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The model system of ordinary differential equations considers two classes of latently infected individuals, with different risk of
becoming infectious. The system has positive solutions. By constructing a Lyapunov function, it is proved that if the basic
reproduction number is less than unity, then the disease-free equilibrium point is globally asymptotically stable. The Routh-
Hurwitz criterion is used to prove the local stability of the endemic equilibrium when R0 > 1. The model is illustrated using
parameters applicable to Ethiopia. A variety of numerical simulations are carried out to illustrate our main results.

1. Introduction

Tuberculosis (TB) is a contagious disease caused by Myco-
bacterium tuberculosis and is transmitted from person to per-
son through the air. Even though TB disease can be
controlled and cured, it continues to be a major health prob-
lem in the world and is now one of the top ten causes of death
and the leading cause of a single infectious agent (above
HIV/AIDS). In 2019, approximately 10 million people devel-
oped TB and 1.4 million died [1]. The prevention of TB
involves vaccination with Bacillus Calmette-Guérin (BCG),
screening of those at high risk, early detection, and treatment
of cases [2, 3].

BCG vaccination is one of the strategies to control the
transmission of TB. In most TB endemic countries BCG vac-
cination is recommended for tuberculosis prevention and
is usually given shortly after birth to prevent TB in infants
[3, 4]. The incidence rate plays a very important role in the
research of epidemiological models. In many epidemic
models, bilinear incidence rate βSI as in the classical
Kermack and McKendrick model [5] is frequently used.
Many models of TB also use this type of incidence rate (see

[6–10]). Another kind of incidence rate proposed by Capasso
and Serio [11] is the saturation incidence rate βSI/ð1 + bIÞ.
Here, βI measures the infection force when the disease is
entering a fully susceptible population, and 1/ð1 + bIÞ mea-
sures the inhibition effect from the behavioral change of sus-
ceptible individuals when their number increases or from the
crowding effect of the infective individuals [12, 13]. The sat-
uration incidence rate is more reasonable than the bilinear
saturating incidence rate when we need to include the behav-
ioral change and crowding effect of the infective individuals,
in order to curb the contact rate [13, 14].

Mathematical modeling fulfills a significant role to exam-
ine, explain, and predict the dynamics of infectious disease
transmission, including tuberculosis [8, 15, 16]. Ongoing
research is aimed at developing more realistic mathematical
models for investigating the transmission dynamics of
infectious diseases. One of the main issues in mathematical
epidemiology is the study of the asymptotic behavior of epi-
demic models, and for this purpose, we need to analyze
steady states and their stability [17]. In this paper, we present
and analyze a basic tuberculosis mathematical model with a
saturated incidence rate and TB vaccination.
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2. Construction of the Model

Based on the disease status of individuals, we divide the
total population NðtÞ into four subclasses, namely, suscepti-
ble SðtÞ, high-risk latently infected EðtÞ, infectious (or active
TB) IðtÞ, and low-risk latent LðtÞ. For the model framework,
we consider the following assumptions:

(i) The rate at which new individuals enter into the
susceptible class due to birth is denoted by Λ

(ii) Following [17–19], the disease transmission rate is
considered as βI/ð1 + bIÞ, where b is the saturation
rate and β is the maximum contact rate between
susceptible and infected individuals

(iii) The BCG vaccine will be given to the susceptible
population of a rate ðεSÞ, where ð0 ≤ ε ≤ 1Þ. The
BCG vaccine efficacy in preventing adults from
TB is incomplete, with an average efficacy of 50%
[20]. This shows that vaccinated individuals may
still be vulnerable to bacteria. Hence, it is reason-
able to classify the vaccinated and nonvaccinated
individuals into a single class with a different
chance of infection. It is assumed that the chance
of being infected by the bacteria for the vaccinated
and nonvaccinated population is θβεSI/ð1 + bIÞ
and βSð1 − εÞI/ð1 + bIÞ, respectively, where θ, with
ð0 ≤ θ ≤ 1Þ, is the loss of immunity for a vaccinated
person

(iv) k is the rate at which individuals in the high-risk
latent class E becomes infective

(v) It is assumed that treatment will be administered
for both high-risk latent and active TB-infected
classes. The treatment rate for the E -class and
I-class is denoted by α and r, respectively

(vi) If treatment is administered for the I-class with a
rate r, then some of them will complete their treat-
ment and recover completely at a rate ð0 ≤ p ≤ 1 Þ
and move to the L-class. Others, ð1 − pÞrI, will
not be cured and will remain vulnerable to the bac-
teria and move to the E -class

(vii) Patients who have completed anti-TB treatment
will recover, but these individuals may remain
latent because the TB bacteria stay dormant in the
host body. Accordingly, we classify these individ-
uals as low-risk latent

(viii) After being cured, it is assumed that some of the
recovered (low-risk latent) individuals can be rein-
fected with the bacteria and become high-risk
latently infected with the rate σ

(ix) We assume that the natural death rate (any death
which is not due to TB) is the same for all classes
and is denoted by μ

(x) Death due to the TB disease will happen only to
I-class, and we denote this mortality rate as δ

(xi) We further assume that all parameters to be used in
this model are nonnegative

Based on the above assumptions, we describe the dynam-
ics of TB by the following system of ordinary differential
equations (ODEs) with four compartments.

dS
dt

=Λ −
1 − ε + θεð ÞβSI

1 + bI
− μS,

dE
dt

= 1 − ε + θεð ÞβSI
1 + bI

+ 1 − pð ÞrΙ + σL − k + α + μð ÞE,
dI
dt

= kE − μ + r + δð ÞΙ,
dL
dt

= prΙ + αE − μ + σð ÞL,
N tð Þ = S tð Þ + E tð Þ + I tð Þ + L tð Þ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

with the initial conditions S0, E0, I0, L0 ≥ 0.
The complete transfer flow of the model parameters is

shown in Figure 1. The time unit “t” has been considered in
“years.”

2.1. Basic Properties of the Model

2.1.1. Positivity of Solutions. Since the model system (1)
involves the human population, it is necessary to prove that
all its associated variables and parameters are nonnegative,
so we have the following theorem.

Theorem 1. Let the initial data S0, E0, I0, and L0 be nonneg-
ative. Then, the solution setΩ = fSðtÞ, EðtÞ, IðtÞ, LðtÞg is non-
negative for all t ≥ 0:

Proof. If we let ðð1 − ε + θεÞβIðtÞÞ/ð1 + bIðtÞÞ − μ =HðtÞ,
then it follows from the first equation of the model (1) that

dS tð Þ
dt

+H tð ÞS tð Þ =Λ: ð2Þ

Multiplying both sides of (2) by exp fÐ t0HðτÞdτg gives

dS tð Þ
dt

exp
ðt
0
H τð Þdτ

� �
+H tð ÞS tð Þ exp

ðt
0
H τð Þdτ

� �

=Λ exp
ðt
0
H τð Þdτ

� �
:

ð3Þ
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Figure 1: Flow diagram of the TB transmission model.
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By the product rule of the derivative, we have

dS tð Þ
dt

exp
ðt
0
H τð Þdτ

� �
+H tð ÞS tð Þ exp

ðt
0
H τð Þdτ

� �

= d
dt

S tð Þ exp
ðt
0
H τð Þdτ

� �� �
:

ð4Þ

Hence,

d
dt

S tð Þ exp
ðt
0
H τð Þdτ

� �� �
=Λ exp

ðt
0
H τð Þdτ

� �
: ð5Þ

Integrating both sides of (5) gives

S tð Þ exp
ðt
0
H τð Þdτ

� �
− S0 =Λ

ðt
0
exp

ðτ
0
H uð Þdu

� �
: ð6Þ

Then,

S tð Þ = S0 exp −
ðt
0
H τð Þdτ

� �
+ Λ

ðt
0
exp

ðτ
0
H uð Þdu

� �� �

� exp −
ðt
0
H τð Þdτ

� �� �
≥ 0:

ð7Þ

Similarly, it can be shown that EðtÞ, IðtÞ, and LðtÞ are
nonnegative for all time t ≥ 0.

This completes the proof.

2.1.2. Invariant Region. The TB model (1) will be studied in a
biologically feasible region as given below.

Ω =
�

S tð Þ, E tð Þ, I tð Þ, L tð Þð Þ ∈ℝ+
4 ∣ 0

≤ S tð Þ + E tð Þ + I tð Þ + L tð Þ ≤ Λ

μ

�
:

ð8Þ

Lemma 2. The region Ω ⊂ℝ+
4 is positively invariant for the

model (1) with nonnegative initial conditions in ℝ+
4.

Proof. For this model, the total population is given by

N tð Þ = S tð Þ + E tð Þ + I tð Þ + L tð Þ: ð9Þ

Then,

dN tð Þ
dt

= dS tð Þ
dt

+ dE tð Þ
dt

+ dI tð Þ
dt

+ dL tð Þ
dt

: ð10Þ

Substituting the values from the model (1), we get

dN tð Þ
dt

=Λ − μN tð Þ − δΙ tð Þ ≤Λ − μN tð Þ: ð11Þ

Thus, integrating both sides and taking as t⟶∞, we
get 0 ≤NðtÞ ≤Λ/μ.

Therefore, the feasible solution set for the model is given
by

Ω =
�

S tð Þ, E tð Þ, I tð Þ, L tð Þð Þ ∈ℝ+
4 ∣ 0

≤ S tð Þ + E tð Þ + I tð Þ + L tð Þ ≤ Λ

μ

�
:

ð12Þ

3. Equilibria

The long-term behavior of a model is quite important. When
left for a long time with no external interference, we want to
know whether there will eventually be a stable state to which
the system converges. If the disease consistently vanishes, we
say that the system converges to a disease-free equilibrium. It
is also possible that the disease persists, and the class sizes
tend to converge to a single stable point, an endemic equilib-
rium point.

3.1. Disease-Free Equilibrium and the Basic Reproduction
Number. It is easy to check that model (1) always has a
disease-free equilibrium (DFE), P∗

0 = ðS∗0 , 0, 0, 0Þ, where S∗0
=Λ/μ. Now, we introduce the basic reproduction number
R0, which is defined as the expected average number of new
TB infections caused by a single infected individual during
his/her infected time when in contact with a completely sus-
ceptible population. The basic reproduction number plays a
key role in determining the global dynamics of the disease
in an epidemiological study. It helps us to know whether
the disease will spread and persist or whether it will eventu-
ally vanish from the population. If the value of the reproduc-
tion number is less than one, it indicates that the disease is
not spreading in the community, whereas when its value is
greater than one, then the disease can invade the community,
i.e., the disease becomes endemic and will produce deaths
and perhaps an outbreak. We obtained R0 by using the
next-generation matrix method given in [21].

Let X = ðE, I, LÞT , then it follows from the system (1) that

dX
dt

=F −M, ð13Þ

where

F =

1 − ε + θεð ÞβSI
1 + bI
0
0

0
BBB@

1
CCCA,

M =
− 1 − pð ÞrΙ − σL + k + α + μð ÞE

−kE + μ + r + δð ÞΙ
−prΙ − αE + μ + σð ÞL

0
BB@

1
CCA:

ð14Þ
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Evaluating the derivatives of F and M at DFE leads to
the following matrices F and

F =
0 βΛ 1 − ε + θεð Þ

μ
0

0 0 0
0 0 0

0
BBB@

1
CCCA,

M =
k + α + μ −1 + pð Þr −σ

−k r + δ + μ 0
−α −pr μ + σ

0
BB@

1
CCA:

ð15Þ

Then, R0 is the dominant eigenvalue of the matrix FM−1.
Thus, we have

R0 =
kβΛ 1 − ε + θεð Þ μ + σð Þ

μ μ r + δ + μð Þ α + μ + σð Þ + k prμ + δ + μð Þ μ + σð Þð Þð Þ :

ð16Þ

3.2. Global Stability of the DFE. Global asymptotic stability of
an equilibrium point means that starting from any initial
state, the system will eventually converge to that particular
equilibrium point.

Theorem 3 [22]. For model (1), the disease-free equilibrium
point P∗

0 is globally asymptotically stable if R0 ≤ 1.

Proof. To establish the global stability of the disease-free
equilibrium, we construct the following Lyapunov function:

T = μ + σð ÞE + k μ + σð Þ + μ α + μ + σð Þ
k

I + σL: ð17Þ

Note that T is nonnegative and TðP∗
0 Þ = 0. Differentiation

with respect to t and using (1) leads to

_T = μ + σð Þ _E + k μ + σð Þ + μ α + μ + σð Þ
k

_I + σ _L

= μ + σð Þ
� 1 − ε + θεð ÞβSI

1 + bI

+ 1 − pð ÞrΙ + σL − k + α + μð ÞΕ
�

+ k μ + σð Þ + μ α + μ + σð Þ
k

kE − μ + r + δð ÞΙf g
+ σ prΙ + αΕ − μ + σð ÞLf g:

ð18Þ

Since βSI/ð1 + bIÞ ≤ βSI, we have

_T ≤ μ + σð Þ 1 − ε + θεð ÞβSI + 1 − pð ÞrΙ + σL − k + α + μð ÞΕf g
+ k μ + σð Þ + μ α + μ + σð Þ

k
kE − μ + r + δð ÞΙf g

+ σ prΙ + αΕ − μ + σð ÞLf g:
ð19Þ

Using SðtÞ ≤Λ/μ and after simplification, we have

_T ≤
�
βΛ μ + σð Þ 1 − ε + θεð Þ

μ
+ μ + σð Þ 1 − pð Þr

−
k μ + σð Þ + μ α + μ + σð Þ

k
μ + r + δð Þ + σpr

�
I:

ð20Þ

Finally, with some rearrangement, we obtain

_T ≤
μ r + δ + μð Þ α + μ + σð Þ + k prμ + δ + μð Þ μ + σð Þð Þ

k
R0 − 1f gI:

ð21Þ

Since all parameters of the model are nonnegative, it fol-
lows that _T ≤ 0 for R0 ≤ 1 and _T = 0 only if I = 0. Hence,T is a
Lyapunov function on Ω and the largest compact invariant
subset of fðSðtÞ, EðtÞ, IðtÞ, LðtÞÞ ∈Ω : T = 0g is the singleton
P∗
0 . La Salle’s invariant principle [22] implies that P∗

0 is glob-
ally asymptotically stable in Ω.

3.3. The Endemic Equilibrium Point (EE)

Lemma 4. (existence of EE). If R0 > 1, then the model (1) has
a unique positive endemic equilibrium point.

Proof. The EE of the model (1) at P∗ = ðS∗, E, I∗, L∗Þ is
obtained by setting the right-hand side of the system (1)
equal to zero, we get

S∗ = μ r + δ + μð Þ α + μ + σð Þ + kprμ + k δ + bΛ + μð Þ μ + σð Þ
kβ 1 − ε + θεð Þ μ + σð Þ + kbμ μ + σð Þ ,

Ε∗ = μ r + δ + μð Þ
k β 1 − ε + θεð Þ + bμð Þ R0 − 1ð Þ,

I∗ = μ

β 1 − ε + θεð Þ + bμ
R0 − 1ð Þ,

L∗ = μ krp + α r + δ + μð Þð Þ
k β 1 − ε + θεð Þ + bμð Þ μ + σð Þ R0 − 1ð Þ:

ð22Þ

Clearly, from the above, we can conclude that a unique pos-
itive EE exists whenever R0 > 1.

3.4. Local Stability of the EE. Local asymptotic of an equilib-
rium point stability means that if the system is very near to
that equilibrium point, then it will necessarily converge to
the equilibrium state. It also means that minor perturbations
will not disrupt this convergence.

Theorem 5 (local stability at EE). If R0 > 1 and σ = 0, then the
system (1) is locally asymptotically stable about the endemic
equilibrium point P∗.

Proof. For σ = 0, the variable L will only appear in the fourth
equation of the model (1), hence the system can be reduced
to the three-dimensional system:
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dS
dt

=Λ −
1 − ε + θεð ÞβSI

1 + bI
− μS,

dE
dt

= 1 − ε + θεð ÞβSI
1 + bI

+ 1 − pð ÞrΙ − k + α + μð ÞΕ,
dI
dt

= kE − μ + r + δð ÞΙ:

8>>>>>>><
>>>>>>>:

ð23Þ

By applying the Routh-Hurwitz criterion of stability [23]
and by denoting ψ = ð1 − ε + θεÞβ for the system (23), we
have the following Jacobian matrix at P∗:

J∗ =

−μ −
βψI∗

1 + bI∗
0 −

βψS∗

1 + bI∗ð Þ2
βψI∗

1 + bI∗
−k − α − μ r − pr + βψS∗

1 + bI∗ð Þ2
0 k −r − δ − μ

0
BBBBBB@

1
CCCCCCA
:

ð24Þ

The associated characteristic equation of J∗ is given by

λ3 + a1λ
2 + a2λ + a3 = 0: ð25Þ

where

where

A = k2 pr + δ + bΛ + μð Þ + α + μð Þ r + δ + μð Þ r + α + δ + 2μð Þ
+ k r α + δ + bΛ + 2μð Þ + βΛψð Þ + k 2αδ + δ2 + bαΛ

�
+ bδΛ + 2αμ + 4δμ + 3bΛμ + 3μ2 + pr r + α + δ + 2μð Þ�:

ð27Þ

Clearly, a1, a2, a3, and a1a2 − a3 are positive whenever
R0 > 1. Thus, the Routh-Hurwitz criterion is satisfied. There-
fore, the endemic equilibrium point P∗ of the system (23) is
locally asymptotically stable for R0 > 1. This completes the
proof.

4. Sensitivity Analysis of R0

In this subsection, we investigate the effect of the various
model parameters on the basic reproduction number, R0.
For this purpose, we used the normalized forward sensitivity
index also known as elasticity [24]. If we let R0 to be a differ-
entiable function with respect to π, then the normalized for-

ward sensitivity index of R0 with respect to the parameter π is
given by

ΓR0
π = ∂R0

∂π
× π

R0
: ð28Þ

This normalized sensitivity index measures the relative
change of R0 with respect to π.

To study the sensitivity of R0, we choose the parameters
β, α, r, ε, and p. Using the above formula (28) and taking the
parameters’ value in Table 1, we calculate the sensitivity
indices of the basic reproduction number with respect to
these parameters.

The positive (negative) values indicate a positive (nega-
tive) correlation with R0, whereas the magnitude determines
the importance of parameter [25]. From Table 2, we can see
that β has a positive sensitivity index value, implying that a
positive change on this parameter will increase the number
of total infected population (E + I). In contrast α, r, ε, and p
have negative sensitivity index values, and thus, raising these
parameters will consequently decrease the number of the

a1 = k + r + α + δ + 3μ + βψI∗

1 + bI∗
,

a2 =
kβ2Λ k + r + α + δ + 2μð Þψ2 + b μ α + μð Þ r + δ + μð Þ + k pr + δ + μð Þð Þ2 R0 − 1½ � + kβΛψ k + r + α + δð Þμ + 2μ2ψ

� 	
β α + μð Þ r + δ + μð Þ + k pr + δ + bΛ + μð Þð Þψ ,

a3 =
μ bμ + βψð Þ α + μð Þ r + δ + μð Þ + k pr + δ + μð Þð Þ2
 �

R0 − 1½ �
β α + μð Þ r + δ + μð Þ + k pr + δ + bΛ + μð Þð Þψ ,

a1a2 − a3 =
R0 − 1½ �μ α + μð Þ r + δ + μð Þ + k pr + δ + μð Þð Þ2 α + μð Þ r + δ + μð Þ + k pr + δ + bΛ + μð Þð Þ bμ + βψð Þ

β α + μð Þ r + δ + μð Þ + k pr + δ + bΛ + μð Þð Þ2ψ

+ A kβ2Λ k + r + α + δ + 2μð Þψ2� �
+ bA R0 − 1½ �μ α + μð Þ r + δ + μð Þ + k pr + δ + μð Þð Þ2� �

β α + μð Þ r + δ + μð Þ + k pr + δ + bΛ + μð Þð Þ2ψ

+ bA kβ k + r + α + δð ÞΛψ + 2μ2ψ
� �

β α + μð Þ r + δ + μð Þ + k pr + δ + bΛ + μð Þð Þ2ψ ,

ð26Þ
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total infected population. The effect of the transmission rate
ðβÞ has the largest influence on R0 while the effect of success-
ful treatment rate for the I class ðpÞ has the smallest impact to
R0. Further, this implies that increasing the value of β by 10%
will increase the basic reproduction number by 10%. On the
other hand, the parameters α, r, ε, and p have negative influ-
ence; hence, increasing these parameters by 10%will decrease
the basic reproduction number by 8.015%, 7.402%, 5.564%,
and 0.748%, respectively.

5. Numerical Simulation and Discussion

To illustrate some of the analytic results obtained above, we
give numerical simulations using the parameter values in
Table 1. In our previous study [7], we estimated the value
of parameters of the TB model based on Ethiopian data,

and in the current study, we used those parameters’ values.
In particular, this means that the simulations are applicable
to Ethiopia.

Figure 2 presents the dynamics of the model for different
initial conditions. It shows that only the susceptible popula-
tion (S∗ = 8:7 × 107) persists but the high-risk latent ðEÞ,
infective ðIÞ, and the low-risk latent ðLÞ decline to zero. It
shows that system (1) is globally asymptotically stable at the
DFE whenever R0 ≤ 1, which supports our analytical results
stated in Theorem 3. Similarly, in Figure 3, for R0 > 1, the solu-
tion curves of the model are plotted by varying the initial
values of the compartments, and it tends to the endemic equi-
librium point. This confirms that P∗ is locally asymptotically
stable, supporting the conclusion of Theorem 5.

Figure 4 is a graphical representation of the compo-
nents of the endemic equilibrium point, P∗, and shows
the changes in the susceptible individuals, high-risk latent,
infectious, and low-risk latent classes as the reproduction
number, R0, is varied. In Figure 4(a), the susceptible indi-
viduals are being depleted rapidly as R0 becomes large.
Figures 4(b)–4(d) show that the number of high-risk latent,
infectious, and low-risk latent individuals has linear relation-
ships with the reproduction number, R0, and all become large
as it becomes large.

Generally, Figures 2–4 shows the role of reproduction
number to determine the dynamics of TB. It is shown that
if R0 < 1, the system appears in a disease-free state, that is,
TB will be eradicated ultimately from the population. On
the other hand, when the reproduction number is higher
than unity, the system will persist in the endemic state, that
is, TB will spread in the population.

Figure 5 explains the effect of the transmission coefficient
β on the number of high-risk exposed and active TB popula-
tion. It shows that an increase in the TB transmission rate
increases the number of both high-risk exposed and active
TB population. Figure 6 shows the simulation of active TB
and high-risk exposed populations for different values of α.
Thus, it can be seen that increasing the treatment rate for
high-risk latent TB patients helps to reduce the total number
of both high-risk exposed and active TB individuals. From
Figure 7, by increasing the treatment rate for active TB
patients, the total number of high-risk exposed and active
TB individuals decreases. Similarly, Figure 8 shows the simu-
lation of active TB and high-risk exposed populations for dif-
ferent values of ε. As we can see from the figure, increasing
the coverage of the BCG vaccine for newborns can reduce
the total number of the infected population. Finally, in
Figure 9, the effect of successful treatment rate p is shown.
The total infected individuals decrease when p increases.

6. Conclusion and Future Directions

In this paper, we investigate the dynamical behavior of a
tuberculosis disease model with vaccination and a saturated
incidence rate. In our model, we have divided the total pop-
ulation into four compartments, namely, susceptible, high-
risk latent, infective, and low-risk latent population. For the
proposed model, two equilibria, the disease-free equilibrium
and endemic equilibrium, are derived. We have found the

Table 1: List of parameter values used for the model simulations.

Parameters Description Value

N0 Initial total population 7:25 × 107

S0
The initial number of susceptible

individuals
3:85 × 107

E0
The initial number of high-risk latent

individuals
1:19 × 107

I0
The initial number of infectious

individuals
3:73 × 105

L0
The initial number of low-risk latent

individuals
2:18 × 107

Λ Recruitment rate 1:4 × 106

β The transmission coefficient 1:646 × 10−7

ε Vaccination coverage rate 0.715

θ Lose of protection for vaccination 0.5

μ The natural death rate 0.016

k Progression rate from E to I 0.023

r The treatment rate of I 0.546

p Successful treatment rate of I 0.832

α Treatment rate of E 0.153

δ TB induced death rate 0.17

σ The relapse rate 0.0013

b Saturation rate
0.0004

(assuming)

Table 2: Sensitivity indices of R0 with respect to model parameters.

Parameters Description Sensitivity index of R0
β The transmission coefficient +1

α Treatment rate of E −0.801497
r The treatment rate of I −0.74021
ε Vaccination coverage rate −0.55642
p Successful treatment rate of I −0.0747728
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basic reproduction number, which helps us to determine the
dynamical behavior of the model. We obtain that the
disease-free equilibrium point of the model (1) is globally

asymptotically stable when R0 ≤ 1. On the other hand, if R0
> 1, then the endemic equilibrium point is locally asymptot-
ically stable.
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Figure 2: The plot shows the convergence of the solution of the model to the disease-free equilibrium point P∗
0 = ð8:7 × 107, 0, 0, 0Þ for

different initial values of ðS, E, I, LÞ when β = 1:65 × 10−8 and R0 = 0:164 < 1.
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Figure 3: The plot shows for different initial values of ðS, E, I, LÞ, the solution of the model converges to the endemic equilibrium point
P∗ = ð 8:5 × 107, 0:15 × 106, 0:048 × 105, 1:5 × 106Þ forβ = 3:02 × 10−7 and R0 = 3:0014 > 1.
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From the numerical simulations, the number of high-risk
exposed class and active TB-infected population has a linear
relationship with the reproduction number and all become
large as R0 becomes large. On the other hand, the basic repro-
duction number depends on the transmission rate β, treat-
ment rate of high-risk latent α, treatment rate of active TB r
, vaccination coverage rate ε, and successful treatment rate
of active TB p. Therefore, it is important to identify the best

strategies to control and eradicate the disease. Using sensitiv-
ity analysis in this study, we found that the first effective way
to control the spread of tuberculosis in Ethiopia is to mini-
mize contact between TB-infected and susceptible individ-
uals. The second important strategy is to increase access to
treatment for latently infected individuals. Therefore, we rec-
ommend that the following strategies be implemented first
and foremost to control tuberculosis and eradicate it from
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Figure 4: Graphs showing the behavior of the susceptible ðSÞ, high-risk latent ðEÞ, infectious ðIÞ, and low-risk latent ðLÞ classes as the
reproduction number gets larger.
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Figure 5: Simulation of high-risk exposed and active TB-infected population with different values of β.
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Ethiopia. These strategies include early detection and isola-
tion of infectious people, conducting health campaigns and
educating the community, screening of high-risk exposed
individuals, and the treatment of latent TB. At the same time,
the BCG vaccine plays an important role in the prevention of
the disease, and immunization of the children should be
continued.

Many TB model studies use the bilinear incidence rate
(see [7, 26, 27]), while other studies have used the saturated
incidence rate but have not explicitly considered the BCG
vaccine in their model (e.g., [18]). Some models combine sat-
urated incidence rate and vaccination [28], but their numer-
ical analysis does not apply to real data. In our study, we
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Figure 6: Simulation of high-risk exposed and active TB-infected
population with different values of α.
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Figure 7: Simulation of high-risk exposed and active TB-infected
population with different values of r.
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Figure 8: Simulation of high-risk exposed and active TB-infected
population with different values of ε.
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developed a mathematical model that included vaccination
and saturated incidence rates, and in the numerical analysis
of the study, we used the parameters that we fitted based on
the data from Ethiopia. This allows us to make the model
unique and more realistic. However, due to the complex
nature of tuberculosis, we can make the model more realistic
if we include other parameters such as social distance and
wearing facemasks. In our next work, we will improve this
model by incorporating these TB prevention methods.
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