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In this paper, we investigate the existence and uniqueness of solutions for a class of integral boundary value problems of nonlinear
fractional differential equations with p-Laplacian operator. We obtain some existence and uniqueness results concerned with our
problem by using Schaefer’s fixed-point theorem and Banach contraction mapping principle. Finally, we present some examples
to illustrate our main results.

1. Introduction

This paper deals with the existence and uniqueness of solu-
tions for the following fractional integral boundary value
problem with p-Laplacian operator:

cDβ
0+φp

cDα
0+x tð Þð Þ = f t, x tð Þð Þ, t ∈ 0, 1ð Þ,

x 0ð Þ =
ð1
0
g sð Þx sð Þds, x 1ð Þ = 0,

φp
cDα

0+x 0ð Þð Þ = φp
cDα

0+x 1ð Þð Þ =
ð1
0
h sð Þφp

cDα
0+x sð Þð Þds,

8>>>>>>><
>>>>>>>:

ð1Þ

where 1 < α, β ≤ 2, 3 < α + β < 4, cDα
0+ and cDβ

0+ are the
Caputo fractional derivatives, f ∈ Cð½0, 1� × R, RÞ, g, h ∈
Cð½0, 1�, RÞ, and the p-Laplacian operator is defined
as φpðsÞ = jsjp−2s, p > 1.

In the past few decades, fractional differential equations
have been widely applied to many fields in natural and social
sciences, because they are important tools in mathematically
describing many phenomena of science and engineering such
as aerodynamics, control theory, signal and image process-
ing, plasma dynamics, blood flow phenomena, and viscoelas-

tic and non-Newtonian fluid mechanics (see [1–5] and their
references). In 1983, Leibenson [2] proposed the following
integer-order differential equation model with p-Laplacian
operator to study the turbulent flow in a porous medium in
his work:

φp u′ tð Þ
� �� �

′ = f t, u tð Þ, u′ tð Þ
� �

, t ∈ 0, 1ð Þ, ð2Þ

where φp is a p-Laplacian operator.
Based on Leibenson’s results, many researchers have gen-

eralized his model into a variety of models with fractional
order and obtained many valuable existence and uniqueness
results for p-Laplacian fractional differential equations with
two-point boundary conditions (see [6–14]), multipoint
boundary conditions (see [15–18]), and nonlocal boundary
conditions (see [19–23]). Since the 1st derivatives of
unknown functions existed in Leibenson’s model, it became
a special study to discuss the existence results for p-Lapla-
cian fractional differential equations where the fractional
orders were in the neighborhood of 1. So, Chai [7] used the
fixed-point theorem on cones to investigate the existence
and multiplicity of positive solutions for fractional differen-
tial equations with p-Laplacian operator:
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Dβ
0+ φp Dα

0+u tð Þð Þ
� �

= −f t, u tð Þð Þ, 0 < t < 1,

u 0ð Þ = 0,
u 1ð Þ + σDγ

0+u 1ð Þ = 0,
Dα
0+u 0ð Þ = 0,

8>>>>>><
>>>>>>:

ð3Þ

where 1 < α ≤ 2, 0 < β, γ ≤ 1, and Dα
0+,D

β
0+, and Dγ

0+ are the
Riemann-Liouville fractional derivatives. Jong [15] estab-
lished the existence and uniqueness of positive solutions for
multipoint boundary value problems of nonlinear fractional
differential equations with p-Laplacian operator by using
the Banach contraction mapping principle

Dβ
0+ φp Dα

0+u tð Þð Þ
� �

= f t, u tð Þð Þ, 0 < t < 1,

u 0ð Þ = 0,

Dγ
0+u 1ð Þ = 〠

m−2

i=1
ξiD

γ
0+u ηið Þ,

Dα
0+u 0ð Þ = 0,

φp Dα
0+u 1ð Þð Þ = 〠

m−2

i=1
ζiφp Dα

0+u ηið Þð Þ,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð4Þ

where 1 < α, β ≤ 2, 0 < γ ≤ 1, and f ∈ Cð½0, 1� × ½0,+∞Þ,
½0,+∞ÞÞ.

Integral boundary value problems for differential
equations have arisen in the study of various fields such as
underground water flow, blood flow problems, and ther-
moelasticity. So, the study on the existence of solutions
for the p-Laplacian integral boundary value problems has
attracted the attention of many researchers recently (see
[20–23]). Zhang et al. [23] considered the existence of
symmetric positive solutions of the problem for the fol-
lowing nonlinear fourth-order p-Laplacian differential
equations with integral boundary conditions:

φp x″ tð Þ
� �� �

″ = ω tð Þf t, x tð Þð Þ, t ∈ 0, 1ð Þ,

x 0ð Þ = x 1ð Þ =
ð1
0
g sð Þx sð Þds,

φp x″ 0ð Þ
� �

= φp x″ 1ð Þ
� �

=
ð1
0
h sð Þφp x″ sð Þ

� �
ds,

8>>>>>>><
>>>>>>>:

ð5Þ

where ω, g, h ∈ L½0, 1� are the nonnegative, symmetric
functions and f ∈ Cðð0, 1� × ½0,+∞Þ, ½0,+∞ÞÞ. Zhang and
Cui [22] investigated the existence of positive solutions
for nonlinear fourth-order singular p-Laplacian differential
equations with the integral boundary conditions

φp x″ tð Þ
� �� �

″ = f t, x tð Þ, x tð Þð Þ, t ∈ 0, 1ð Þ,

x 0ð Þ =
ð1
0
g sð Þx sð Þds, x 1ð Þ = 0,

φp x″ 0ð Þ
� �

= φp x″ 1ð Þ
� �

=
ð1
0
h sð Þφp x″ sð Þ

� �
ds,

8>>>>>>><
>>>>>>>:

ð6Þ

where f ∈ Cðð0, 1Þ × ð0,+∞Þ × ð0,+∞Þ, ½0,+∞ÞÞ, f may be
singular at t = 0, 1, u = 0, and g, h ∈ L½0, 1� are nonnegative.
The existence results on solutions of problem (2) are
established by employing upper and lower solution
methods together with maximal principle. Jiang [20] used
the generalized continuous theorem to investigate the exis-
tence of solutions to the integral boundary value problem
of p-Laplacian multiterm fractional differential equations
at resonance

Dβ
0+ φp Dα

0+u tð Þð Þ
� �

= −f t, u tð Þ,Dα−1
0+ u tð Þ,Dα

0+u tð Þ� �
, 0 < t < 1,

u 0ð Þ =Dα
0+u 0ð Þ = 0,

u 1ð Þ =
ð1
0
h tð Þu tð Þdt,

8>>>>><
>>>>>:

ð7Þ

where 0 < β ≤ 1, 1 < α ≤ 2, and Ð 1
0hðtÞtα−1dt = 1.

Summarizing previous results, very few papers dealt with
the existence of solutions for integral boundary value prob-
lems of p-Laplacian fractional differential equations, espe-
cially, Zhang and Cui [22] who established the existence of
positive solutions for fourth-order singular p-Laplacian dif-
ferential equations under p ≥ 2 and Jiang [20] who consid-
ered the existence of solutions for nonlinear multiterm
fractional differential equations with 0 < β ≤ 1. Moreover,
due to the nonlinearity of p-Laplacian operator φp, it is more
difficult to study for the case 1 < β ≤ 2 rather than for the case
0 < β ≤ 1. Motivated by the above facts, this paper deals with
the existence and uniqueness of solutions of problem (1) in
which the fractional derivatives are Caputo fractional deriva-
tives with 1 < α, β ≤ 2.The structure of this paper is organized
as follows.

In Section 2, we recall some definitions and lemmas.
In Section 3, we prove the existence and uniqueness of
solutions for nonlinear integral boundary value problem
with p-Laplacian operator by using Schaefer’s fixed-point
theorem and Banach contraction mapping principle.
Finally, we give two examples to illustrate our main results
in Section 4.

2. Preliminaries

The Riemann-Liouville fractional integral and the Caputo
fractional derivative of order α > 0 of a function f : ð0,∞Þ
⟶ R is given by
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Iα0+ fð Þ tð Þ≔ 1
Γ αð Þ

ðt
0
t − sð Þα−1 f sð Þds,

cDα
0+ fð Þ tð Þ≔ 1

Γ n − αð Þ
ðt
0
t − sð Þn−α−1 f nð Þ sð Þds,

ð8Þ

where n = ½α� + 1, provided that the right-hand side is point-
wise defined on ð0,∞Þ (see [4, 5]).

Lemma 1 (see [1]). If α > 0 and f ∈ C½a, b�, then ðcDα
a+I

α
a+ f Þ

ðtÞ = f ðtÞ.

Lemma 2 (see [9]).Assume that cDα
0+u ∈ C½0, 1�, α > 0. Then,

Iαa+
cDα

0+uðtÞ = uðtÞ + c0 + c1t+⋯cn−1t
n−1, ci ∈ R, i = 0, 1,⋯, n

− 1, n − 1 < α ≤ n.

For the sake of convenience, put σ1 ≔
Ð 1
0ð1 − sÞgðsÞds and

σ2 ≔
Ð 1
0hðsÞds and assume that σ1 ≠ 1 and σ2 ≠ 1.

Lemma 3. Let σ ∈ C½0, 1�. Then, the fractional boundary value
problem

cDβ
0+z tð Þ = σ tð Þ, 0 < t < 1,

z 0ð Þ = z 1ð Þ =
ð1
0
h sð Þz sð Þds

8><
>: ð9Þ

has a unique solution which is given by

z tð Þ = −1
1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þdτds −

ð1
0
Gβ t, sð Þσ sð Þds,

ð10Þ

where

Gβ t, sð Þ≔ 1
Γ βð Þ

t 1 − sð Þβ−1 − t − sð Þβ−1, 0 ≤ s ≤ t ≤ 1,

t 1 − sð Þβ−1, 0 ≤ t ≤ s ≤ 1:

(

ð11Þ

Proof. In view of Lemma 2, we have that

z tð Þ = c0 + c1t + Iβ0+σ tð Þ: ð12Þ

By means of the property of the fractional integral of a
continuous function, we obtain that zð0Þ = c0.

Since zð0Þ = zð1Þ = Ð 1
0hðsÞzðsÞds, from (12), we obtain

c0 =
ð1
0
h sð Þz sð Þds,

c1 =
ð1
0
h sð Þz sð Þds − Iβ0+σ tð Þ t=1 −

ð1
0
h sð Þz sð Þds = −Iβ0+σ tð Þ

����
����
t=1

:

ð13Þ

Hence, (12) can be written as

z tð Þ =
ð1
0
h sð Þz sð Þds + Iβ0+σ tð Þ − Iβ0+σ tð Þ

����
t=1

⋅ t =
ð1
0
h sð Þz sð Þds

+ 1
Γ βð Þ

ðt
0
t − sð Þβ−1σ sð Þds −

ð1
0
t 1 − sð Þβ−1σ sð Þds

� �
:

ð14Þ

Thus, we can easily get

z tð Þ =
ð1
0
h sð Þz sð Þds −

ð1
0
Gβ t, sð Þσ sð Þds: ð15Þ

In the right side of (15), the term
Ð 1
0hðsÞzðsÞds can be

rewritten as

ð1
0
h sð Þz sð Þds =

ð1
0
h sð Þ

ð1
0
h τð Þz τð Þdτ −

ð1
0
Gβ s, τð Þσ τð Þdτ

	 

ds

=
ð1
0
h sð Þds

ð1
0
h sð Þz sð Þds −

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þdτds,

ð16Þ

so we get

ð1
0
h sð Þz sð Þds = −1

1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þdτds: ð17Þ

Therefore, the unique solution of (9) is given by

z tð Þ = −1
1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þdτds −

ð1
0
Gβ t, sð Þσ sð Þds:

ð18Þ

Conversely, let z ∈ C½0, 1� be the function which is
expressed by (10). Putting

A βð Þ≔ −1
1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þ dτds, ð19Þ

we get

z tð Þ = A βð Þ −
ð1
0
Gβ t, sð Þσ sð Þds = A βð Þ −

ðt
0
Gβ t, sð Þσ sð Þds

−
ð1
t
Gβ t, sð Þσ sð Þds = A βð Þ

−
1

Γ βð Þ
ðt
0
t 1 − sð Þβ−1 − t − sð Þβ−1

� �
σ sð Þ ds

�

+
ð1
t
t 1 − sð Þβ−1σ sð Þds� = A βð Þ

−
1

Γ βð Þ
ð1
0
t 1 − sð Þβ−1σ sð Þds + 1

Γ βð Þ
ðt
0
t − sð Þβ−1σ sð Þds:

ð20Þ
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Then, we have that

z tð Þ = A βð Þ − tIβ0+σ tð Þ
���
t=1

+ Iβ0+σ tð Þ: ð21Þ

Since σ ∈ C½0, 1�, applying cDβ
0+ to both sides of (21) and

using Lemma 1, we can obtain

cDβ
0+z tð Þ = cDβ

0+I
β
0+σ tð Þ = σ tð Þ: ð22Þ

On the other hand, multiplying (10) by hðtÞ and integrat-
ing on ½0, 1�, we have
ð1
0
z tð Þh tð Þdt = −1

1 − σ2

ð1
0
h tð Þdt

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þdτds

−
ð1
0
h tð Þ

ð1
0
Gβ t, sð Þσ sð Þdsdt = −

σ2
1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þ

� dτds −
ð1
0

ð1
0
h tð ÞGβ t, sð Þσ sð Þ

� dsdt = −
1

1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þσ τð Þdτds:

ð23Þ

Hence, (10) can be written as

z tð Þ = −
ð1
0
Gβ t, sð Þσ sð Þds +

ð1
0
h sð Þz sð Þds: ð24Þ

Since Gβð0, sÞ =Gβð1, sÞ = 0, we can also have that

z 0ð Þ = z 1ð Þ =
ð1
0
h sð Þz sð Þds ð25Þ

Therefore, we can know that zðtÞ is a solution of problem
(9) and (9) has a unique solution which is given by (10). The
proof is completed.

Lemma 4. Let f ∈ Cð½0, 1� × R, RÞ, then p-Laplacian integral
boundary value problem (1) has a unique solution which is
given by

x tð Þ =
ð1
0
Gα t, sð Þφq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� ds + 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þφq

� 1
1 − σ2

⋅
ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þdτdγ

	

+
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ



dsdς,

ð26Þ

where q is the number that satisfies 1/p + 1/q = 1.

Proof. The proof of this lemma is divided into two steps.

(Step 1) Let r ∈ C½0, 1� and consider the boundary value
problem

cDα
0+x tð Þ = r tð Þ, 0 < t < 1,

x 0ð Þ =
ð1
0
g sð Þx sð Þds, x 1ð Þ = 0:

8><
>: ð27Þ

By using Lemma 2, we have that

x tð Þ = d0 + d1t + Iα0+r tð Þ: ð28Þ

From (28) and boundary condition of (27) we can obtain

d0 = x 0ð Þ =
ð1
0
g sð Þx sð Þds,

d1 = −d0 − Iα0+r tð Þ t=1 = −
ð1
0
g sð Þx sð Þds − Iα0+r tð Þ

����
����
t=1

:

ð29Þ

Then, (28) can be written as

x tð Þ = d0 + d1t + Iα0+r tð Þ =
ð1
0
g sð Þx sð Þ

� ds + −
ð1
0
g sð Þx sð Þds − Iα0+r tð Þjt=1

	 

t + Iα0+r tð Þ

= Iα0+r tð Þ − Iα0+r tð Þjt=1t + 1 − tð Þ
ð1
0
g sð Þx sð Þ

� ds = 1
Γ αð Þ

ðt
0
t − sð Þα−1r sð Þds −

ð1
0
t 1 − sð Þα−1r sð Þds

� �

+ 1 − tð Þ
ð1
0
g sð Þx sð Þds = −

ð1
0
Gα t, sð Þr sð Þ

� ds + 1 − tð Þ
ð1
0
g sð Þx sð Þds:

ð30Þ

In a similar way to the proof of Lemma 3, it can be easily
seen that

ð1
0
g sð Þx sð Þds = −1

1 − σ1

ð1
0

ð1
0
g sð ÞGα s, τð Þr τð Þdτds: ð31Þ

Hence, we have that the unique solution of (27) is given by

x tð Þ = −
ð1
0
Gα t, sð Þr sð Þds − 1 − t

1 − σ1

ð1
0

ð1
0
g sð ÞGα s, τð Þr τð Þdτds:

ð32Þ

Conversely, let xðtÞ be the function which is expressed
by (32). Then, from the definition of Gαðt, sÞ, (32) can be
written as
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x tð Þ = −tIα0+r tð Þjt=1 + Iα0+r tð Þ − 1 − t
1 − σ1

ð1
0

ð1
0
g sð ÞGα s, τð Þr τð Þdτds:

ð33Þ

Since r ∈ C½0, 1� and 1 < α ≤ 2, applying cDα
0+ to both

sides of (33), we can obtain

cDα
0+x tð Þ = cDα

0+I
α
0+r tð Þ = r tð Þ: ð34Þ

On the other hand, multiplying (32) by gðtÞ and inte-
grating on ½0, 1�, we have that

ð1
0
g tð Þx tð Þdt = −

ð1
0
g tð Þ

ð1
0
Gα t, sð Þr sð Þ

� dsdt − 1
1 − σ1

ð1
0
1 − tð Þg tð Þ

� dt
ð1
0

ð1
0
g sð ÞGα s, τð Þr τð Þ

� dτds = −
ð1
0

ð1
0
Gα t, sð Þg tð Þr sð Þ

� dsdt − σ1
1 − σ1

ð1
0

ð1
0
g sð ÞGα s, τð Þr τð Þ

� dτds = − 1 + σ1
1 − σ1

	 
ð1
0

ð1
0
Gα t, sð Þg tð Þr sð Þ

� dsdt = −1
1 − σ1

ð1
0

ð1
0
Gα t, sð Þg tð Þr sð Þdsdt:

ð35Þ

So, we can rewrite (32) as

x tð Þ = −
ð1
0
Gα t, sð Þr sð Þds + 1 − tð Þ

ð1
0
g tð Þx tð Þdt: ð36Þ

Since Gαð0, sÞ =Gαð1, sÞ = 0, we can get

x 0ð Þ =
ð1
0
g tð Þx tð Þdt, x 1ð Þ = 0: ð37Þ

Therefore, we can know that xðtÞ is the solution of (27).

(Step 2) Now let xðtÞ be the solution of (1). Putting yðtÞ
≔ cDα

0+xðtÞ, then we have that

x tð Þ = −
ð1
0
Gα t, sð Þy sð Þds − 1 − t

1 − σ1

ð1
0

ð1
0
g sð ÞGα s, τð Þy τð Þdτds:

ð38Þ

Also denoting φpðyðtÞÞ by zðtÞ, then by Lemma 3, we can see
that that

z tð Þ = −1
1 − σ2

ð1
0

ð1
0
h sð ÞGβ s, τð Þf τ, x τð Þð Þ

� dτ ds −
ð1
0
Gβ t, sð Þf s, x sð Þð Þds:

ð39Þ

Since it is well-known that φ−1
p = φq, combining (38) and (39)

yields

x tð Þ =
ð1
0
Gα t, sð Þφ−1

p
1

1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� ds + 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þφ−1

p

� 1
1 − σ2

⋅
ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þdτdγ

	

+
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ



dsdς:

ð40Þ

The proof is completed.

Remark 5. From the definition of Gαðt, sÞ and Gβðt, sÞ, it is
easy to know that those functions are continuous in ½0, 1� ×
½0, 1�.

Lemma 6 (see [24]). Schaefer’s fixed-point theorem. Let X be
the Banach space and T : X⟶ X be completely continuous
operator. If the set E≔ fu ∈ X ∣ u = ρTu, 0 < ρ < 1g is
bounded, then T has at least one fixed point in X.

The basic properties of the p-Laplacian operator which
will be used in the following studies are listed below (see
[10]).

(i) If 1 < p ≤ 2, xy > 0, and jxj, jyj ≥m > 0, then

φp xð Þ − φp yð Þ
��� ��� ≤ p − 1ð Þmp−2 x − yj j ð41Þ

(ii) If p > 2 and jxj, jyj ≤M, then

φp xð Þ − φp yð Þ
��� ��� ≤ p − 1ð ÞMp−2 x − yj j ð42Þ

3. Main Results

In this section, we establish the existence and uniqueness of
solutions of problem (1) by using Schaefer’s fixed-point the-
orem and the Banach contraction mapping principle.

Let us consider the Banach space X = C½0, 1� endowed
with the norm kuk≔max

0≤t≤1
juðtÞj.

5Abstract and Applied Analysis



Define an operator T : X ⟶ X by

Tx tð Þ≔
ð1
0
Gα t, sð Þφq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf τ, x τð Þð Þdτ




� ds + 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

� φq
1

1 − σ2
⋅
ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ



ds + 1 − t

1 − σ1
:

ð43Þ

Then, Equation (26) is equivalent to the operator equation

x = Tx, x ∈ C 0, 1½ �: ð44Þ

From Lemma 4, the existence of solutions for the prob-
lem (1) refers to the existence of fixed points of Equation
(44). Therefore, it is sufficient to prove the existence of fixed
points of (44).

Lemma 7. The operator T is completely continuous.

Proof. Since f ∈ Cð½0, 1� × R, RÞ and φq is continuous, we can
know that T : X⟶ X is continuous.

Let Ω ⊂ X be a bounded subset, then for any u ∈Ω, there
exists M0 > 0 such that kuk ≤M0.

We will show that TðΩÞ is relatively compact in X.
Since f is a continuous function, there exists Mf > 0 such
that j f ðt, uðtÞÞj ≤Mf , t ∈ ½0, 1�, u ∈Ω. Then, we have

Tx tð Þj j ≤
ð1
0
Gα t, sð Þj j ⋅ φq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	����
� dτdγ +

ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγj

� ds + 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þj j

⋅ φq
1

1 − σ2
⋅
ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	����
� dτdγ +

ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ


����
� dsdς ≤

ð1
0
Gα t, sð Þj j

⋅ φq
1

1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	����
� dτdγ +

ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ


����
� ds + 1 − t

1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þj j

⋅ φq
1

1 − σ2
⋅
ð1
0

ð1
0
∣ h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� ∣ dτdγ +
ð1
0
∣Gβ s, γð Þf γ, x γð Þð Þ ∣ dγ



dsdς:

ð45Þ

And since ðt, sÞ ∈ ½0, 1� × ½0, 1�, evaluating the upper bound
of jGβðt, sÞj gives

Gβ t, sð Þ�� �� ≤ 1
Γ βð Þ : ð46Þ

So, we obtain

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ�� ��

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þ�� ��

� dγ ≤ Mf

Γ βð Þ 1 + hk k
1 − σ2j j

	 

≕M1:

ð47Þ

Then, we can get easily that

Tx tð Þj j ≤
ð1
0
Gα t, sð Þj j ⋅ φq M1ð Þ

� ds + 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þj j ⋅ φq M1ð Þ

� dsdς ≤ φq M1ð Þ
Γ αð Þ 1 + gk k

1 − σ1j j
	 


:

ð48Þ

In view of the definition of the p-Laplacian operator,
we have that

Txk k ≤ Mq−1
1

Γ αð Þ 1 + gk k
1 − σ1j j

	 

: ð49Þ

This shows that TðΩÞ is uniformly bounded in X. For
any x ∈Ω, 0 ≤ t1 < t2 ≤ 1, we have that

∣Tx t2ð Þ − Tx t1ð Þ∣ =
ð1
0
Gα t2, sð Þ

����
� φq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� ds + 1 − t2
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

� φq
1

1 − σ2
⋅

	 ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� dsdς −
ð1
0
Gα t1, sð Þφq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þ

	

� f τ, x τð Þð Þdτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




6 Abstract and Applied Analysis



� ds − 1 − t1
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

� φq
1

1 − σ2
⋅

	 ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� dsdς
���� =

ð1
0
Gα t2, sð Þ −Gα t1, sð Þð Þ

����
� φq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� ds + t1 − t2
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

� φq
1

1 − σ2
⋅

	 ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� dsdς ≤Mq−1
1 ⋅

ð1
0
Gα t2, sð Þ −Gα t1, sð Þj j

� ds +Mq−1
1 ⋅

t2 − t1
1 − σ1j j

gk k
Γ αð Þ :

ð50Þ

And since

Gα t2, sð Þ −Gα t1, sð Þ = 1
Γ αð Þ

t2 1 − sð Þα−1 − t2 − sð Þα−1 − t1 1 − sð Þα−1 + t1 − sð Þα−1, s ≤ t1,
t2 1 − sð Þα−1 − t2 − sð Þα−1 − t1 1 − sð Þα−1, t1 ≤ s ≤ t2,
t2 1 − sð Þα−1 − t1 1 − sð Þα−1, s ≥ t2,

8>><
>>:

ð51Þ

the integral term
Ð 1
0jGαðt2, sÞ −Gαðt1, sÞjds can be divided

into the following three parts:

ðt1
0
Gα t2, sð Þ −Gα t1, sð Þj j

� ds = 1
Γ αð Þ

ðt1
0
∣t2 1 − sð Þα−1 − t2 − sð Þα−1

− t1 1 − sð Þα−1 − t1 − sð Þα−1� �
∣

� ds ≤ 1
Γ αð Þ

ðt1
0

t2 − t1ð Þ 1 − sð Þα−1 + t2 − sð Þα−1��
− t1 − sð Þα−1Þds ≤ 1

Γ αð Þ t2 − t1ð Þ
ðt1
0
1 − sð Þα−1

� ds + 1
Γ αð Þ

ðt1
0

t2 − sð Þα−1 − t1 − sð Þα−1� �
� ds ≤ t2 − t1

Γ α + 1ð Þ +
tα2 − tα1ð Þ − t2 − t1ð Þα

Γ α + 1ð Þ :

ð52Þ

In a similar way to this, we can obtain

ðt2
t1

∣Gα t2, sð Þ −Gα t1, sð Þ∣ds ≤ t2 − t1
Γ α + 1ð Þ +

t2 − t1ð Þα
Γ α + 1ð Þ ,ð1

t2

∣Gα t2, sð Þ −Gα t1, sð Þ∣ds ≤ t2 − t1
Γ α + 1ð Þ :

ð53Þ

These inequalities yield

ð1
0
∣Gα t2, sð Þ − Gα t1, sð Þ∣

� ds =
ðt1
0
∣Gα t2, sð Þ −Gα t1, sð Þ∣

� ds +
ðt2
t1

∣Gα t2, sð Þ −Gα t1, sð Þ∣

� ds +
ð1
t2

∣Gα t2, sð Þ −Gα t1, sð Þ∣

� ds ≤ 3 t2 − t1ð Þ + tα2 − tα1ð Þ
Γ α + 1ð Þ : ð54Þ

Therefore, we get

Tx t2ð Þ − Tx t1ð Þj j ≤Mq−1
1 ⋅

3 t2 − t1ð Þ + tα2 − tα1ð Þ
Γ α + 1ð Þ

+Mq−1
1 ⋅

t2 − t1
1 − σ1j j

gk k
Γ αð Þ = Mq−1

1
Γ αð Þ

3
α
+ gk k

1 − σ1j j
	 


⋅ t2 − t1ð Þ + Mq−1
1

Γ α + 1ð Þ ⋅ tα2 − tα1ð Þ:

ð55Þ

This shows that TðΩÞ is equicontinuous in X. By using
the Arzela-Ascoli theorem, we can see that TðΩÞ is
relatively compact in X. As a consequence of the above
discussion, the operator T : X ⟶ X is completely contin-
uous. The proof is completed.

Denote as follows:

A≔
1

Γ αð Þ 1 + gk k
1 − σ1j j

	 
� �p−1 1
Γ βð Þ 1 + hk k

1 − σ2j j
	 


: ð56Þ

In this article, the following hypotheses will be used.

(H1). There exist nonnegative functions a, b ∈ C½0, 1� such
that

(i) ∣f ðt, xÞ∣ ≤ aðtÞ + bðtÞjxjp−1, t ∈ ½0, 1�, x ∈ R
(ii) Akbk < 1

Theorem 8. Assume that the hypothesis (H1) holds, then
problem (1) has at least one solution.
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Proof. Consider the following set:

E≔ x ∈ X ∣ x = ρTx, 0 < ρ < 1f g: ð57Þ

For any x ∈ E, it can be easily seen that

xk k = ρ Txk k < Txk k: ð58Þ

On the other hand, from the condition (i) of the hypoth-
esis (H1) and (49), we have that

Txk k ≤ 1
Γ αð Þ 1 + gk k

1 − σ1j j
	 


� 1
Γ βð Þ 1 + hk k

1 − σ2j j
	 


ak k + bk k xk kp−1� �	 
q−1
:

ð59Þ

From (58), we get

xk k < 1
Γ αð Þ 1 + gk k

1 − σ1j j
	 


� 1
Γ βð Þ 1 + hk k

1 − σ2j j
	 


ak k + bk k xk kp−1� �	 
q−1
:

ð60Þ

Since 1/p + 1/q = 1 implies ðp − 1Þðq − 1Þ = 1, we obtain

xk kp−1 < A ak k + bk k xk kp−1� �
: ð61Þ

Therefore, we have that

xk kp−1 1 − A bk kð Þ < A ak k, ð62Þ

and by using the condition (ii) of the hypothesis (H1), we can
see that

xk k < A ak k
1 − A bk k

	 
q−1
: ð63Þ

So, we can know that E is bounded. In view of Schaefer’s
fixed-point theorem (Lemma 6), the operator T : X ⟶ X
has at least one fixed point which is the solution of the prob-
lem (1). The proof is completed.

Here, put r ≔ ðAkak/1 − AkbkÞq−1 and list more hypoth-
eses to obtain the uniqueness results for our problem.

(H2). There exists a real number L > 0 such that

f t, xð Þ − f t, yð Þ∣<L ∣ x − yj j, t ∈ 0, 1½ �, x, y ∈ −r, r½ �: ð64Þ

For the readers’ convenience, denote as follows:

M0 ≔ 1 + hk k
1 − σ2j j

	 

ak k + bk krp−1� �

,

θ≔
L q − 1ð ÞMq−2

0
Γ αð ÞΓ βð Þ 1 + gk k

1 − σ1j j
	 


1 + hk k
1 − σ2j j

	 

:

ð65Þ

Theorem 9. Let 1 < p < 2. Assume that the hypotheses (H1)
and (H2) are satisfied and 0 < θ < 1, then problem (1) has a
unique solution.

Proof. Put B = fx ∈ Xjkxk ≤ rg.
Firstly, we will show that TðBÞ ⊂ B. In fact, from the

hypothesis (H1) and (49), for any x ∈ B, we have that

Txk k ≤
1

Γ αð Þ 1 + gk k
1 − σ1j j

	 
 1
Γ βð Þ 1 + hk k

1 − σ2j j
	 
	

� ak k + bk k xk kp−1� ��q−1
= 1

Γ αð Þ 1 + gk k
1 − σ1j j

	 
	 
p−1 1
Γ βð Þ

"

� 1 + hk k
1 − σ2j j

	 
�q−1
ak k + bk k xk kp−1� �q−1

≤ Aq−1 ak k + bk krp−1� �q−1
= Aq−1 ak k + A ak k bk k

1 − A bk k
	 
q−1

= A ak k
1 − A bk k

	 
q−1
= r:

ð66Þ

Next, we will prove the uniqueness of solutions for prob-
lem (1).

For any x ∈ B and any t ∈ ½0, 1�, by the hypothesis (H1),
we get

1
∣1 − σ2 ∣

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þ

� dγ ≤ hk k
∣1 − σ2 ∣

ð1
0

ð1
0
Gβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þ

� dγ ≤ hk k
∣1 − σ2 ∣

ð1
0

ð1
0
Gβ γ, τð Þ a τð Þ + b τð Þrp−1� �

� dτdγ +
ð1
0
Gβ s, γð Þ a γð Þ + b γð Þrp−1� �

� dγ ≤ hk k
∣1 − σ2 ∣

+ 1
	 


ak k + bk krp−1� �
=M0:

ð67Þ

Since 1 < p < 2, we can see q > 2. Hence, from (H2) and
one basic property of p-Laplacian operator (42), for any x, y
∈ B and any t ∈ ½0, 1�, we have that
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Tx tð Þ − Ty tð Þj j =
ð1
0
Gα t, sð Þ

����
� φq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þdτdγ

	

+
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ



ds + 1 − t

1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

� φq
1

1 − σ2
⋅

	 ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� dsdς −
ð1
0
Gα t, sð Þφq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, y τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, y γð Þð Þdγ




� ds − 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þφq

1
1 − σ2

⋅
	 ð1

0

ð1
0
h γð Þ

� Gβ γ, τð Þf τ, y τð Þð Þdτdγ +
ð1
0
Gβ s, γð Þf γ, y γð Þð Þdγ




� dsdς
���� ≤

ð1
0
Gα t, sð Þ φq

1
1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þ

		����
� f τ, x τð Þð Þdτdγ +

ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� ds − φq
1

1 − σ2

ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, y τð Þð Þ

	

� dτdγ +
ð1
0
Gβ s, γð Þf γ, y γð Þð Þdγ





� ds + 1 − t
1 − σ1

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

� φq
1

1 − σ2
⋅

		 ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, x τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, x γð Þð Þdγ




� − φq
1

1 − σ2
⋅

	 ð1
0

ð1
0
h γð ÞGβ γ, τð Þf τ, y τð Þð Þ

� dτdγ +
ð1
0
Gβ s, γð Þf γ, y γð Þð ÞdγÞÞ

� dsdς
���� ≤ q − 1ð ÞMq−2

0
1 − σ2j j

ð1
0
Gα t, sð Þ

ð1
0

ð1
0
h γð ÞGβ γ, τð Þ

	����
� f τ, x τð Þð Þ − f τ, y τð Þð Þð ÞdτdγÞ

����
� ds + q − 1ð ÞMq−2

0

ð1
0
Gα t, sð Þ

ð1
0
Gβ s, γð Þ

����
� f γ, x γð Þðð Þ − f γ, y γð ÞÞð Þdγ

����
� ds + 1 − tð Þ q − 1ð ÞMq−2

0
1 − σ1j j ⋅ 1 − σ2j j ⋅

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

ð1
0

ð1
0
h γð Þ

	����
� Gβ γ, τð Þ f τ, x τð Þðð Þ − f τ, y τð ÞÞð ÞdτdγÞ

����
� dsdς + 1 − tð Þ q − 1ð ÞMq−2

0
1 − σ1j j

ð1
0

ð1
0
Gα ς, sð Þg ςð Þ
����

�
ð1
0
Gβ s, γð Þ f γ, x γð Þð Þ − f γ, y γð Þð Þð Þdγ

	 
����

� dsdς ≤ L q − 1ð ÞMq−2
0

∣1 − σ2 ∣

ð1
0
Gα t, sð Þ

�
ð1
0

ð1
0
h γð ÞGβ γ, τð Þ x τð Þ − y τð Þj jdτdγ

	 


� ds + L q − 1ð ÞMq−2
0

ð1
0
Gα t, sð Þ

ð1
0
Gβ s, γð Þ x γð Þ − y γð Þj j

� dγds + L 1 − tð Þ q − 1ð ÞMq−2
0

1 − σ1j j ⋅ 1 − σ2j j
ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

ð1
0

ð1
0
h γð Þ

� Gβ γ, τð Þ x τð Þ − y τð Þj jdτdγdsdς + L 1 − tð Þ q − 1ð ÞMq−2
0

1 − σ1j j
�
ð1
0

ð1
0
Gα ς, sð Þg ςð Þ

ð1
0
Gβ s, γð Þ x γð Þ − y γð Þj j

� dγdsdς ≤ L q − 1ð ÞMq−2
0

Γ αð ÞΓ βð Þ
� hk k

1 − σ2j j + 1 + gk k
1 − σ1j j

hk k
1 − σ2j j +

gk k
1 − σ1j j

	 

� x − yk k = θ x − yk k:

ð68Þ

This means that

Tx − Tyk k ≤ θ x − yk k: ð69Þ

Since 0 < θ < 1, we can see that T : B→ B is a contraction
mapping. By means of the Banach contraction mapping prin-
ciple, we can prove that T has a unique fixed point in B. That
is, problem (1) has a unique solution. The proof is completed.

4. Examples

The following examples are concerned with the illustration of
Theorem 8 and Theorem 9.

Example 1. Consider the following integral boundary value
problem:

cD1:8
0+φ1:2

cD1:5
0+ x tð Þ

� �
= 1 + 1

3 sin t + e−tffiffiffiffiffiffiffiffiffiffiffi
10 + t

p x0:2 tð Þ, t ∈ 0, 1ð Þ,

x 0ð Þ =
ð1
0
1 + e−sð Þx sð Þds, x 1ð Þ = 0,

φ1:2
cD1:5

0+ x 0ð Þ
� �

= φ1:2
cD1:5

0+ x 1ð Þ
� �

=
ð1
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100 + s2

p φ1:2
cD1:5

0+ x sð Þ
� �

ds:

8>>>>>>>>><
>>>>>>>>>:

ð70Þ

The problem (70) can be rated as the boundary value
problem where α = 1:5, β = 1:8, p = 1:2,

f ðt, xÞ = 1 + ð1/3Þ sin t + ðe−t/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100 + t

p Þx0:2, aðtÞ = 1 + ð1/3Þ
sin t, bðtÞ = ðe−t/ ffiffiffiffiffiffiffiffiffiffiffi

10 + t
p Þ, gðtÞ = 1 + e−t , and hðtÞ = ð1/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

100 + t2
p Þ: By simple calculation, we have kak = 4/3, kbk
= 1/

ffiffiffiffiffi
10

p
, kgk = 2, khk = 1/10,

σ1 =
Ð 1
0ð1 − sÞgðsÞds ≈ 0:87 ≠ 1, and σ2 =

Ð 1
0hðsÞds ≈ 0:1 ≠ 1.
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So, testing whether the hypothesis (H1) holds or not, we
get

A = 1
Γ αð Þ 1 + gk k

1 − σ1j j
	 
� �p−1 1

Γ βð Þ 1 + hk k
1 − σ2j j

	 

≈ 2:13, A bk k ≈ 0:67 < 1:

ð71Þ

Therefore, by Theorem 8, the problem (70) has at least
one solution.

Example 2. Consider the boundary value problem

cD1:7
0+φ1:5

cD1:3
0+ x tð Þ

� �
= 0:4t + 0:1 sin x tð Þð Þ, t ∈ 0, 1ð Þ,

x 0ð Þ =
ð1
0
sx sð Þds, x 1ð Þ = 0,

φ1:5
cD1:3

0+ x 0ð Þ
� �

= φ1:5
cD1:3

0+ x 1ð Þ
� �

=
ð1
0

1
10 + s2

φ1:5
cD1:3

0+ x sð Þ
� �

ds:

8>>>>>>><
>>>>>>>:

ð72Þ

Comparing with the problem (1), it can be easily seen
that α = 1:3, β = 1:7, p = 1:5, f ðt, xÞ = 0:4t + 0:1 sin x, aðtÞ =
0:4t, bðtÞ = 0:1, gðtÞ = t, and hðtÞ = 1/ð10 + t2Þ.

Since kak = 0:4, kbk = 0:1, kgk = 1, khk = 0:1, σ1 =
Ð 1
0sð1

− sÞds ≈ 0:17 ≠ 1, and σ2 =
Ð 1
0ð1/10 + s2Þds ≈ 0:1 ≠ 1, we

obtain

f t, xð Þj j ≤ 0:4t + 0:1 sin xj j ≤ 0:4t + 0:1 ⋅min 1, xj jf g ≤ 0:4t + 0:1 ⋅ xj j0:5,

A = 1
Γ αð Þ 1 + gk k

1 − σ1j j
	 
� �p−1 1

Γ βð Þ 1 + hk k
1 − σ2j j

	 

≈ 1:91,

A bk k ≈ 0:19 < 1:
ð73Þ

So, we can see that the hypothesis (H1) is satisfied.
Calculating the radius r, we have

r = A ak k
1 − A bk k

	 
q−1
≈ 0:9: ð74Þ

Since r < 1, for any t ∈ ½0, 1� and any x, y ∈ ½−r, r�,
we get

f t, xð Þ − f t, yð Þj j = 0:1 sin x − sin yj j ≤ 0:1 x − yj j,

M0 = 1 + hk k
1 − σ2j j

	 

ak k + bk krp−1� �

≈ 0:55,

θ = L q − 1ð ÞMq−2
0

Γ αð ÞΓ βð Þ 1 + gk k
1 − σ1j j

	 

1 + hk k

1 − σ2j j
	 


≈ 0:33 < 1:
ð75Þ

From the above discussion, we can see that the
hypothesis (H2) holds. Therefore, it follows by Theorem
9 that the problem (72) has a unique solution.
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