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In this paper, we investigate the existence and uniqueness of solutions for a class of integral boundary value problems of nonlinear
fractional differential equations with p-Laplacian operator. We obtain some existence and uniqueness results concerned with our
problem by using Schaefer’s fixed-point theorem and Banach contraction mapping principle. Finally, we present some examples

to illustrate our main results.

1. Introduction

This paper deals with the existence and uniqueness of solu-
tions for the following fractional integral boundary value
problem with p-Laplacian operator:

“Df, ¢, (D, x(t)) = f(t,x(t)), € (0, 1),

x(0) = J g(s)x(s)ds, x(1) =0,

0

9, (D5, x(0)) = 9, (‘DS x(1)) = Lh(smp(@ax(s»ds,

(1)

where 1<a,f3<2,3<a+f<4, Dy, and CD§+ are the
Caputo fractional derivatives, f € C([0,1]xR,R), g,h¢
C([0,1],R), and the p-Laplacian operator is defined
as @,(s) = Is]P %5, p> 1.

In the past few decades, fractional differential equations
have been widely applied to many fields in natural and social
sciences, because they are important tools in mathematically
describing many phenomena of science and engineering such
as aerodynamics, control theory, signal and image process-
ing, plasma dynamics, blood flow phenomena, and viscoelas-

tic and non-Newtonian fluid mechanics (see [1-5] and their
references). In 1983, Leibenson [2] proposed the following
integer-order differential equation model with p-Laplacian
operator to study the turbulent flow in a porous medium in
his work:

(p(w'®)) =f (0w W' ). te@ 1. @

where ¢, is a p-Laplacian operator.

Based on Leibenson’s results, many researchers have gen-
eralized his model into a variety of models with fractional
order and obtained many valuable existence and uniqueness
results for p-Laplacian fractional differential equations with
two-point boundary conditions (see [6-14]), multipoint
boundary conditions (see [15-18]), and nonlocal boundary
conditions (see [19-23]). Since the 1°* derivatives of
unknown functions existed in Leibenson’s model, it became
a special study to discuss the existence results for p-Lapla-
cian fractional differential equations where the fractional
orders were in the neighborhood of 1. So, Chai [7] used the
fixed-point theorem on cones to investigate the existence
and multiplicity of positive solutions for fractional differen-
tial equations with p-Laplacian operator:
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Df, (¢, (D (1)) =~F (8, u(t)), O<t<L,
u(0)=0,

u(l)+ aD&u(l) =0,

D%, u(0) =0,

where 1<a<2,0<B,y<1, and D, Dk, and D}, are the
Riemann-Liouville fractional derivatives. Jong [15] estab-
lished the existence and uniqueness of positive solutions for
multipoint boundary value problems of nonlinear fractional
differential equations with p-Laplacian operator by using
the Banach contraction mapping principle

DY, (¢, (Dfu(t)) =f(t u(t), 0<t<l,

u(0) =0,

Dg+u(1) = __ EiDg+u(’7i)’ (4)
D%, u(0) =0,

0, (Du(1)) = Y L, (D),

where 1<a,f3<2,0<y<1,
[0,4+00)).

Integral boundary value problems for differential
equations have arisen in the study of various fields such as
underground water flow, blood flow problems, and ther-
moelasticity. So, the study on the existence of solutions
for the p-Laplacian integral boundary value problems has
attracted the attention of many researchers recently (see
[20-23]). Zhang et al. [23] considered the existence of
symmetric positive solutions of the problem for the fol-
lowing nonlinear fourth-order p-Laplacian differential
equations with integral boundary conditions:

and f € C([0,1] % [0,4+00),

where w,g,h€L[0,1] are the nonnegative, symmetric
functions and f € C((0, 1] x [0,+00), [0,4+00)). Zhang and
Cui [22] investigated the existence of positive solutions
for nonlinear fourth-order singular p-Laplacian differential
equations with the integral boundary conditions
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0,(x"(0)) =9, (+" (1) = Joh(s)gop (<"(9)ds,

where f € C((0, 1) x (0,+00) x (0,400), [0,400)), f may be
singular at t=0,1,u=0, and g, h € L[0, 1] are nonnegative.
The existence results on solutions of problem (2) are
established by employing upper and lower solution
methods together with maximal principle. Jiang [20] used
the generalized continuous theorem to investigate the exis-
tence of solutions to the integral boundary value problem
of p-Laplacian multiterm fractional differential equations
at resonance

D5, (¢, (D.u(t)) ) = =f (tu(t), D (), D u(t)), 0 < £ < 1,

(7)

where 0 < $<1,1<a<2, and f(l)h(t)t"“ldt: 1.
Summarizing previous results, very few papers dealt with
the existence of solutions for integral boundary value prob-
lems of p-Laplacian fractional differential equations, espe-
cially, Zhang and Cui [22] who established the existence of
positive solutions for fourth-order singular p-Laplacian dif-
ferential equations under p >2 and Jiang [20] who consid-
ered the existence of solutions for nonlinear multiterm
fractional differential equations with 0 <3< 1. Moreover,
due to the nonlinearity of p-Laplacian operator ¢, it is more

difficult to study for the case 1 < 3 < 2 rather than for the case
0 < B < 1. Motivated by the above facts, this paper deals with
the existence and uniqueness of solutions of problem (1) in
which the fractional derivatives are Caputo fractional deriva-
tives with 1 < &, 8 < 2.The structure of this paper is organized
as follows.

In Section 2, we recall some definitions and lemmas.
In Section 3, we prove the existence and uniqueness of
solutions for nonlinear integral boundary value problem
with p-Laplacian operator by using Schaefer’s fixed-point
theorem and Banach contraction mapping principle.
Finally, we give two examples to illustrate our main results
in Section 4.

2. Preliminaries

The Riemann-Liouville fractional integral and the Caputo
fractional derivative of order a >0 of a function f : (0, c0)
— R is given by
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(1o, )(1) = LJ (t=5)"f(s)ds,

I'(a) Jo

o 0
(DN = ey .-

s)etfn (s)ds,

where n = [a] + 1, provided that the right-hand side is point-
wise defined on (0, 00) (see [4, 5]).

Lemma 1 (see [1]). If «> 0 and f € Cla, b, then (“DS I% f)
() =f(®).

Lemma 2 (see [9]). Assume that “Dfy,u € C[0, 1], a > 0. Then,
I8 DG u(t) = u(t) + ¢y + cpt+-c, 1" 1 c;€Ri=0,1,-+,n
—-I,n—-1<a<n.

For the sake of convenience, put o, := s)dsand

0, _fo

fo (1-s)g

s)ds and assume that o, # 1 and o, # 1.

Lemma 3. Let 0 € C|0, 1]. Then, the fractional boundary value
problem

Db z(t)=0(t), 0<t<l,

has a unique solution which is given by

z(t) = ! J J h(s)Gg(s, 7)o (T)drds - JOGﬁ(t, s)o(s)ds,

1-o0,

0o
(10)
where
1 (ta-s)F—(t-sF oss<t<l,
Gﬁ(t, S) = —
L) | (1-s)F", 0<t<s<1.
(11)
Proof. In view of Lemma 2, we have that
2(t) = ¢+t + 1. a(h). (12)

By means of the property of the fractional integral of a
continuous function we obtain that z(0) = ¢,.

Since z(0 fo (s)ds, from (12), we obtain

¢ = th(s)z(s)ds,

3
Hence, (12) can be written as
<(0) - [ Woetopds+ .00~ 00| = [ neert
v |09 oo [ 109 oo
(14)

Thus, we can easily get

z(t) = J h(s)z(s)ds - JOGﬁ(t, s)o(s)ds. (15)

0

In the right side of (15), the term fo z(s)ds can be

rewritten as

th(s)z(s)ds:l_l Jlrh(s)Gﬁ(s,T)a(T)des. (17)

~ 02 J)olo
Therefore, the unique solution of (9) is given by

-1
_0-2

z(t) = 1 Jljlh(s)Gﬁ(s, T)o(7)drds - J;Gﬁ(t’ s)o(s)ds.

(18)

Conversely, let z€ C[0,1] be the function which is
expressed by (10). Putting

A(B) = ! JJh(s)Gﬁ(s,T)a(r)des, (19)

1-0,)0l0



Then, we have that

2(t)=A(B) - tly,0(t)| _+I5,0(1). (21)

Since o € C[0, 1], applying CDg . to both sides of (21) and
using Lemma 1, we can obtain

‘D, 2(t) = Db, I,0(t) = o (t). (22)

On the other hand, multiplying (10) by h(¢) and integrat-
ing on [0, 1], we have

le(t)h(t)dtz 1_10 [lh(t)dtjljlh(s)Gﬁ(s, T)o(T)d7ds

0 —Y2Jo 0Jo

o a2 | [yt

0

-drds - Jljlh(t)Gﬁ(t, s)o(s)

0J0

- dsdt = - !
1

-0,

JIJIh(S)GB(s, Fyo(e)deds.

0J0

Hence, (10) can be written as
1

z(t) = —JOGﬁ(t, s)o(s)ds + J h(s)z(s)ds. (24)

0

Since Gg(0,s) = Gg(1,s) =0, we can also have that

4®=4U=Jh@y@ws (25)

Therefore, we can know that z(t) is a solution of problem
(9) and (9) has a unique solution which is given by (10). The
proof is completed.

Lemma 4. Let f € C([0, 1] xR, R), then p-Laplacian integral
boundary value problem (1) has a unique solution which is
given by

0= [ 690, (2 [ [ Gt st

0 2J0Jo

ddy+ [ Gyls sy x(y))dy)

-$+1_trr%@@ﬂd%

I-0;)0)o

'< 1'rrM”%WJﬁ@wﬂwmy

I-0, Jolo

[ Gats sy x<y>>dy) dsd,

(26)

where q is the number that satisfies 1/p + 1/q = 1.
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Proof. The proof of this lemma is divided into two steps.

(Step 1) Let r € C[0, 1] and consider the boundary value
problem

“Df x(t) = (1),
1 (27)
| g+ =0,

0

0<t<l,
x(0)=

By using Lemma 2, we have that
x(t) =dy+dt+ I, r(t). (28)

From (28) and boundary condition of (27) we can obtain

Then, (28) can be written as

1

() =dy + iyt + .r(1) = | (90

0

s (=] gns = o), )+ 0

I () - IS, r(6)] Lyt (1 t>j0g<s>x<s>
1

o= s [ -9 o

0 0

+(1- t)JOg(s)x(s)ds = —JOG“(t, s)r(s)

~ds+(1- t)J g(s)x(s)ds.

O (30)

In a similar way to the proof of Lemma 3, it can be easily
seen that

Jlg@x(s)ds: - jljlg@)Ga(s,r)r(r)drds- (31)

0

Hence, we have that the unique solution of (27) is given by

(0 == Gutt9r9ds— L [ [ o165 oy

0 1-0,)o)o
(32)

Conversely, let x(¢) be the function which is expressed
by (32). Then, from the definition of G,(t,s), (32) can be
written as
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x(t) = —tIg,r(t)|,., + Io,r(t) - 11__th JOJOg(s)Ga(s, T)r(t)drds.

(33)

Since r € C[0,1] and 1<a<2, applying “Dj, to both
sides of (33), we can obtain

D x(t) = D13, (1) = r(t). (34)

On the other hand, multiplying (32) by g(¢) and inte-
grating on [0, 1], we have that

jlga)x(t)dt:—Jlgmjlc,x(t, $r(s)

0 0 0

jlu ~1)g(t)

0

So, we can rewrite (32) as
1

x(t) = —JlGa(t, s)r(s)ds+ (1 - t)J g(t)x(t)dt. (36)

0 0

Since G,(0,s) =G,(1,s) =0, we can get

x(0) = J g(t)x(t)dt, x(1)=0. (37)

Therefore, we can know that x(¢) is the solution of (27).

(Step 2) Now let x(t) be the solution of (1). Putting y(t)
=Dy, x(t), then we have that

) == [ Gty [ [ auts peydnas

0 1-0y)0)o
(38)

Also denoting ¢, (y(t)) by z(t), then by Lemma 3, we can see
that that

-1 1pl
z(t) = o, JOLh(s)Gﬁ(S, T)f (7, (7)) )

~drds— JOGﬁ(t, s)f (s, x(s))ds.

Since it is well-known that <p;1 =@y combining (38) and (39)
yields

(0= [ 6096 (1= [ et oo

0 0J0

drdy+ | Gyts S x(w)dy)

1-¢ 11 o
rds+ J J Ga(6:5)9(9)9,

0J0

' ( : 'Jljlh(V)st(% T)f (7, x(1))drdy

oJo
1
* J Gy )f (1> x(y))dy> dsd.
(40)
The proof is completed.

Remark 5. From the definition of G,(t,s) and Gg(t,s), it is

easy to know that those functions are continuous in [0, 1] x
[0,1].

Lemma 6 (see [24]). Schaefer’s fixed-point theorem. Let X be
the Banach space and T : X — X be completely continuous
operator. If the set E={ueX|u=pTu,0<p<1} is
bounded, then T has at least one fixed point in X.

The basic properties of the p-Laplacian operator which
will be used in the following studies are listed below (see

(10]).

(i) If1<p<2,xy>0,and |x|, [y| = m >0, then

@, (%) =9, ()| < (p— )m*?|x —y)| (41)

(ii) If p>2 and |x]|, [y| <M, then

Pp(x) —9,(n)| < (P~ )M — y)| (42)

3. Main Results

In this section, we establish the existence and uniqueness of
solutions of problem (1) by using Schaefer’s fixed-point the-
orem and the Banach contraction mapping principle.

Let us consider the Banach space X = CJ[0, 1] endowed
with the norm | u|| = ggi)§|u(t)|



Define an operator T : X — X by

O e e N e )
~ds+ 11 — J;lea(c,S)g(C) (43)

-0 0

drdy + J Gg(s:p)f (75 x(r))dr)

dridy-+ | Gyls W x()y )dos

0y

Then, Equation (26) is equivalent to the operator equation
x=Tx,x € C[0,1]. (44)

From Lemma 4, the existence of solutions for the prob-
lem (1) refers to the existence of fixed points of Equation
(44). Therefore, it is sufficient to prove the existence of fixed
points of (44).

Lemma 7. The operator T is completely continuous.

Proof. Since f € C([0, 1] x R, R) and ¢, is continuous, we can
know that T : X — X is continuous.

Let Q € X be a bounded subset, then for any u € (, there
exists M, > 0 such that |Ju|| < M,,.

We will show that T(Q) is relatively compact in X.
Since f is a continuous function, there exists M, >0 such
that |f(t, u(t))| <M/, t €[0,1],u € Q. Then, we have

ITx(t)| < j'0|Ga(r, 9|

(=5 L[ Gatr 00

0J0

drdy + J'OG/; (5 1) (1 x(1)) ]

Sds+ 11 ! ”;\Ga(c)s)g@)l

—01Jo

Jou(i25 - [ [ o6t s

dvdy+ | Gy(s /50 )

- dsdg < j;|Ga(t, Bl (45)

Jou(=s [ [ nistr oo

0

dvay+ [ Gyts sy )|

st o | | 16,6909
(e N NECCRTCEE)
- | drdy + JO | Gﬁ(s, Y)f (> x()) | dy) dsdg.

And since (t,s) €[0,1] x [0, 1], evaluating the upper bound
of |Gg(t,s)| gives
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|Gg(t, )| < F(l) (46)

So, we obtain

: jj0|h<y>cﬁ<y,r>f<r,x<r>>|

-0, ]

drdy + JO\G;;(S) Vf(rx(y))] (47)

M 1k _
= 1p) (” |1—az|) e

Then, we can get easily that

ITx(t)| < j0|Ga<t, 9]+, (M)

dss [ [ [Guleg(e)] 9, 01) (49

1-0y))o

2, (M) (|, gl
ez B (1 )

In view of the definition of the p-Laplacian operator,
we have that

|Tx|£11\:1?>1 <1+ lgl > (49)

(a |1-0]

This shows that T() is uniformly bounded in X. For
any x € Q,0<t, <t, <1, we have that

[ Gutes

0

ITx(ty) = Tx(t,)l =

%, (%szljlhm%(% (5 x()

0J0

drdy + | Gylo v (1 (1))

s 122 [ 669000

0J0

(125 | Gt e

0J0

drdy + J;Gﬁ@, Y x<y>>dy)

1

g R e N

0 2Jo0Jo

Sl x(@)drdy+ | Gy VA x<y>>dy)
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1-t,

s =0 [ Gufe 9
(15 | B Gt o200

dridy+ | Gyle 1) () )

'dsdc‘ = G,(t1>9))

[ Guttns)-

0

(125 || s

93 Jo0)o
! (50)
vy + | Gylo 1) (1) )
0
tl_tz 1 rl
“ds+ Ga(6:5)9(6)
—01JoJo
1 1p1
(25, | | rreatr e x(e)
2 0J0
drdy+ [ Gyls sy ()
1
dsds <MY | [Gy(t9) - Gutr9)
0
ds+ i, f27h lgll
1 -0, I(a)
And since
. H(1=9)"" = (=) = f(1=5)"" + (8, =9)", s<ty
Ga(zz,s)-caul,s):W L(1=9)"" = (=) =1, (1-9)"", <5<ty
tz(l—s)""—tl(l—s)“ Losxty,
(51)

the integral term f(1)|Ga(t2,s)
into the following three parts:

G,(t;,s)|ds can be divided

tl
j Ga(t25) = Gal(£1,9)
0

—(ty=9)*"

1 h a-1
ds= i) [t,(1 =)

In a similar way to this, we can obtain

t,—t)"
, (=1

F(a+1)’

t
: L-1h
JtllGa(tZ’S) (tl’ >|d5< F((X+ 1)

J |Ga(t2’s) (tl’ )|d5< Ft( _:i)

5}

(53)

These inequalities yield

1

[/ 16u(e9) - Gt 9
0

tl

cds=| |G, (ty5) -

0
5}

sds+ | |G, (ty8) —

f11

cds+ | |G, (ty,8) = Gy(ty, 9)]

Jt,

3(t 1) + (13— 1)
I'(a+1) '

Ga(tl’s)l

Ga(tl’s)l

~ds<

Therefore, we get

3(t,—t) + (15 - 1Y)
I'a+1)

M3 gl
Moy \a " [1-q]

(15~ 15).

| Tx(ty) = Tx(ty)| < MY

t,—t; gl
|1-0,|I'(a)
gq-1

~(t2—t1)+r(71+1)

-1
+MT .

(55)

This shows that T(Q) is equicontinuous in X. By using

the Arzela-Ascoli theorem, we can see that T(Q) is

relatively compact in X. As a consequence of the above

discussion, the operator T : X — X is completely contin-
uous. The proof is completed.

Denote as follows:

4= | (1 |1|—g£1|>rlr<lﬁ> (1 o) 69

In this article, the following hypotheses will be used.

(H1). There exist nonnegative functions a, b € C[0, 1] such
that

() If(t,x) <a(t) +b(t)|xf ' te

(i) Alb|| <1

[0,1],x€R

Theorem 8. Assume that the hypothesis (H1) holds, then
problem (1) has at least one solution.



Proof. Consider the following set:
E={xeX|x=pTx, 0<p<1}. (57)
For any x € E, it can be easily seen that
[l[ = Pl Tx]| <[] T[] (58)

On the other hand, from the condition (i) of the hypoth-
esis (H1) and (49), we have that

c ! gl

1751 < 7 (1+ |1_Ol|)
(A AN (1, )
<F(ﬁ) (“u_az,)(u |+ 116l 1] )) |

(59)

From (58), we get

1 9]
< P <” |1—al|>
q-1
' (r(lm (1 ' |1Wrz|> (e + ”b”'x”pl)> |

(60)

Since 1/p + 1/q =1 implies (p —1)(q — 1) = 1, we obtain
(1~ < A(llal| + [[B]][1x[}""")- (61)
Therefore, we have that
(1" (1 = Al[B]}) < Alal, (62)

and by using the condition (ii) of the hypothesis (H1), we can

see that
Allall \*
||| < ( . (63)
I<\r=a0

So, we can know that E is bounded. In view of Schaefer’s
fixed-point theorem (Lemma 6), the operator T : X — X
has at least one fixed point which is the solution of the prob-
lem (1). The proof is completed.

Here, put r = (A||a]|/1 — A||b]|)?" and list more hypoth-
eses to obtain the uniqueness results for our problem.

(H2). There exists a real number L > 0 such that

F(60) = f(E )<Ll x =y} te 0, 1] xyefrrl. (64

Abstract and Applied Analysis

For the readers’ convenience, denote as follows:

|| || > -1
M,=(1+ al| + ||b||r* ,

_ q-2
e UM (oY (1, LY
I(a)I(B) [1-0| |1 -0,
Theorem 9. Let 1< p < 2. Assume that the hypotheses (H1)

and (H2) are satisfied and 0 < 0 < 1, then problem (1) has a
unique solution.

(65)

Proof. Put B={x € X|||x]| <r}.
Firstly, we will show that T(B) ¢ B. In fact, from the
hypothesis (H1) and (49), for any x € B, we have that

e (l i |1”—gc”n) (F(lﬁ) (1 i |1|Y1 c”r|>

I(
- (Ilall + [1B]] [1xP)) "

| (%)) s

(“ & )} (lla]l + [1B]| <[P )*" (66)

gq-1
< AT (|lal| + [|p[|r"")

_ Allall||b
- a7 (jal+ N
ol

- (e
1-A| b

Next, we will prove the uniqueness of solutions for prob-
lem (1).

For any x € B and any ¢ € [0, 1], by the hypothesis (H1),
we get

oot | st s

- drdy + j x(y))

ITx]| <

dy< H S Tf (1. x(T))

drdy+ | Gy(s1)f (1 x(0) ©7)
L
W [1-0,] JOJO
- drdy + J Gp(s:y)(aly) +b(y)*™)

ays ([ )l ) =

|1—02|

Gy(y»7) (a() + b(T)TP_l)

Since 1 < p <2, we can see g > 2. Hence, from (H2) and
one basic property of p-Laplacian operator (42), for any x, y
€ B and any t € [0, 1], we have that
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(8) — e is L(qg-1)MI7? (1
()~ Ty(o)] = || Gute9) .dsdgg% JOGa(t,s)

9, (# |, [ G 1 x(e) ey

=
o

: (J;J;h(WGﬁ(V, T)|x(7) - y(r)dtdy)

1 1-t 1l
+ | Ga(s, V) f(y> x(y dy)ds+ JJGaq,sgc o[ !
I R s+ L= 1ME | Gule9) | Gats () -y
0 0
) —-JhyG v, T)f (7, x(T Ll = (g - 1\MI2 (11 1,1
4(1_02 oJo ) Gely 1) (7 2() -dyds + (1= 1)g =)Mo JJGa(C,S)g(C)J J h(y)
! [1=0y[-[1=03] JoJo oJo
drdy + | Gg(s, y)f (v, x(y))dy L(1-1t)(g- )M
10 1 1,1 ’ Gﬁ(y’ )"x( ) y(T)|dededC+ |1 _0,1|
dsdc—J Ga(t: 5)‘Pq<1 5 J J h(y)Gp(y T)f (7. y(7)) 1
0 2JoJo J J 6 5)g( JOG;; =)l
drdy+ | Gyts V)f(w(v))dy> Lg-
- dydsdg <
1ot Loy T@Ip)
s j J Gal© S>g“>‘f’q< J J h) Il lgl Ik, Dl
1=0yJo)o =0, Jolo < i1+ 19 + 19 )
! 1= 0, [1-oy|[1=0y]  [1-0y]
(> D)f (> y(7))drdy + OG,B(S’ V) (v y(v))dy = y]| =0]]x - y]].
1 1 68
dsde| < || G(t,s) <¢q<1 — J h(y)Ga(y, 7) (68)
0 0Jo
f(rx(2) drdwj (s 1) (1201 This means that
1
g1 [ e - Ty <6~ . (69)
2JoJo
1
~drdy + J Gg(s, Y)f(Y’)/(Y))d)’)) Since 0 < 8 < 1, we can see that T : B — B is a contraction
1 _Ot 11 mapping. By means of the Banach contraction mapping prin-
ds + J J G,(6,5)9(¢) ciple, we can prove that T has a unique fixed point in B. That
- fl 0J0 is, problem (1) has a unique solution. The proof is completed.
— | | h(y)Ga(y, )f (T, x(T
<(Pq(1 NG Jo 0 NGl D (7:4(7)) 4. Examples
~drdy + J Gp(s: y)f (v» x(v))dy The following examples are concerned with the illustration of
01 1,1 Theorem 8 and Theorem 9.
00125 | [ st 50
) 0Jo Example 1. Consider the following integral boundary value
-drdy +J Gp(5 V)f (1> 7(1))dy)) problem:
0
(a-1)M§” Jl ( Jl Jl .
sdsdg| < ——————| |G,(t,s h(y)Gg(y, T pl epls N e 02
I1-a,| . (t.s) oo (¥) /3(” ) D+cp12(D0+x(t)> 1+3s1nt+ mx (t), te€(0,1),
(5 5(7) = () =1+ -0,
1 1 0
-d —qu_ZJGt,JG : . . Lo :
St (q ) 0 0 lx( S) 0 ﬁ(s Y) (pl.Z( D(l)fx(o)> :(P1.2< D(l]fx(l)) J \/m(’)l 2( D(l)fx(s)>ds
(Fnx(¥)) = £ (2 (1)))dy (70)
1= (g-1MT2 it 11
~ds+ (|1 - ‘)T(T I )_00| J J G,(68)g(s) (J J h(y) The problem (70) can be rated as the boundary value
! 2 Jod0 070 problem where a=15p=18p=12,

Gp(y» 1) (f (7, (7)) = f (7. y(7)))ddy)
M ’ ! ’ f(t,x) =1+ (1/3) sin £+ (e7'/3/100 + £)x°2, a(t) = 1 + (1/3)

_ _ q-2 01 p1
- dsdc + (1 t)l(q 1)M, J J G, (6, )g(6) sin £, b(t) = (e7'/v/10+1),g(t)=1+¢€', and h(t)=(1/
. [1-0y 0Jo V100 + #2). By simple calculation, we have ||a|| =4/3, |||
([ et s - yay )| =110l =2 ] = 110
0 o, = fo d5~087¢1and02—f0 (s)ds=0.1#1.
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So, testing whether the hypothesis (H1) holds or not, we
get

A= Ha) 1+ |1|—g¢|ll|)rlr<lﬁ> (” |1|_hlfz> (71)

~2.13, A||b]| = 0.67 < 1.

Therefore, by Theorem 8, the problem (70) has at least
one solution.

Example 2. Consider the boundary value problem

D, 5 (‘Défx(t)) =0.4t+0.1sin (x(t)), t€(0,1),

+

x(0) :J sx(s)ds, x(1)=0,

0
1

P15 (CD(I)fx(O)) =915 <‘D(1)‘+3x(1)> = Jo 10%‘/’1,5 (cD(I)fx(s)>d5~

(72)

Comparing with the problem (1), it can be easily seen
that «=1.3,3=1.7,p=1.5, f(t,x) =0.4t + 0.1 sin x, a(t) =
0.41,b(t) =0.1, g(t) =t, and h(t)=1/(10+ £?).

Since |la||=0.4, /6] =0.1,]|g]| =1, ||h|| =0.1,0, = Ll)s(l
-s)ds=0.17+1, and o,= j(l)(mo +s8)ds=0.1#¢1, we
obtain

|f(t,x)| < 0.4 +0.1|sin x| < 0.4¢+ 0.1 - min {1, x|} < 0.4t +0.1- |x|**,

g ) ) o

Al =0.19<1.
(73)

So, we can see that the hypothesis (H1) is satisfied.
Calculating the radius r, we have

Allall >q1
r=(—1"0_) " ~o.. (74)
<1—A|b||

Since r<1, for any t€[0,1] and any x,ye€[-r,7],
we get

If(t,%) = f(t,y)| = 0.1|sin x — sin y| < 0.1|x — y|,

o= (1 Y (el + o) =035,

[1-0,]
_L(q-1)M§” gl k]|
o= TTre) <“\1—ol|> (“u—m)
~0.33< 1.
(75)

From the above discussion, we can see that the
hypothesis (H2) holds. Therefore, it follows by Theorem
9 that the problem (72) has a unique solution.
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