðη, xÞ has a real root, then there exist two real
polynomials f1ðξ, xÞ and f2ðξ, xÞ with their degrees m1,
m2 < m, which continuously depend on the parameter
ξ ∈ ½η − 2δ, η + 2δ� ∩ ½a, b�, and two disjointing rectangles
D1 and D2 for ξ on ½η − 2δ, η + 2δ� ∩ ½a, b�, such that
f ðξ, xÞ = f1ðξ, xÞf2ðξ, xÞ and all real roots of f i fall into
Di, i = 1, 2.

Now, we choose a partition of ½a, b�:

a = ξ0 < ξ1 < ξ2 <⋯ < ξn = b, ð59Þ

such that ξj+1 − ξj < δ. Then, let

I1j = ξj, ξj+2
� �

j = 0, 1,⋯n − 2j
n o

: ð60Þ

If f ðη, xÞ has a real root for some η ∈ ðξj, ξj+2Þ, Lemma 22
implies that on the small interval I1j , we have the decomposi-

tion ð f ð1Þj1 ,m
ð1Þ
j1 ,D

ð1Þ
j1 , I

ð1Þ
j Þ and ð f ð1Þj2 ,m

ð1Þ
j2 ,D

ð1Þ
j2 , I

ð1Þ
j Þ.

If f ðη, xÞ has no any real root for all η ∈ ðξj, ξj+2Þ, we drop
away the room of real roots ð f ,m,DI1j

, Ið1Þj Þ. In this case, if

there exists a real root P on DðξjÞ or Dðξj+2Þ, P is an even-
multiple real root and belongs to ð f ,m,DI1j−1

, I1j−1Þ or ð f ,m,
DI1j+1

, I1j+1Þ, so we do not lose any real root after dropping

away ð f ,mDI1j
, Ið1Þj Þ.

Denote all these smaller rooms of real roots by fð f ð1Þj ,
mð1Þ

j ,Dð1Þ
j , Ið1Þj Þg for simplicity of notations. Note that some

two intervals in fIð1Þj g may be identical, but fDð1Þ
j g are all

different from each other. Let Ið1Þj = ½að1Þj , bð1Þj �.
If some f ð1Þj has no real root in the interior of Dð1Þ

j , that is,

(f ð1Þj ,mð1Þ
j ,Dð1Þ

j , Ið1Þj ) is a separating block of real roots, we

drop it away. So without loss of generality, assume f ð1Þj has
at least one real root in the interior of Dj. Thus, ð f j,mj,Dj,
I jÞ is a passage of odd-multiple real roots or an insulator of
odd-multiple real roots. After dropping some separating
blocks, for simplicity, we denote the subsequence by itself

f 1ð Þ
j ,m 1ð Þ

j ,D 1ð Þ
j , I 1ð Þ

j

� 	n oN1

j=1
: ð61Þ

It is very important that for any side ofDð1Þ
j , sayDð1Þ

j ðað1Þj Þ,
if að1Þj ≠ a and P ∈Dð1Þ

j ðað1Þj Þ is a real root, then P must belong

to the interior of someDð1Þ
i ði ≠ jÞ. If bð1Þj ≠ b and P ∈Dð1Þ

j ðbð1Þj Þ
is a real root, we have a similar result.

Now, if (f ð1Þ1 ,mð1Þ
1 ,Dð1Þ

1 , Ið1Þ1 ) is not minimal, in the same
way as above, we decompose it into a sequence of smaller
rooms of real roots

f 2ð Þ
1k ,m2

1k,D
2ð Þ
1k , I

2ð Þ
1k

� 	n o
k≥1

: ð62Þ

But we should note that when we make a partition of

Ið1Þ1 = ½að1Þ1 , bð1Þ1 �, we require the points of the partition not
to fall on M1, where

M1 = ξ D 1ð Þ
1 ∩D 1ð Þ

j ξð Þ ≠ ϕ, ξ ∈ a 1ð Þ
j , b 1ð Þ

j

n o
, 1 ≤ j ≤N1




n o
:

ð63Þ

Since M1 is finite set, it is easy to have such partition of

[að1Þ1 , bð1Þ1 ]. Such partition is very important, and it makes
the sides of a neighbouring room of real roots to disjoint each
other. Thus, any real root on a side must fall into the interior
of a neighbouring room unless it falls into DðaÞ ∪DðbÞ.

If (f ð1Þ1 ,mð1Þ
1 ,Dð1Þ

1 , Ið1Þ1 ) is minimal, we cannot decompose
it and denote it by

f 2ð Þ
11 ,m

2ð Þ
11 ,D

2ð Þ
11 , I

2ð Þ
11

� 	
= f 1ð Þ

1 ,m 1ð Þ
1 ,D 1ð Þ

1 , I 1ð Þ
1

� 	n o
: ð64Þ

Suppose we have decomposed

f 1ð Þ
jk ,m

1ð Þ
jk ,D

1ð Þ
jk , I

1ð Þ
jk

� 	n o
, j = 1, 2,⋯i − 1, ð65Þ

and obtained

f 2ð Þ
jk ,m

2ð Þ
jk ,D

2ð Þ
jk , I

2ð Þ
jk

� 	n o
, j = 1, 2,⋯i − 1: ð66Þ
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Now, we consider (f ð1Þi ,mð1Þ
i ,Dð1Þ

i , Ið1Þi ). In the same way,
we make a partition of ½ai, bi� as above; moreover, we require
the points of the partition not to fall on Mi, where Mi =
M1

i ∪M2
i , where

M1
i = ξ D 1ð Þ

i ∩D 1ð Þ
j




 ξð Þ ≠ ϕ, ξ ∈ a 1ð Þ
j , b 1ð Þ

j

n o
, j > i

n o
,

M2
i = ξ D 1ð Þ

i ∩D 2ð Þ
j




 ξð Þ ≠ ϕ, ξ ∈ a 2ð Þ
j , b 2ð Þ

j

n o
, j = i,⋯i − 1, k ≥ 1

n o
:

ð67Þ

If (f ð1Þi ,mð1Þ
i ,Dð1Þ

i , Ið1Þi ) is minimal, we cannot decom-
pose it and denote it by

f 2ð Þ
i1 ,m 2ð Þ

i1 ,D 2ð Þ
i1 , I 2ð Þ

i1

� 	
= f 1ð Þ

i ,m 1ð Þ
i ,D 1ð Þ

i , I 1ð Þ
i

� 	n o
: ð68Þ

In this way, we decompose all rooms (f ð1Þj ,mð1Þ
j ,Dð1Þ

j ,
Ið1Þj ) which are not minimal.

Then, we move away all separating blocks from fð f ð2Þjk ,
mð2Þ

jk ,D
ð2Þ
jk , I

ð2Þ
jk Þg, and the rest is denoted by

f 2ð Þ
j ,m 2ð Þ

j ,D 2ð Þ
j , I 2ð Þ

j

� 	n oN2

j=1
: ð69Þ

This step can iterate at mostm steps, and finally, we have
a sequence of minimal rooms of real roots

f mð Þ
j ,m mð Þ

j ,D mð Þ
j , I mð Þ

j

� 	n oNm

j=1
: ð70Þ

For simplicity, denote it by

f j,mj,Dj, I j
� 	n oN

j=1
: ð71Þ

According to the above decomposition, it is easy to see
that if one side of ð f j,mj,Dj, I jÞ does not fall on ξ = a or
ξ = b, it may be divided into some parts such that each part
is between the two sides of a neighbouring room ð f i,mi,
Di, IiÞ, the overlapping region Dj ∩Di can be regarded as
a door way joining with ð f j,mj,Dj, I jÞ and ð f i,mi,Di, IiÞ.
Any real root on the side of Dj is in the interior of some
Di with i ≠ j.

This is very important for our extension of paths. By
induction assumption, a path of odd-multiple real roots can
be extended in Dj to a side of Dj. Since the new odd-
multiple endpoint on the side of Dj falls into the interior of
some Di, we can extend the path in Di again from the new
endpoint to a side of Di. In this way, we can extend a path
from the initial endpoint in some room to a neighbouring
room and then go to the next neighbouring room. This pro-
cess can go on unless it has become a closed regular path or
arrived on ξ = a or ξ = b.

We should note that once a path enters into an insulator
of odd-multiple real roots, the whole path belongs to the
insulator. Moreover, any extension of the path can only stay
in the insulator forever and it can only be extended to be a
closed path finally. So, only in some passages of odd-
multiple real roots a path can be extended to be a desired
path.

A one-way passage of odd-multiple real roots can only
allow one regular path to go through it. Once a segment of
a path goes from DðaÞ to DðbÞ, since there is a unique real
root on DðaÞ and DðbÞ, respectively, according to the com-
patibility of paths, any segment of the path cannot enter into
it again.

We also note that a bigger room may be neighbouring
with several smaller rooms. This case happens near to
some multiple real roots, where some paths of lower-
odd-multiple real roots bifurcate.

The proof of Theorem 2 is based on a special case that f
has at least one ð2d + 1Þ-multiple real root, which is consid-
ered in the following theorem:

Theorem 25. Consider a room of real roots ð f , 2d + 1,D, IÞ
with I = ½a, b�. If f has a ð2d + 1Þ-multiple real root, then there
exists a regular path of odd-multiple real roots in D, which
joins with two odd-multiple endpoints on DðaÞ and DðbÞ,
respectively.

The proof of Theorem 25 is based on induction for degree
of polynomials. So we first assume Theorem 25 already holds
for polynomials of degree ≤ 2d − 1. Below, we prove that The-
orem 25 also holds for polynomials of degree = 2d + 1. The
proof is based on the following lemma.

Before giving the lemma, we first show some notations. Let
~m ≤ 2d + 1 and ð f , ~m,D, IÞ be a room of real roots of f with
I = ½a, b�. LetA~m be the set which consists of all ~m-multiple real
roots of f for all ξ ∈ I and B~m = fξ ∈ I ∣ ðξ, xÞ ∈ A~mg. For ξ ∈
B~m, denote by Pξ the ~m-multiple real root of f ðξ, xÞ.

Lemma 26. Let ð f , ~m,D, IÞ be a subroom of real roots of
ð f0, 2d + 1,D0, I0Þ. Let γ0 be a regular path in ð f0, 2d + 1,
D0, I0Þ with an odd-multiple endpoint P0 ∈D0 \D and a
simple odd-multiple endpoint P1 ∈D0. Let ~γj,⋯~γk be paths
in ð f0, 2d + 1,D0, I0Þ, where k ≤ d:Let Ej = f~γjð0Þ, ~γjð1Þg be
the endpoints of ~γj. Suppose that ~γj is a closed regular path
or Ej ⊂D0 \D. Let ~γ = ~γ1 ∪⋯∪ ~γ and Γ = γ0 ∪ ~γ. Suppose
that {γ0, ~γ1,⋯~γk} are compatible on D.

(1) Let ~m = 2�d and B2�d =∅. Suppose that γ0 enters into D
with P1 ∈ D∘. Then γ0 can be extended in D to be a
compatible path such that it has a simple odd-
multiple endpoint P1+ on DðaÞ ∪DðbÞ with outward
direction. Here “outward direction” means, if P1+ ∈
DðaÞðorDðbÞÞ, it is a left (or right) endpoint

Note that below the new endpoint in extension of paths
always has outward direction in the above sense if without
explanation.

(2) Let ~m = 2�d and P1 ∈ D∘. Then, the following hold true:
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(i) Let B2�d = fbg. Suppose that γ0 enters into D
and arrives at P1 = ðc, xcÞ with a < c < b. Then,
γ0 can be extended in D to be a compatible
path such that it has a simple odd-multiple left
endpoint on DðaÞ, or it reaches to Pb. Moreover,
in the last situation, we can continue to extend γ0
with Pb as a reflecting point such that it has an
odd-multiple left endpoint on DðaÞ; moreover, it
is compatible with ~γ

(ii) Let B2�d ≠∅. Then, γ0 can be extended to be a
compatible path such that it has a simple odd-
multiple endpoint on DðaÞ or DðbÞ with outward
direction

(3) Let ~m = 2�d + 1 and B2�d+1 =∅. Suppose that γ0 enters
into D with P1 ∈ D∘. Then, γ0 can be extended to be a
compatible path such that it has a simple odd-multiple
endpoint on DðaÞ or DðbÞ with outward direction

(4) Let ~m = 2�d + 1 and B2�d+1 = fbg. Then, the following
hold true:

(i) Suppose that γ0 enters into D with P1 = Pc =
ðc, xcÞ ∈D with a < c < b. Then, it can be extended
to be a compatible path such that it has an odd-
multiple left endpoint on DðaÞ, or it arrives at Pb.
Moreover, in the last situation, if Pb is already a
crossing point, γ0 can be extended to be a compat-
ible path such that it has an odd-multiple left end-
point P1+ on DðaÞ

(ii) Cancel the existing paths γ0 and ~γj in the
assumption and consider ð f , ~m,D, IÞ to be an
empty room of real roots. Then, there exists a
regular path γ ⊂D which joins with odd-
multiple endpoints P0 ∈DðaÞ and P1 = Pb with
outward direction

(5) Let ~m = 2�d + 1 and B2�d+1 = fa, bg. Then, the following
hold true:

(i) Suppose that the path γ0 reaches to D with P1 ∈D.
Then, the path γ0 can be extended to be a compat-
ible path such that it has a simple endpoint
belonging to fPa, Pbg with outward direction

(ii) In the same way as (4(ii)), there exists a regular
path γ ⊂D, which joins with endpoints Pa and
Pb with outward direction.

(6) Let ~m = 2�d + 1 and B2�d+1 ≠∅. Then, the following
hold true:

(i) Let �d ≤ d − 1. Suppose that γ0 enters into D
with P1 ∈ D∘. Then, γ0 can be extended to be
a compatible path such that it has a simple
odd-multiple endpoint on DðaÞ ∪DðbÞ with out-
ward direction

(ii) Let �d = d. Then, Theorem 25 holds true

Remark 27.

(i) If B2�d = fag, we have similar results to (2(i)) and
(2(ii)). Moreover, if B2�d+1 = fag, we have similar
results to (4(i)) and (4(ii)). Here, we omit the
details

(ii) We require endpoints of ~γj to be outside ofD to avoid
γ0 being in a dilemma after it enters into D. Thus,
when γ0 goes into D, it can always have some way
to arrive at DðaÞ or DðbÞ

Proof. We prove Lemma 26 by induction. By the proof of
Lemma 20, it is easy to see that Lemma 26 holds for �d = 1.
Inductively suppose that Lemma 26 holds for all �d ≤m − 1.
Below, we prove it for �d =m. Recall that we already make
an induction assumption about d for Theorem 25. Here, we
actually make an induction about both d and �d in Theorem
25 and Lemma 26.

Proof of (1). By assumption, we have B2�d =∅. Then, by
Lemma 24, it follows that the room (f , 2�d,D, ½a, b�) (�d =m)
can decompose into smaller minimal ones fð f j,mj,Dj, I jÞg
with mj < 2m.

Suppose that the path γ0 has been extended to some

room ð f j,mj,Dj, I jÞ such that P1 ∈D
°
j. By assumption it is

easy to see that E = ∪k
j=1Ej, the set of all the endpoints of

{~γj}, is outside of Dj. In addition, whatever mj = 2�m or
mj = 2�m + 1, we have �m ≤m − 1. By induction assumption
of (2(ii)) and (6), we can extend γ0 in Dj to a side of
Dj with a new odd-multiple left (or right) endpoint on
DjðajÞ (or DjðbjÞ).

Moreover, we can require the new odd-multiple end-
point to be simple and have outward direction about
domain Dj. In fact, we can always extend the path to
reach to DjðajÞ (or DjðbjÞ) such that the endpoint is nei-
ther a crossing point nor a reflecting point. If not so, the
endpoint meets a crossing point or a reflecting point on
DjðajÞ (or DjðbjÞ), we can always continue the extension
by reflecting at the crossing point or reflecting point such
that the path enters into Dj again and then repeat the
above process.

If the endpoint is already on DðaÞ ∪DðbÞ, the result is
proved. Otherwise, the odd-multiple endpoint is on a door
of the passage ð f j,mj,Dj, I jÞ, which must be neighboured
with another room of real roots, say, ð f i,mi,Di, IiÞ. Then,
the path enters into Di and the odd-multiple endpoint on
the door of ð f j,mj,Dj, I jÞ belongs to the interior of Di; thus,
we can do extension in ð f i,mi,Di, IiÞ in the same way as in
ð f j,mj,Dj, I jÞ.

If the extension does not go to DðaÞ ∪DðbÞ, the process
can repeat in the next neighbouring room. Each extension
must go across the parameter of a positive length δ > 0. It is
easy to see that the total length of parameter of γ is no more

14 Abstract and Applied Analysis



than 2�dðb − aÞ; thus, after at most finitely many extensions,
the path must reach to DðaÞ ∪DðbÞ with an odd-multiple
endpoint with outward direction.

Thus, we have n segments of paths γ1,⋯, γn such that

P0 = γ1 0ð Þ, P1 = γ1 1ð Þ,⋯, γn−1 1ð Þ = Pn−1 = γn 0ð Þ, Pn = γn 1ð Þ,
ð72Þ

where P0 is the initial endpoint of the path.
Note that each γj is obtained when we do extension in

some passage. Moreover, each γj is compatible with the exist-
ing paths since the extension is done according to the com-
patibility of paths by induction assumption. We should also
note that once a path enters into an insulator, the path must
totally fall into this insulator. However, since P0 ∉D, this
situation cannot happen in our extension. Anyway, by induc-
tion assumption, the extension is well defined.

Let I j = ½i/ðn + 1Þ, ðj + 1Þ/ðn + 1Þ�, j = 0, 1,⋯n and ½0, 1�
= ∪n

j=0I j. By rescaling the parameter t of paths, we suppose
that the original path γ0ðtÞ is defined for t on I0, and γjðtÞ
is defined for t on I j, j ≥ 1. Then, we obtain an extension
γ = ∪n

j=0γj with

γ tð Þ = γ j tð Þ, t ∈ I j, j = 0, 1⋯ n: ð73Þ

By the above discussion, every extension follows the
compatibility of paths, so all the paths are compatible.
Thus, conclusion (1) is proven.

Proof of (2). Now, we turn to proving conclusion (2).

Case of (2(i)). (A) We first prove that once γ0 enters into D, it
can always be extended to arrive atDðaÞ or Pb; moreover, it is
compatible with ~γ = f~γ ∣ j = 1, 2⋯ kg.

Take a partition

a = a0 < c < a1 <⋯ < an <⋯b such that an ⟶ b: ð74Þ

Since f has no 2�d-multiple real root for ξ ∈ ½a0, a1�, by
induction assumption and using the result (1) to the room
of real roots ð f , 2�d,D½a0,a1�½a0, a1�Þ, we can extend γ0 such that
it goes to DðaÞ ∪Dða1Þ. If it arrives at DðaÞ, the result is
proved; otherwise, it goes to Dða1Þ. Denote the segment of
extension by ℓ1. Note that here we can require the endpoint
to be a simple one as discussed above; moreover, ℓ1 is com-
patible with Γ = ~γ ∪ γ0.

Let γ1 = γ0 ∪ ℓ1, then γ1 is compatible with ~γ. Now, we
extend the path γ1 in D½a0,a2� with a simple odd-multiple end-
point on Dða1Þ as a new initial endpoint. In the same way as
above, if it does not arrive at DðaÞ, it goes to Dða2Þ. Denote
the segment of the extension by ℓ2. Moreover, ℓ2 is compati-
ble with Γ1 = ~γ ∪ γ1. Let γ2 = γ1 ∪ ℓ2, then γ2 is compatible
with ~γ.

Then, we repeat the above process of extension. If the
path is already extended to ξ = an, we consider ½a0, an+1�. In

the same way, if it does not arrive at DðaÞ, it must arrive at
ξ = an+1.

In this process, if the path does not arrive at DðaÞ, it must
arrive at all ξ = an and have a sequence of segments of paths
flng, which is obtained when extending on ½a0, an� and given
by a continuous mapping ℓn : t ∈ ½0, 1�⟶ ℓnðtÞ with Pn =
ℓnð0Þ ∈DðanÞ and Pn+1 = ℓnð1Þ ∈Dðan+1Þ, where Pn are all
simple odd-multiple right endpoints of ℓn−1. Let

0, 1½ � = ∪∞
n=1 1 − 1

n
, 1 − 1

n + 1


 �
∪ 1f g: ð75Þ

By rescaling the curve parameter t, we can let γ0ðtÞ,
t ∈ ½0, 1/2� and ℓn : t ∈ ½1 − 1/ðn + 1Þ, 1 − 1/ðn + 2Þ�⟶ ℓnðtÞ
with Pn = ℓnð1 − 1/ðn + 1ÞÞ and Pn+1 = ℓnð1 − 1/ðn + 2ÞÞ.

Define

bγ : bγ tð Þ = ℓn tð Þ, t ∈ 1 − 1
n + 1 , 1 −

1
n + 2


 �
, ∀n ≥ 1, bγ 1ð Þ = Pb:

ð76Þ

Then, bγðtÞ, t ∈ ½1/2, 1� is a continuous mapping withbγð0Þ = P1 and bγð1Þ = Pb. So γ = γ0 ∪ bγ is a continuous
curve for t ∈ ½0, 1� joining with P0 and Pb.

We should note that in the above extension, Pb may be
already a reflecting point of ~γj or γ0. In this case, we can
regard ~γj as two segments of paths with Pb as their endpoints.
Obviously, all their endpoints are outside of D½a0,an� for all
n ≥ 1. Moreover, Γ is still compatible when ~γj is divided
into two pieces of paths. Then, the assumption of (1)
holds, so the above extension is reasonable.

Below, we show that the extension γ is well defined and
satisfies the definition of paths; thus, γ is a desired path.

By Lemma 11, since the points on a path can recur to
some parameter at most 2�d times, so ℓn can intersect with
fℓ1,⋯,ℓn−1g at most 2�d times. So for any ℓm, there exists
N >m such that for all n > N, ℓn ∩ ℓm =∅:

Let γn=γ0 ∪ ð∪n−1
k=1ℓkÞ. By induction, all ℓn and γn follow

the compatibility of paths.
It follows that all γn are compatible with ~γ.
Let γ = γ0 ∪ ð∪∞

n=1ℓnÞ ∪ fPbg. Thus, for any P ∈ γ, if P ≠
Pb, there exists sufficiently large N > 0 such that P ∉ ∪n≥Nℓn
and P ∈ γN = γ0 ∪ ð∪n≤N−1ℓnÞ. By induction γN is a well-
defined compatible path, so P satisfies the definition of path
as a point on γN . Since P ∉ ∪n>Nℓn, then P also satisfies the
definition of paths as a point on γ.

Below, we prove that γðtÞ is continuous at t = 1. Note that
γð1Þ = Pb. Let γðtÞ = ðξðtÞ, xðtÞÞ. For any ϵ > 0, there exists
N > 0 such that for all n >N , ℓn do not go across ξ = b − ϵ.
Note that ℓn = ðξnðtÞ, xnðtÞÞ, t ∈ ½1 − 1/ðn + 1Þ, 1 − 1/ðn + 2Þ�.
Then, for all n >N , ξnðtÞ ∈ ½b − ϵ, b�. Let δ = 1/ðN + 1Þ. Then,
if 0 < 1 − t ≤ δ, there exists n >N such that t ∈ ½1 − 1/ðn + 1Þ,
1 − 1/ðn + 2Þ�, so ξðtÞ = ξnðtÞ and jb − ξðtÞj = jb − ξnðtÞj ≤ ϵ.
Thus, ξðtÞ is continuous at t = 1. Moreover, since Pb is a 2�d
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-multiple real root, by the 2�d continuous bifurcations of roots of
the polynomial f , one of which the real root ðξðtÞ, xðtÞÞ must
belong to; it follows easily that if t < 1 and t⟶ 1, we have
ξðtÞ⟶ b and so xðtÞ⟶ xb. Thus, γðtÞ⟶ Pb, t⟶ 1,
which implies that γðtÞ is continuous at t = 1. Thus, γ is a
compatible path with ~γ, and Pb is a left even-multiple
endpoint.

(B) If γ0 is already extended to arrive at Pb, we consider to
extend it back from Pb to DðaÞ. We prove that there exists a
path bγ , which joins also from an odd-multiple real root
P1+ ∈DðaÞ to Pb, such that γ = γ0 ∪ bγ is a compatible path
with ~γ, which joins from P0 to Pb along γ0 and then goes
back from Pb to P1+ along bγ .

Without loss of generality, suppose that γ0 has arrived at
Pb. Note that γ0 may meet Pb several times, that is, Pb is
already a reflecting point of γ0. We first note that Lemma
13 implies that Γ = γ0 ∪ ~γ has occupied odd number of cross-
ing points on DðaÞ.

Since f has even number of odd-multiple real roots on
DðaÞ, we can take an odd multiple real root ða, x1Þ on DðaÞ.
By induction assumption of Theorem 25, there exists a small
rectangle with ða, x1Þ as the center and a small segment of
path in the small rectangle, which goes across ða, x1Þ from a
left endpoint P0 on the left side to a right endpoint P1 on
the right side. Then, P0 ∉D. Now, we extend the path from
P1 to the right in the same way as in (A) of case (2(i)). Denote
the path by γ1.

If γ1 is extended to Pb, let bγ = γ1 and then γ0 ∪ bγ0 is a
desired path. Otherwise, γ1 goes back to ξ = a without touch-
ing with Pb. We can require γ1 to be extended finally to an
odd-multiple real root (a, x1 ′) with x1 ≠ x1′. In fact, if the
extension goes back to ða, x1Þ, it can also be extended to the
right by reflecting at ða, x1Þ and then repeat the above pro-
cess. So, if it goes back to DðaÞ, we can always suppose it
touches a different odd-multiple real root (a, x1 ′)on DðaÞ;
moreover, we require it to cross DðaÞ a little with a simple
endpoint of γ1 on the left of DðaÞ.

Denote the path joining with ða, x1Þ and (a, x1 ′) still by
γ1. Then, it has two endpoints of on the left of DðaÞ and
occupies two odd-multiple real roots on DðaÞ. Note that Γ
occupies odd number of odd-multiple real roots. Then Γ
and γ1 have occupied odd number of odd-multiple real roots
on DðaÞ.

In the same way as above, take another odd-multiple
real root ða, x2Þ on DðaÞ. By induction assumption of The-
orem 25, there exists a small rectangle with ða, x2Þ as the
center and a small segment of path in the small rectangle,
which goes across ða, x2Þ from a left endpoint P0 ′ on the
left side to a right endpoint P1′ on the right side. Then,
P0 ′ ∉D. Now, we extend the path from P1′ to the right
in the same way as in (A) of case (2(i)) to obtain a com-
patible path γ2.

We should note that γ1 plays a role to restrict number of
odd-multiple real roots on DðaÞ which can be taken as a
crossing point of γ2. More precisely, since γ1 occupied at least
two odd-multiple real roots onDðaÞ, a crossing point of γ2 on
DðaÞ can be chosen in a smaller range.

Below, we analyze several cases of extension of γ2.

(i) γ2 does not recur to DðaÞ.
If γ2 does not go back to DðaÞ, it goes through all ξ = an,

and then γ2 is extended from ða, x2Þ to Pb in the same way as
(A) of case (2(i)).

We should note that γ2 is allowed to meet with γ0 ∪ γ1
and ~γ according to the compatibility of paths.

If γ2 does not attach the path γ1, then γ2 is a desired path
by taking off γ1.

Assume that γ2 attaches γ1. Since γ1 is on the left of
ξ = an1 with n1 being sufficiently big, so γ2 has no touch-
ing point with γ1 on the right of ξ = an1 . Take the last
crossing point of γ2 at ξ = an1 and denote it by ðan1 , xn1Þ.

Then, we drop away γ1 and the segment of γ2 which joins
from ða, x2Þ to ðan1 , xn1Þ. The purpose of dropping γ1 away is
to avoid influence of γ1 on γ2 such that γ2 can only have some
touch with γ0 and ~γ; thus, the next extension of γ2 can be a
compatible path.

Then, we extend the segment of γ2 between Pb and ðan1 ,
xn1Þ to the left. Still denote by γ2 the segment of γ2 without
confusion. If γ2 is extended to DðaÞ, then γ2 is a desired path.
Otherwise, the extension goes through all ξ = an to arrive at Pb,
then we have a closed path which reflects at Pb and denote it
by �γ1. Moreover, �γ1 is compatible with γ0 and ~γ.

(ii) γ2 recurs to DðaÞ.
If γ2 goes back to ξ = a, we assume that it does not

touch γ1 at ξ = a (if so, we can still extend it by reflecting
at the touching point and finally γ2 can reach to an odd-
multiple real root on DðaÞ, which does not belong to γ1).
Moreover, in the same way as γ1, we require γ2 to cross
DðaÞ a little with a simple endpoint on the left of DðaÞ
so that its two endpoints are on the left of DðaÞ. Then,
γ1 ∪ γ2 occupy at least 4 odd-multiple real roots on DðaÞ
and all their endpoints are on the left of DðaÞ. Moreover,
γ0, γ1, γ2, ~γ are compatible.

At this stage, we can make γ3. Using γ1 ∪ γ2 in place of γ1
and γ3 in place of the above γ2, we can have a similar discus-
sion as above.

Finally, if we have not obtained a desired path, either we
obtain another closed path �γ2 withPb being a reflecting point,
or γ1 ∪ γ2 ∪ γ3 occupies at least 6 odd-multiple real roots on
DðaÞ; moreover, γ0, γ1, γ2, γ3, ~γ are compatible.

We1 should note that �γ2 is obtained by extension of a seg-
ment of the path after dropping γ1 ∪ γ2. So γ0, �γ1 and �γ2 also
follow the compatibility of paths with ~γ, and so γ0, γ1, γ2, ~γ
are compatible.

If we do not obtain a closed path �γ2, we can consider to
find γ4 in the same way as above. Thus, if we do not find a
desired path, we either find a closed path �γ2 as above or a
path γ4 as γj, 1 ≤ j ≤ 3.

During this process, if we have not obtained a desired
path, one of two situations happen: we find one more closed
path with Pb being a reflecting point or two more odd-
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multiple real roots on DðaÞ are costed by a new path. More-
over, all the paths are compatible.

Also note that we can have at most γ1,⋯γ�d−1, which has
occupied at least 2�d − 2 odd-multiple real roots on DðaÞ. At
this stage, if we still have not obtained a desired path, we
must obtain a closed path �γ2 as above.

(iii) Iteration of the above process

In this way, if the number of closed paths which reflect at
Pb stops increasing, then more and more odd-multiple real
roots on DðaÞ are costed and after some n − 1 steps, finally,
only one odd-multiple real root on DðaÞ is left. Then, in n-th
step, the new path γn cannot recur to DðaÞ, and it then must
go to Pb. If we do not obtain a desired path, the number of
closed paths which reflect at Pb finally increases by one.

In the same way, if, at some step, the number of closed
paths reflecting at Pb increases to �d − 1, in the next step, the
number of closed paths which reflect at Pb cannot increase
again and the new constructed path, denoted by bγ , has
to go back to ξ = a. Finally, we obtain some closed paths
�γ1,⋯, �γmðm ≤ �d − 1Þ, which all reflect at Pb, and a pathbγ , which joins with Pb and an odd-multiple real root on
DðaÞ, such that all path γ0, �γ1,⋯, �γm, bγ , ~γ are compatible.
Hence, γ = γ0 ∪ �γ1 ∪⋯ ∪ �γm ∪ bγ is a desired path.

Note that these closed paths f�γ1,⋯,�γmg play as a role of
bridge to join all the pathsfγ0, �γ1,⋯�γm, bγg together to form
a compatible path with ~γ. In other words, these closed paths
have no influence on the continuity of γ, but they may be
important for γ to become a compatible path (see Figure 4).

Case of (2(ii)). Note that B2�d ≠∅. Let �a = inf fξ ∣ ξ ∈ B2�dg and
�b = sup fξ ∣ ξ ∈ B2d¯g. Obviously, a ≤ �a < �b < b and �a, �b ∈ B2�d .
Suppose P1 = ðξ1, x1Þ and a < ξ1 < �a or �b < ξ1 < b. Then
f ðξ, xÞ has no 2�d-multiple real root for ξ ∈ ða, �aÞ or ξ ∈ ð�b, bÞ.
Then, this case is reduced to that of (2(i)).

Note that P0 ∉D, then the case that ξ1 ∈ ð�a, �bÞ cannot
happen.

We should note that in a minimal room of real roots
(f , 2�d,D, I), a path in D can meet at most two 2�d-multiple
real roots. This fact is very important for a path to include
at most countable even-multiple real roots.

Proof of (3). The result (3) is about the case of odd-degree, the
proof is in the same as that of the result (1) by using all induc-

tion assumptions and the result (2(ii)), which is just proven;
here, we omit the details.

Proof of (4). Case of (4(i))
In the same way as the proof of (2(i)), the first part of the

result can follow by induction assumption and the results (2)
and (3); here, we omit the details. See Figures 5–7.

Now, we consider the second part of the result and
assume that γ0 is already extended to Pb with P1 = Pb. Below,
we consider the two cases:

(i) Pb is a crossing point of Γ

By assumption, P0 ∉D. Note that the path is extended in
D to Pb. Since Pb is a crossing point of γ0 or ~γj, then γ0 cannot
be extended to go through Pb and P1 = Pb can only be a left
endpoint according the compatibility of paths.

If Pb is a crossing point of γ0, then all ~γ j cannot go
through D. If Pb is a crossing point of ~γ j, then Pb is not a
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point

Reflecting
point
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P1

a b
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P
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(f, 2d, D, I)

Figure 4: Simple extension at even-multiple real roots.
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Figure 5: Simple extension at odd-multiple real roots.
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Figure 6: Complicated extension at odd-multiple real roots.
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crossing point of γ0 or ~γj with i ≠ j. Anyway, Γ occupies even
number of crossing points on DðaÞ. Since f ða, xÞ has odd
number of odd-multiple real roots on DðaÞ, we can take an
odd-multiple real root on DðaÞ and a small rectangle with
this odd-multiple real root as the center. Then, take a small
segment of path crossing this odd-multiple real root in the
small rectangle and then extend it to the right in the same
way as in the proof of the result (2(i)). If the path reaches
to Pb, then γ0 can be extended from Pb to DðaÞ along the
path; thus, the result is proven. Otherwise, the path does
not reach to Pb and it goes back to DðaÞ. In the same way
as in the proof of (2(i)), we take a new odd-multiple real root
on DðaÞ and repeat the above process. If we do not obtain a
desired path from Pb to DðaÞ, we have a closed path with
Pb as a basis point, which is similar to the closed paths �γj in
the proof of (2(i)), where Pb is a reflecting point of �γj. Finally,
we obtain a desired path from Pb to DðaÞ.

Here, we should note that the proof is essentially in the
same way as that of the result (2(i)). In fact, Pb runs out of
1-multiplicity by a crossing point of ~γ j and remains an
even-multiplicity which can be used. So the crossing point
Pb plays a role as an even-multiple real root, which allows
any path arriving at Pb to be able to reflect at Pb.

(ii) Pb is not a crossing point of Γ

Also note that P0 ∉D and P0 ≠ 6 = Pb. If the path is
extended to the right to arrive at Pb, then Pb is a simple right
endpoint and we need not do any extension in D. In fact, Pb
will become a crossing point in the next extension of γ0 in a
neighbouring room of real roots.

Case of (4(ii)). This case is a special situation of (4(i)) with
absence of {~γj}. By induction assumption, we take an odd-
multiple real root on DðaÞ and extend a small segment of a
path crossing this odd-multiple real root to the right. In the
same way as the proof of (4(i)), it is easy to find a desired
path; here, we omit the details.

Proof of (5). We first prove that, if P1 ∉ fPa, Pbg, the path γ0
can be extended such that it arrives at Pa or Pb. Since P0 ∉D,
then Pa or Pb is a crossing point of γ0 and P1 ∈D

°
.

Note that once Pa is a crossing point of ~γj, then Pb is also
a crossing point of ~γj; in this case, γ0 cannot enter into D. So
D ∩ ~γ =∅.

Let P1 = ðξ1, x1Þ. Take a partition

a < an < an−1 <⋯ < a0 < ξ1 < b0 <⋯ < bn−1 < bn < b, ð77Þ

such that an ⟶ a and bn ⟶ b. Since f has no 2�d + 1-mul-
tiple real root for ξ ∈ ½a0, b0�, by induction assumption and
the result (3), we can extend γ0 such that it arrives at ξ = a0
or ξ = b0. Denote the segment of extension by ℓ1.

Now, we consider γ1 = γ0 ∪ ℓ1 with an odd-multiple end-
point on ξ = a0 or ξ = b0 as a new initial endpoint and extend
the path γ1 in ½a1, b1� such that it arrives to ξ = a1 or ξ = b1.
Denote the segment of the extension by ℓ2.

Then, we can repeat the extension by the result (3) and in
the same way as in the proof of (2(i)). If the path is already
extended to ξ = an or ξ = bn, we consider ½an+1, bn+1�. Then,
it can be extended to reach to ξ = an+1 or ξ = bn+1.

We should note that by Lemma 24, there are at most
finitely many 2�d-degree minimal rooms of real roots in the
decompositions of rooms on ½an, bn�; thus, the extension
of the path on ½an, bn� includes at most finitely many 2�d-
multiple real roots.

Note that the path cannot oscillate to ξ = a and ξ = b
more than 2�d + 1 times; thus, the path must go along one
direction finally. If the path is extended to cross all ξ = an,
then, in the same way as in the proof of the result (2(i)), it
is extended to Pa finally. If the path is extended to cross all
ξ = bn, it is extended to Pb.

Case of (5(i)).

(i) Pa and Pb are crossing points of Γ

Note that P0 ∉D. If Pa is a crossing of ~γj, then Pb is also a
crossing of ~γj, since its endpoints are outside of D. In this
case, γ0 cannot enter into D. Since P1 ∈D, then P1 = Pa or
Pb. In this situation, P1 can only be a basis point in the exten-
sion. If Pa is a crossing of γ0, then Pa cannot be a crossing of
~γ j, so Pb is also a crossing of γ0. Then, P1 = Pa or Pb can also
be a basis point in the extension. Whatever happens, the end-
point of γ0, P1 ∈DðaÞ ∪DðbÞ always has outward direction;
thus, the result holds.

(ii) Only one of Pa and Pb is a crossing point of Γ

Without loss of generality, we assume that Pa is a crossing
point and Pb is not. In this case, neither Pa nor Pb is a cross-
ing point of ~γj, ∀j. Actually, D ∩ ~γ =∅, where ~γ = ∪j~γj.

Since P0 ∉D, then γ0 must enter into D from Pa. Since we
can ignore the presence of ~γ, this case is actually the case of
(5(ii)); see the proof of the case of (5(ii)) below. Then, we
can extend the path to Pb such that Pb is a right endpoint.

(iii) Neither Pa nor Pb is a crossing point of Γ

In the same way as above, we have D ∩ ~γ =∅.

P0

P1
P

bReflecting
point

(f, 2d + 1, D, I)

a b

(2d + 1)-
multiple root

Figure 7: Complicated extension at odd-multiple real roots.
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Note that P0 ∉D. Then, P1 = Pa or Pb. Moreover, γ0 ∩D
ða, bÞ =∅. Thus, this case is also reduced to that of the case
(5(ii)).

Case of (5(ii)). If �d < d − 1, this result is from the induction
assumption of Theorem 25.

Let �d = d. First, take a section Dðξ0Þ, where a < ξ0 < b. By
the result (4), we have a regular path γ0 which joins with
P0 = Pa and an odd-multiple left endpoint P1 ∈Dðξ0Þ.
Then, by the above discussion, it can be extended to Pb
or Pa. In the first case, we have a desired path. Otherwise,
it arrives at Pa, the path forms a closed path �γ1 with Pa as
a basis point. In the same way, by the result in the case
(4(i)), we have a path γ0 which joins with P0 = Paand an
odd-multiple left endpoint P1 ∈Dðξ0Þ. Then, by the above
discussion, it can be extended to Pb or Pa. By repeating
the above process, either we obtain a desired path or we
obtain a closed path �γ2 with Pa as a basis point, which
is compatible with �γ1.

In this way, if we do not obtain a desired path, then we
obtain one more closed path �γ1 with Pa as a basis point,
which is compatible with the previous ones �γ1,⋯�γj−1. After
at most d steps, when we have d number of such closed paths
�γ1,⋯�γd , which are compatible, we can have a path γ0, which
joins with P0 = Pa and an odd-multiple left endpoint P1 ∈
Dðξ0Þ. Then, we extend γ0 from P1 to the left and it must
go to Pb since there is no way for it to go back to Pa. More-
over, γ0 is compatible with �γ1,⋯�γd . Let γ = γ0 ∪ �γ1 ∪⋯∪ �γd
, then γ is a desired path.

Proof of (6). Case of (6(i))
First note that �d ≤ d − 1 and �d =m, then it follows that

m ≤ d − 1. By induction assumption, Theorem 25 already
holds.

By assumption B2m+1 is a nonempty closed set. Let

�a = inf ξ ξ ∈ B2m+1jf g, �b = sup ξ ξ ∈ B2m+1jf g: ð78Þ

Then, �a, �b ∈ B2m+1 and a ≤ �a ≤ �b ≤ b. Let

�a, �b
� �

\ B2m+1 = ∪j≥1 aj, bj
� �

: ð79Þ

Then, f ðx, ξÞ has no ð2m + 1Þ-multiple real root for ξ ∈
ða, �aÞ ∪ ð�b, bÞ ∪ ð∪j≥1ðaj, bjÞÞ.

Note D =D½a,�aÞ ∪Dð�b,b� ∪D½�a,�b�, where D½�a,�b� is one-way
passage of real roots. Below, we consider several cases accord-
ing to distribution of the endpoints P0 and P1 about D.

By the induction assumption of Theorem 25, there exists
a regular path bγ inD½�a,�b� such that bγ joins with P�a and P�b. The
path bγ is useful in the proof of this part.

(i) P�a and P�b are crossing points of Γ

By the discussion, we can suppose that there exists ~γj
going through P�a and P�b or ~γj ∩D½�a,�b� =∅, ∀j. In the first

case, γ0 cannot enter into D, so P1 ∈D½a,�a� ∪D½�b,b�. Then, by
the result of (4(i)), we can extend γ0 to DðaÞ or DðbÞ. In the
second case, γ0 must enter into D and go through D½�a,�b� with
P1 ∈D½a,�a� ∪D½�b,b�, then we can extend γ0 to DðaÞ or DðbÞ.

(ii) Only one of P�a and P�b is a crossing point of Γ

Without loss of generality, suppose P�a is a crossing point
and P�b is not. Since P0 ∉D½�a,�b�, then γ0 must enter intoD from
P�a. Then, we replace the segment of γ0 in D½�a,�b� with ~γ to
extend the path to P�b. Then, we extend the path to cross P�b
to reach to DðbÞ.

(iii) Neither P�a nor P�b is a crossing point of Γ

Since P0 ∉D, then P1 ∉D∘
½�a,�b� and γ0 ∩Dð�a,�bÞ =∅. So P1

belongs to D½a,�a� or D½�b,b�. If P1 ∈D½a,�a�, the path γ0 can be
extended to P�a or DðaÞ. If it is extended to P�a, by joining
the path bγ with γ0, γ0 can be extended to P�b and then
to DðbÞ. If P1 belongs to D½�b,b�, we have similar discussion.

Case of (6(ii)) and Proof of Theorem 25. Now, we are in a
position to prove Theorem 25. Recall

A2d+1 = ξ, xð Þ x is a 2d + 1ð Þ‐multiple real root ofj f ξ, xð Þf g,
B2d+1 = ξ ξ, xð Þ ∈ A2d+1jf g:

ð80Þ

Then, B2d+1 is a closed set.
Let

a∗ =min ξ ξ ∈ B2d+1jf g, b∗ =max ξ ξ ∈ B2d+1jf g: ð81Þ

Then, a∗, b∗ ∈ B2d+1 and a ≤ a∗ ≤ b∗ ≤ b. Without loss of
generality, suppose a < a∗ and b∗ < b. By Lemma 26, there
exist a path γl joining with (a∗, x∗) and AðaÞ and another
path γr joining with (b∗, y∗) and AðbÞ. Let

a∗, b∗½ � \ B2d+1 = ∪n≥1 an, bnð Þ: ð82Þ

Let xn and yn be the ð2d + 1Þ-multiple real root of
f ðan, xÞ = 0 and f ðbn, xÞ = 0. By the result (5(ii)) of
Lemma 26, there exists a path γn : γnðtÞ, t ∈ ½0, 1�, joining
with ðan, xnÞ and ðbn, ynÞ.

By rescaling the parameter of the curve γn and suppose
γn : γnðtÞ, t ∈ ½an, bn�. Similarly, suppose γl : γlðtÞ, t ∈ ½a, a∗�
and γr : γrðtÞ, t ∈ ½b∗, b�.

Moreover, similar to Lemma 19, it follows that A2d+1 is
on the continuous curve x = −ðc1ðξÞ/ð2d + 1ÞÞ determined
by f ð2dÞðξ, xÞ = 0, so xn = −c1ðanÞ/ð2d + 1Þ, yn = −ðc1ðbnÞ/ð2d
+ 1ÞÞ.
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Note that ½a, b� = ∪n≥1½an, bn� ∪ B2d+1 ∪ ½a, a∗� ∪ ½b∗, b�.
Then, define

γ tð Þ = γn tð Þ, an ≤ t ≤ bn n ≥ 1ð Þ,

γ tð Þ = t,− c1 tð Þ
2d + 1

� �
, t ∈ B2d+1,

γ tð Þ = γl tð Þ, a ≤ t ≤ a∗,
γ tð Þ = γr tð Þ, b∗ ≤ t ≤ b:

ð83Þ

Then, γ : t ∈ ½a, b�⟶ A is a path joining with odd-
multiple real roots on DðaÞ and DðbÞ, respectively. Of course,
by rescaling of parameter we can write as γ : t ∈ ½0, 1�⟶ A.

Below we show that γ has at most countable reflecting
points and basis points.

From the proof of the results (2(ii)) and (4(ii)), the path γ
includes at most countable number of 2d-multiple real roots
as reflecting points on each interval ½an, bn�. Moreover, only
fðan, xnÞ, ðbn, ynÞg can be basis points of ð2d + 1Þ-multiple
real roots, so the path includes at most countable number
of ð2d + 1Þ-multiple real roots as basis points. Furthermore,
the other reflecting points and basis points are lower-
multiple real roots and they belong to some segments of the
path in some lower-degree passages of odd-multiple real
roots. By induction assumption, all reflecting points and
basis points on these segments of the path are at most count-
able. Moreover, these lower-degree passages are also at most
countable. Thus, all reflecting points and basis points on the
path are also at most countable. For the idea of the proof, we
refer to Figure 8.

Proof of Theorem 2. Now, we can prove our main result. By
Theorem 25, we only need to consider the case that f has
no ð2d + 1Þ-multiple real root in D. We reduce the case to
the special one as in Theorem 25.

Let a0 < a and b < b0, then ½a, b� ⊂ ½a0, b0�. It is easy to see
that there exists a real polynomial of f0ðξ, xÞ of degree 2d + 1,
which depends continuously on ξ ∈ ½a0, b0�, such that
f0ðξ, xÞ = f0ðξ, xÞ, ξ ∈ ½a, b� and both f0ða0, xÞ and f0ðb0, xÞ
has a ð2d + 1Þ-multiple real root. Then, we use Theorem 25
or the result (5(ii)) of Lemma 26 to ð f0, 2d + 1,D0, I0Þ, where
I0 = ½a0, b0�. There exists a regular path fγ0ðtÞ, t ∈ ½0, 1�g,
such that γ0ð0Þ ∈D0ða0Þ and γ0ð1Þ ∈D0ðb0Þ.

Let

t0 = max t ∈ 0, 1½ � ∣ γ0 tð Þ ∈D að Þ is a crossing point of γ0f g,
t1 = min t ∈ 0, 1½ � ∣ γ0 tð Þ ∈D bð Þ is a crossing point of γ0f g:

ð84Þ

Thus, it is easy to see that γ0ðt0Þ ∈DðaÞ and γ0ðt1Þ ∈DðbÞ
are odd-multiple real roots of f . Moreover, fγðtÞ = γ0ðtÞ ∈
D, t ∈ ½t0, t1�g is a path on D with two odd-multiple real roots
γ0ðt0Þ and γ0ðt1Þ on DðaÞ and DðbÞ, respectively.

Recall TP = ft ∈ ½0, 1�γðtÞ = Pg. By construction of γ, the
estimate (11) in Theorem 2 holds obviously. Moreover, for
P ∈ γ, if TP

# ≥ 2, then P is a basis point or reflecting point;
all these points are at most countable. Thus, Theorem 2 is
proven.

Remark 28. From the above proof, we do not know if the path
γ in Theorem 2 is regular; however, it has no influence on our
application.
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