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In this paper, a cyclic algorithm for approximating a class of split variational inequality problem is introduced and studied in some
Banach spaces. A strong convergence theorem is proved. Some applications of the theorem are presented. (e results presented
here improve, unify, and generalize certain recent results in the literature.

1. Introduction

Let C be a nonempty closed and convex subset of a real
Banach space E, with dual E∗. (en, a mapping T : C⟶ E

is said to be

(1) Nonexpansive if ‖Tx − Ty‖≤‖x − y‖ foranyx,y ∈C.

(2) Demiclosed at zero if whenever a sequence vn  in C

converges weakly to u and vn − Tvn  converges
strongly to 0, then u ∈ F(T).

(3) L-Lipschitz continuous on E if there exists L> 0 such
that

‖Tx − Ty‖≤L‖x − y‖, for allx, y ∈ C. (1)

A mapping T : C⟶ E∗ is said to be
(1) Monotone if

〈x − y, Tx − Ty〉≥ 0, for allx, y ∈ C. (2)

(2) α-inverse strongly monotone if

〈x − y, Tx − Ty〉≥ α‖Tx − Ty‖
2
, for any x, y ∈ C.

(3)

(3) Strongly monotone if

〈x − y, Tx − Ty〉≥ α‖x − y‖
2
, for any x, y ∈ C. (4)

Problem of the type finding u ∈ C such that

〈v − u, Tu〉≥ 0, for all v ∈ C, (5)

is called a variational inequality problem, and the set of
solution of such problem is denoted by VI(C, T).

Variational inequality problems have played a crucial
role in the study of several problems arising in physics, fi-
nance, economics, network analysis, optimization, medical
image and structural analysis, and so on (see, for example,
[1–5]). Variational inequality problems were formulated in
the late 1960’s by Lions and Stampacchia [6]. Since then,
various iterative algorithms for approximating solutions of
such problems have been proposed by numerous researchers
(see, for example, [7–12, 27]) and the references therein.

In 1976, Korpelevch [14] introduced the following
extragradient method for solving the variational inequality
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problem when the operator T is monotone and L-Lipschitz
continuous in a finite dimensional Euclidean space Rn,

xn+1 � PC xn − λf PC xn − λTxn( ( ( , (6)

for each n ∈ N, λ ∈ (0, (1/L)).
(e split feasibility problem in the finite dimensional

Hilbert space was first introduced by Censor and Elfving [15]
for modeling inverse problems which arise from phase re-
trievals and in medical image reconstruction.

Let H1 and H2 be two real Hilbert spaces. Let C and Q be
two nonempty closed convex subset of H1 and H2, re-
spectively. (e split feasibility problem is to find

u ∈ C such that Au ∈ Q. (7)

Assuming that the split feasibility problem is consistent
(i.e., (7) has a solution), it is easy to see that x ∈ C solves (7) if
and only if it solves the fixed point equation:

x � PC I + cA
∗

PQ − I A x, x ∈ C, (8)

where PC and PQ are the orthogonal projections onto C and
Q, respectively, c> 0, and A∗ is the adjoint of A. To solve (8),
Byrne [16] proposed the CQ algorithm which generates a
sequence xn  by

xn+1 � PC I + cA
∗

PQ − I A xn, (9)

for each n ∈ N, where c ∈ (0, (2/λ)), λ being the spectral
radius of the operator A∗A.

In 2010, Censor et al. [17] considered a new variational
problem called split variational inequality problem (SVIP). It
entails finding a solution of one variational inequality
problem whose image under a bounded linear transfor-
mation is a solution of another variational inequality
problem. (e SVIP is formulated as

find u ∈ VI(C, f) such thatAu ∈ VI(Q, g), (10)

whereC andQ are the nonempty closed convex subsets of real
Hilbert spaces H1 and H2, respectively, and A: H1⟶ H2 is
a bounded linear operator. (ey constructed the following
iterative algorithm to solve such problem and proved a strong
convergence theorem in a Hilbert space:

xn+1 � PC(I − λf) xn + cA
∗

PQ(I − λg) − I Axn , n ∈ N,

(11)

where c ∈ (0, (1/L)), L is the spectral radius of the operator
A∗A, and A∗ is the adjoint of A.

One can easily observe that split variational inequality
has the split feasibility problem as a special case.

Recently, Tian and Jiang [12], based on the work of
Censor et al. [17], considered a class of SVIP which is to find

x ∈ VI(C, f) such thatAx ∈ F(T), (12)

where C is a nonempty closed convex subset of a real Hilbert
space H1, f : C⟶ H1 is a monotone and k-Lipschitz
continuous map, A : H1⟶ H2 is a bounded linear map,
and T : H2⟶ H2 is a nonexpansive map. (ey proposed
the following algorithm by combining the Korpelevich
extragradient method and Byrne CQ algorithm:

x1 � x ∈ C;

yn � PC xn − cnA∗(I − T)Axn( ;

tn � PC yn − λnfyn( ;

xn+1 � PC yn − λnftn( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

(ey obtained the following result.

Theorem 1 (see [12]). Let H1 and H2 be real Hilbert spaces.
Let C be a nonempty, closed and convex subset of H1,
A : H1⟶ H2 be a bounded linear operator such that A≠ 0,
f : C⟶ H1 be a monotone and k-Lipschitz continuous
map, and T : H2⟶ H2 be a nonexpansive map. Setting
Γ � z ∈ VI(C, f) : Az ∈ F(T) , assume that Γ ≠∅. Let the
sequence xn  be generated by (13), where cn  ⊂ [a, b],
a, b ∈ (0, (1/‖A‖2)), and λn ∈ (0, (1/k)). 7en, the sequence
xn  converges weakly to a point z ∈ Γ.

Remark 1. Inspired by the results of Tian and Jiang [12], the
authors raised the following motivational questions:

Q1. Can the result of Tian and Jiang hold in a more
general setting of Banach space than Hilbert?
Q2. Can the result also be proved for a common fixed
point of finite family of nonexpansive mapping?
Q3. Can strong convergence theorem be proved?

In this paper, the above questions are answered in affir-
mative. We study a cyclic algorithm in the setting of uni-
formly smooth which is also 2-uniformly convex real Banach
space and 2-uniformly smooth real Banach space and prove
its strong convergence to a solution of a variational in-
equality problem for a monotone K-Lipschitz continuous
map whose image under a bounded linear operator is a
common fixed point of a finite family of nonexpansive maps.
Our theorems improve and extend the results of Tian and
Jiang [12].

2. Preliminaries

(e duality map of a Banach space E has the following
properties:

(1) If E is a reflexive, strictly convex, and smooth real
Banach space, then J is single-valued and bijective. In
this case, the inverse J− 1 : E∗ ⟶ E is given by
J− 1 � J∗ with J∗ being the duality mapping of E∗.

(2) In a Hilbert space H, the duality map J and its in-
verse J− 1 are the identity maps on H.

(3) If E is uniformly smooth and uniformly convex, then
the dual space E∗ is also uniformly smooth and
uniformly convex and the normalized duality map J

and its inverse, J− 1, are both uniformly continuous
on bounded sets.

LetE be a smooth real Banach space and ϕ : E × E⟶ R

be defined by

ϕ(x, y) � ‖x‖
2

− 2〈x, Jy〉 +‖y‖
2
, ∀x, y ∈ E. (14)
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It is easy to see from the definition of ϕ that, in a real
Hilbert space H, equation (14) reduces to
ϕ(x, y) � ‖x − y‖2, ∀x, y ∈ H.

Furthermore, given x, y, z ∈ E and τ ∈ (0, 1), we have
the following properties (see, for example, [18]):

P1: (‖x‖ − ‖y‖)2 ≤ ϕ(x, y)≤ (‖x‖ + ‖y‖)2,
P2: ϕ(x, y) � ϕ(x, z) + ϕ(z, y) + 2〈z − x, Jy − Jz〉,
P3: ϕ(τx + (1 − τ)y, z)≤ τϕ(x, z) + (1 − τ)ϕ(y, z).

Definition 1. Let E be a smooth, strictly convex, and re-
flexive real Banach space and let C be a nonempty, closed,
and convex subset of E. (e map ΠC : E⟶ C defined by
x � ΠC(x) ∈ C such that ϕ(x, x) � infy∈Cϕ(y, x) is called
the generalized projection of E onto C. Clearly, in a real
Hilbert space H, the generalized projection ΠC coincides
with the metric projection PC from H onto C.

Definition 2. Let E1 and E2 be two reflexive, strictly convex,
and smooth Banach spaces. (e collection of mappings
A : E1⟶ E2 is linear, and continuous is a normed linear
space with norm defined by ‖A‖ � sup‖x‖≤1‖Ax‖. (e dual
operator A∗ :E∗2⟶E∗1 defined by 〈A∗y∗,x〉�〈y∗,Ax〉∀x∈
E1, y∗∈E∗2 is called the adjoint operator of A. (e adjoint
operator A∗ has the property ‖A∗‖�‖A‖.

Lemma 1 (see [19]). Let C be a nonempty closed and convex
subset of a smooth, strictly convex, and reflexive real Banach
space E. 7en,

(1) If x ∈ E, then x � ΠCx if and only if
〈x − y, Jx − Jx〉≥ 0, for all y ∈ C,

(2) ϕ(y, x) + ϕ(x, x)≤ϕ(y, x), for all x ∈ E, y ∈ C.

Lemma 2 (see [20]). Let E be q-uniformly smooth Banach
space. 7en, there exists a constant dq > 0 such that

‖x + y‖
q ≤ ‖x‖

q
+ q〈y, jx〉 + dq‖y‖

q
. (15)

Lemma 3 (see [21]). Let E be a 2-uniformly convex and
smooth real Banach space. 7en, there exists a positive
constant α such that

α‖x − y‖
2 ≤ ϕ(x, y), ∀x, y ∈ E. (16)

Lemma 4 (see [22]). Let C be a nonempty closed and convex
subset of a reflexive space E and f, a monotone, and hem-
icontinuous map of C into E∗. Let B ⊂ E × E∗ be an operator
defined by

Bu �
fu + NC(u), if u ∈ C,

∅, if u ∉ C,
 (17)

where NC(u) is defined as

NC(u) � w
∗ ∈ E
∗
: 〈u − z, w

∗〉 ≥ 0, ∀z ∈ C . (18)

Then, B is maximal monotone and B− 10 � VI(C, f).

Lemma 5 (see [23]). Let E be a uniformly convex and smooth
real Banach space, and let xn  and yn  be two sequences of
E. If either xn  or yn  is bounded and
limn⟶∞ϕ(xn, yn) � 0, then limn⟶∞‖xn − yn‖ � 0.

3. Main Results

Theorem 2. Let E1 be a uniformly smooth and 2-uniformly
convex real Banach space and E2 a 2-uniformly smooth real
Banach space with smoothness constant d2 ∈ (0, 1). Let C be a
nonempty, closed, and convex subset of E1. Let f : C⟶ E∗1
be a monotone and k-Lipschitz continuous map, and
A : E1⟶ E2 be a bounded linear operator with its adjoint
A∗ such that A≠ 0. Let Ti : E2⟶ E2, i � 1, 2, . . . , m be
nonexpansive mappings. Setting Γ � z ∈VI(C,f) : Az ∈

∩mi�1F(Ti)} and assuming Γ≠∅. Let a sequence xn  be
generated by

x1 � x ∈ C � C1,

yn � J− 1 Jxn − cA∗J2 I − T[n] Axn , where [n] � nmodm,

tn � ΠCJ− 1 Jyn − λfyn( ,

zn � ΠCJ− 1 Jyn − λftn( ,

Cn+1 � v ∈ Cn : ϕ v, zn( ≤ϕ v, yn( ≤ϕ v, xn( , ,

xn+1 � ΠCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where c ∈ [a, b], a, b ∈ (0, (1/d∗2 ‖A‖2)), d∗2 being the
smoothness constant of E∗1 as in Lemma 2, and λ ∈ (0, (α/k)),
α being a positive constant as in Lemma 3. 7en, the sequence
xn  converges to a point z ∈ Γ.

Proof. We divide the proof into five steps. □

Step 1. We show that Cn is closed and convex for any n≥ 1.
Since C � C1, C1 is closed and convex.
Assume Cn is closed and convex for some n≥ 1. Since for

any v ∈ Cn,

ϕ v, yn( ≤ ϕ v, xn( ⟺ 2〈v, Jxn − Jyn〉 ≤ xn

����
����
2

− yn

����
����
2
,

ϕ v, zn( ≤ϕ v, yn( ⟺ 2〈v, Jyn − Jzn〉 ≤ yn

����
����
2

− zn

����
����
2
,

(20)

we have that Cn+1 is closed and convex. (erefore, Cn is
closed and convex for any n≥ 1.

Step 2. We prove Γ ⊂ Cn for any n≥ 1.
For n � 1, Γ ⊂ C � C1.
Assume Γ ⊂ Cn for some n≥ 1. Let u ∈ Γ, then
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ϕ u, yn(  � ϕ u, J
− 1

Jxn − cA
∗
J2 I − T[n] Axn  

� ‖u‖
2

+ J
− 1

Jxn + cA
∗
J2 T[n] − I Axn 

�����

�����
2

− 2〈u, Jxn + cA
∗
J2 T[n] − I Axn〉

� ‖u‖
2

+ Jxn + cA
∗
J2 T[n] − I Axn

�����

�����
2

− 2〈u, Jxn〉 − 2c〈Au, J2 T[n] − I Axn〉.

(21)

From the fact that E∗1 is 2-uniformly smooth, we have

ϕ u, yn( ≤ ‖u‖
2

+ Jxn

����
����
2

+ 2c〈xn, A
∗
J2 T[n] − I Axn〉

+ d
∗
2c

2
‖A‖

2
T[n] − I Axn

�����

�����
2

− 2〈u, Jxn〉 − 2c〈Au, J2 T[n] − I Axn〉

� ϕ u, xn(  + d
∗
2c

2
‖A‖

2
T[n] − I Axn

�����

�����
2

+ 2c〈Axn − Au, J2 T[n] − I Axn〉

� ϕ u, xn(  + d
∗
2c

2
‖A‖

2
T[n] − I Axn

�����

�����
2

+ 2c〈Axn − T[n]Axn + T[n]Axn − Au, J2 T[n] − I Axn〉

� ϕ u, xn(  + d
∗
2c

2
‖A‖

2
T[n] − I Axn

�����

�����
2

− 2c T[n] − I Axn

�����

�����
2

+ 2c〈T[n]Axn − Au, J2 T[n] − I Axn〉.

(22)

Using the fact that E2 is 2-uniformly smooth and T[n]

being nonexpansive, we have

2〈T[n]Axn − Au, J2 T[n] − I Axn〉

≤d2 T[n]Axn − Au
����

����
2

+ T[n]Axn − Axn

����
����
2

− T[n]Axn − Au  − T[n]Axn − Axn 
�����

�����
2

≤ d2 − 1(  Axn − Au
����

����
2

+ T[n] − I Axn

�����

�����
2
.

(23)

From (22) and (23), we get

ϕ u, yn( ≤ϕ u, xn(  + c
2
d
∗
2 ‖A‖

2
T[n] − I Axn

�����

�����
2

− 2c T[n] − I Axn

�����

�����
2

+ c d2 − 1(  Axn − Au
����

����
2

+ c T[n] − I Axn

�����

�����
2

≤ϕ u, xn(  − c 1 − d
∗
2c‖A‖

2
  T[n] − I Axn

�����

�����
2

− c 1 − d2(  Axn − Au
����

����
2

≤ϕ u, xn(  − c 1 − d
∗
2c‖A‖

2
  T[n] − I Axn

�����

�����
2

≤ϕ u, xn( .

(24)

Also by Lemma 1, we have
ϕ u, zn( ≤ ϕ u, J

− 1
Jyn − λftn   − ϕ zn, J

− 1
Jyn − λftn  

� ‖u‖
2

− 2〈u, Jyn − λftn〉 − zn

����
����
2

+ 2〈zn, Jyn − λftn〉

� ϕ u, yn(  − ϕ zn, yn(  + 2〈u − zn, λftn〉

� ϕ u, yn(  − ϕ zn, yn(  + 2λ〈u − tn, ftn〉 + 2λ〈tn − zn, ftn〉.

(25)

By the fact that u ∈ VI(C, f) and using property P2, we
have

ϕ u, zn( ≤ ϕ u, yn(  − ϕ zn, yn(  + 2λ〈tn − zn, ftn〉

� ϕ u, yn(  − ϕ zn, tn(  − ϕ tn, yn( 

+ 2〈zn − tn, Jyn − λftn − Jtn〉.

(26)

Also from the fact that tn � ΠCJ− 1(Jyn − λfyn), zn ∈ C,
the Lipschitz continuity of f, Lemma 1, and Lemma 3, we
obtain that

〈zn − tn, Jyn − λftn − Jtn〉 �〈zn − tn, Jyn − λfyn − Jtn〉

+ λ〈zn − tn, fyn − ftn〉

≤ λ〈zn − tn, fyn − ftn〉

≤ kλ zn − tn

����
���� yn − tn

����
����

≤
kλ
2

zn − tn

����
����
2

+ yn − tn

����
����
2

 

≤
kλ
2α

ϕ zn, tn(  + ϕ tn, yn( ( .

(27)

(us,

ϕ u, zn( ≤ ϕ u, yn(  − ϕ tn, yn(  − ϕ zn, tn( 

+
kλ
α

ϕ zn, tn(  + ϕ tn, yn( ( 

� ϕ u, yn(  − 1 −
kλ
α

  ϕ tn, yn(  + ϕ zn, tn( ( 

(28)
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≤ϕ u, yn( . (29)

Hence, Γ ⊂ Cn for any n≥ 1.

Step 3. We shall show that xn  is a Cauchy sequence.
Since Γ ⊂ Cn+1 ⊂ Cn and xn+1 � ΠCn+1

x1 ⊂ Cn, then by
Lemma 1, we have that ϕ(xn+1, x1)≤ ϕ(u, x1) and also
ϕ(xn, x1)≤ϕ(xn+1, x1). Hence, ϕ(xn, x1) is nondecreasing.
So, limn⟶∞ϕ(xn, x1) exists. By property P1, xn  is
bounded. Also, it follows from (24), (28), and the fact that A

is a bounded linear operator that yn , zn , and Axn  are
bounded.

From Lemma 1, we have that
ϕ(xm, xn) � ϕ(xm,ΠCn

x1)≤ϕ(xm, x1) − ϕ(xn, x1)⟶
0 as n, m⟶∞. Hence, xn  is a Cauchy sequence.

Step 4. We show that

lim
n⟶∞

xn − yn

����
���� � lim

n⟶∞
T[n] − I Axn

�����

����� � lim
n⟶∞

zn − tn

����
����

� lim
n⟶∞

zn − yn

����
���� � 0.

(30)

Since xn+1 ∈ Cn+1 ⊂ Cn,
ϕ xn, yn(  � ϕ xn, xn+1(  + ϕ xn+1, yn(  + 2〈xn+1 − xn, Jyn − Jxn+1〉

≤ϕ xn, xn+1(  + ϕ xn+1, xn(  + 2〈xn+1 − xn, Jyn − Jxn+1〉

� 2〈xn − xn+1, Jxn − Jxn+1〉 − 2〈xn − xn+1, Jyn − Jxn+1〉.

(31)

Taking limit as n⟶∞, we have limn⟶∞ϕ(xn, yn) � 0.
Similarly,

ϕ xn, zn( ≤ 2〈xn − xn+1, Jxn − Jxn+1〉 − 2〈xn − xn+1, Jzn − Jxn+1〉.

(32)

Taking limit as n⟶∞, we have limn⟶∞ϕ(xn, zn) � 0.
Since xn  is bounded, it follows from Lemma 5 that

limn⟶∞‖xn − yn‖ � 0 and limn⟶∞‖xn − zn‖ � 0.
Now,

ϕ u, xn(  − ϕ u, yn(  � xn

����
����
2

− yn

����
����
2

− 2〈u, Jxn − Jyn〉

� xn

����
���� − yn

����
����  xn

����
���� + yn

����
����  + 2〈u, Jxn − Jyn〉

≤ xn − yn

����
���� xn

����
���� + yn

����
����  + 2〈u, Jxn − Jyn〉.

(33)
Taking limit as n⟶∞, we have limn⟶∞(ϕ(u, xn)−

ϕ(u, yn)) � 0.
In a similar way, we also have limn⟶∞(ϕ(u, xn)−

ϕ(u, zn)) � 0.
From (24), we obtain

0< c − d
∗
2c

2
‖A‖

2
  T[n] − I Axn

�����

�����
2
≤ϕ u, xn(  − ϕ u, yn( .

(34)

(us,

lim
n⟶∞

T[n] − I Axn

�����

�����
2

� 0. (35)

From (24) and (28),

ϕ tn, yn( ≤
1

(1 − (kλ/α))
ϕ u, xn(  − ϕ u, zn( ( , (36)

ϕ zn, tn( ≤
1

(1 − (kλ/α))
ϕ u, xn(  − ϕ u, zn( ( , (37)

(35) and (36), respectively, implies that

lim
n⟶∞

ϕ tn, yn(  � 0,

lim
n⟶∞

ϕ zn, tn(  � 0.
(38)

Since zn  and yn  are bounded, by Lemma 5, we get

lim
n⟶∞

tn − yn

����
���� � 0, (39)

lim
n⟶∞

zn − tn

����
���� � 0. (40)

(us, (39) and (40) imply

lim
n⟶∞

zn − yn

����
���� � 0. (41)

Step 5. We show that xn  converges to an element of Γ
Since xn  is a Cauchy sequence, we may assume that

xn⟶ x∗.
From the fact that limn⟶∞‖xn − yn‖ � limn⟶∞‖xn −

zn‖ � limn⟶∞‖tn − yn‖ � 0, we obtain that yn⟶ x∗,
zn⟶ x∗, and tn⟶ x∗. Since A is a bounded linear
operator, we have that Axn⟶ Ax∗.

From (35), we have

lim
n⟶∞

T[n] − I Axn

�����

����� � 0. (42)

(us, for i ∈ 1, 2, 3, . . . , m{ }, limn⟶∞‖(Ti − I)Axn‖ � 0.
Since Ti is nonexpansive for each i ∈ 1, 2, 3, . . . , m{ }, we

have that I − Ti is demiclosed at 0 for i ∈ 1, 2, 3, . . . , m{ }.
And therefore, Ax∗ ∈ F(Ti)for each i ∈ 1, 2, 3, . . . , m{ }.

(us, Ax∗ ∈ ∩mi�1F(Ti). Next, we show that
x∗ ∈ VI(C, f)

Define

Bv �
fv + NC(v), if v ∈ C,

∅, if v ∉ C.
 (43)

By Lemma 4, B is a maximal monotone and 0 ∈ Bv if and
only if v ∈ VI(C, f).

Let (v, w) ∈ G(B). (v, w) ∈ G(B)⟹ w ∈ Bv � fv +

NC(v)⟹ w − fv ∈ NC(v).
(us, 〈v − p, w − fv〉≥ 0, ∀p ∈ C. Since

zn � ΠCJ− 1(Jyn − λftn) and v ∈ C, we have by Lemma 4
that 〈zn − v, Jyn − λftn − Jzn〉≥ 0.

(us,

v − zn,
Jzn − Jyn

λ
+ ftn≥ 0, n≥ 0 . (44)

Using the fact that zn ∈ C and w − fv ∈ NC(v), we have
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〈v − zn, w〉 ≥ 〈v − zn, fv〉

≥ 〈v − zn, fv〉 − 〈v − zn,
Jzn − Jyn

λ
+ ftn〉

�〈v − zn, fv − fzn〉 +〈v − zn, fzn − ftn〉

− 〈v − zn,
Jzn − Jyn

λ
〉

≥ 〈v − zn, fzn − ftn〉 − 〈v − zn,
Jzn − Jyn

λ
〉.

(45)

Using the fact that J is uniformly continuous on
bounded sets and f is Lipschitz continuous, as n⟶∞, we
have

〈v − x
∗
, w〉 ≥ 0. (46)

Since B is a maximal monotone, 0 ∈ Bx∗, and hence
x∗ ∈ VI(C, f), therefore x∗ ∈ Γ.

Corollary 1. Let E1 be a uniformly smooth and 2-uniformly
convex real Banach space and E2 a 2-uniformly smooth real
Banach space with smoothness constant d2 ∈ (0, 1). LetC be a
nonempty, closed, and convex subset of E1. Let f : C⟶ E∗1
be a monotone and k-Lipschitz continuous map and
A : E1⟶ E2 be a bounded linear operator with its adjoint
A∗ such that A≠ 0. Let T : E2⟶ E2 be a nonexpansive
map. Let Γ � z ∈ VI(C, f) : Az ∈ F(T) ≠∅. Let a se-
quence xn  be generated by

x1 � x ∈ C � C1,

yn � J− 1 Jxn − cA∗J2(I − T)Axn( ,

tn � ΠCJ− 1 Jyn − λfyn( ,

zn � ΠCJ− 1 Jyn − λftn( ,

Cn+1 � v ∈ Cn: ϕ v, yn( ≤ ϕ v, xn( ,ϕ v, zn( ≤ ϕ v, yn(  ,

xn+1 � ΠCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

where c ∈ [a, b], a, b ∈ (0, (1/d∗2 ‖A‖2)), d∗2 being the
smoothness constant of E∗1 as in Lemma 2, and λ ∈ (0, (α/k)),
α being a positive constant as in Lemma 3. 7en, the sequence
xn  converges to a point z ∈ Γ.

Proof. (e result followed from (eorem 2 by setting
T[n] � T, ∀n ∈ N. □

Corollary 2. Let H1 and H2 be real Hilbert spaces. Let C be a
nonempty, closed, and convex subset of H1. A : H1⟶ H2
be a bounded linear operator such that A≠ 0, f : C⟶ H1
be a monotone and k-Lipschitz continuous map, and
Ti: H2⟶ H2, i � 1, 2, . . . , m, be a nonexpansive map. Let
Γ � z ∈ VI(C, f): Az ∈ F(T) ≠∅. Let a sequence xn  be
generated by

x1 � x ∈ C � C1,

yn � xn − cA∗ I − T[n] Axn, where [n] � nmodm,

tn � PC yn − λfyn( ,

zn � PC yn − λftn( ,

Cn+1 � v ∈ Cn : yn − v
����

����≤ xn − v
����

����, zn − v
����

����≤ yn − v
����

���� ,

xn+1 � PCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

where c ⊂ [a, b], a, b ∈ (0, (1/‖A‖2)), and λ ∈ (0, (1/k)).
7en, the sequence xn  converges strongly to a point z ∈ Γ.

Proof. Setting E1 � H1 and E2 � H2 in(eorem 2, the result
is as follows. □

Remark 2. Corollary 2 complements (eorem 1 (the result
of Tian and Jiang [12]) in the sense that strong convergence
of the sequence generated is obtained to a solution of the
split variational inequality problem involving common fixed
points of finite family of nonexpansive mappings, while
weak convergence of the scheme is obtained in (eorem 1
involving only a single nonexpansive map. (ough, addi-
tional condition of projecting the iterates on the half spaces
Cn at each step is imposed.

Lemma 6. Let H be a real Hilbert space andQ be a nonempty
closed convex subset of H. Let g : Q⟶ H be an α- inverse
strongly monotone mapping, that is,
〈x − y, gx − gy〉≥ α‖gx − gy‖2 for any x, y ∈ Q. Let
μ ∈ (0, 2α). 7en, the mapping PQ(I − μg) is nonexpansive.

Proof. Letx, y ∈ H:

PQ(x − μgx) − PQ(y − μgy)
����

����
2 ≤ ‖(x − μgx) − (y − μgy)‖

2

� ‖x − y‖
2

− 2μ〈x − y, gx − gy〉 + μ2‖gx − gy‖
2 ≤ ‖x − y‖

2

− μ 2 −
μ
α

 〈x − y, gx − gy〉

≤ ‖x − y‖
2
.

(49)

Hence, PQ(I − μg) is nonexpansive. □

Corollary 3. Let H1 and H2 be real Hilbert spaces. Let C and
Q be two nonempty, closed, and convex subset of H1 and H2,
respectively. Let A : H1⟶ H2 be a bounded linear operator
such that A≠ 0, f : C⟶ H1 be a monotone and k-Lipschitz
continuous map, and g: H2⟶ H2 be an inverse strongly
monotone mapping. Setting Γ � z ∈ VI(C, f) : Az ∈

VI(Q, g)}≠∅. Let a sequence xn  be defined by
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yn � xn − cA∗ I − PQ(I − μg) Axn,

tn � PC yn − λfyn( ,

zn � PC yn − λftn( ,

Cn+1 � v ∈ Cn: yn − v
����

����≤ xn − v
����

����, zn − v
����

����≤ yn − v
����

���� ,

xn+1 � PCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where c ⊂ [a, b], a, b ∈ (0, (1/‖A‖2)), λ ∈ (0(1/k)), and
μ ∈ (0, 2α) . 7en, the sequence xn  converges to a point
z ∈ Γ.

Proof. Since PQ(I − μg) is nonexpansive for μ ∈ (0, 2α) and
z ∈ VI(Q, g) if and only if z � PQ(I − μg)z for μ> 0, putting
T � PQ(I − μg) in Corollary 1, we get the desired result. □

4. Application to Equilibrium Problem

Let C be a nonempty closed convex subset of a real Banach
space E and let F: C × C⟶ R be a bifunction.

(e equilibrium problem with respect to F and C is to
find z ∈ C such that

F(z, y)≥ 0, ∀y ∈ C. (51)

(e set of solutions of the equilibrium problem men-
tioned above is denoted by EP(F). For solving the equi-
librium problem, we assume that F satisfies the following
conditions:

(A1)F(x, x) � 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x, y) + F(y, x)≤ 0 ∀x,

y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0F(tz + (1 − t)x, y)≤
F(x, y);
(A4) for each x ∈ C, y↦F(x, y) is convex and lower
semicontinous.

Lemma 7 (see [24]). Let E be a reflexive, strictly convex, and
uniformly smooth Banach space and C be a nonempty closed
convex subset of E. Let F : C × C⟶ R be a bifunction
satisfying conditions (A1)–(A4), then for any x ∈ E and r> 0,
there exists a unique point z ∈ C such that

F(z, y) +
1
r

〈y − z, jz − jx〉≥ 0, ∀y ∈ C. (52)

Lemma 8 (see [24]). Let E be a reflexive, strictly convex, and
smooth Banach space and C be a nonempty closed convex
subset of E. Let F: C × C⟶ R be a bifunction satisfying
conditions (A1)–(A4), then for any x ∈ E and r> 0, define a
mapping Tr: E⟶ C by

Trx � x ∈ C: F(z, y) +
1
r

〈y − z, jz − jx〉≥ 0∀y ∈ C .

(53)

Then, the following holds:

(1) Tr is single valued;
(2) Tr is a firmly nonexpansive type, i.e.,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, x − y〉, ∀x, y ∈ E;

(54)

(3) F(Tr) � EP(F);
(4) EP(F) is closed and convex.

Theorem 3. Let E1 be a uniformly smooth and 2-uniformly
convex real Banach space and E2 a 2-uniformly smooth real
Banach space with smoothness constant d2 ∈ (0, 1). Let C and
Q be two nonempty, closed, and convex subsets of E1 and E2,
respectively. Let A : E1⟶ E2 be a bounded linear operator
with its adjoint A∗ such that A≠ 0, f : C⟶ E∗1 be a
monotone and k-Lipschitz continuous map, and
F : Q × Q⟶ be a bifunction satisfying conditions
(A1)–(A4). Let Γ � z ∈ VI(C, f) : Az ∈ EP(F) ≠∅. Let a
sequence xn  be generated by

x1 � x ∈ C � C1,

yn � J− 1 Jxn − cA∗J2 I − Tr( Axn( ,

tn � ΠCJ− 1 Jyn − λfyn( ,

zn � ΠCJ− 1 Jyn − λftn( ,

Cn+1 � v ∈ Cn: ϕ v, yn( ≤ϕ v, xn( , ϕ v, zn( ≤ϕ v, yn(  ,

xn+1 � ΠCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

where c ∈ [a, b], a, b ∈ (0, (1/d∗2 ‖A‖2)), d∗2 is the smoothness
constant of E∗1 as in Lemma 2, λ ∈ (0, (α/k)), α being a
positive constant as in Lemma 3, and Tr is the resolvent of F

for r> 0. 7en, the sequence xn  converges to a point z ∈ Γ.

Proof. Putting T � Tr in Corollary 1, we get the desired
result. □

5. Application to Maximal Monotone Operator

A set valued mapping B ⊂ E × E∗ with domain
D(B) � x ∈ E : Bx≠∅{ } and range R(B) � ∪ Bx:{

x ∈ D(B)} is said to be monotone if 〈x − y, x∗ − y∗〉≥ 0
whenever (x, x∗), (y, y∗) ∈ B. A monotone operator
B ⊂ E × E∗ is said to be maximal monotone if its graph
G(B) � (x, y) : y ∈ Bx  is not properly contained in the
graph of any other monotone mapping. We know that if B is
a maximal monotone, then the zero of B,
B− 1(0) � x ∈ E : 0 ∈ Bx{ } is closed and convex. If E is a
smooth, strictly convex, and reflexive Banach space, then a
monotone operator B : E⟶ E∗ is maximal if and only if
R(J + rB) � E∗ for each r> 0. Let E be a smooth, strictly
convex, and reflexive Banach space, C be a nonempty closed
convex subset of E, and B ⊂ E × E∗ be a monotone operator
satisfying

D(B) ⊂ C ⊂ J
− 1

(J + rB), (56)
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for all r> 0. If B is a maximal monotone, then (56) holds for
C � D(B) and we can define the resolvent Sr: C⟶ D(B)

by

Srx � x ∈ E: Jx ∈ Jz + rBz{ }, (57)

for all x ∈ C, i.e., Sr � (J + rB)− 1J. We know the following
(see [23, 25–27]):

(1) Sr is single valued,
(2) F(Sr) � B− 10, where F(Sr) is the set of fixed points

of Sr,
(3) Sr is a firmly nonexpansive type, i.e.,

〈Srx − Sry, JSrx − JSry〉 ≤ 〈Srx − Sry, x − y〉, ∀x, y ∈ E.

(58)

Theorem 4. Let E1 be a uniformly smooth and 2-uniformly
convex real Banach space and E2 a 2-uniformly smooth real
Banach space with smoothness constant d2 ∈ (0, 1). Let C and
Q be two nonempty, closed, and convex subsets of E1 and E2,
respectively; A : E1⟶ E2 be a bounded linear operator with
its adjoint A∗ such that A≠ 0; f : C⟶ E∗1 be a monotone
and k-Lipschitz continuous map; and B : E⟶ E∗ be a
maximal monotone operator. Let Γ � z ∈ VI(C, f): Az ∈

B− 1(0)}≠∅. Let a sequence xn  be generated by

x1 � x ∈ C � C1,

yn � J− 1 Jxn − cA∗J2 I − Sr( Axn( ,

tn � ΠCJ− 1 Jyn − λfyn( ,

zn � ΠCJ− 1 Jyn − λftn( ,

Cn+1 � v ∈ Cn : ϕ v, yn( ≤ϕ v, xn( , ϕ v, zn( ≤ϕ v, yn(  ,

xn+1 � ΠCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

where c ∈ [a, b], a, b ∈ (0, (1/d∗2 ‖A‖2)), d∗2 being the
smoothness constant of E∗1 as in Lemma 2, λ ∈ (0, (α/k)), α
being a positive constant as in Lemma 3, and Sr is the re-
solvent of B for r> 0. 7en, the sequence xn  converges to a
point z ∈ Γ.

Proof. Putting T � Sr in Corollary 1, we get the desired
result. □

6. Application to Constrained Convex
Minimization Problem

(e problem of finding y ∈ C such that

ϕ(y) � minx∈Cϕ(x), (60)

where C is a nonempty closed convex subset of H and ϕ is a
real-valued convex function is called constraint convex

minimization problem. We denote the set of solution of the
constraint convexminimization problem by argminx∈Cϕ(x).

Lemma 9 (see [12]). Let H be a real Hilbert space and C be a
nonempty closed convex subset of H. Let ϕ be a convex
function of H intoR. If ϕ is differentiable, then z is a solution
of the constraint convex minimization problem if and only if
z ∈ VI(C,▽ϕ).

Theorem 5. Let H1 and H2 be real Hilbert spaces. Let C and
Q be two nonempty, closed, and convex subset of H1 and H2,
respectively. Let A : H1⟶ H2 be a bounded linear operator
such that A≠ 0, and f : C⟶ H1 be a monotone and
k-Lipschitz continuous. Let ϕ: H2⟶ R be a differentiable
convex function and suppose ▽ϕ is α-inverse strongly
monotone mapping. Setting Γ � z ∈ VI(C, f) : Az ∈

argminy∈Qϕ(y)}, assume that Γ ≠∅. Let a sequence

yn � xn − cA∗ I − PQ(I − μ▽ϕ)Axn ,

tn � PC yn − λfyn( ,

zn � PC yn − λftn( ,

Cn+1 � v ∈ Cn : yn − v
����

����≤ xn − v
����

����, zn − v
����

����≤ yn − v
����

���� ,

xn+1 � PCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

where c ⊂ [a, b], a, b ∈ (0, (1/‖A‖2)), λ ∈ (0, (1/k)), and
μ ∈ (0, 2α) . 7en, the sequence xn  converges to a point
z ∈ Γ.

Proof. Putting T � ▽ϕ in Corollary 3, by Lemma 9 we get
the desired result. □

7. Application to Split Minimization Problem

Let H1 and H2 be real Hilbert spaces. Let C and Q be two
nonempty, closed, and convex subset of H1 and H2, re-
spectively, and ϕ1: H1⟶ R, ϕ2: H2⟶ R be two convex
functions. Let AH1⟶ H2 be a bounded linear operator.

(e problem of finding z satisfying the conditions

z ∈ argminx∈Cϕ1(x) such thatAz ∈ argminy∈Qϕ2s(y),

(62)

is called the split minimization problem.

Theorem 6. Let H1 and H2 be real Hilbert spaces. Let C and
Q be two nonempty, closed, and convex subset of H1 and H2,
respectively. Let A: H1⟶ H2 be a bounded linear operator
such that A≠ 0, and ϕ1: H1⟶ R and ϕ2: H2⟶ R be two
differentiable convex functions. Suppose that ▽ϕ1 is k-Lip-
schitz continuous and ▽ϕ2 is α-inverse strongly monotone
mapping, let Γ � z ∈ argminx∈Cϕ1(x): Az ∈ argminy∈Qϕ2
(y)}≠∅. Let a sequence
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yn � xn − cA∗ I − PQ I − μ▽ϕ1( Axn ,

tn � PC yn − λ▽ϕ2yn( ,

zn � PC yn − λ▽ϕ2tn( ,

Cn+1 � v ∈ Cn : yn − v
����

����≤ xn − v
����

����, zn − v
����

����≤ yn − v
����

���� ,

xn+1 � PCn+1
x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

where c ⊂ [a, b], a, b ∈ (0, (1/‖A‖2)), λ ∈ (0, (1/k)), and
μ ∈ (0, 2α). 7en, the sequence xn  converges to a point
z ∈ Γ.

Proof. Since ϕ1 is convex, we have▽ϕ1 is monotone. Putting
f � ▽ϕ1 and g � ▽ϕ2 in Corollary 3 and by Lemma 9, we
get the desired result. □

8. Numerical Example

In this section, we present a numerical example to show the
convergence of a sequence generated by our algorithm. Let
E1 � E2 � R, C � [0,∞).

Set m � 2 and Let T0, T1 : C⟶ C be defined by

T0x �
2
3

x, ∀x ∈ C,

T1x �
1
2

x, ∀x ∈ C.

(64)

(en, T0 and T1 are nonexpansive.
Let f : C⟶ C be defined by

fx �
1
3

x, ∀x ∈ C. (65)

(en, f is monotone and VI(C, f) � 0.
Let A : C⟶ C be defined by

Ax �
1
2

x, ∀x ∈ C. (66)

(en, A is a bounded linear operator and ‖A‖2 � (1/4),
A∗y � (1/2)y.

When z ∈ VI(C, f), Az � 0 ∈ F(T0) ∩ F(T1).
So, Γ � z ∈ VI(C, f) : Az ∈ F(T0) ∩ F(T1) ≠∅.
Clearly, Γ � 0{ }. Taking λ � (3/n2) and c � (4/n2). It

follows from(eorem 2 that a sequence xn  is generated by
the following algorithm:

yn � xn − cA∗ I − T[n] Axn ,

tn � PC yn − λfyn( ,

zn � PC yn − λftn( ,

Cn+1 � v ∈ Cn : v≤
x2

n − z2
n

2xn − 2zn

 ,

xn+1 � PCn+1
x1 �

x2
n − z2

n

2xn − 2zn

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

converges strongly to 0 ∈ Γ (see Figure 1).

Convergence of the sequence x(n) generated by (67)
1
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n

Values of the sequence x(n) generated by (67)
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Figure 1: (e table and graph of sequence xn  generated by (67) versus number of iterations n :� 0, 1, . . . , 15{ } with an initial choice of
x0 � 1.0000.
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