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The objective of this article is to discuss the existence and the uniqueness of a weighted extended B-spline- (WEB-spline-) based
discrete solution for the 2D Navier-Lamé equation of linear elasticity with a different type of mixed boundary condition called
CA,B boundary condition. Along with the usual weak mixed formulation, we give existence and uniqueness results for weak
solution. Then, we illustrate the performance of Ritz–Galerkin schemes for a model problem and applications in linear elasticity.
Finally, we discuss several implementation aspects. The numerical tests confirm that, due to the new integration routines, the
weighted B-spline solvers have become considerably more efficient.

1. Introduction

The finite element method has become the method of choice
for solving many types of partial differential equations in
engineering and physical sciences. Important applications
include structural mechanics, fluid flow, thermodynamics,
and electromagnetic fields [1], using the approximation of
Lagrange [2]. This type of approximation has experienced a
great restriction in the level of the geometric domain, espe-
cially in the case of complicated boundaries such as that in
the form of curvilinear graphs. A new way of approximation
came a few years ago called B-spline that will solve this prob-
lem with excellence.

B-splines have become standard tools in approximation,
computer graphics, design, and manufacturing. Recently,
they have also been used to construct basis functions for
finite element methods. The resulting techniques combine
the computational efficiency of regular grids with the geo-
metric flexibility of classical finite elements. Some key advan-
tages are the free choice of order and smoothness, a simple
data structure with one parameter per grid point, and the
exact representation of boundary conditions. A type of B-
spline is called weighted extended B-spline (WEB-spline)

[3]. As will be described in the next section, a weight func-
tion, ω, is being multiplied to the B-spline functions to ensure
that all WEB-splines satisfy the boundary conditions exactly.
The books [4, 5] provide a comprehensive treatment of the
relevant theory. Which technique is best suited for a particu-
lar problem depends to some extent on the topological form
of the simulation domain and its representation. Weighted
methods are a good choice for problems with natural (Neu-
mann) boundary conditions or if the part of the boundary,
where essential (Dirichlet) boundary conditions are pre-
scribed, has a convenient implicit description. Isogeometric
methods can handle domains well which are parametrized
over rectangles or cuboids or which can be expressed as
union of few such parametrizations, e.g., NURBS representa-
tions for CAD/CAM applications. There are also problems
where a combination of both techniques might be useful [6].

In this project, we use the implementation of weighted
finite element methods to solve the Navier-Lamé system with
a different type of mixed boundary condition CA,B [7] that
generalizes the well-known basis conditions, especially the
Dirichlet and the Neumann conditions. This boundary con-
dition helps us to implement a single MATLAB code that
summarizes any kind of boundary conditions that we can
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meet. At the programming level of the method, we can reap
several programs in one. The outline of this article is as fol-
lows. In the next section, we introduce the modeling of the
Navier-Lamé equation and we will give the variational prob-
lem that corresponds to this equation. We review the prelim-
inary aspects on WEB-spline-based methods for Navier-
Lamé equations. In Section 3, we prove inf-sup conditions
for the variational problem in two-dimensional case using
WEB-spline-based mesh-free method, which are necessary
for the well posedness of the problem.

2. Governing Equation

Linear elasticity is the mathematical study of how each point
of the solid object is displaced. The latter produces a defor-
mation while the object becomes subjected to internal
stresses due to the prescribed loading conditions, knowing
that the linear elasticity models materials in a continuous
state. Linear elasticity is a simple case of the nonlinear elastic-
ity theory and is a branch of continuous domain mechanics.
The basic theory of linear elasticity is based on the following:
the strains (or stress) are infinitesimal or small and the rela-
tionships between the components of the stress and the strain
are linear, and the linear elasticity is valid only for the states
of stress which do not produce a yield. These assumptions
cited above are reasonable for the analysis of many engineer-
ing materials and in technical design. It is often that this anal-
ysis is done using the finite element method.

Let us consider Ω ⊂R2 to be a bounded Lipschitz
domain with boundary condition Γ which will be pre-
sented in a new form that generalizes the Neumann and
Dirichlet boundary conditions. Given f ∈ L2ðΩÞ, A, B ∈ L∞

ðΓÞ2×2, two matricial functions that are invertible or zero.
g ∈H1ðΓÞ as well as the positive parameters λ and μ.
When μ the shear modulus is small, then this kind of prob-
lems is called singularly perturbed problems, where the uni-
form mesh or L2 norm-based error analysis does not
converge to the original problem, and hence, one must use
adaptive mesh with uniform error analysis. This numerical
analysis is given in the papers [8–14].

When solid objects are subjected to external or internal
loads, they deform and lead to stress. If the deformation of
the solid is relatively small, linear relationships between the
components of stress and strain are maintained. Conse-
quently, linear elasticity theory is valid. In practice, linear
elasticity theory is applicable to a wide range of natural and
engineering materials and thus extensively used in structural
analysis and engineering design. The equation of Navier-
Lamé below is governed as follows.

A solid object is deformed under the action of forces
applied. Any fixed point ðx, yÞ of the domain and when sur-
face forces are applied to the domain, this point moves to
another point ðX, YÞ. Then, the vector u = ðu1, u2Þ = ðX − x,
Y − yÞ is called displacement. When the movement is small
and the solid is elastic, then Hooke’s law gives a relationship
between the stress tensor and the strain tensor. σ = λtrðεÞ
I2 + 2με is the stress tensor, ε = 1/2ð∇u + ð∇uÞTÞ is the strain
tensor, I2 is the identity matrix, and μ is the shear modulus

(or rigidity), where λ is Lam’s first parameter. The Navier-
Lamé equation is given by the law of conservation moment
ρa = ∇ ·σ where a is the acceleration and ρ is the density of
the material. On the other hand,

∇·σ = λ∇ tr εð ÞI2ð Þ + 2μ∇·ε: ð1Þ

Then, we have

∇·σ = λ∇ tr εð ÞI2ð Þ + μ∇ ∇uð Þ + μ∇ ∇uð Þt : ð2Þ

With a simple calculation, we find that

∇ tr εð ÞI2ð Þ = ∇ ∇uð Þt = ∇ ∇·uð Þ: ð3Þ

Then, we get

ρa = μΔu + λ + μð Þ∇ ∇·uð Þ: ð4Þ

If the solid is in dynamic equilibrium, then we have
ρa + f = 0; f are the external forces applied to the solid.
Finally, we find out the equation

f = −μΔu − λ + μð Þ∇ ∇·uð Þ: ð5Þ

We refer the reader to [15, 16] for more information
of the elasticity problems.

We create a new unknown ψ = ∇ · u = ð∂u1/∂xÞ + ð∂u2/∂
yÞ that is equal to the divergence of the displacement. The
equation of Navier-Lamé becomes

−μΔu − λ + μð Þ∇ψ = f inΩ,

ψ−∇ · u = 0 inΩ,

Au + B μ
∂u
∂n

+ λ∇·un
� �

= g onΓ:

8>>>><
>>>>:

ð6Þ

Our mathematical model is the Navier-Lamé system with
the boundary condition noted CA,B such that A is called the
Dirichlet matrix and B is the Neumann matrix.

There are two strictly positive constants α and β,
such that

αu · v < B−1Au · v < βu · v∀u, v ∈R2: ð7Þ

∣‖·∣‖is a matrix norm that will be defined below.
If ∣‖A∣‖≪∣‖B∣‖, then CA,B is the Neumann boundary; and

if ∣‖B∣‖≪∣‖A∣‖, then CA,B is the Dirichlet boundary.
We need functional spaces and norms

h1 Ωð Þ = u : Ω⟶R \ u,
∂u
∂x

,
∂u
∂y

∈ L2 Ωð Þ
� �

, ð8Þ

V Ωð Þ =H1 Ωð Þ = h1 Ωð Þ� �2, ð9Þ

M Ωð Þ = L20 Ωð Þ = q ∈ L2 Ωð Þ \
ð
Ω

q = 0
� �

, ð10Þ
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∥v∥1,Ω =
ð
Ω

∇v : ∇vdΩ +
ð
Ω

v:v dΩ
� �1/2

, ð11Þ

∥v∥0,Ω =
ð
Ω

v:v dΩ
� �1/2

, ð12Þ

Aj jj jj j =max ai,j
�� ��, i = 1:2, j = 1:2: ð13Þ

The variational formulation of the Navier-Lamé problem
(6) is as follows.

Find ðu, ψÞ ∈ VðΩÞ ×MðΩÞ such that

ð
Ω

μ∇u : ∇vdΩ +
ð
Γ

B−1Au · vdΓ,

+
ð
Γ

μψ n · vdΓ +
ð
Ω

λ + μð Þψ∇·vdΩ,

=
ð
Ω

f · vdΩ +
ð
Γ

B−1g · v dΓ,
ð
Ω

λ + μð Þq∇·udΩ −
ð
Ω

λ + μð ÞψqdΩ = 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð14Þ

The weak formulation (14) may be restated as follows.
Find ðu, ψÞ ∈ VðΩÞ ×MðΩÞ

a u, vð Þ + bΓ v, ψð Þ = L vð Þ∀v ∈ V Ωð Þ,
b u, qð Þ − d ψ, qð Þ = 0∀q ∈M Ωð Þ:

(
ð15Þ

With the bilinear forms

a u, vð Þ =
ð
Ω

μ∇u : ∇vdΩ +
ð
Γ

B−1Au · vdΓ,

b v, qð Þ =
ð
Ω

λ + μð Þq∇·vdΩ,

bΓ v, qð Þ = b v, qð Þ +
ð
Γ

μqn · vdΓ,

d ψ, qð Þ =
ð
Ω

λ + μð ÞψqdΩ,

L vð Þ =
ð
Ω

f · vdΩ +
ð
Γ

B−1g · vdΓ:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð16Þ

3. Solvability of the Generalized Saddle
Point System

In this section, we introduce some existing saddle point
theory. Let V0ðΩÞ and M0ðΩÞ be two finite- or infinite-
dimensional Hilbert spaces equipped with the inner prod-
ucts ð:, :ÞV0ðΩÞ and ð:, :ÞM0ðΩÞ and the induced norms ∥·∥1,Ω
and ∥·∥0,Ω, respectively. Let aðu, vÞ, b1ðv, qÞ and b2ðv, qÞ,
dðp, qÞ be bilinear forms on V0ðΩÞ ×V0ðΩÞ, V0ðΩÞ ×M0
ðΩÞ and V0ðΩÞ ×M0ðΩÞ, M0ðΩÞ ×M0ðΩÞ, respectively,
which are bounded; i.e., there are positive constants ∥a∥,
∥b1∥, ∥b2∥, and ∥d∥ such that

a u, vð Þj j≤∥a∥∥u∥1,Ω∥v∥1,Ω∀ u, vð Þ ∈ V0 Ωð Þ ×V0 Ωð Þ,
b1 u, qð Þj j≤∥b1∥∥u∥1,Ω∥q∥0,Ω∀ u, qð Þ ∈ V0 Ωð Þ ×M0 Ωð Þ,
b2 u, qð Þj j≤∥b2∥∥u∥1,Ω∥q∥0,Ω∀ u, qð Þ ∈ V0 Ωð Þ ×M0 Ωð Þ,
d q, pð Þj j≤∥d∥∥q∥0,Ω∥p∥0,Ω∀ p, qð Þ ∈M0 Ωð Þ ×M0 Ωð Þ,
L vð Þj j≤∥L∥∥v∥1,Ω∀v ∈ V0 Ωð Þ,
G qð Þj j≤∥G∥∥q∥0,Ω∀q ∈M0 Ωð Þ:

ð17Þ

Furthermore, we define the following Hilbert spaces:

Bi = u ∈ V0 Ωð Þ \ bi u, qð Þ = 0∀q ∈M0 Ωð Þf g, for i = 1, 2,

D = p ∈M0 Ωð Þ \ d p, qð Þ = 0∀q ∈M0 Ωð Þf g:
ð18Þ

In addition to assumption (17), we assume that

a v, vð Þ ≥ δ∥v∥21,Ω, for all v ∈ V0 Ωð Þ, ð19Þ

bi, for i = 1, 2, satisfying the inf-sup condition such
that there exists a constant ρ > 0

sup
∥q∥=1

bi v, qð Þ ≥ ρi∥v∥1,Ω∀v ∈ B
⊥
i ,

sup
v∈B⊥i

bi v, qð Þ > 0∀q ∈M0 Ωð Þ:
ð20Þ

The bilinear form d satisfies the weak coerciveness
such as there exists a constant ε > 0 such that

sup
q∈M0 Ωð Þ

d p, qð Þ ≥ ε∥p∥20,Ω∀p ∈M0 Ωð Þ: ð21Þ

Find ðu, ψÞ ∈ V0ðΩÞ ×M0ðΩÞ

a u, vð Þ + b1 v, ψð Þ = L vð Þ∀v ∈ V0 Ωð Þ,
b2 u, qð Þ − d ψ, qð Þ = G qð Þ∀q ∈M0 Ωð Þ,

(
ð22Þ

where a, bi for i = 1, 2 and d are bounded bilinear forms,
where f and g are bounded linear functionals on V0ðΩÞ
and M0ðΩÞ, respectively. Reference [17] contains an exis-
tence and uniqueness, for the saddle point problem.

Find ðu, ψÞ ∈ V0ðΩÞ ×M0ðΩÞ such that

a u, vð Þ + b1 v, ψð Þ = L vð Þ∀v ∈ V0 Ωð Þ,
b2 u, qð Þ =G qð Þ∀q ∈M0 Ωð Þ:

(
ð23Þ
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Lemma 1. Let D be a linear operator, defined by

D : M0 Ωð Þ ⟶ D⊥,

ψ ↦ dψ, ð24Þ

such that dðψ, qÞ = ðdψ, qÞ for all q ∈D⊥. Therefore, D is
continuous and we have ImD =D⊥.

Proof. ImD is closed in D⊥. In fact, let ðψjÞj be a sequence

of M0ðΩÞ such as dψ j
⟶w on D⊥; then, ðdψ j

Þ
j
is cauchy

on D⊥.
By definition of the coercivity of the bilinear form d,

we have

∥ψj − ψk∥0,Ω ≤
1
ε

sup
q∈M0 Ωð Þ

d ψj − ψk, q
	 


∥q∥0,Ω
=
1
ε
sup
q∈D⊥

d ψj − ψk, q
	 


∥q∥0,Ω

=
1
ε
∥dψ j−ψk

∥0,Ω =
1
ε
∥dψ j

− dψk
∥0,Ω:

ð25Þ

We deduce that ψj is cauchy in M0ðΩÞ; then, there
exist ψ ∈M0ðΩÞ such as ψj ⟶ ψ on M0ðΩÞ.

By the continuity of the operator D, we have dψ j
⟶ dψ.

The uniqueness of the limit gives w = dψ ∈D⊥, so we obtain

that ImD is a closed set of D⊥; it gives that D⊥ = ImD ⊕
ðImDÞ⊥ and ImD ∩ ðImDÞ⊥ = 0.

Suppose that ðImDÞ⊥ ≠ f0g; this implies that there exists
p ∈ ðImDÞ⊥ nonzero. On the other hand, we have for all q
∈M0ðΩÞ dðq, pÞ = ðdq, pÞ = 0 (because dq ∈ ImD); this

implies that p ∈D but p ∈ ðImDÞ⊥ ⊂D⊥; this contradicts the
fact that p is nonzero. Finally, ImD =D⊥.

Theorem 2. With assumptions (17)–(21), the generalized
variational problem (22) has a unique solution ðu, ψÞ ∈ V0

ðΩÞ ×M0ðΩÞ for any L ∈ ðV0ðΩÞÞ′ and G ∈ ðM0ðΩÞÞ′ as
long as

δ1 = δεð Þ−1∥b1∥∥b2∥<1: ð26Þ

Further, the following stability estimates hold:

∥u∥1,Ω ≤
δ1 + 1
1 − δ1

∥u0∥1,Ω +
δ−1∥b1∥
1 − δ1

∥ψ0∥0,Ω,

∥ψ∥0,Ω ≤
ε−1∥b2∥
1 − δ1

2∥u0∥1,Ω + δ−1∥b1∥∥ψ
0∥0,Ω

� �
,

ð27Þ

where ðu0, ψ0Þ is the solution to (23) and thus has the bounds

∥u0∥1,Ω ≤ c11∥L∥+c12∥G∥,

∥ψ0∥1,Ω ≤ c21∥L∥+c22∥G∥,

c11 = δ−1, c12 = ρ−12 δ−1∥a∥+1
� �

,

c21 = ρ−12 c11∥a∥+1ð Þ, c22 = ρ−12 ∥a∥c12:

ð28Þ

Proof. D is a closed set included in M0ðΩÞ, so D is a Hilbert
space.

Problem (22) became

a u, vð Þ + b1 v, ψð Þ = L vð Þ∀v ∈ V0 Ωð Þ,
b2 u, qð Þ =G qð Þ∀q ∈D:

(
ð29Þ

a, b1, and b2 satisfy the conditions of theorem 3.1 of the
article in [17]; then, problem (29) has a unique solution ðu,
ψ0Þ ∈ VðΩÞ ×D (if D is reduced to f0g, just take ψ0 = 0).
We are now looking for ψ ∈M0ðΩÞ such that

d ψ, qð Þ = −G qð Þ + b2 u, qð Þ∀q ∈M0 Ωð Þ: ð30Þ

For this u, the displacement solution of (29) is fixed;
we consider the following linear form defined by F : q↦−G
ðqÞ + b2ðu, qÞ. This form inherits its continuity from the
continuity of b2 and G. We define the space D⊥ = fp ∈
M0ðΩÞ \ ðp, qÞ = 0∀q ∈Dg such that D⊥ is a Hilbert space
with the norm and inner product inherited from M0ðΩÞ.
Problem (30) is equivalent to the problem

d ψ, qð Þ = F qð Þ∀q ∈D⊥: ð31Þ

According to the Lax Milgram theorem, problem (31)
admits a unique solution ψ ∈D⊥. Assume that (31) is ver-
ified, let us show that (30) is verified.

D is closed inM0ðΩÞ, so we haveM0ðΩÞ =D ⊕D⊥; then,
we obtain for all q ∈M0ðΩÞ. Therefore, we have q = q1 + q2
for q1 ∈D and q2 ∈D

⊥; it implies that dðψ, qÞ = dðψ, q1Þ + d
ðψ, q2Þ = 0 + Fðq2Þ = Fðq1 + Fðq2Þ.

Conversely, let ψ ∈M0ðΩÞ be the solution of (30).
The linear form q↦ dðψ, qÞ is continuous on D⊥ that is a

Hilbert space with the scalar product on M0ðΩÞ.
From the Riesz theorem, there exists a unique dψ ∈D⊥

such that

d ψ, qð Þ = dψ, q
� �

∀q ∈D⊥,

∥dψ∥0,Ω = ∥d ψ,:ð Þ∥ D⊥ð Þ′ = sup
q∈D⊥

d ψ, qð Þ
∥q∥0,Ω

:
ð32Þ

This defines an operator D : ψ↦ dψ which is linear and
continuous on M0ðΩÞ such that ImD = fdψ \ ψ ∈M0ðΩÞg.
From Lemma (1), we have ImD =D⊥.

If F ∈ ðD⊥Þ′, Riesy implies that there exists w ∈D⊥ such
that FðqÞ = ðw, qÞM0ðΩÞ for all q ∈D⊥. Since ImD =D⊥,
for this w ∈D⊥, there exists ψ ∈M0ðΩÞ such that w = dψ
dðψ, qÞ = dðdψ, qÞ = ðw, qÞ = FðqÞ for all q ∈D⊥:
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Finally, it has been shown that problems (30) and (31) are
equivalent.

Lax Milgram guarantees that problem (31) admits a
unique solution ψ1 ∈D

⊥. Just take ψ = ψ0 + ψ1 ∈M0ðΩÞ =D
⊕D⊥.

Theorem 3.With assumptions (17)–(21), the generalized var-
iational problem (15) has a unique solution ðu, ψÞ ∈ V0ðΩÞ
×M0ðΩÞ for any L ∈ ðV0ðΩÞÞ′ as long as

δ1 ≔ δεð Þ−1∥bΓ∥∥b∥<1: ð33Þ

Further, the following stability estimates hold:

∥u∥1,Ω ≤
δ1 + 1
1 − δ1

∥u0∥1,Ω +
δ−1∥bΓ∥
1 − δ1

∥ψ0∥0,Ω,

∥ψ∥0,Ω ≤
ε−1∥b∥
1 − δ1

2∥u0∥1,Ω + δ−1∥bΓ∥∥ψ
0∥0,Ω

� �
,

ð34Þ

where ðu0, ψ0Þ is the solution to (23) and thus has the bounds

∥u0∥1,Ω ≤ c11∥L∥,

∥ψ0∥1,Ω ≤ c21∥L∥,

c11 = δ−1,

c21 = ρ−12 c11∥a∥+1ð Þ:

ð35Þ

Proof. It is sufficient to show that the bilinear forms a, b, bΓ,
and d have checked the conditions (17)–(21), applying The-
orem 2 in the case of G = 0.

Remark 4. We rewrite the system (15) in a single equa-
tion. For that, let us define the operators A : V ⟶V∗,
B : V ⟶M∗, BΓ : V →M∗, and D : M⟶M∗ by hAu,
vi≔ aðu, vÞ, v ∈ VðΩÞ, hBu, ψi≔ bðu, ψÞ, ψ ∈MðΩÞ, hBΓu,
ψi≔ bΓðu, ψÞ, ψ ∈MðΩÞ, and hDψ, qi≔ dðψ, qÞ, q ∈MðΩÞ
so that (15) becomes

ŁU ≔
A BΓ

BT −D

 !
u

ψ

 !
=

L

0

 !
≕ F: ð36Þ

The well posedness [17–19] of the above equation is
written in the following form. For the variational prob-
lem (15), the mapping Ł : V ×M→ X∗ ×M∗ defines an
isomorphism if and only if a, b, bΓ, and d satisfy
assumptions (17)–(21).

4. WEB-Spline Process

Several types of mesh-less approximations were proposed for
various applications. A central problem of the mesh-less
Galerkin method is to incorporate boundary conditions of
Dirichlet type. The weighted extended B-spline approxima-
tion takes care of not only the boundary constraints but also
the issue of well conditioning of the Galerkin systems [3, 20].
This essential new feature of constructing well-conditioned

basis is of cardinal importance in this work.We are interested
in applying the approximation properties of the WEB-spaces
for discretizing the Navier-Lamé equations as it have been
done for Stokes and Navier-Stokes problems [21, 22].

The standard uniform B-spline of degree n is defined by
the recursion [5]

Bn xð Þ = x
n
Bn−1 xð Þ + n + 1 − x

n
Bn−1 x − 1ð Þ, ð37Þ

starting from B0, the characteristic function of the unit
interval between zero and one. Figures 1–3 show the uni-
form B-splines of degrees one, two, and three. These are also
known as linear, quadratic, and cubic B-splines, respectively.
In this paper, we use the following notational conventions
[5]. For functions f and g, we write f≺g if f ≤ cg with a
constant c which does not depend on the grid width h, indi-
ces, or arguments of functions. The symbols ≻ and ≈. are
defined analogously. We describe the procedure of con-
structing the WEB-splines and discuss the approximating
properties of the web-space as a finite element space. For
k = ðk0, k1Þ ∈ℤ2, and h > 0 define the scaled translates:

Bk xð Þ≔ 1
h
B

x
h
− k0

	 

B

y
h
− k1

	 

: ð38Þ

B is the univariate B-spline of degree n of support ½0,
n + 1Þ; the B-splines Bk are polynomials by pieces on the
h-grid with vertices hℤ2 and scaled so that the L2-norm,
∥Bk∥ = ∥B0∥0,Ω, is independent of h.

Knowing that the tensor product B-spline is the exten-
sion of B-spline to higher dimensions.

In general, it can be defined as follows:

Bn
k,h =Πm

ν=1B
nν
kν ,h

, ð39Þ

such that the B-spline Bn
k,h is anm-variant of degree nν in the

νth variable, index k = k1, ::, km and the width of the grid h.
With the convention that n1 =⋯ = nm unless otherwise

indicated, for the sake of the problem, the element n can be
taken as an integer, rather than an integer vector.

For I ∈ f0,⋯, ngm, we partition the grid cells QI = I h +
½0, 1�mh withm = 2 into interior, boundary, and exterior cells,
depending on whether Q ⊂ �Ω, the interior ofQ intersects ∂Ω,
or Q ∩Ω =∅.

For k ∈ K ≔ fI ∈ℤ2 : supp ðBIÞ ∩Ω ≠∅g (the relevant
index set for Ω), if supp ðBkÞ has at least one grid cell
completely insideΩ, then bk is named as inner B-spline; oth-
erwise, it is outer.

The corresponding subsets of K are I and J (c.f Figure 4):
K = I ∪ J .

More details about the construction of WEB-spline basis
are given in [5].

Now, it is tempting to use Bh ≔ spanfBk : k ∈ Kg as a
finite element approximation space. At first sight, this does
not seem feasible since B-splines do not conform to the
boundary conditions. But this difficulty can be resolved easily
by multiplying Bk by a smoothed distance function ωðxÞ~di
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stðx, ∂ΩÞ. Then, the weighted B-spline space (WB-space)
Bh
ω ≔ spanfωBk : k ∈ Kg spanned by weighted B-splines is a

possible finite element subspace for Dirichlet boundary value
problems yielding optimal order approximations. But, the

condition number of the Galerkin matrix Gh can become
extremely large. This is due to the outer B-splines which have
only very small support inside Ω. One might think that these
basis functions do not contribute much to the approximation
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Figure 1: Linear B-spline.
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Figure 2: Quadratic B-spline.
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power and can simply be omitted. Unfortunately, this is not
the case. A suitable solution to the problem of controlling
the unstable outer B-splines is provided by adjoining them
appropriately with the inner B-splines. It has been done in
such a way that the approximation power of the finite ele-
ment subspace is retained.

Definition 5 (see [20]). For i ∈ I, WEB-spline Bi is defined as

Bi =
ω

ω xið Þ bi +〠
j∈J
ei,jbj

" #
, ð40Þ
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Figure 3: Cubic B-spline.

A

Figure 4: Relevant quadratic B-splines for domain A, marked at the center of their supports—inner B-splines with circles and outer ones with
squares.

7Abstract and Applied Analysis



where xi denotes the center of a grid cell, which is
completely inside the domain Ω. The coefficients ei,j satisfy
jei,jj≺1, ei,j = 0 for ∥i − j∥±1 and are chosen so that all
weighted polynomials ðωpÞ of order n are contained in the
WEB-space Bh ≔ spanfBi : i ∈ Ig.

Theorem 6 (see [20]). For an outer index j ∈ J , let IðjÞ = l +
f0,⋯, ngm ⊂ I be an m-dimensional array of inner indices
closest to j assuming that h is small enough so that such an
array exists. Then, the coefficients

ei,j =
Ym
ν=1

Yn
μ=0,lν+μ≠iν

jν − lν − μ

iν − lν − μ
ð41Þ

are admissible for constructing WEB-splines according to
Definition 5.

5. CA,B Boundary Conditions with
Resolution Adapted

The imposition of inhomogeneous Dirichlet boundary con-
ditions is essential in numerical analysis of a structure. It is
especially difficult and no longer straightforward whenever
nonconformal mesh is used to discretize a structure. One of
the contributions of this paper is to develop a weighted
extended spline basis with high computing accuracy and
appropriate with the mixed formulation of boundary condi-
tions CA,B that generalize all the cases that can be encoun-
tered on the edge of Ω.

Au + B μ
∂u
∂n

+ λ∇·un
� �

= g onΓ: ð42Þ

With A and B are two reversible square (in case 2D)
matrices, A, B ∈ L∞ðΓÞ2×2 and g ∈H1/2ðΓÞ where the func-
tion g is a priori known function of spatial coordinates.
The inhomogeneous Dirichlet condition is expressed in the
case of B = 0; then, we obtain u = A−1g, onΓ. In general, a
boundary condition function g may not be known explicitly
or is not prescribed globally. More typically, the boundary
conditions are prescribed in a piecewise manner, i.e., the
boundary conditions are specified by individual functions
gi on each portion of boundary, u = A−1gi, onΓi, i = 1,⋯N ,
and Γ = ∪N

i=1Γi, ∩ iΓi =∅. If each Dirichlet boundary Γi is
geometrically represented by implicit function ωi so that
ωi = 0 on Γi [23],

u = A−1gi, ∀ωi = 0: ð43Þ

In fact, as the weighting function and boundary value
function are expressed in the form of implicit functions, no
unique expressions exist but typical forms are given below.

Weighting function ωðxÞ acts as a multiplier to modify
the original interpolation functions and has to vanish on
any Dirichlet boundary ðωiðxÞ = 0Þ. As implicit function is
not unique for the definition, weighting function of different
forms can be used, as discussed in [24]. Here, two construc-

tion techniques are presented. First, a straightforward
method is to construct the weighting function by means
of the product ωðxÞ =Qm

i=1ωiðxÞ. Clearly, ωðxÞ = 0 if any
ωiðxÞ = 0 on Γi. Nevertheless, a product of all the implicit
functions might lead to a surge of function values which
will cause a numerical overflow and then result in poor com-
puting accuracy and robustness. Therefore, each implicit
function ωi is preferred to be normalized in advance accord-
ing to the size of the physical domain. For instance, the
implicit function of a circle can be normalized in terms of
its radius.

ω xð Þ = 1 −
x − x0
R

	 
2
−

y − y0
R

	 
2
: ð44Þ

Now, we will choose a basis function web-spline that will
be called the web-spline basis function adapted. This basis
will respond to any type of nonhomogeneous boundary con-
ditions especially CA,B in the case B = 0. Let u be the displace-
ment solution of problem (15), so we can write u = u0 + uΓ
with u0 being the solution of (15) in case of homogeneous
Dirichlet boundary and uΓ = A−1g is the nonhomogeneous
Dirichlet boundary. u is written as a linear combination of
the Bi web-spline family cited in Definition (5)

u = 〠
N

i=1
uiBi + A−1g: ð45Þ

It can be rewritten again in the form

u = 〠
N

i=1
uiBi + 〠

N

i=1
biA

−1gi, ð46Þ

where biðxÞ denotes the ith weighting coefficient associ-
ated with A−1gi in which basic properties of biðxÞ are
as follows [23].

bi = δij, i, j = 1, 2⋯N , with δij denoting the Kronecker
delta function. With this condition, different forms are pro-
posed below for the definition of bi.

Transfinite interpolation form: the weighting coefficients
can be defined by extending the transfinite interpolation that
was studied by Rvachev et al. [25] in the CAD community.

bi =
ΠN

j=1,i≠jω
θ
j

∑N
k=1Π

N
j=1,i≠jω

θ
j

: ð47Þ

The above equation shares a property of symmetry and
similarity. ωjðxÞ is generally supposed to be positive in the
physical domain to ensure the nonzero value of the denomi-
nator. Evidently, bi = 1 only if ωi = 0 and the partition of
unity holds with ∑N

i=1bi = 1. The value of θ is used to interpo-
late normal derivatives prescribed on Γ, which must be 1
greater than the order of the prescribed derivatives.
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Finally, the basis that we can propose for the nonhomo-
geneous boundary condition is as follows:

ϕif gi=1,::N = Bi + bif gi=1,::N : ð48Þ

6. Discretization of the Navier-Lamé Problem
Using WEB-Spline Basis

In the Navier-Lamé equation, Δu and ∇ψ are the terms with
derivatives of the highest order for the displacement and
div-displacement ðψÞ, respectively. Thus, the orders of the dif-
ferential operators differ by 1. This suggests the rule of thumb.
The degree of the basis functions used to approximate the
displacement should be one larger than the approximation
of the div-displacement. Also, to satisfy the Dirichlet bound-
ary conditions, the displacement basis functions are multi-
plied by a suitable weight function ω. Hence, in this article,
we choose ϕj-linear weighted extended B-spline for displace-
ment approximation along with φi-Haar wavelet basis function
for div-displacement approximation as our linear-constant
element and for quadratic-linear element we denote ϕj as qua-
dratic WEB-spline and φi the mean zero linear function (see
Figures 1 and 2) as defined above. In the following, the inf-sup
condition and, therefore, the well posedness of the discrete
Navier-Lamé problem are settled first for the linear-constant
element and then for the quadratic-linear element.

6.1. Linear Constant Element.More precisely, we give Vh and
Mh, the displacement and div-displacement finite element
spaces, respectively, as follows:

Vh = u1, u2ð Þ/uk = Σj∈Iuα
k
jϕ j, α

k
j ∈R, k = 1, 2

n o
, ð49Þ

Mh = ψ/ψ = Σi∈Iψβ
k
i φi, βi ∈R

n o
: ð50Þ

A sufficient condition for ðVh,MhÞ to satisfy the inf-sup
condition is given in [21, 22]. A similar result has been
proved in [26] for a different pair ðVh,MhÞ.
6.2. Quadratic-Linear Element. For j ∈ Iψ,

φj x, yð Þ = 1
h
φ

x
h
− j0

	 

φ

y
h
− j1

	 

, ð51Þ

where φ is defined as

φ xð Þ≔

x on 0, 1½ Þ,
2 − x on 1, 2½ Þ,
2 − x on 2, 3½ Þ,
x − 4 on 3, 4½ Þ:

8>>>>><
>>>>>:

ð52Þ

For constructing the displacement approximation space,
we do the following. For i ∈ Iu, let ϕi be the WEB-spline of
order 3, which is given by (40) and (48) where ϕi is defined
as in (51), the tensor product of the scaled translate of the
function ϕ

ϕ xð Þ≔

x2

2
on 0, 1½ Þ,

1
2
+ x − 1ð Þ − x − 1ð Þ2 on 1, 2½ Þ,

3 − xð Þ2
2

on 2, 3½ Þ,

8>>>>>>><
>>>>>>>:

Vb ≔ ⊕ K∈Th
VK ,

ð53Þ

where the quadrangulation Th is the collection of all cells K
⊂Ω such that K ∩ ∂Ω =∅ (those which are fully inside the
domain Ω) and K∂Ω ≔ K ∩Ω ≠∅ such that K ∩ ∂Ω ≠∅
(those portions which intersect the boundary ∂Ω) and VK
is the one dimensional subspace spanned by the function
bK given by

bK ≔ ω x, yð Þb x
h
− k0

	 

b

y
h
− k1

	 

: ð54Þ

The function bðxÞ≔ xðx − 1Þ is chosen so that the bubble
function bK vanishes on the edges of the cell K . ðk0, k1Þ is the
node corresponding to the cell K . The weight function w is
multiplied to ensure that the bubble function also vanishes
on the boundary ∂Ω. The distance function is used near the
boundary, where it is free of singularities and blended
smoothly with a plateau inside the domain. More precisely,
ω is defined as ω = 1 − ðmax ðδ − dðxÞ, 0Þ/δÞl, dðxÞ = distðx,
∂ΩÞ, where δ controls the height of the plateau and l the
smoothness of the weight function. The plateau facilitates
the use of precomputed values while assembling the Galerkin
matrix and also avoids the use of high-order quadratures for
the integration of the bubble functions supported on the cells
which are fully inside the domain.

The displacement approximation space is taken to be
V2

h ≔Vh ⊕Vb.
This pair ðV2

h,MhÞ of discretization spaces satisfies the
discrete inf-sup condition.

Lemma 7 (see [3]). A web-basis fBigi∈I is a stable basis with
respect to the L2-norm, C1∥faigi∈I∥≤∥∑i∈I Bi∥0 ≤ C2∥faigi∈I∥,
where C1, C1 are constants.

We can also bound higher order Sobolev norms in terms of
the 2-norm of the coefficients.

Lemma 8 (see [3]). A web-basis fBigi∈I satisfies ∥∑i∈I aiBi∥1
≤ C3h

−1∥faigi∈I∥, and C3 > 0 is a constant.

Lemma 9 (inverse estimate). Let Vh be the finite element
space considered as in (49). Then, there exists a constant C
such that ∥∑i∈I aiBi∥1 ≤ C6h

−1∥∑i∈I aiBi∥0.
The proof follows from Lemmas 7 and 8.

Lemma 10 (see [21, 22]). Suppose Th is a family of uniform
quadrilateral mesh on the domain Ω and

Q
h is the L2-pro-

jection operator onto Vh ⊂H1
0ðΩÞ. Then
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∥
Y
h

v∥1 ≤ C∥v∥1,∀v ∈H1
0 Ωð Þ, ð55Þ

where C is a constant which is h-independent.

Lemma 11. There exists an operator Ph : H
1ðΩÞ⟶V2

h
which satisfies the following properties:

b Phv, qhð Þ = b v, qhð Þ, ∀qh ∈Mh, ð56Þ

bΓ Phv, qhð Þ = bΓ v, qhð Þ, ∀qh ∈Mh, ð57Þ
∥Phv∥1 ≤ C∥v∥1, C > 0 independent of h: ð58Þ

Proof. Let P0
h : H

1ðΩÞ⟶Vh be the usual L2-projection
operator with

∥P0
hv∥1 ≤ c1∥v∥1, ð59Þ

∥v − P0
hv∥0 ≤ c2h∥v∥1: ð60Þ

The first inequality (59) follows from Lemma (10) and

the density of H1
0ðΩÞ in H1ðΩÞ ð �H1

0ðΩÞ ∩V
∥·∥1,Ω ⊂H1ðΩÞÞ,

and the second (62) is an L2-error estimate. Now we fix a lin-
ear mapping P1

h : L
2ðΩÞ⟶ Vb such that

ð
k
P1
hv =

ð
k
v, for eachK ∈ Th: ð61Þ

Wemay interpret the map P1
h as a process with two steps.

First, we apply the L2-projection onto the space of piecewise
constant functions. Afterwards, in each cell K the constant is
replaced by a bubble function with the same integral. In this
way, we get

∥P1
hv∥0 ≤ c3∥v∥0: ð62Þ

More precisely, we define P1
h as follows:

P1
hv∣K x, yð Þ = β Kð ÞbK x, yð Þ, for eachK ∈ Th: ð63Þ

In view of condition (61), the constant βðKÞ is taken to beÐ
kv/
Ð
kb

K . Observe that for
Ð
kb

K = c4h
2 and

Ð
kðbKÞ

2 = c5h
2,

where c4, c5 > 0 are constants,

∥P1
hv∥

2
0 = 〠

K∈Th

ð
k
P1
hv

�� ��2 = 〠
K∈Th

ð
k
β Kð Þ2 bK

	 
2
= 〠

K∈Th

Ð
kvÐ
kb

K

ð
k
bK
	 
2

≤
1

c4ð Þ2h4
〠
K∈Th

ð
k
v2

� �
∣K∣c5h

2 =
c5
c4ð Þ2

 !
∥v∥20:

ð64Þ

The above inequality is due to Cauchy-Schwarz and
∣K∣ = h2 the area of the cell K . Let us set

Phv = P0
hv + P1

h v − P0
hv

� �
: ð65Þ

Verify the two properties in the statement of the lemma.
By the virtue of the construction of Ph and we impose that
v − P0

hv = 0 on ∂Ω
ð
K
v − Phvð Þ =

ð
K
I − P1

h

� �
v − P0

hv
� �

= 0∀K ∈ Th: ð66Þ

Because qh is piecewise linear, we apply Green’s theorem

b v − Phv, qhð Þ =
ð
Ω

div v − Phvð Þqh =
ð
∂Ω

v − Phvð Þnqh

−
ð
Ω

v − Phvð Þ∇qh = − 〠
K∈Th

CK

ð
Ω

v − Phvð Þ = 0:

ð67Þ

It is easy to prove (57) by applying Green’s theorem and
using (56)

∥Phv∥1 ≤ ∥P0
hv∥1+∥P

1
h v − P0

hv
� �

∥1 ≤ c1∥v∥1 + c6h
−1∥P1

h v − P0
hv

� �
∥0

≤ c1∥v∥1 + c6h
−1c3∥ v − P0

hv
� �

∥0 ≤ c1∥v∥1 + c6h
−1c3c2h∥v∥1

≤ c∥v∥1:

ð68Þ

This proves the assertion (58) with c = c1 + c6c3c2, such as
c6 of Lemma (9).

Theorem 12. Let the space be Bh = fu ∈ V2
h \ bðPhu, qhÞ = 0,

∀qh ∈MhðΩÞg such thatV2
h = Bh ⊕ B⊥

h . The pair ðV2
h,MhÞ sat-

isfies the discrete inf-sup condition:

∃λ0 > 0, sup
∥qh∥0=1

b vh, qhð Þ
∥vh∥ V2

h

≥ λ0, ∀vh ∈ B⊥
h ,

sup
vh∈B⊥

h

b vh, qhð Þ > 0, ∀qh ∈Mh Ωð Þ:
ð69Þ

Proof. Let Phv ∈ B⊥
h be given. By the continuous form of the

inf-sup condition (20) and (56) and (57) of Lemma 11, there
exist c > 0 and ρ > 0 such that ð1/cÞ∥Phv∥V2

h
≤∥v∥1,Ω ≤ ð1/ρÞ

sup∥qh∥=1bðv, qhÞ = ð1/ρÞ sup∥qh∥=1bðPhv, qhÞ; then, we find
sup∥qh∥=1bðPhv, qhÞ > ðc/ρÞ∥Phv∥V2

h
, ∀Phv ∈ B⊥

h : According to

(56) and the second condition of (20), we have supvh∈B⊥
h
bðvh,

qhÞ = supv∈B⊥bðv, qhÞ > 0,∀qh ∈MhðΩÞ.

Remark 13.With a similar demonstration as above, the bilin-
ear form bΓ (16) on V2

h ×Mh verifies the inf-sup condition
cited in Theorem 12.

7. Matrix Form of the Navier-Lamé Problem

After establishing the discrete inf-sup condition, we are ready
to prove the existence and uniqueness of the discrete solu-
tion. (This part of the section is common to both the
linear-constant and quadratic-linear elements, so we call
the finite element spaces as Vh and Mh in general.) To find
the discrete solution pair ðuh, ψhÞ ∈ Vh ×Mh, it is enough to
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find the coefficient vectors of displacement �u≔ ð �u1, �u2ÞT ,
where �uα = ðð �uαi Þi∈IuÞT , α = 1, 2, and div-displacement �ψ≔

ðð �ψjÞj∈IψÞ
T .

Assuming that ðB−1AÞαβ = ξαβ, and ðB−1Þαβ = ζαβ for α,
β = 1, 2. Let us define

Aα
i,k =

ð
Ω

μ∇ϕi · ∇ϕkdΩ +
ð
Γ

ξααϕiϕkdΓ,

Bα
i,j =

ð
Ω

λ + μð Þφj
∂ϕi
∂xα

dΩ,

Bα
Γ,i,j =

ð
Ω

λ + μð Þφj
∂ϕi
∂xα

dΩ +
ð
Γ

μφjnϕidΓ,

Dm,n =
ð
Ω

λ + μð ÞφmφndΩ,

L1s =
ð
Ω

f1ϕsdΩ +
ð
Γ

ζ11 + ζ21ð Þg1ϕsdΓ,

L2s =
ð
Ω

f2ϕsdΩ +
ð
Γ

ζ22 + ζ12ð Þg2ϕsdΓ:

ð70Þ

The matrix form of the discrete Navier-Lamé equations is
written as

A1 0 B1
Γ

0 A2 B2
Γ

B1,T B2,T −D

0
BB@

1
CCA

�u1

�u2

�ψ

0
BB@

1
CCA =

L1

L2

0

0
BB@

1
CCA : ð71Þ

By defining the assembled matrices A = DiagðA1, A2Þ,
BΓ = ðB1

Γ, B2
ΓÞT B = ðB1, B2Þ, F = ðL1, L2ÞT , we rewrite the

above matrix form as

A BΓ

BT −D

 !
�u

�ψ

 !
=

F

0

 !
: ð72Þ

Decoupling of div-displacement and displacement: from
the above matrix form, we write

A�u + BΓ�ψ = F,

BT�u −D�ψ = 0:

(
ð73Þ

Premultiplying the first equation above by A−1, followed
by BT , and using the second equation, we get

D + BTA−1BΓ

� �
�ψ = BTA−1F: ð74Þ

In the following, we show that D + BTA−1BΓ is invertible,
and hence, the above equation can be solved for �ψ.

The positive definiteness follows from the positive D +
BTA−1BΓ:

Let us define BΓ = B + bΓ, with ðbΓÞi,j =
Ð
Γ
μφjnϕidΓ,

D + BTA−1BΓ

� �
ψ, ψ

 �
RM = Dψ, ψh iRM + BTA−1BΓψ, ψ

 �
RM

= Dψ, ψh iRM + A−1 B + bΓð Þψ, Bψ �
RM

= Dψ, ψh iRM + A−1Bψ, Bψ
 �

RM

+ A−1bΓψ, Bψ
 �

RM ,

ð75Þ

where M = cardinality of Iψ.
The positive definiteness of BTA−1B follows from the pos-

itive definiteness of matrix A (which is guaranteed by the
coercivity condition) and the following inequality which is
an equivalent condition to the inf-sup condition (20).

∥Bψ∥≥ρ∥ψ∥: ð76Þ

Indeed, one has

A−1Bψ, Bψ
 �

RM ≥ β∥Bψ∥2 ≥ βρ2∥ψ∥2: ð77Þ

Condition (21) gives

Dψ, ψh iRM ≥ ε∥ψ∥2: ð78Þ

The inequality of Cauchy-Schwarz gives

A−1bΓψ, Bψ
 �

RM ≥ −∥A−1bΓψ∥∥Bψ∥: ð79Þ

On the other hand,

∥A−1bΓψ∥ = 〠
i∈Iu

A−1bΓψ
� �1/2

i
= 〠

i∈Iu
〠
m∈Iψ

〠
k∈Iu

A−1
ik bkmψm1

 !2 !1/2

≤ 〠
i∈Iu

card Iu card Iψ max
k∈Iu

max
m∈Iψ

∣ A−1
ik bkm ∣ 〠

m∈Iψ
ψm1

 !2 !1/2

≤ card Iuð Þð Þ2 card Iψð Þ max
k,i∈Iu

max
m∈Iψ

∣ A−1
ik bkm ∣

� �1/2
∥ψ∥:

ð80Þ

By taking card ðIψÞ =M, card ðIuÞ =N , and maxk,i∈Iu
maxm∈Iψ ∣A−1

ik bkm∣ = α. Then, we find that

A−1bΓψ, Bψ
 �

RM ≥ −N Mαð Þ1/2ρ∥ψ∥2: ð81Þ

By combining (77), (78), and (81), we obtain

D + BTA−1BΓ

� �
ψ, ψ

 �
RM ≥ βρ2 + ε −Nρ Mαð Þ1/2� �

∥ψ∥2,
ð82Þ

as soon as βρ2 + ε −NρðMαÞ1/2 > 0.
This proves the existence of the discrete solution ðuh, ψhÞ.
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8. Numerical Results

We tested the performance of the WEB-spline method for
the Navier-Lamé problem (6). We take the centrifugal
force ∥f ∥ = r and the domainΩ is a rotating steel disc defined
by Ω = fðx, yÞ/ðx − ð1/2ÞÞ2 + ðy − ð1/2ÞÞ2 ≤ ð1/2Þ2g \ fðx, yÞ/
ðx − ð1/2Þ + dÞ2 + ðy − ð1/2ÞÞ2 ≤ r2g, with r = 0:1, d = 0:06,
and the edge of Ω consists of two disjoint parts in the form
of two circles ∂Ω = Γ = ΓD ∪ ΓN such as ΓD = fðx, yÞ/
ðx−ð1/2Þ+ dÞ2 + ðy − ð1/2ÞÞ2 − r2 = 0g, ΓN = fðx − ð1/2ÞÞ2 +
ðy − ð1/2ÞÞ2 − ð1/2Þ2 = 0g.

We give in (42) the Dirichlet matrix A = I2 on ΓD, 02 on
ΓN , and we give the Neumann matrix B = I2 on ΓN , 02 on
ΓD, the traction force g = ð0, 0Þ on ∂Ω.

Figures 5 and 6 show the numerical solution for rotating
steel disc with ðE = 1, ν = 0:28Þ that is fixed at a slightly
eccentric axis with radius r. We show the domain as well
as direction and size (colored) of displacement for each
H = ð8,16,32,64Þ number of cells per coordinate direction.

As mentioned in Table 1, we check for this example the
accuracy of the numerical approximations. Since in view of
the smoothness of the weighted B-spline basis functions that

are continuously differentiable for n ≥ 2 we can compute the
pointwise residuals [27] for the Navier-Lamé boundary value
problem (6), error pde = ∥−μΔuh − ðλ + μÞ∇ψh − f ∥0 and rate
r = ½NaN − diffðlog ðeÞÞ/log ð2Þ�. We can substitute the finite
element approximation into the partial differential equation
Navier-Lamé where g = 0 for the rotating disc. This would
not be possible for standard finite element approximation
which usually merely belong to H1ðΩÞ.

We show the relative residual for grid widths 1/H =
1/8,⋯, 1/256. While the residuals decay, estimates of the
rates exhibit a regular increasing behavior when H is
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Figure 5: Numerical solution for H = 8, 16.
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Figure 6: Numerical solution for H = 32, 64.

Table 1: Different errors.

H Error of pde Rate

8 1:118e + 000 NaN

16 3:644e − 001 1:618e + 000

32 1:831e − 002 4:314e + 000

64 7:003e − 003 1:387e + 000

128 1:775e − 003 1:980e + 000

256 4:462e − 004 1:992e + 000
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changed from 64 to 256 (e.g., the error pde norm [27]
has dropped from 1:118e + 000 to 4:462e − 004 when H
is changed from 8 to 256) which we attribute to numer-
ical stabilities.

Note that in the case when μ is quite small, we will refer
the readers to see [28–31].

9. Conclusion

Using the equations of linear elasticity as a model problem
with the boundary condition CA,B, we have described the
implementation of finite element methods with weighted B-
splines using mixed finite element. In this article, we have
shown that ourWEB-spline-based quadratic-linear finite ele-
ments satisfy the inf-sup condition, which is necessary for the
existence and uniqueness of the solution, and we proved the
existence of the discrete solution. We have shown the conver-
gence of the numerical solution for the quadratic case.
Because of limited regularity, the Navier-Lamé problem will
not change by increasing the degree of the WEB-spline.

We have computed the relative errors and rates and have
shown that it is of order 1/H, which is theoretically correct;
these numerical results are attributed to the numerical stabil-
ities of the solution. Moreover, the advantage of this problem
with CA,B boundary condition is the program level MATLAB;
it is enough to make a single program MATLAB and can be
reduced to ordinary problems as Dirichlet and Neumann.
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