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In this work, the forced Duffing equation with secondary resonance will be considered our subject by assuming that the initial
values has uncertainty in terms of a fuzzy number. The resulted fuzzy models will be studied by three fuzzy differential
approaches, namely, Hukuhara differential and its generalization and fuzzy differential inclusion. Applications of fuzzy
arithmetics to the models lead to a set of alpha-cut deterministic systems with some additional equations. These systems are
then solved by the extended Runge-Kutta method. The extended Runge-Kutta method is chosen as our numerical approach in
order to enhance the order of accuracy of the solutions by including both function and its first derivative values in calculations.
Among our fuzzy approaches, our simulations show that the fuzzy differential inclusion is the most appropriate approach to
capture oscillation behaviors of the model. Using the aforementioned fuzzy approach, we then demonstrate how to estimate
parameters to our generated fuzzy simulation data.

1. Introduction

The dynamic behavior of the complex systems in the real
world has long been widely studied by researchers through
mathematical modeling, by assuming the variables and
parameters are the set of real numbers. This is of course too
strict (crisp) to be used as variables or parameters sourced
from the data obtained through measurements that contain
uncertainty. To accommodate these uncertainties in the
modeling, intensive studies are needed to describe the struc-
ture of mathematical models, develop methodologies to
determine solutions of the model, and make procedures for
estimating parameters of the model.

Many interesting behaviors can be observed in a system,
such as nonlinear oscillation behavior. This behavior may
show complex dynamics, depending on initial values and
parameters. One of the mathematical models that illustrates
this behavior is the Duffing equation that was first introduced
by Georg Duffing in 1918. The equation is widely applied in
physics and also in biology [1], disease predictions [2], and
population dynamics problems [3]. The Duffing equation

produces a useful model for examining nonlinear oscillations
and chaotic dynamical systems. Another aspect that is inter-
esting to observe is the presence of external force which leads
to resonance phenomena, either primary or secondary reso-
nances [4, 5]. This attracted much attention to many
researchers to study further in determining the solution of
the model, both analytical and numerical approaches [6–8].

Besides the appearance of oscillation phenomena in a
system, the involvement of uncertainties in the system has
to be taken into account in the model. It can be caused by
several factors, including limitations of available data, com-
plexity of a system, or changes in the environment or demo-
graphics beyond the control of researchers when conducting
experiments. The model which can describe uncertainties has
been known in the last few decades, the so-called a fuzzy dif-
ferential equation. This concept was first introduced by
Chang and Zadeh [9] and currently has been developed by
many other researchers with several extensions. The first
proposal was given by Hukuhara [10], which is based on an
interval-valued function, referred to as the Hukuhara differ-
ential. Furthermore, Seikkala proposed a fuzzy differential
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based on the alpha-cut concept, known as the Seikkala differ-
ential [11]. Then, Kaleva [12, 13] proved that the Hukuhara
differential solution is equivalent to the Seikkala differential
solution and its derivatives are the same. Furthermore, the
concept of Hukuhara differential was later extended to what
is called generalized Hukuhara differential [14]. Later, Baido-
sov [15, 16] used the generalization of the concept of differ-
ential inclusion to produce a new concept, known as fuzzy
differential inclusion [17–20]. In principle, all the aforemen-
tioned concepts will transform the fuzzy models into what is
called the alpha-cut deterministic equations, by using the
fuzzy arithmetic method [21, 22].

To get insight into oscillation phenomena due to an
uncertainty factor, in the present study, we take the forced
Duffing equation with secondary resonance as a model that
represents an oscillation system having uncertainties in the
initial values. We choose the secondary resonance type to
provide a different oscillation behavior from our previous
studies, i.e., oscillation behaviors with dumping [23] and pri-
mary resonance [24] types. Such uncertainties can be classi-
fied as fuzzy numbers, so that the equation is then called by
fuzzy forced Duffing equations. We will examine the com-
parison of solutions from the fuzzy forced Duffing equation
using these three types of fuzzy differentials, i.e., Hukuhara
differential, generalized Hukuhara differential, and fuzzy dif-
ferential inclusion. The alpha-cut deterministic equations
generated from these three types will then be solved using
the fourth-order extended Runge-Kutta method [25–28]. In
contrast to the standard fourth-order Runge-Kutta method,
this extended method uses new parameters to improve the
accuracy of the solution by adding the first derivative of the
main function to be evaluated in the calculation. This is cho-
sen because it has been proven to be close to the exact solu-
tion than the standard method, in several types of system
behavior (crisp), such as growth, logistics, and periodic
models [29]. Finally, we demonstrate how to estimate param-
eters using the least square nonlinear method, by choosing
the right fuzzy differential type and using simulated fuzzy
data. The fuzzy data will be determined through an approxi-
mate solution of the multiple scale method of the forced
Duffing equation with random noises.

2. Materials

Some concepts related to our discussion are here mentioned.

2.1. Forced Duffing Equations. The Duffing equation is a
mathematical model that illustrates nonlinear oscillation
behavior and chaotic dynamical system. One of the interest-
ing aspects to observe is the presence of external force which
leads to resonance phenomena, either primary or secondary
resonances. The forced Duffing equation with secondary res-
onance is given as follows:

€y + y + 2εμ _y + εy3 = ω cos βt, ð1Þ

where the y is the variable of coordinate position, which is a
function of time t; the ω is the amplitude (or displacement) of
the wave function; the β is the angular velocity; the ε is the

damping forced (strength); and the μ is the damping
controller.

The approximation solution of Equation (1) by the
multiple-scale method is given as follows:

y = a cos 1/3 βt − γð Þð Þ + 2Λ cos βtð Þ +O εð Þ, ð2Þ

with Λ = ðω/ð2ð1 − β2ÞÞÞ and a, γ are numerically obtained
by the Runge-Kutta method from the system:

a′ = −μa−,

γ′ = σ − 9Λ2 −
9
8 a

2 −
9
4 aΛ cos γ:

ð3Þ

2.2. Fuzzy Concepts. Some concepts of the fuzzy theory are
given as follows.

Definition 1. A fuzzy subset A of universe X is characterized
by a function μA : X ⟶ ½0, 1�, called a membership function
of A, that represents the degree of membership of element in
fuzzy subset A.

(1) The fuzzy subset A can be expressed by a set of
ordered pairs consisting of the elements x ∈ X and a
certain degree of the membership function μAðxÞ of
the form:

A = x, μA xð Þð Þ: x ∈ Xf g: ð4Þ

(2) The alpha-cut of A, denoted by ½A�α, is the crisp set of
all elements in X that belong to a fuzzy set A at least
to the degree α ∈ ½0, 1�:

A½ �α = x ∈ X : μA xð Þ ≥ αf g, α ∈ 0, 1½ �: ð5Þ

Definition 2. Let ℝ be a set of all real numbers and A be a
fuzzy subset of ℝ. The fuzzy subset A is called by fuzzy
number when

(1) A is normal, that is ∃x ∈ℝμAðxÞ = 1
(2) All alpha-cuts of A are closed intervals of ℝ

(3) The Support of A, that is SuppðAÞ = fx ∈ R : μAðxÞ
> 0g, is bounded

The collection of all fuzzy subsets of ℝ is denoted by Fℝ ,
and the alpha-cut of A ∈ Fℝ is shortened by ½A�α = ½a−α , a+α �,
with a−α , a+α = inf , sup fx ∈ℝ : μAðxÞ ≥ αg.

Fuzzy arithmetic for fuzzy numbers based on extension
principle is given as follows:

Definition 3. Let A and B be fuzzy numbers with alpha-cuts
½A�α = ½a−α , a+α � and ½B�α = ½b−α , b+α �, respectively, and δ be a real
number.
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(1) The sum and the difference of ½A�α and ½B�α:

A + B½ �α = A½ �α + B½ �α = a−α + b−α , a+α + b+α
� �

,
A − B½ �α = A½ �α − B½ �α = a−α − b+α , a+α − b−α

� �
:

ð6Þ

(2) The multiplication of ½A�α by δ:

δA½ �α = δ A½ �α = δ a−α , a+α½ � =
δa−α , δa+α½ �, δ ≥ 0,
δa+α , δa−α½ �, δ < 0:

(
ð7Þ

(3) The multiplication of ½A�α and ½B�α:

A · B½ �α = A½ �α · B½ �α = min P, max P½ �, ð8Þ

with P = fasα · brαg ; s, r∈f−,+g:

(4) The division of ½A�α by ½B�α, if 0 ∉ SuppðBÞ:

A
B

� �α
= A½ �α

B½ �α = A½ �α · 1
B

� �α
, ð9Þ

with ½1/B�α = ½1/b+α , 1/b−α �:
2.3. Fuzzy Differential Equations (FDEs). Some basics con-
cepts of FDEs, i.e., fuzzy function, fuzzy differences, Seikkala
differential, and Hukuhara and generalized Hukuhara differ-
entials will be presented below.

Definition 4. Let F : ða, bÞ⟶ Fℝ; ða, bÞ ⊆ℝ be a fuzzy
function with ½FðxÞ�α = ½ ð f ðxÞÞ−α , ð f ðxÞÞ+α �. Then, ½F ′ðxÞ�

α =
½ ð f ′ðxÞÞ−α , ð f ′ðxÞÞ

+
α �; ∀α ∈ ½0, 1� and F ′ðxÞ ∈ Fℝ , which is

called by Seikkala derivative of F. The fuzzy function F is
called by Seikkala differentiable.

Lemma 5 (see [11–13]). Let F,G : ða, bÞ⟶ Fℝ; ða, bÞ ⊆ℝ
be fuzzy functions. If F and G are the Seikkala differentiable,
then ðF +GÞ′ = F ′ + G′ and ðkFÞ′ = k F ′; ∀k ∈ℝ.

Definition 6. Let Iℝ ⊂ Fℝ be the family of all the fuzzy num-
bers and F : ða, bÞ⟶Iℝ. If the limits of some pair:

(1) lim
h→0+

ðFðx0 + hÞ−HFðx0Þ/hÞ and lim
h→0+

ðFðx0Þ−HFðx0
− hÞ/hÞ, or

(2) lim
h→0+

ðFðx0Þ−HFðx0 + hÞ/−hÞ and lim
h→0+

ðFðx0 − hÞ−HF

ðx0Þ/−hÞ

exist and are equal to some element F ′ðx0Þ ∈Iℝ , then F is
strongly generalized differentiable at x0 and F ′ðx0Þ is the
strongly generalized derivative of F at x0.

The Hukuhara difference −H has rules: if A, B ∈Iℝ, then
A−HB = C⟺ A = B + C, provided C exists. Here, the +sign
is the standard addition operation on fuzzy numbers. In
terms of alpha-cut,

A−HB½ �α = a−α − b−α , a+α − b+α
� �

, ð10Þ

with ½A�α = ½a−α , a+α � and ½B�α = ½b−α , b+α �.
If function F satisfies Definition 6, (1) then F is called a

Hukuhara differentiable (Hd), and if its satisfies Definition
6, (2) then F is called a generalized Hukuhara differentiable
(gHd).

Lemma 7 (see [12]). Let F : ða, bÞ⟶Iℝ. For FðxÞ ∈Iℝ
with ½FðxÞ�α = ½ f −αðxÞ, f +αðxÞ�; ∀x ∈ ða, bÞ then

(1) if F is Hd, then ½F ′ðxÞ�α = ½ ð f −αÞ′ðxÞ, ð f +αÞ′ðxÞ�
(2) if F is gHd, then ½F ′ðxÞ�α = ½ ð f +αÞ′ðxÞ, ð f −αÞ′ðxÞ�

2.4. Fuzzy Differential Inclusion (FDI). The differential inclu-
sion can be expressed in the general form:

y′ tð Þ ∈ F t, y tð Þð Þ,
y 0ð Þ ∈ Γ,

(
ð11Þ

where F : ℝ ×ℝn ⟶ PðℝnÞ; PðℝnÞ is the family of all
subsets of ℝn and Γ ⊆ℝn. A solution of Equation (11) is
obtained by solving the differential equation y′ðtÞ = f ðt, y
ðtÞÞ, yð0Þ = y0 ∈ Γ, where f is a selection of F depending
on yð0Þ = y0 ∈ Γ.

An FDI is a generalization of a differential inclusion that
is defined by [19, 20]:

y′ tð Þ ∈ F t, y tð Þð Þ,
y 0ð Þ ∈ Y0,

(
ð12Þ

and is interpreted as the family of differential inclusions

y′ tð Þ ∈ F t, y tð Þð Þ½ �α,
y 0ð Þ ∈ Y0½ �α,

(
ð13Þ

for all α ∈ ½0, 1�. Here, ½F�α : ½0, T� ×ℝn ⟶Ωn and ½Y0�α ∈
Ωn, whereΩn is the family of all nonempty compact and con-
vex subsets of ℝn.

A solution of Equation (6) is an absolutely continuous
function y : ½0, T�⟶ℝn that satisfies the inclusion in ½0, T�
and yð0Þ = y0 ∈ ½Y0�α. The set of all solutions of Equation (6)
is denoted by ∑αðy0, TÞ and the attainable set at t ∈ ½0, T� by
Λαðy0, tÞ. Diamond [19] has proved that the sets ∑αðy0, TÞ
are the alpha-cut of the fuzzy solution of Problem (5). Gomez
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et al. [20] has guaranteed that if F is continuous and bounded,
then ∑αðy0, TÞ are defined.
2.5. Classical and Extended Runge-Kutta (RK) Methods. Let
the system of ordinary differential equations be

y′ tð Þ = f t, y tð Þð Þ: ð14Þ

The general form of the classical RK method is given
by [28]:

yi+1 = yi + a1k1 + a2k2+⋯+anknð Þh ð15Þ

with the evaluation functions ki are

k1 = f ti, yið Þ,
k2 = f ti + p1h, yi + q11k1hð Þ,
k3 = f ti + p2h, yi + q21k1h + q22k2hð Þ,

⋮

kn = f ti + pn−1h, yi + qn−1,1k1h + qn−1,2k2h+⋯+qn−1,n−1kn−1h
� �

,
ð16Þ

where ai, pi and qi,i are constants.
The general form of the extended RK method is given by

(Wu and Xia [25]):

yn+1 = yn + 〠
m

i=1
hbiki1 + h2ciki2
� � ð17Þ

with the evaluation functions ki1 and ki2 being

ki1 = f tn +�cih, yn + h〠
i−1

s=1
aisks1

 !

ki2 = f ′ tn +�cih, yn + h〠
i−1

s=1
aisks1

 ! ð18Þ

where bi, ci,�ci, and ais are constants. The f ′ is approximated
by the forward difference method. Specifically, f ′ is
embedded in f , i.e., f ′ is approximated by a difference
quotient of past and current evaluations of f [27], f ′ðynÞ
≈ ð f ðynÞ − f ðyn−1ÞÞ/h.

3. Main Results

3.1. α − cut Deterministic Systems. In the form of initial value
problem, for y1 = y and y1 ′ = y2, Equation (1) can be
expressed as follows:

y1 ′ = y2, y1 0ð Þ = y1 0,
y2 ′ = −y1 − 2εμy2 − εy1

3 + ω cos βtð Þ, y2 0ð Þ = y2 0,
ð19Þ

with y1 0, y2 0 ∈ℝ.
By assuming that initial values are fuzzy numbers, from

Equation (1), we obtain the fuzzy initial value problem in
the form of α − cut as follows:

~y1½ �α ′ = ~y2½ �α, ~y1 0ð Þ½ �α = ~y1 0½ �α,
~y2½ �α ′ = − ~y1½ �α − 2εμ ~y2½ �α − ε ~y1½ �αð Þ3 + ω cos βtð Þ, ~y2 0ð Þ½ �α = ~y2 0½ �α,

ð20Þ

with ~y1 0, ~y2 0 ∈ Fℝ. The problem of Equation (11) is called
the fuzzy forced Duffing equation.

Let ½~y�α = ½y−α , y+α �. Then, we get

y1
−
α , y1+α½ �′ = y2

−
α , y2+α½ �,

y2
−
α , y2+α½ �′ = − y1

−
α , y1+α½ � − 2εμ y2

−
α , y2+α½ �

− ε y1
−
α , y1+α½ �ð Þ3 + ω cos βtð Þ,

ð21Þ

with the initial conditions:

y1 0ð Þ−α , y1 0ð Þ+α
� �

= y10
−
α
, y10

+
α

h i
,

y2 0ð Þ−α , y2 0ð Þ+α
� �

= y20
−
α
, y20

+
α

h i
:

ð22Þ

Using the Hd concept in Lemma 7 (1), then, we obtain
the α − cut deterministic system of Equation (2):

y1
−
α
′ = y2

−
α ,

y1
+
α
′ = y2

+
α ,

y2
−
α
′ = −y1

+
α − 2εμy2+α − ε max Pαf g + ω cos βtð Þ,

y2
+
α
′ = −y1

−
α − 2εμy2−α − ε min Pαf g + ω cos βtð Þ

ð23Þ

and by using the gHd concept in Lemma 7 (2), then, we
obtain

y1
−
α
′ = y2

+
α ,

y1
+
α
′ = y2

−
α ,

y2
−
α
′ = −y1

−
α − 2εμy2−α − ε min Pαf g + ω cos βtð Þ,

y2
+
α
′ = −y1

+
α − 2εμy2+α − ε max Pαf g + ω cos βtð Þ

ð24Þ

with

Pα = y1
−
αð Þ3, y1

−
αð Þ2 y1

+
αð Þ, y1

−
αð Þ y1

+
αð Þ2, y1

+
αð Þ3

n o
: ð25Þ

and the initial conditions:
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y1 0ð Þ−α , y1 0ð Þ+α
� �

= y10
−
α
, y10

+
α

h i
,

y2 0ð Þ−α , y2 0ð Þ+α
� �

= y20
−
α
, y20

+
α

h i
:

ð26Þ

For our simulations, we take [4]:

μ = 0:1,
ε = 0:1,
σ = 1,
β = 3 + εσ,
ω = −4:87

ð27Þ

and the initial values:

y10
−
α
, y10

+
α

h i
= 1:14,1:98½ �,

y2 0
−
α , y2 0

+
α

� �
= 0:10,1:00½ �:

ð28Þ

The graphs of the fuzzy solutions and its phase plane of
Equations (23) and (24) by using the extended RK method
are given in Figures 1 and 2, respectively.

From Figure 1(a), the graph of y−α decreases from the
beginning, while the graph of y+α decreases for a moment
and then rises; then, both move away from the graph of
approximation solution y quickly. The α − cut of the solu-
tions resulted by the Hd concept did not show an oscillatory

behavior. It means that the uncertainty of solutions increases
even since the beginning of the evolution. This is also shown
through the phase plane in Figure 1(b). The coordinates of
the phase plane curve starts at the origin ðy−αð0Þ, y+αð0ÞÞ, then
the curve of y−α decreases, whereas conversely, the curve of y

+
α

decreases for a moment then increases.
In Figure 2, almost the same thing with that of Figure 1

happened to the α − cut of the solutions resulted by the
gHd concept. The difference is that there is once oscillation
before the uncertainty increases. This result does not indicate
a switch point, which is different from the our previous
results [23, 24], where both of them also examine the oscilla-
tion behavior of the nonlinear fuzzy model. In Karim et al.
[23], the solution of the fuzzy harmonic oscillator model that
uses the gHd concept produces several oscillations with the
appearance of the switch point, whereas in Karim et al.
[24], the solution of the fuzzy Goodwin model that uses the
same differential type produces oscillations throughout evo-
lution with the appearance of switch points in each period.

On the other hand, an FDI concept of Equation (2) is the
family of all differential inclusions of

y1 ′ = y2, y1 0ð Þ = y1 0,

y2 ′ = −y1 − 2εμy2 − εy1
3 + ω cos βtð Þ, y2 0ð Þ = y2 0,

ð29Þ

for all y1 0 ∈ ½y1 0
−
α , y1 0

+
α �, y2 0 ∈ ½y2 0

−
α , y2 0

+
α �, and α ∈ ½0, 1�.
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(b) Phase Plane

Figure 1: Solutions of Equation (23), the α − cut deterministic system which is obtained from applying the Hd concept. It is performed by
using the extended RK method with the parameters which are in Equation (27) and the initial values which are in Equation (28). (a) The
α − cut ½y−α , y+α �, with the left-end y−α is denoted by the no marked square, and the right one y+α by the black-marked square. In addition, the
solid line states the approximation solution y of Equation (2), with að0Þ = γð0Þ = 1 [4]. (b) Phase plane ðy−α , y+αÞ, with y−α placed
horizontally and y+α vertically. In addition, the black-marked cycle states coordinate point ðy−αð0Þ, y+αð0ÞÞ, the black-marked square states
coordinate point ðy−αð2:5Þ, y+αð2:5ÞÞ, and the dotted line states equation y−α = −y+α .
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The fuzzy solution of System (17) is obtained as

~y1½ �α = y1
−
α , y1+α½ � = min y1f g, max y1f g½ �,

~y2½ �α = y2
−
α , y2+α½ � = min y2f g, max y2f g½ �,

ð30Þ

as long as the system is continuous and is bounded for given
½~y1 0�α, ½~y2 0�α.

By solving Equation (29) using the extended RK method,
with the parameters in Equation (23) and the initial values in
Equation (24), the graphs of ½y−α , y+α � = ½y1−α , y1+α � in Equation
(18) are obtained as in Figure 3. By using this concept, we
may capture the oscillatory behavior of the approximation
solution of Equation (2), with the uncertainty which also
oscillates.

3.2. Parameter Estimation. From Section 3.1, we find that the
concept of FDI is able to capture oscillatory behavior and
maintain the uncertainty of the solution of fuzzy forced Duff-
ing equations. This leads us to choose Equation (29) as the
basis for estimating the parameters of the model. Parameter
estimation is performed by using a nonlinear least square
(lsqnonlin) method.

To illustrate the process, we set the α − cut of data fuzzy
simulation, namely,

ydata tð Þ½ �α = ydata
−
α tð Þ, ydata+α tð Þ� �

: ð31Þ

Equation (31) is simulated from the approximation solu-
tion in Equation (2), with the parameters which are in Equa-

tion (27) and the initial values are að0Þ = γð0Þ = 1). The
α − cut of data fuzzy simulation is given in Figure 4.

To perform parameter estimation by using the least
square nonlinear method, objective function V to be opti-
mized is given as follows:

min
ε∗ ,ω∗

V ε∗, ω∗ð Þk k22

= min
ε∗ ,ω∗

1
M

〠
N−1

t=0
y1

−
α − ydata

−
α

� �2 + 〠
N−1

t=0
y1

+
α − ydata

+
α

� �2 !
,

ð32Þ

where M = 2N ;N is the number of the data series of t, ε∗,
and ω∗ are the amplitude of the wave function and the damp-
ing forced (respectively) to be estimated, y1

−
α and y1

+
α are the

fuzzy solutions in Equation (30), and ydata
−
α and ydata

+
α are the

data fuzzy simulations as in Figure 4.
Optimization by using objective function V in Equation

(32) requires an initial value, and also, optional lower and
upper bounds lb and ub on the parameters are to be esti-
mated. Therefore, the parameters ε and ω in Equation (27),
which are used in the approximation solution in Equation
(2), are chosen as initial parameters, namely, ε0 = 0:1 and
ω0 = −4:87. Then, by choosing lb = 0, ub = 1 for the ε∗ and
also lb = −10, ub = 0 for the ω∗, optimization by using Equa-
tion (32) produces parameters:

ε∗ = 9:467 × 10−2,
ω∗ = −7:731

ð33Þ
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Figure 2: Solutions of Equation (24), the α − cut deterministic system which is obtained from applying the gHd concept. It is performed by
using the extended RK method with the parameters which are in Equation (27) and the initial values which are in Equation (28). For (a) and
(b), similar information as in Figures 1(a) and 1(b) are applied, except in (b), the black-marked square states coordinate point ðy−αð4:5Þ, y+α
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By using the parameters in Equation (33) and the initial
values ½y1 0

−
α , y1 0

+
α � = ½ydata−αð0Þ, ydata+αð0Þ� and ½y2 0

−
α , y2 0

+
α �

as in Equation (28), graphs of the solutions of Equation
(29) which are performed by using the extended Runge-
Kutta method are given in Figure 5. Addition graphs with
the initial values y1 0

−
α = y1 0

+
α = 1:51 (½y2 0

−
α , y2 0

+
α � still

remains) and the phase plane of the solutions of Equation
(29) are given in Figure 6.

4. Concluding Remarks

Three fuzzy differential concepts were examined by using
the extended Runge-Kutta method to capture the oscilla-
tory behavior of the forced Duffing equation with second-
ary resonance. Neither the Hd nor gHd concepts can
capture the oscillation. Conversely, the concept of FDI
was able to capture the oscillation of the equation and
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Figure 3: Graphs of Equation (30), i.e., the α − cut deterministic system which is obtained from applying the FDI concept. It is
performed by solving Equation (29) using the extended RK method with the parameters which are in Equation (27) and the initial
values which are in Equation (28). For (a) and (b), similar information as in Figures 1(a) and 1(b) are applied, except in (b), the
dotted line states equation y−α = y+α .
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maintained the uncertainty of the fuzzy forced Duffing
equation. This prompted us to apply the concept of FDI
to estimate the parameters of the fuzzy equation to a set
data fuzzy simulation, which was performed by using the
nonlinear least square method. The data fuzzy was simu-
lated from the approximation solution by the multiple-
scale method.
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