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We discuss the existence issue to an optimal control problem for one class of nonlinear elliptic equations with an exponential type
of nonlinearity. We deal with the control object when we cannot expect to have a solution of the corresponding boundary value
problem in the standard functional space for all admissible controls. To overcome this difficulty, we make use of a variant of the
classical Tikhonov regularization scheme. In particular, we eliminate the PDE constraints between control and state and allow
such pairs run freely by introducing an additional variable which plays the role of “compensator” that appears in the original
state equation. We show that this fictitious variable can be determined in a unique way. In order to provide an approximation of
the original optimal control problem, we define a special family of regularized optimization problems. We show that each of
these problems is consistent, well-posed, and their solutions allow to attain an optimal solution of the original problem as the
parameter of regularization tends to zero. As a consequence, we prove the existence of optimal solutions to the original problem
and propose a way for their approximation.

1. Introduction

The main object of our study is the following optimal control
problem for a nonlinear elliptic equation:

Minimize J u, yð Þ = 1
2

ð
Ω

y − ydj j2 dx + α

p

ð
Ω

uj jp dx, ð1Þ

subject to constrains

−Δy = f yð Þ + u inΩ, ð2Þ

y = 0 on ∂Ω, ð3Þ

u ∈U∂ ⊆ Lp Ωð Þ, y ∈H1
0 Ωð Þ, ð4Þ

whereΩ is a bounded open domain inℝN ,N ≥ 1, the bound-
ary ∂Ω is assumed to be Lipschitz, f ðyÞ = F ′ðyÞ, where F ∈
C1ðℝÞ is a given nonlinear function, yd ∈ L2ðΩÞ is a given dis-
tribution, U∂ is a nonempty closed convex subset of LpðΩÞ,
2 ≤ p < +∞, and α ≥ 0 is a given weight coefficient.

Optimal control governed by PDEs has been examined
thoroughly since the pioneering work of J.L. Lions (see [1,
2], for instance). Other important references that also deal
with the numerical approximation and in addition to those
already mentioned above without any attempt to be exhaus-
tive, are [3–9]. However, as for the optimal control problem
(OCP) (1)–(4) and the corresponding Dirichlet boundary
value problem (BVP) (2)–(3), it is well known that they are
ill-posed, in general, and it is unknown whether the set of
optimal pairs to the problem (1)–(4) is nonempty. In
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particular, there is no reason to assert the existence of weak
solutions to (2)–(3) for a given u ∈ LpðΩÞ or to suppose that
such solution, even if it exists, is unique (see, for instance,
I.M. Gelfand [10], M.G. Crandall and P.H. Rabinowitz [11],
F. Mignot and J.P. Puel [12], T. Gallouët, F. Mignot and J.P.
Puel [13], H. Fujita [14], R.G. Pinsky [15], R. Ferreira, A. De
Pablo, J.L. Vazquez [16], J. Dolbeault and R. Stańczy [17]).

The novelty of this paper is that we discuss the existence
of optimal pairs to OCP (1)–(4) using an indirect approach
based on the classical Tikhonov regularization technique in
its special implementation. The idea to involve the Tikhonov
regularization is inspired by the following reason: the main
characteristic feature of BVP (2)–(3) is the fact that because
of the specificity of nonlinearity f ðyÞ (in many particular
implementations of the model (2)–(3), FðuÞ = λeu, [18,
19]), we have no a priori estimate for the weak solutions in
the standard Sobolev space H1

0ðΩÞ. As a result, the consis-
tency of OCP (1)–(4) and existence of optimal pairs can be
established only if we impose rather strict assumptions on
the original data. In particular, it was shown in [20] that
the set of optimal solutions of (1)–(4) is nonempty provided
N > 2, p > 2, the domain Ω is star-shaped with respect to
some interior point x0, and the set of feasible pairs Ξ contains
at least one pair ðu, yÞ such that f ðuÞ ∈ L2ðΩÞ.

Therefore, our main intention is to show that these
assumptions can be essentially weakened or even eliminated.
With that in mind, in the framework of Tikhonov regulariza-
tion technique, we introduce the additional variable z (the so-
called “defect” in the state equation) into the regularized
problem in order to let the pairs “ control-state” ðu, yÞ run
freely in the feasible space LpðΩÞ ×H1

0ðΩÞ so that there is
no dependence of y on u. At the same time, there is a princi-
ple difference between the standard implementation of the
Tikhonov regularization of OCPs (see, for instance, [21–
23]) and the proposed scheme. This difference lies in the
exploitation of the terms εk f ðyÞk2H−1ðΩÞ/2 and εk f ðyÞkL1ðΩÞ/
2 in the perturbed cost functional Jεðu, y, zÞ. We show that
the boundedness of these terms on the set Ξ of feasible solu-
tions to the original problem plays a crucial role in the study
of asymptotic behaviour of global solutions to regularized
OCPs. Having introduced a special family of optimization
problems, we also show that there exists an optimal solution
to the original OCP that can be attained with a prescribed
level of accuracy by the sequence of optimal solutions for
the regularized minimization problems (for benefit of this
approach and its comparison with other ones, we refer to
the recent papers [24–31]).

The paper is organized as follows. In Section 2 we give
some preliminaries and describe in details the characteristic
features of OCP (1)–(4). The Tikhonov regularization of
the original OCP is discussed in Section 3. The key result of
this section is Theorem 8, where we announce the sufficient
conditions of the existence of optimal solutions to the regu-
larized problems. In Section 4, we focus on deriving and sub-
stantiation of optimality conditions for regularized optimal
control problem. The details of the indirect approach to the
study of the original optimal control problem are discussed
in last section. The key points of such approach are summa-
rized in Theorem 13.

2. Preliminaries

Let Ω be a bounded open subset of ℝN (N ≥ 1). Let F : ℝ
⟶ ½0, +∞Þ be a mapping such that F ∈ C1ðℝÞ. We specify
this mapping as follows: there exists a constant CF > 0 such
that

CFF ′ zð Þ ≥ F zð Þ,∀z ∈ℝ,and
ð0
−∞

zF ′ zð Þ dz
����

���� < +∞: ð5Þ

Then, it is easy to deduce that

F zð Þ ≥ F að Þ exp C−1
F z − að Þ� �

,
∀a, z : −∞ < a ≤ z < +∞:

ð6Þ

Following the standard notation, by H1
0ðΩÞ, we denote

the Sobolev space as the closure of C∞
0 ðΩÞ with respect to

the norm ðÐ
Ω
j∇yj2 dxÞ1/2. Let H−1ðΩÞ be the dual space to

H1
0ðΩÞ.
In order to make a precise meaning of the weak solution

to BVP (2)–(3) in the sense of distributions (or shortly, distri-
butional solution), we begin with the following concept.

Definition 1. Let u ∈U∂ be a given control function. We say
that y = yðuÞ is a weak solution to the boundary value prob-
lem (2)–(3) in the sense of distributions, if it belongs to the
class of functions

Hf = y ∈H1
0 Ωð Þ: f yð Þ ∈ L1loc Ωð Þ� �

, ð7Þ

and the integral identityð
Ω

∇y,∇φð Þ dx =
ð
Ω

f yð Þφ dx +
ð
Ω

uφ dx, ð8Þ

holds for every test function φ ∈ C∞
0 ðΩÞ.

Since for each test function φ ∈ C∞
0 ðΩÞ, there exists a

compact set K ⊂Ω such that

supp φ ⊆ K ⊂Ω, ð9Þ

it follows that the second term in (8) is well defined, namely,ð
Ω

f yð Þφ dx ≤
ð
K
f yð Þj j φj jdx ≤ φk kC �K

� � f yð Þk kL1 Kð Þ: ð10Þ

At the same time, it is unknown whether the original
BVP admits at least one weak solution in the sense of Defini-
tion 1 for each admissible control u ∈U∂ ⊆ LpðΩÞ. Moreover,
as follows from (8), the continuity of form φ↦ ½y, φ�f ≔

Ð
Ω

f ðyÞφ dx on the set H1
0ðΩÞ is not evident. For the details

related with this issue, we refer to the classical paper Casas,
Kavian, and Puel [20].

Before proceeding further, we make use of the following
observation. Assume that for a given u ∈U∂, we have y ∈Hf ,
and the pair ðu, yÞ is related by integral identity (8). Then,
for each test function φ ∈ C∞

0 ðΩÞ, the following estimate
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ð
Ω

f yð Þφ dx ≤
ð
Ω

∇y,∇φð Þ dx
����

���� +
ð
Ω

uφ dx
����

����
≤ yk kH1

0 Ωð Þ φk kH1
0 Ωð Þ + uk kL2 Ωð Þ φk kL2 Ωð Þ ≤

by Poincare′s ineq:

� yk kH1
0 Ωð Þ + CΩ Ωj jp−22p uk kLp Ωð Þ

h i
φk kH1

0 Ωð Þ,

ð11Þ

holds true. Hence, the mapping φ↦ ½y, φ�f can be extended

by continuity onto the set of all φ ∈H1
0ðΩÞ using (11) and

the standard rule

y, φ½ �f = lim
ε→0

y, φε½ �f , ð12Þ

where fφεgε>0 ⊂ C∞
0 ðℝNÞ and φε ⟶ φ strongly in H1

0ðΩÞ as
ε⟶ 0. In particular, if y ∈Hf , then we can define the value
½y, y�f , and this one is finite for every y ∈Hf . As a conse-
quence, we deduce: if y ∈Hf is a weak solution to boundary
value problem (2)–(3), then y satisfies the energy equality

ð
Ω

∇yj j2 dx = y, y½ �f +
ð
Ω

uy dx: ð13Þ

However, it is unknown whether the value ½y, y�f preserves
a constant sign for all y ∈Hf . Therefore, we cannot make use
of the energy equality (13) in order to derive a priori estimate
in ∥·∥H1ΩÞ-norm for the weak solutions.

In particular, to specify the term ½y, y�f , we have the fol-
lowing result (we refer to [20], Lemma 2.1) where this result
was proven for a particular nonlinearity f ðyÞ = ey (see also
[27, 28, 32] for the more general cases).

Lemma 2. Let y = yðuÞ be a weak solution to BVP (2)–(3) for a
given u ∈U∂. Then, f ðyÞ ∈H−1ðΩÞ,

f yð Þk kH−1 Ωð Þ ≤ yk kH1
0 Ωð Þ + CΩ Ωj j p−2ð Þ/2p uk kLp Ωð Þ, ð14Þ

y, z½ �f = <f yð Þ, z>H−1 Ωð Þ;H1
0 Ωð Þ =

ð
Ω

z f yð Þ dx, ∀z ∈H1
0 Ωð Þ,

ð15Þ

and, therefore, z f ðyÞ ∈ L1ðΩÞ for every z ∈H1
0ðΩÞ.

Proof. Taking into account the Friedrich’s inequality

yk kL2 Ωð Þ ≤ CΩ ∇yk kL2 Ωð ÞN , ∀y ∈H
1
0 Ωð Þ, ð16Þ

and following the definition of the weak solution, we have
(see (8))

ð
Ω

f yð Þφ dx ≤
ð
Ω

∇y,∇φð Þ dx
����

���� +
ð
Ω

uφ dx
����

����
≤ ∇yk kL2 Ωð Þ ∇φk kL2 Ωð Þ + uk kL2 Ωð Þ φk kL2 Ωð Þ

≤
by 13ð Þ

yk kH1
0 Ωð Þ φk kH1

0 Ωð Þ + CΩ Ωj j p−2ð Þ/2p

� uk kLp Ωð Þ φk kH1
0 Ωð Þ, ∀φ ∈ C∞

0 ℝN� �
:

ð17Þ

Hence, y ∈Hf by Definition 1.
Let z ∈H1

0ðΩÞ ∩ L∞ðΩÞ be an arbitrary element. Since
f ðyÞ ∈ L1ðΩÞ, it follows that the term

Ð
Ω
z f ðyÞ dx is well

defined. Let fφεgε>0 ⊂ C∞ð�ΩÞ be a sequence such that φε

⟶ z in H1
0ðΩÞ. Moreover, in this case, we can suppose that

sup
ε>0

∥φε∥L∞ Ωð Þ < +∞andφε ⇀
∗

z in L∞ Ωð Þ: ð18Þ

Hence, due to the fact that y ∈Hf , we getð
Ω

z f yð Þ dx = lim
ε→0

ð
Ω

φε f yð Þ dx = lim
ε→0

y, φε½ �f =
by 18ð Þ

y, z½ �f :

ð19Þ

Thus, we arrive at relation (15) for each z ∈H1
0ðΩÞ ∩ L∞

ðΩÞ.
Let us take now z ∈H1

0ðΩÞ such that z ≥ 0 almost every-
where in Ω. For every ε > 0, let Tε : ℝ⟶ℝ be the trunca-
tion operator defined by

Tε sð Þ =max min s, ε−1
� �

,−ε−1
� �

: ð20Þ

The following property of Tε is well known (see [33]): if
z ∈H1

0ðΩÞ, then

Tε zð Þ ∈ L∞ Ωð Þ ∩H1
0 Ωð Þ∀ε

> 0 andTε zð Þ⟶ z inH1
0 Ωð Þas ε⟶ 0:

ð21Þ

Hence, TεðzÞ⟶ z almost everywhere in Ω. Since

Tε zð Þf yð Þ ≥
by 5ð Þ 1

CF
Tε zð ÞF yð Þ ≥ 0 inΩ, ð22Þ

it follows that fTεðzÞf ðyÞgε>0 is a pointwise nondecreasing
sequence, and also, TεðzÞf ðyÞ⟶ z f ðyÞ for almost all x ∈
Ω. Therefore, by monotone convergence theorem, z f ðyÞ is
a measurable function on Ω, and

lim
ε→0

ð
Ω

Tε zð Þf yð Þdx =
ð
Ω

z f yð Þdx: ð23Þ

Thus, (15) holds true for each z ∈H1
0ðΩÞ such that z ≥ 0.

As for a general case, i.e., z ∈H1
0ðΩÞ, it is enough to note

that z = z+ − z− with z+, z− ∈H1
0ðΩÞ and z+, z− ≥ 0 in Ω,

where z+ ≔max fz, 0g, z− ≔max f−z, 0g.
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To complete the proof, it remains to observe thatð
Ω

z f yð Þ dx =
by 17ð Þ lim

ε→0

ð
Ω

φε f yð Þdx

≤
by 17ð Þ 14ð Þ

lim
ε→0

yk kp−1H1
0 Ωð Þ + Ωj j p−2ð Þ/2pCΩ uk kLp Ωð Þ

� �
φεk kH1

0 Ωð Þ

� by the strong convergence of φε ⟶ z inH1
0 Ωð Þ� �

= yk kp−1H1
0 Ωð Þ + Ωj j p−2ð Þ/2pCΩ uk kLp Ωð Þ

� �
zk kH1

0 Ωð Þ,

ð24Þ

holds true for an arbitrary element z ∈H1
0ðΩÞ. As a result, we

have f ðyÞ ∈H−1ðΩÞ and

f yð Þ, zh iH−1 Ωð Þ;H1
0 Ωð Þ =

ð
Ω

z f yð Þ dx,∀z ∈H1
0 Ωð Þ, and f yð Þk kH−1 Ωð Þ

≤ yk kp−1H1
0 Ωð Þ + Ωj j p−2ð Þ/2pCΩ uk kLp Ωð Þ

� �
:

ð25Þ

Remark 3. As follows from Lemma 2, whenever ðy, uÞ is
related by integral identity (8) and y ∈Hf , then f ðyÞ ∈
H−1ðΩÞ, but for a general φ ∈H1

0ðΩÞ, it is not necessarily
true that the duality action <f ðyÞ, φ>H−1ðΩÞ;H1

0ðΩÞ is given
by an integral

Ð
Ω
φ f ðyÞ dx, hence the need for a rigorous

definition of ½y, φ�f .

As a direct consequence of Lemma 2 and relation (13), we
can specify the energy equality (13) as follows.

Corollary 4. Let u ∈U∂ be a given control and let y = yðuÞ ∈
H1

0ðΩÞ be a weak solution to BVP (2)–(3) in the sense of
Definition 1. Then, the energy equality for y takes the formð

Ω

∇yj j2 dx =
ð
Ω

y f yð Þ dx +
ð
Ω

uy dx: ð26Þ

Since it is unknown whether there exists a weak solution
to BVP (2)–(3) for a given u ∈U∂, or to suppose that such
solution, even if it exists, is unique, it motivates us to intro-
duce the following set.

Definition 5.We say that a pair ðu, yÞ is a feasible solution for
optimal control problem (1)–(4) if u ∈U∂, y ∈Hf , f ðyÞ ∈ L1
ðΩÞ, and the pair ðu, yÞ is related by integral identity (8). By
Ξ ⊂ LpðΩÞ ×H1

0ðΩÞ, we denote the set of all feasible
solutions.

As for the optimal control problem (1)–(4), it was men-
tioned in [20] that its study is a nontrivial matter because
of the specific of nonlinearity f ðyÞ (in [20], the authors con-
sider the case f ðyÞ = ey). The main troubles in this case are
strongly related with the following circumstances:

(i) The set of feasible solutions can be empty, in general

(ii) Even if Ξ ≠∅, we have no a priori estimate for the
weak solutions of (2)–(3) with arbitrary u ∈U∂

(iii) Some a priori estimates can be established if only
N > 2, the domain Ω has a sufficiently smooth
boundary, and it is star-shaped with respect to some
interior point x0, i.e,

σ − x0, ν σð Þð Þ ≥ 0, for a:a:σ ∈ ∂Ω, ð27Þ

where νðσÞ denotes the outward unit normal vector
to ∂Ω at the point σ, and the considered weak solu-
tions yðuÞ of (2)–(3) satisfies the extra property f ðyÞ
∈ L2ðΩÞ

(iv) Since we have no estimates for the states (especially
without the above mentioned extra property f ðyÞ ∈
L2ðΩÞ), it follows that we cannot deduce the bound-
edness in LpðΩÞ ×H1

0ðΩÞ of a minimizing sequence
to the problem (1)–(4)

(v) Even if a minimizing sequence fðuk, ykÞ ∈ Ξgn∈ℕ is
weakly compact in LpðΩÞ ×H1

0ðΩÞ with p ≥ 2, it
does not allow to pass to the limit in integral identity
(8) as k⟶∞, and, therefore, we are not able to
prove the existence of an optimal pair to the problem
(1)–(4).

Although this list can be extended by many other
options, we can summarize this issue by the following exis-
tence result (in order to prove this assertion, it is enough
to closely follow the arguments of the proofs of Theorems
3.5 and 3.6 in [20]).

Theorem 6. Let us assume that the following conditions hold
true: N > 2, p > 2, the domain Ω has a C0,1 boundary, this
domain is star-shaped with respect to some interior point
x0, and the set of feasible pairs Ξ contains at least one pair
ðu, yÞ such that f ðuÞ ∈ L2ðΩÞ. Then, there exists a unique
pair ðu0, y0Þ ∈ Ξ such that

u0, y0
� �

∈ Ξ0 ⊂ Ξ, J u0, y0
� �

= inf
u,yð Þ∈Ξ0

J u, yð Þ, ð28Þ

where

Ξ0 = u, yð Þ ∈ Ξ
N
2
− 1

	 
ð
Ω

∇yj j2 dx ≤N
ð
Ω

F yð Þ dx

−
ð
Ω

u xð Þ x − x0,∇y xð Þð Þ dx

���������

8>>><
>>>:

9>>>=
>>>;
:

ð29Þ

In spite of the fact that not every pair ðu, yÞ of Ξ0
⊆ Ξ needs to be a feasible pair to (1)–(4) with the extra
property f ðyÞ ∈ L2ðΩÞ, and constrained minimization
problems

inf
u,yð Þ∈Ξ

J u, yð Þ
� �

and inf
u,yð Þ∈Ξ0

J u, yð Þ
� �

, ð30Þ
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are distinguished from a formal point of view, we can
deduce the following result (for the proof we refer to [20],
Proposition 3.2).

Proposition 7. Assume that N > 2 and Ω is star-shaped with
respect to some interior point x0. Assume also that boundary
value problem (2)–(3) has a weak solution for some control
u ∈ LpðΩÞ with p ≥ 2. Then, there exists a solution z of
(2)–(3) corresponding to the same control u and such that

N
2
− 1

	 
ð
Ω

∇zj j2 dx ≤N
ð
Ω

F zð Þ dx −
ð
Ω

u xð Þ x − x0,∇z xð Þð Þ dx:

ð31Þ

In the next section, we will show that the main restric-
tions coming from Theorem 6 and Proposition 7 can be elim-
inated by introducing a new additional variable z into the
problem which lets pairs ðu, yÞ run freely in the feasible space
LpðΩÞ ×H1

0ðΩÞ so that there is no dependence of y on u.

3. On the Tikhonov Regularization of the
Original OCP

Let us introduce the Tikhonov regularized optimal control
problem associated to the original OCP (1)–(4). Let ε > 0 be
a given small parameter. Then, the regularized problem reads
as follows (for comparison, we refer to [22, 23]).

Minimize Jε u, y, zð Þ = 1
2

ð
Ω

y − ydj j2 dx

+
α

p

ð
Ω

uj jp dx + 1
2ε

ð
Ω

∇zj j2 dx

+
ε

2
f yð Þk k2H−1 Ωð Þ + f yð Þk kL1 Ωð Þ

h i
,

ð32Þ

subject to constraints

u ∈U∂ ⊆ Lp Ωð Þ, y ∈H1
0 Ωð Þ, f yð Þ ∈ L1 Ωð Þ ∩H−1 Ωð Þ, ð33Þ

−Δz = Δy + f yð Þ + u inΩ, ð34Þ
z = 0 on ∂Ω: ð35Þ

To begin with, let us stress again that the main reason to
introduce the additional variable z into the regularized prob-
lem is to let pairs ðu, yÞ run freely in the feasible space Lpð
ΩÞ ×H1

0ðΩÞ so that there is no dependence of y on u. On
the other hand, there is a principle difference between the
standard scheme of the Tikhonov regularization of OCPs
(see, for instance, [22, 23]) and the proposed regularization
in the form (32)–(35). This difference lies in the exploitation
of the terms εk f ðyÞk2H−1ðΩÞ/2 and εk f ðyÞkL1ðΩÞ/2 in the per-
turbed cost functional Jεðu, y, zÞ. As it will be shown later
on, the boundedness of these terms on the set Ξ of feasible
solutions to the original problem (see Lemma 2) plays a
crucial role in the study of asymptotic behaviour of global
solutions fðu0ε , y0ε , z0εÞg0<ε≤ε0 as ε tends to zero.

Our main assumptions are:

(a) Ω is a bounded open domain in ℝN , N ≥ 1

(b) U∂ is a nonempty closed convex subset of LpðΩÞ, 2
≤ p < +∞

(c) f : ℝ⟶ ½0, +∞Þ is a given monotonically increas-
ing mapping such that f ∈ CðℝÞ.

We say that a tuple ðu, y, zÞ ∈ LpðΩÞ × ½H1
0ðΩÞ�2 is a

feasible solution to regularized problem (32)–(35) (in sym-
bols, ðu, y, zÞ ∈Λε), if u ∈U∂, Jεðu, y, zÞ < +∞, and the fol-
lowing variational equality

a z, φð Þ =F φð Þ, ð36Þ

holds true for all φ ∈H1
0ðΩÞ, where

F φð Þ≔− ∇y,∇φð ÞL2 Ωð ÞN + u, φð ÞL2 Ωð Þ +
ð
Ω

f yð Þφ dx, ð37Þ

and a : H1
0ðΩÞ ×H1

0ðΩÞ⟶ℝ denotes the bilinear form

a z, φð Þ =
ð
Ω

∇z,∇φð Þ dx: ð38Þ

Let us show that, for each ε > 0, the set of feasible
solutions Λε to regularized problem (32)–(35) is non-
empty. Indeed, let ðu, yÞ be an arbitrary pair in LpðΩÞ ×
H1

0ðΩÞ such that

u ∈U∂ and f yð Þ ∈ L1 Ωð Þ ∩H−1 Ωð Þ: ð39Þ

Then, the right hand side of (36) is well defined for
each test function φ ∈H1

0ðΩÞ and satisfies the following
estimate (see (12)).

∣F φð Þ∣ ≤ ∇y,∇φð ÞL2 Ωð ÞN
��� ��� + u, φð ÞL2 Ωð Þ

��� ���
+ <f yð Þ, φ>H−1 Ωð Þ;H1

0 Ωð Þ
��� ���

≤
h
yk kH1

0 Ωð Þ + f yð Þk kH−1 Ωð Þ

+ CΩ Ωj j p−2ð Þ/2p uk kLp Ωð Þ
i
φk kH1

0 Ωð Þ:

ð40Þ

Since, the bilinear form að·, · Þ is continuous and uni-
formly coercive on H1

0ðΩÞ ×H1
0ðΩÞ, it follows from Lax-

Milgram theorem that the variational problem (36) has a
unique solution z = zðu, yÞ ∈H1

0ðΩÞ. Hence, Jεðu, y, zÞ < +
∞ and, therefore, ðu, y, zÞ ∈Λε for a given ε > 0. Thus,
Λε ≠∅ and this implies that regularized optimal control
problem (32)–(35) is consistent for all ε > 0.

Our next intention is to discuss the issue related to the
existence of optimal solutions of the regularized problems
(32)–(35).
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Theorem 8. Assume that conditions (a)–(c) indicated before
are valid. Then, for each ε > 0, there is a triplet ðu0ε , y0ε , z0εÞ ∈
Λε such that

Jε u0ε , y
0
ε , z

0
ε

� �
= inf

u,y,zð Þ∈Λε

Jε u, y, zð Þ: ð41Þ

Proof. Let ε > 0 be a given value. Since the cost functional Jε
: Λε ⟶ℝ is nonnegative on Λε, it follows that there exist
a με ≥ 0 and a sequence fðuε,k, yε,k, zε,kÞgk∈ℕ ⊂Λε such that

με = inf
u,y,zð Þ∈Λε

Jε u, y, zð Þ = lim
k→∞

Jε uε,k, yε,k, zε,k
� �

, ð42Þ

με ≤ Jε uε,k+1, yε,k+1, zε,k+1
� �

≤ Jε uε,k, yε,k, zε,k
� �

≤ με + 1, ∀k ∈ℕ:

ð43Þ
Then, we can immediately deduce from (43) and defini-

tion of the set Λε that yε,k ∈H
1
0ðΩÞ for each k ∈ℕ and the

sequences

yε,k
� �

k∈ℕ, uε,k
� �

k∈ℕ, zε,k
� �

k∈ℕ, and f yε,k
� �� �

k∈ℕ, ð44Þ

are uniformly bounded in L2ðΩÞ, LpðΩÞ, H1
0ðΩÞ, and

H−1ðΩÞ ∩ L1ðΩÞ, respectively. In particular,

sup
k∈ℕ

uε,k
 p

Lp Ωð Þ ≤
με + 1ð Þp

α
, sup
k∈ℕ

zε,k
 2

H1
0 Ωð Þ ≤ 2ε με + 1ð Þ,

ð45Þ

sup
k∈ℕ

yε,k
 2

L2 Ωð Þ ≤ 4 με + 1ð Þ + 2 ydk k2L2 Ωð Þ, sup
k∈ℕ

f yε,k
� � 2

H−1 Ωð Þ ≤
2 με + 1ð Þ

ε
,

ð46Þ

sup
k∈ℕ

f yε,k
� � 

L1 Ωð Þ ≤
2 με + 1ð Þ

ε
: ð47Þ

Hence, without loss of generality, we can suppose that
there exist elements yε ∈ L

2ðΩÞ, uε ∈ LpðΩÞ, ξε ∈H−1ðΩÞ,
and zε ∈H1

0ðΩÞ such that

yε,k ⇀ yε in L
2 Ωð Þ, ð48Þ

uε,k ⇀ uε in Lp Ωð Þ, ð49Þ
zε,k ⇀ zε inH1

0 Ωð Þ, ð50Þ

f yε,k
� �

⇀ ξε inH−1 Ωð Þ, ð51Þ
as k⟶∞.

Let us show that, in fact, yε,k ⇀ yε inH
1
0ðΩÞ. Indeed, from

(36), using yε,k ∈H
1
0ðΩÞ as a test function, we find that

ð
Ω

∇yε,k
�� ��2 + ∇zε,k,∇yε,k

� �
− uε,kyε,k

h i
dx

= f yε,k
� �

, yε,k
� �

H−1 Ωð Þ;H1
0 Ωð Þ,

ð52Þ

for all k ∈ℕ. Then, utilizing the Poincaré’s inequality, we
obtain

∇yε,k
 2

L2 Ωð ÞN ≤
h

zε,k
 

H1
0 Ωð Þ + f yε,k

� � 
H−1 Ωð Þ

+ CΩ Ωj j p−2ð Þ/2p uε,k
 

Lp Ωð Þ

i
× ∇yε,k
 

L2 Ωð ÞN :

ð53Þ

From this and estimates (45)–(46), we deduce that

sup
k∈ℕ

∇yε,k
 

L2 Ωð ÞN ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 με + 1ð Þ

ε

r
1 + ε + CΩ Ωj j p−2ð Þ/2p

ffiffiffiffiffiffi
p ε
2α

r" #
≕ C∗

ε :

ð54Þ

Thus, without loss of generality, we can suppose that (up
to a subsequence)

yε,k ⇀ yε inH
1
0 Ωð Þ, yε,k ⟶ yε in L

2 Ωð Þ, yε,k xð Þ⟶ yε xð Þ a:e:inΩ:

ð55Þ

Utilizing the pointwise convergence (55)3 and assump-
tion (c), we see that

f yε,k
� �

⟶ f yεð Þ almost everywhere inΩ ask⟶∞: ð56Þ

Let us show that this fact together with (47) implies the
strong convergence

f yε,k
� �

⟶ f yεð Þ in L1 Ωð Þ as k⟶∞: ð57Þ

To begin with, let us show that the sequence
f f ðyε,kÞyε,kgk∈ℕ is bounded in L1ðΩÞ. With that in mind,
for each k ∈ℕ, we make use of the decomposition yε,k = y+ε,k
− y−ε,k with

y+ε,k =max 0, yε,k
� �

∈H1
0 Ωð Þ, y−ε,k =max 0,−yε,k

� �
∈H1

0 Ωð Þ,
ð58Þ

and set

Tη yð Þ xð Þ =
η, if y xð Þ > η,

y xð Þ, if y xð Þ ≤ η:

(
ð59Þ

Then, TηðyÞ ∈ L∞ðΩÞ ∩H1
0ðΩÞ for all y ∈H1

0ðΩÞ such

that y ≥ 0. Using y+ε,k ∈H
1
0ðΩÞ as a test function in (36), we

find that

ð
Ω

f yε,k
� �

Tη y+ε,k
� �

dx =
ð
Ω

∇zε,k,∇Tη y+ε,k
� �� �

dx

+
ð
Ω

∇yε,k,∇Tη y+ε,k
� �� �

dx

−
ð
Ω

uε,kTη y+ε,k
� �

dx, ∀η ∈ℕ:

ð60Þ
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Since Tηðy+ε,kÞ⟶ y+ε,k in H1
0ðΩÞ as η⟶∞, the limit

passage in (60) as η⟶∞ leads to the relation

ð
Ω

f yε,k
� �

y+ε,k dx =
ð
Ω

∇zε,k,∇y+ε,k
� �

dx +
ð
Ω

∇yε,k,∇y
+
ε,k

� �
dx

−
ð
Ω

uε,ky
+
ε,k dx:

ð61Þ

From this and the fact that ky+ε,kkH1
0ðΩÞ ≤ kyε,kkH1

0ðΩÞ, we

deduce the estimate

ð
Ω

f yε,k
� �

y+ε,k dx ≤ zε,k
 

H1
0 Ωð Þ + yε,k

 
H1

0 Ωð Þ

h

+ CΩ Ωj j p−2ð Þ/2p uε,k
 

Lp Ωð Þ

i
yε,k

 
H1

0 Ωð Þ ≤
by 29ð Þ, 29ð Þ 37ð Þ

� C∗
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε με + 1ð Þ

p
+ C∗

ε + CΩ Ωj j p−2ð Þ/2p με + 1ð Þp
α

	 
1/p
" #

:

ð62Þ

Arguing in a similar manner, it can be shown that

ð
Ω

f yε,k
� �

y−ε,k dx ≤
by 29ð Þ, 29ð Þ 37ð Þ

� C∗
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε με + 1ð Þ

p
+ C∗

ε + CΩ Ωj j p−2ð Þ/2p με + 1ð Þp
α

	 
1/p
" #

:

ð63Þ

Since y+ε,k + y−ε,k = ∣yε,k ∣ , it follows from (62)–(63) that
there exist positive constants Ci,ε, i = 1, 2, independent of k
and yε,k such that

sup
k∈ℕ

f yε,k
� �

yε,k
 

L1 Ωð Þ ≤ C1,ε με + 1ð Þ + C2,ε με + 1ð Þ2/p: ð64Þ

In order to prove the strong convergence (57), we
make use of Vitali’s theorem. To do so, we fix an arbitrary
δ > 0 and take m > 0 and τ > 0 such that m > 2C∗∗

ε /δ, τ = δ/
ð2f ðmÞÞ, where

C∗∗
ε ≔ C1,ε με + 1ð Þ + C2,ε με + 1ð Þ2/p: ð65Þ

Then, for every measurable set S ⊂Ω with Lebesgue
measure ∣S ∣ <δ, we have
ð
S
f yε,k
� �

dx =
ð

x∈S:yε,k xð Þ>mf g
f yε,k
� �

dx +
ð

x∈S : yε,k xð Þ≤mf g
f yε,k
� �

dx

≤
1
m

ð
x∈S : yε,k xð Þ>mf g

yε,k f yε,k
� �

dx +
ð

x∈S : yε,k xð Þ≤mf g
f mð Þ dx

≤
1
m

ð
Ω

∣yε,k∣f yε,k
� �

dx+f mð Þ∣S∣ ≤
by 45ð ÞC∗∗

ε

m

+ f mð Þ∣S∣ ≤ δ

2
+
δ

2
:

ð66Þ

As a result, we see that the sequence f f ðyε,kÞgk∈ℕ is equi-
integrable and, hence, the desired convergence (57) is a direct
consequence of the pointwise convergence (56) and Vitali’s
convergence theorem. From this and (51), we obtain

ξε = f yεð Þ, f yεð Þ ∈H−1 Ωð Þ ∩ L1 Ωð Þ: ð67Þ

Since the set of admissible controls U∂ is convex and
closed in LpðΩÞ, it follows from Mazur’s theorem that it is
sequentially closed with respect to the weak topology of Lp

ðΩÞ. Hence, uε ∈U∂. Thus, in order to decide that ðuε, yε,
zεÞ is a feasible solution to the regularized problems
(32)–(35), it remains to show that this tuple is related by
the variational equality (36). To do so, we utilize the follow-
ing integral identityð

Ω

∇yε,k,∇φ
� �

+ ∇zε,k,∇φð Þ − uε,kφ
� �

dx

=
ð
Ω

f yε,k
� �

φ dx = f yε,k
� �

, φ
� �

H−1 Ωð Þ;H1
0 Ωð Þ,

ð68Þ

which holds true for each φ ∈H1
0ðΩÞ, k ∈ℕ, and ε > 0. Tak-

ing into account properties (48)–(51), (67), the limit passage
in (68) as k⟶∞ becomes trivial. As a result, we arrive at
the following relationð

Ω

∇yε,∇φð Þ + ∇zε,∇φð Þ − uεφ½ � dx

= <f yεð Þ, φ>H−1 Ωð Þ;H1
0 Ωð Þ =

by 46ð Þ
ð
Ω

f yεð Þφ dx,∀φ ∈H1
0 Ωð Þ:

ð69Þ

Thus, ðuε, yε, zεÞ is a feasible solution to the regularized
problems (32)–(35).

To conclude the proof, let us show that, in fact, the triplet
ðuε, yε, zεÞ is optimal to the problem (32)–(35). Indeed, in
view of the strong convergence (57) and lower semicontinu-
ity of norms in reflexive Banach spaces H1

0ðΩÞ, H−1ðΩÞ, and
LpðΩÞ with respect to the weak convergence, passing to the
limit in (42), we obtain

με = inf
u,y,zð Þ∈Λε

Jε u, y, zð Þ = lim
k→∞

Jε uε,k, yε,k, zε,k
� �

≥ lim inf
k→∞

Jε uε,k, yε,k, zε,k
� �

≥ Jε uε, yε, zεð Þ
≥ inf

u,y,zð Þ∈Λε

Jε u, y, zð Þ = με:

ð70Þ

Thus, the equality (41) holds true with ðu0ε , y0ε , z0εÞ =
ðuε, yε, zεÞ and, therefore, the tuple ðuε, yε, zεÞ is optimal
for regularized problems (21)–(24).

4. Optimality Conditions for
Regularized Problem

In this section, we focus on deriving of optimality conditions
for regularized optimal control problem (32)–(35) corre-
sponding to the case U∂ = LpðΩÞ.
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We begin with the following observations.

Remark 9. In spite of the natural expectations, the mapping
ðu, yÞ↦ z, where z = zðu, yÞ is the solution of (34)–(35) asso-
ciated to u and y, is not of class C1 from LpðΩÞ ×H1

0ðΩÞ
⟶H1

0ðΩÞ. Indeed, if we assume this property, then the
mapping y↦ f ðyÞ should be of class C1 from H1

0ðΩÞ into
H−1ðΩÞ on the subset Y ⊂H1

0ðΩÞ defined by

Y = y ∈H1
0 Ωð Þ: f yð Þ ∈ L1 Ωð Þ ∩H−1 Ωð Þ� �

: ð71Þ

Apart from the fact that, under the assumptions on the
function f , it is not clear whether the set Y has a nonempty
interior int ðYÞ. Even if it is so, then the assumption that
the mapping y↦ f ðyÞ is of class C1 at some point y0 ∈
int ðYÞ would imply f ′ðy0Þh ∈H−1ðΩÞ for all h ∈H1

0ðΩÞ.
However, when N ≥ 3, even for C∞ function such as f ðyÞ =
exp ðyÞ, this result does not hold.

Indeed, let us consider the case N = 3, f ðyÞ = exp ðyÞ, and
Ω is the unit ball B1ð0Þ ⊂ℝ3. Then, the function yðxÞ = −λ
log ð∣x ∣ Þ, for 0 < λ < 5/2, satisfies y ∈ Y . Now, if we set hðxÞ
= jxj−αφðxÞ for 0 < α < 1/2 and a function φ ∈ C∞

0 ðΩÞ such
that 0 ≤ φ ≤ 1 and φðxÞ = 1 for ∣x ∣ <1/2, we have h ∈H1

0ðΩÞ
and f ′ðyðxÞÞhðxÞ = jxj−ðλ+αÞφðxÞ. However, f ′ðyÞh∈H−1ðΩÞ
when α + λ > 5/2.

Remark 10. In practice, the numerical simulation of ∥·∥H−1ðΩÞ
-term in the cost functional is quite specific and a delicate
matter. Usually, it is associated with providing a very precise
numerical analysis. In order to avoid these difficulties, it
makes sense to substitute the ∥·∥H−1ðΩÞ term in the cost func-
tional by some equivalent norm. For instance, let u∗ be an
element of H−1ðΩÞ such that

u∗, uh iH−1 Ωð Þ;H1
0 Ωð Þ =

ð
Ω

F,∇uð ÞℝN dx

=
ð
Ω

F1
∂u
∂x1

+⋯+FN
∂u
∂xN

� �
dx, ∀u ∈H1

0 Ωð Þ,

ð72Þ

where F = ½F1,⋯, FN � in L2ðΩ ;ℝNÞ is a given a vector-
function.

It is clear that

u∗k kH−1 Ωð Þ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Ω

F2
1 xð Þ+⋯+F2

N xð Þ� �
dx

s
: ð73Þ

On the other hand, due to the Lax-Milgram theorem, the
Dirichlet boundary value problem

−Δy = u∗ inΩ, y = 0 on ∂Ω, ð74Þ

has a unique solution y = ð−ΔÞ−1u∗ ∈H1
0ðΩÞ for each u∗ ∈

H−1ðΩÞ. Moreover, in view of the energy equality

ð
Ω

∇y,∇yð ÞℝN dx = ∇yk k2L2 Ω;ℝNð Þ = yk k2H1
0 Ωð Þ = u∗, yh iH−1 Ωð Þ;H1

0 Ωð Þ,

ð75Þ

which holds true for the weak solution of Dirichlet problems
(74), we can deduce the following a priori estimate

yk kH1
0 Ωð Þ ≡ −Δð Þ−1u∗ 

H1
0 Ωð Þ ≡ ∇ −Δð Þ−1u∗ 

L2 Ω;ℝNð Þ ≤ u∗k kH−1 Ωð Þ:

ð76Þ

Combining this result with (73), we obtain the following
chain of inequalities for the dual norm ∥·∥H−1ðΩÞ in H−1ðΩÞ:

∇ −Δð Þ−1u∗ 
L2 Ω;ℝNð Þ

≤ u∗k kH−1 Ωð Þ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Ω

F2
1 xð Þ+⋯+F2

N xð Þ� �
dx

s

=
by 50ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Ω

∇yj j2ℝN dx

s
= ∇yk kL2 Ω;ℝNð Þ

= ∇ −Δð Þ−1u∗ 
L2 Ω;ℝNð Þ:

ð77Þ

Hence, in this case, the standard norm in H−1ðΩÞ is
equivalent to the following one

u∗k kH−1 Ωð Þ = ∇ −Δð Þ−1u∗ 
L2 Ω;ℝNð Þ,∀u

∗ ∈H−1 Ωð Þ: ð78Þ

Taking this fact into account, in this section, we specify
the cost functional (32) as follows

Jε u, y, zð Þ = 1
2

ð
Ω

y − ydj j2 dx + α

p

ð
Ω

uj jp dx + 1
2ε

ð
Ω

∇zj j2 dx

+
ε

2
∇ −Δð Þ−1 f yð Þ 2

L2 Ω;ℝNð Þ + f yð Þk kL1 Ωð Þ

� �
:

ð79Þ

As a result, to derive optimality conditions for regular-
ized optimal control problem (79), (33)–(35), we apply the
following reasoning. Let ε > 0 be a fixed value. In addition
to (5), we assume that f ð0Þ ≠ 0 and f ðyÞ = F ′ðyÞ are a convex
function for which there exists a constant CM > 0 such that

f x1 + x2ð Þ − f x1ð Þj j ≤ CMf x1ð Þ f x2ð Þ
f 0ð Þ − 1

����
����, ∀x1, x2 ∈ℝ:

ð80Þ

Note that this property does not come into conflict with
relation (6), and as a particular case of f ðxÞ satisfying (80)
is f ðxÞ = C exp ðkxÞ.

Let K be the following subset of H1
0ðΩÞ

K = y ∈H1
0 Ωð Þ: Δy ∈ Lp Ωð Þ, f yð Þ ∈ Lp Ωð Þ� �

: ð81Þ

In view of the properties of function f , it is unknown
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whether this set has a nonempty interior. However, taking
into account that p ≥ 2 and 2 > 2N/ðN + 2Þ, it follows from
Sobolev embedding theorem that f ðyÞ ∈H−1ðΩÞ for all y ∈
K .

We know that boundary value problem (34)–(35) has a
unique solution z ∈H1

0ðΩÞ for every u ∈ LpðΩÞ and y ∈K .
Let ðz0ε , u0ε , y0εÞ ∈H1

0ðΩÞ ×U∂ ×K be an optimal solution to
the problem (79), (33)–(35) with f ðy0εÞ ∈ LpðΩÞ and Δy0ε ∈
LpðΩÞ.

Let w ∈ C∞
0 ðΩÞ and g ∈ C∞

0 ðΩÞ be arbitrary chosen func-
tions. Then, property (80) immediately implies that

f y0ε + λw
� �

∈ Lp Ωð Þ ∩H−1 Ωð Þfor λj jsmall enough: ð82Þ

By convexity of f , we have

f y0ε + λw
� �

≥ f y0ε
� �

+ λf ′ y0ε
� �

w, f y0ε − λw
� �

≥ f y0ε
� �

− λf ′ y0ε
� �

w:
ð83Þ

Then,

f y0ε
� �

− f y0ε − λw
� �

≤ λf ′ y0ε
� �

w ≤ f y0ε + λw
� �

− f y0ε
� �

,
ð84Þ

where f ðy0εÞ − f ðy0ε − λwÞ and f ðy0ε + λwÞ − f ðy0εÞ belong to
LpðΩÞ ∩H−1ðΩÞ (see (82)). From this, we deduce that

f ′ y0ε
� �

w ∈ Lp Ωð Þ ∩H−1 Ωð Þ: ð85Þ

For every λ ∈ℝ, λ ≠ 0, we set

uλ = u0ε − λΔg − λΔw − f y0ε + λw
� �

+ f y0ε
� �

, yλ = y0ε + λw, zλ = z0ε + λg:
ð86Þ

Then, property (80) implies that yλ ∈K and −Δzλ = Δ
yλ + f ðyλÞ + uλ in Ω. So, ðuλ, yλ, zλÞ is a feasible point for
the problem (32)–(35). As follows from (84)–(85), there
exists an element

r w, λð Þ ∈ Lp Ωð Þ ∩H−1 Ωð Þ, ð87Þ

such that

f y0ε + λw
� �

= f y0ε
� �

+ λf ′ y0ε
� �

w + r w, λð Þ, ð88Þ

and krðw, λÞkLpðΩÞ∩H−1ðΩÞ = oð∣λ ∣ Þ as λ⟶ 0. Let us show
that, for a given w ∈ C∞

0 ðΩÞ, the following extra properties
hold true

f ′ y0ε
� �

w
�� ��2

f y0εð Þ ∈ L1 Ωð Þ, r2 w, λð Þ
f y0εð Þ



Lp Ωð Þ

= o λð Þ as λ⟶ 0:

ð89Þ

Indeed, due to property (80), we deduce from (84) and
(88) that

CMf y0ε
� � f λwð Þ

f 0ð Þ − 1
����

���� ≥ λf ′ y0ε
� �

w
�� ��,

CMf y0ε
� � f λwð Þ

f 0ð Þ − 1
����

���� ≥ r w, λð Þj j:
ð90Þ

Since f ðλwÞ ∈ L∞ðΩÞ, the above inequalities imply that

f ′ y0ε
� �

w

f y0εð Þ ∈ L∞ Ωð Þ, r w, λð Þ
f y0εð Þ ∈ L∞ Ωð Þ: ð91Þ

Hence,

f ′ y0ε
� �

w
�� ��2

f y0εð Þ



L1 Ωð Þ

≤
f ′ y0ε
� �

w

f y0εð Þ



L∞ Ωð Þ

∥f ′ y0ε
� �

w∥L1 Ωð Þ <
by 58ð Þ

+∞,

r2 w, λð Þ
f y0εð Þ



Lp Ωð Þ

≤
r w, λð Þ
f y0εð Þ



L∞ Ωð Þ

∥r w, λð Þ∥Lp Ωð Þ <
by 59ð Þ

+∞:

ð92Þ

In order to deduce the asymptotic property
krðw, λÞkLpðΩÞ∩H−1ðΩÞ = oð∣λ ∣ Þ as λ⟶ 0, we utilize property
of f . Then, for a given w ∈ C∞

0 ðΩÞ and λ > 0 sufficiently
small, we have

f y0ε + λw
� �

− f y0ε
� ��� �� ≤ CMf y0ε

� � f λwð Þ
f 0ð Þ − 1

����
����: ð93Þ

As a result, we see that

f y0ε + λw
� �

⟶ f y0ε
� �

in Lp Ωð Þasλ⟶ 0: ð94Þ

From this and definition of the directional derivative, we
finally deduce

lim
λ→0

r w, λð Þ
λ



Lp Ωð Þ

=
by 60ð Þ lim

λ→0

f y0ε + λw
� �

− f y0ε
� �

λ
− f ′ y0ε

� �
w



Lp Ωð Þ

by the Lebesgue Dominated Theorem

= lim
λ→0

f y0ε + λw
� �

− f y0ε
� �

λ
− f ′ y0ε

� �
w

	 


Lp Ωð Þ

= 0:

ð95Þ

Hence, krðw, λÞkLpðΩÞ = oð∣λ ∣ Þ as λ⟶ 0.
In the functional Jε, we will distinguish three terms

Jε u, y, zð Þ = J1 uð Þ + J2,ε yð Þ + J3,ε zð Þ, ð96Þ

where

J1 uð Þ = α

p

ð
Ω

uj jp dx,

J2,ε yð Þ = 1
2

ð
Ω

y − ydj j2 dx + ε

2
∇ −Δð Þ−1 f yð Þ 2

L2 Ω;ℝNð Þ + f yð Þk kL1 Ωð Þ

� �
,
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J3,ε zð Þ = 1
2ε

ð
Ω

∇zj j2 dx: ð97Þ

Now, using Lebesgue’s convergence theorem and the fact
that ðu0ε , y0ε , z0εÞ is an optimal triplet, we get

0 ≤ lim
λ→0

Jε uλ, yλ, zλð Þ − Jε u0ε , y0ε , z0ε
� �

λ

= lim
λ→0

J1 uλð Þ − J1 u0ε
� �

λ
+ lim

λ→0

J2,ε yλð Þ − J2,ε y0ε
� �

λ

+ lim
λ→0

J3,ε zλð Þ − J3,ε z0ε
� �

λ
= A1 + A2 + A3,

ð98Þ

where

A1 =
α

p
lim
λ→0

ð
Ω

uλj jp − u0ε
�� ��p

λ

= α
ð
Ω

u0ε
�� ��p−2u0ε −Δw − Δg − f ′ y0ε

� �
w

� �
dx,

ð99Þ

A3 =
1
2ε

lim
λ→0

ð
Ω

∇zλj j2 − ∇z0ε
�� ��2

λ
dx

=
1
ε

ð
Ω

∇z0ε ,∇g
� �

dx:

ð100Þ

As for the term A2, we notice that

lim
λ→0

ð
Ω

y0ε + λw − yd
�� ��2 − y0ε − yd

�� ��2
2λ

dx

=
ð
Ω

y0ε − yd
� �

wdx,
ð101Þ

lim
λ→0

ε
f y0ε + λw
� � 

L1 Ωð Þ − f y0ε
� � 

L1 Ωð Þ
2λ

=
ε

2
lim
λ→0

ð
Ω

f 2 y0ε + λw
� �

− f 2 y0ε
� �

λ f y0ε + λwð Þj j + f y0εð Þj jð Þ dx

=
by 60ð Þ ε

2

ð
Ω

f ′ y0ε
� �

wdx +
ε

2
lim
λ→0

R λð Þ,

ð102Þ

where

R λð Þ =
ð
Ω

2f y0ε
� �

r w, λð Þ + 2λf ′ y0ε
� �

w r w, λð Þ + λ2 f ′ y0ε
� �

w
� �2

+ r2 w, λð Þ
λ f y0ε + λwð Þj j + f y0εð Þj jð Þ dx:

ð103Þ

Here, we have utilized the following obvious equality

lim
λ→0

ð
Ω

2λf y0ε
� �

f ′ y0ε
� �

w

λ ∣f y0ε + λwð Þ∣ + ∣f y0εð Þ ∣ð Þ dx

=
ð
Ω

f y0ε
� �
f y0εð Þj j f ′ y0ε

� �
wdx =

ð
Ω

f ′ y0ε
� �

wdx,
ð104Þ

and the fact that ð f ðy0εÞÞ/∣f ðy0εÞ ∣ = 1 for the nonnegative
function f .

Since

2λf ′ y0ε
� �

w r w, λð Þ ≤ λ2 f ′ y0ε
� �

w
� �2

+ r2 w, λð Þ, ð105Þ

it follows from (89) that

∣R λð Þ∣ ≤ 1
λ

ð
Ω

2 f y0ε
� ��� �� r w, λð Þj j + 2λ2 f ′ y0ε

� �
w

� �2
+ 2r2 w, λð Þ

f y0ε + λwð Þj j + f y0εð Þj j dx

≤
1
λ

ð
Ω

2 f y0ε
� ��� �� r w, λð Þj j + 2λ2 f ′ y0ε

� �
w

� �2
+ 2r2 w, λð Þ

∣f y0εð Þ ∣ dx

≤
2∥r w, λð Þ∥L1 Ωð Þ

λ
+ 2λ

f ′ y0ε
� �

w
� �2

f y0εð Þj j



L1 Ωð Þ

+
1
λ

r2 w, λð Þ
f y0εð Þj j



L1 Ωð Þ

=
by 61ð Þ 1

λ
o λð Þ:

ð106Þ

Then, (102) implies that

lim
λ→0

ε
f y0ε + λw
� � 

L1 Ωð Þ − f y0ε
� � 

L1 Ωð Þ
2λ

=
ε

2

ð
Ω

f ′ y0ε
� �

wdx:

ð107Þ

Since for any element ζ ∈H−1ðΩÞ, we have ð−ΔÞ−1ζ ∈
H1

0ðΩÞ, it follows that

∇ −Δð Þ−1 η + ζð Þ 2
L2 Ω;ℝNð Þ − ∇ −Δð Þ−1η 2

L2 Ω;ℝNð Þ
= 2 ∇ −Δð Þ−1η,∇ −Δð Þ−1ζ� �

L2 Ω;ℝNð Þ + ∇ −Δð Þ−1ζ 2
L2 Ω;ℝNð Þ

= −2 div ∇ −Δð Þ−1η� �
, −Δð Þ−1ζ� �

H−1 Ωð Þ;H1
0 Ωð Þ + ζk k2H−1 Ωð Þ

= 2 η, −Δð Þ−1ζ� �
H−1 Ωð Þ;H1

0 Ωð Þ + ζk k2H−1 Ωð Þ

= 2 ζ, −Δð Þ−1η� �
H−1 Ωð Þ;H1

0 Ωð Þ + ζk k2H−1 Ωð Þ,∀η ∈H
−1 Ωð Þ:

ð108Þ

Hence,

lim
λ→0

ε

2λ

�
∇ −Δð Þ−1 f y0ε + λw

� � 2
L2 Ω;ℝNð Þ

− ∇ −Δð Þ−1 f y0ε
� � 2

L2 Ω;ℝNð Þ
�

= ε f ′ y0ε
� �

w, −Δð Þ−1 f y0ε
� �D E

H−1 Ωð Þ;H1
0 Ωð Þ

= ε
ð
Ω

−Δð Þ−1 f y0ε
� �� �

f ′ y0ε
� �

wdx:

ð109Þ

As a result, utilizing relations (101), (107), and (109), we
obtain
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A2 =
ð
Ω

y0ε − yd +
ε

2
f ′ y0ε
� �

+ ε −Δð Þ−1 f y0ε
� �� �

f ′ y0ε
� �h i

wdx:

ð110Þ

From the linearity of A1, A2, and A3 with respect tow and
g, we deduce from (98), (99), (100), and (110) that

ð
Ω

y0ε − yd +
ε

2
f ′ y0ε
� �

+ ε −Δð Þ−1 f y0ε
� �� �

f ′ y0ε
� �h i

wdx

+ α
ð
Ω

u0ε
�� ��p−2u0ε −Δw − f ′ y0ε

� �
w

� �
dx

+
1
ε

ð
Ω

∇z0ε ,∇g
� �

dx − α
ð
Ω

u0ε
�� ��p−2u0εΔg dx = 0,

ð111Þ

for every w ∈ C∞
0 ðΩÞ and g ∈ C∞

0 ðΩÞ.
Let us set αju0ε jp−2u0ε = με. Then, (111) implies that

ð
Ω

h
y0ε − yd +

ε

2
f ′ y0ε
� �

+ ε −Δð Þ−1 f y0ε
� �� �

f ′ y0ε
� �

− με f ′ y0ε
� �i

wdx +
ð
Ω

με −Δwð Þ dx = 0, ∀w ∈ C∞
0 Ωð Þ,

ð112Þ

1
ε

ð
Ω

∇z0ε ,∇g
� �

dx −
ð
Ω

μεΔg dx = 0, ∀g ∈ C∞
0 Ωð Þ: ð113Þ

From the last equality, we immediately deduce that
με = −ð1/εÞz0ε + d, where dε ∈ C2ðΩÞ is a weakly harmonic
function (it satisfies Laplace’s equation Δd = 0 in the sense
of distributions). As a consequence, we have με ∈H

1ðΩÞ.
Taking into account that C∞

0 ðΩÞ is dense in H1
0ðΩÞ, we

see that relations (112)–(113) can be rewritten as follows.

ð
Ω

y0ε − yd +
ε

2
f ′ y0ε
� �

+ ε −Δð Þ−1 f y0ε
� �� �

f ′ y0ε
� �h i

wdx

−
ð
Ω

με f ′ y0ε
� �

wdx+ < −Δμε,w>H−1 Ωð Þ;H1
0 Ωð Þ dx

= 0, με = −
1
ε
z0ε + d a:e:inΩ,

ð114Þ

for every w ∈ C∞
0 ðΩÞ and g ∈ C∞

0 ðΩÞ.
Thus, we can summarize the obtained result as follows.

Theorem 11. Let Ω be a bounded open domain in ℝN with
N ≥ 1. For a given p ≥ 2, let K be the subset defined as in
(81). Assume that f : ℝ⟶ ½0, +∞Þ is a monotonically
increasing function such that f ∈ C1ðℝÞ and this function is
convex and satisfies property (80). If ðu0ε , y0ε , z0εÞ ∈U∂ ×K ×
H1

0ðΩÞ is an optimal solution to the problem (79), (33)–(35),
then

−Δz0ε = Δy0ε + f y0ε
� �

+ u0ε inΩ,

z0ε = 0 on ∂Ω
ð115Þ

and setting με = αju0ε jp−2u0ε , one has με = −ð1/εÞz0ε + d a.e. in
Ω, and

y0ε − yd +
ε

2
f ′ y0ε
� �

+ ε −Δð Þ−1 f y0ε
� �� �

f ′ y0ε
� �

− με f ′ y0ε
� �

= Δμε inD′ Ωð Þ,
Δd = 0 inD′ Ωð Þ:

ð116Þ

5. Asymptotic Analysis of Regularized Optimal
Control Problem

Our main aim in this section is find out whether the original
optimal control problem (1)–(4) is solvable under assump-
tions (a)–(c) and its optimal solutions can be attained (in
some sense) by optimal solutions to the regularized problem
(32)–(35).

The key point of our consideration is that, in contrast to
the well-known approaches (see, for instance, [20, 27, 28]),
we do not assume here the fulfillment of the “standard” extra
properties such that the domain Ω is an open subset of ℝN

with N > 2, this domain should be star-shaped and exists a
weak solution y ∈H1

0ðΩÞ of Dirichlet problem (2)–(3) satisfy-
ing f ðyÞ ∈ L2ðΩÞ. Because of this, the existence of at least one
optimal pair to the problem (1)–(4) is an open question pro-
vided we restrict our consideration only by assumptions
(a)–(c).

In what follows, in order to guarantee the consistency of
the original problem (1)–(4), we accept the following
hypothesis.

Hypothesis 12. The set of feasible solutions Ξ to the problem
(1)–(4) is nonempty.

It is worth to notice that the verification of Hypothesis 12
is not too restrictive from practical implementation point of
view. Indeed, let ~y ∈ C∞

0 ðΩÞ be an arbitrary function. Then,
it is clear that ~y ∈H1

0ðΩÞ and f ð~yÞ ∈ L1ðΩÞ, that is, y ∈Hf .
Let us define the control ~u ∈ LpðΩÞ as follows ~u = −Δ~y − f ð~yÞ
in Ω. Then, ð~u, ~yÞ is a feasible pair to the problem (1)–(4) if
only ~u ∈U∂. So, this hypothesis is obviously true if we do
not impose any additional restrictions on the class of admissi-
ble controls, i.e., U∂ = LpðΩÞ.

The following result is crucial in this paper and it shows
that solvability of the original OCP (1)–(4) in some sense is
equivalent to its consistency, i.e., OCP (1)–(4) admits at least
one solution if and only if Hypothesis 12 is fulfilled. However,
in order to establish this fact, we apply an indirect approach
based on the variant of Tikhonov regularization which is
described in Section 4.

Theorem 13. Let Ω be a bounded open domain in ℝN with
N ≥ 1, let U∂ be a nonempty closed convex subset of LpðΩÞ,
2 ≤ p < +∞, and let f : ℝ⟶ ½0, +∞Þ be a monotonically
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increasing function such that f ∈ CðℝÞ. Let
fðu0ε , y0ε , z0εÞ ∈Λεgε→0 be a sequence of optimal solutions to
regularized problems (32)–(35) when the parameter ε > 0 var-
ies in a strictly decreasing sequence of positive numbers con-
verging to 0. Assume that Hypothesis 12 holds true and the
sequence f f ðy0εÞgε→0 is bounded in L1ðΩÞ ∩H−1ðΩÞ. Then,
there is a subsequence of fðu0ε , y0ε , z0εÞgε→0, still denoted by
the suffix ε, such that

u0ε ⇀ u0 inLp Ωð Þ, y0ε ⇀ y0 inH1
0 Ωð Þ, z0ε ⟶ 0 inH1

0 Ωð Þ, −Δy0
= f y0

� �
+ u0 inD Ωð Þ, u ∈U∂, u0, y0

� �
∈ Ξ, J u0, y0

� �
= inf

u,yð Þ∈Ξ
J u, yð Þ:

ð117Þ

Proof. Since Ξ ≠∅, it follows that, for a given δ > 0, there
exists ðu∗δ , y∗δÞ such that ðu∗δ , y∗δÞ is a feasible solution to opti-
mal control problem (1)–(4), and

inf
u,yð Þ∈Ξ

J u, yð Þ = inf
u,yð Þ∈Ξ

1
2

ð
Ω

y − ydj j2 dx + α

p

ð
Ω

uj jp dx
� �

≥ J u∗δ , y
∗
δð Þ − δ:

ð118Þ

Hence, in view of Definition 5 and Lemma 2, u∗δ ∈U∂,
y∗δ ∈H

1
0ðΩÞ, f ðy∗δÞ ∈ L1ðΩÞ ∩H−1ðΩÞ, and the pair ðu∗δ , y∗δÞ

is related by integral identity (8). Therefore, for each ε > 0,
the triplet ðu∗δ , y∗δ , 0Þ is a feasible solution for regularized
problem (32)–(35), i,e, ðu∗δ , y∗δ , 0Þ ∈Λε for all ε > 0. Taking
this fact into account, we see that

Jε u0ε , y
0
ε , z

0
ε

� �
=
1
2

ð
Ω

y0ε − yd
�� ��2 dx + α

p

ð
Ω

u0ε
�� ��p dx

+
1
2ε

ð
Ω

∇z0ε
�� ��2 dx + ε

2

� f y0ε
� � 2

H−1 Ωð Þ + f y0ε
� � 

L1 Ωð Þ

h i
= inf

u,y,zð Þ∈Λε

Jε u, y, zð Þ ≤ Jε u∗δ , y
∗
δ , 0ð Þ

=
1
2

ð
Ω

y∗δ − ydj j2 dx + α

p

ð
Ω

u∗δj jp dx

+
ε

2
f y∗δð Þk k2H−1 Ωð Þ + f y∗δð Þk kL1 Ωð Þ

h i
= C1 + εC2 < +∞,

ð119Þ

where

C1 ≔
1
2

ð
Ω

y∗δ − yd ∣
2 dx +

α

p

ð
Ω

����
����u∗δ

����
p

dx,

C2 ≔
1
2

f y∗δð Þk k2H−1 Ωð Þ + f y∗δð Þk kL1 Ωð Þ
h i

,

ð120Þ

and (see (118))

1
2

ð
Ω

y0ε − yd
�� ��2 dx + α

p

ð
Ω

u0ε
�� ��p dx

≥
1
2

ð
Ω

y∗δ − ydj j2 dx + α

p

ð
Ω

u∗δj jp dx − δ:
ð121Þ

Since this relation holds true for each ε > 0 varying in a
given interval ð0, ε0� and each δ > 0, it follows that

sup
ε∈ 0,ε0ð �

u0ε
 p

Lp Ωð Þ ≤
C1 + δð Þ p

α
, sup
ε∈ 0,ε0ð �

1
ε

z0ε
 2

H1
0 Ωð Þ

� �

≤ 2 C1 + ε0C2
� �

,
ð122Þ

sup
ε∈ 0,ε0ð �

y0ε
 2

L2 Ωð Þ ≤ 4 C1 + δð Þ + 2 ydk k2L2 Ωð Þ: ð123Þ

In addition, the sequence f f ðy0εÞgε∈ð0,ε0� is assumed to be

bounded in L1ðΩÞ ∩H−1ðΩÞ. Taking this fact into account,
we deduce that

sup
ε∈ 0,ε0ð �

f y0ε
� � 2

H−1 Ωð Þ ≤ 2C2 + C1, sup
ε∈ 0,ε0ð �

f y0ε
� � 

L1 Ωð Þ ≤ 2C2 + C1:

ð124Þ

Hence, the sequences fu0εgε∈ð0,ε0�, fy0εgε∈ð0,ε0�, and

f f ðy0εÞgε∈ð0,ε0� are weakly compact in LpðΩÞ, L2ðΩÞ, and
H−1ðΩÞ, respectively, whereas estimate (122) implies that
the sequence fz0εgε→0 is strongly convergent to 0 in H1

0ðΩÞ.
So, we can suppose that there exist elements u0 ∈ LpðΩÞ, y
∈ L2ðΩÞ, ξ ∈H−1ðΩÞ, and a sequence fεkgk∈ℝ monotonically
converging to zero as k⟶∞ such that

u0εk ⟶ u0 weakly in Lp Ωð Þ, ð125Þ

y0εk ⟶ y0 weakly in L2 Ωð Þ, ð126Þ

f y0εk

� �
⟶ ξweakly inH−1 Ωð Þ, ð127Þ

z0εk ⟶ 0 strongly inH1
0 Ωð Þask⟶∞: ð128Þ

Let us show that, in fact, we have the weak convergence
y0εk ⇀ y0 in H1

0ðΩÞ. Indeed, arguing as in the proof of
Theorem 8, we utilize the integral identity

ð
Ω

∇y0εk
��� ���2 + ∇z0εk ,∇y

0
εk

� �
− u0εky

0
εk

� �
dx

= f y0εk

� �
, y0εk

D E
H−1 Ωð Þ;H1

0 Ωð Þ
,

ð129Þ

which holds true for each ε ∈ ð0, ε0� and reflects the fact that
the triplets fðu0εk , y0εk , z0εkÞgk∈ℝ are feasible to the problem
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(32)–(35) for each k ∈ℝ. Then, we deduce from (129) that

∥∇y0εk∥
2
L2 Ωð ÞN ≤

�
z0εk

 
H1

0 Ωð Þ
+ f y0εk

� � 
H−1 Ωð Þ

+ CΩ Ωj j p−2ð Þ/2p u0εk

 
Lp Ωð Þ

�
∇y0εk

 
L2 Ωð ÞN

:

ð130Þ

Hence, estimates (122)–(124) imply that

sup
k∈ℕ

∇y0εk
 

L2 Ωð ÞN
≤

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε0 C1 + ε0C2ð Þ

p
+

ffiffiffiffiffiffiffiffi
2C2

p

+ CΩ Ωj j p−2ð Þ/2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 + δð Þp

α

r #
≕ C∗ < +∞:

ð131Þ

Thus, without loss of generality, we can suppose that (up
to a subsequence)

y0εk ⇀ y0 inH1
0 Ωð Þ, y0εk ⟶ y0 in L2 Ωð Þ, y0εk xð Þ⟶ y0 xð Þ a:e:inΩ:

ð132Þ

Utilizing the pointwise convergence (132)3 and (c)-prop-
erty, we see that f ðy0εkÞ⟶ f ðy0Þ almost everywhere in Ω as
k⟶∞. Let us show that, in fact, we have the strong conver-
gence

f y0εk

� �
⟶ f y0

� �
in L1 Ωð Þas k⟶∞, ð133Þ

and, as a consequence of (127), ξ = f ðy0Þ and f ðy0Þ ∈H−1ð
ΩÞ ∩ L1ðΩÞ.

To this end, we make use of some arguments of the proof
of Theorem 8. With that in mind, for each k ∈ℕ, we make
use of the decomposition y−εk = y+εk − y−εk with

y+εk =max 0,−yεk
n o

∈H1
0 Ωð Þ, y−εk =max 0,−yεk

n o
∈H1

0 Ωð Þ,
ð134Þ

and set TηðyÞðxÞ =
η, if yðxÞ > η,

yðxÞ, if yðxÞ ≤ η:

(
Then, TηðyÞ ∈ L∞ð

ΩÞ ∩H1
0ðΩÞ for all y ∈H1

0ðΩÞ such that y ≥ 0. Using y+ε,k ∈
H1

0ðΩÞ as a test function in (25), we find that

ð
Ω

f yε,k
� �

Tη y+ε,k
� �

dx =
ð
Ω

∇zε,k,∇Tη y+ε,k
� �� �

dx

+
ð
Ω

∇yε,k,∇Tη y+ε,k
� �� �

dx

−
ð
Ω

uε,kTη y+ε,k
� �

dx, ∀η ∈ℕ:

ð135Þ

Since Tηðy+ε,kÞ⟶ y+ε,k in H1
0ðΩÞ as η⟶∞, the limit

passage in (135) as η⟶∞ leads to the relation

ð
Ω

f yεk

� �
y+εk dx =

ð
Ω

∇zεk ,∇y
+
εk

� �
dx +

ð
Ω

∇yεk ,∇y
+
εk

� �
dx

−
ð
Ω

uεky
+
εk
dx:

ð136Þ

From this and the fact that ky+εkkH1
0ðΩÞ ≤ kyεkkH1

0ðΩÞ, we

deduce the estimate

ð
Ω

f yεk

� �
y+εk dx ≤

�
zεk

 
H1

0 Ωð Þ + yεk

 
H1

0 Ωð Þ

+ CΩ Ωj j p−2ð Þ/2p uεk
 

Lp Ωð Þ

�
yεk

 
H1

0 Ωð Þ

≤
by 84ð Þ, 84ð Þ 76ð Þ

C∗

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C1 + ε0C2ð Þ

p
+ C∗

+ CΩ Ωj j p−2ð Þ/2p C1 + δð Þ p
α

	 
1/p
#
:

ð137Þ

Arguing in a similar manner, it can be shown that

ð
Ω

f yεk

� �
y−εk dx ≤ C∗

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C1 + ε0C2ð Þ

p
+ C∗

+ CΩ Ωj j p−2ð Þ/2p C1 + δð Þ p
α

	 
1/p
#
:

ð138Þ

Since y+εk + y−εk = jyεk j, it follows from (137)–(138) that

there exists a positive constant Ĉ, independent of ε and yεk
such that

sup
k∈ℕ

f yεk

� �
yεk

 
L1 Ωð Þ

≤ Ĉ: ð139Þ

In order to prove the strong convergence (133), it
remains to make use of Vitali’s theorem. We fix an arbitrary
ζ > 0 and take m > 0 and τ > 0 such that m > 2Ĉ/ζ, τ = ζ/ð2f
ðmÞÞ. Then, for every measurable set S ⊂Ω with Lebesgue
measure ∣S ∣ <ζ, we have

ð
S
f yεk

� �
dx =

ð
x∈S : yεk xð Þ>mf g

f yεk

� �
dx +

ð
x∈S : yεk xð Þ≤mf g

f yεk

� �
dx

≤
1
m

ð
x∈S : yεk xð Þ>mf g

yεk f yεk

� �
dx +

ð
x∈S : yεk xð Þ≤mf g

f mð Þ dx

≤
1
m

ð
Ω

∣yεk ∣f yεk

� �
dx + f mð Þ∣S∣ ≤

by 91ð Þ Ĉ
m

+ f mð Þ∣S∣ ≤ ζ

2
+
ζ

2
:

ð140Þ
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As a result, we see that the sequence f f ðyεkÞgk∈ℕ is equi-

integrable and, hence, the desired convergence (133) is a
direct consequence of the pointwise convergence f ðy0εkÞ
⟶ f ðy0Þ almost everywhere in Ω and Vitali’s convergence
theorem.

We are now in a position to show that ðu0, y0Þ is a feasible
solution to the original OCP (1)–(4). Indeed, in view of the
initial assumptions, the set U∂ is sequentially closed with
respect to the weak topology of LpðΩÞ. Hence, u0 ∈U∂. It
remains to show that the pair ðu0, y0Þ is related by the inte-
gral identity (8). To this end, we note that ðu0εk , y0εk , z0εkÞ ∈
Λεk

for all k ∈ℝ. Hence, the equality

ð
Ω

∇yε,k,∇φ
� �

+ ∇zε,k,∇φð Þ − uε,kφ
� �

dx

= f yε,k
� �

, φ
� �

H−1 Ωð Þ;H1
0 Ωð Þ,

ð141Þ

holds true for each test function φ ∈ C∞
0 ðΩÞ. As a result,

the limit passage in (141) as k⟶∞ becomes trivial,
and it immediately leads us to the expected integral
identity (8). Thus, combining all properties of the pair
ðu0, y0Þ established here and before, we finally deduce
that ðu0, y0Þ ∈ Ξ.

To conclude the proof, we have to show that ðu0, y0Þ ∈ Ξ
in an optimal pair to the problem (1)–(4). To do so, we
assume the converse, namely, there is a pair ðû, ŷÞ ∈ Ξ such
that Jðû, ŷÞ < Jðu0, y0Þ. Then, the triplet ðû, ŷ, 0Þ is feasible
to the regularized problem ði:e:,ðû, ŷ, 0ÞÞ ∈Λεk

for each k ∈
ℕ. Hence,

J û, ŷð Þ + εk
2

f ŷð Þk k2H−1 Ωð Þ + f ŷð Þk kL1 Ωð Þ
h i

= Jεk û, ŷ, 0ð Þ ≥ inf
u,y,zð Þ∈Λεk

Jεk u, y, zð Þ

= Jεk u0εk , y
0
εk
, z0εk

� �
, ∀k ∈ℕ:

ð142Þ

Therefore, passing in (142) to the limit as k⟶∞ and
using the properties

liminf
k→∞

ð
Ω

y0εk − yd
��� ���2 dx =

by 85ð Þ
ð
Ω

y0 − yd
�� ��2 dx,

liminf
k→∞

ð
Ω

u0εk

��� ���p dx ≥
by 85ð Þ 79ð Þ ð

Ω

u0
�� ��p dx,

lim
k→∞

1
εk

z0εk

 2
H1

0 Ωð Þ

� �
=

by 85ð Þ 79ð Þ 76ð Þ const > 0,

liminf
k→∞

εk
2

f y0εk

� � 2
H−1 Ωð Þ

� �
=

by 85ð Þ 79ð Þ 76ð Þ 81ð Þ 0,

lim
k→∞

εk
2

f y0εk

� � 
L1 Ωð Þ

� �
=

by 85ð Þ 79ð Þ 76ð Þ 81ð Þ 86ð Þ 0,

ð143Þ

we obtain

J û, ŷð Þ ≥ liminf
k→∞

Jεk u0εk , y
0
εk
, z0εk

� �
≥ J u0, y0

� �
+ lim

k→∞

1
εk

z0εk

 2
H1

0 Ωð Þ

� �
≥ J u0, y0

� �
:

ð144Þ

As a result, it leads us to a contradiction. Thus, ðu0, y0Þ
∈ Ξ in an optimal pair to the problem (1)–(4).

To the end of proof, we note if the original OCP admits a
unique solution, then the asymptotic analysis given before
remains valid for each subsequence fðu0εk , y0εk , z0εkÞgk∈ℝ of

the sequence of optimal solutions fðu0ε , y0ε , z0εÞ ∈Λεgε→0.
Therefore, the limits in (125)–(128) do not depend on the
choice of a subsequence, and, hence, ðu0, y0Þ ∈ Ξ is a unique
limit pair for the entire sequence of optimal triplets
fðu0ε , y0εÞgε>o.
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