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This paper is devoted to the study of approximate Lie point symmetries of general autoparallel systems. The significance of such
systems is that they characterize the equations of motion of a Riemannian space under an affine parametrization. In particular,
we formulate the first-order symmetry determining equations based on geometric requirements and stipulate that the
underlying Riemannian space be approximate in nature. Lastly, we exemplify the results by application to some approximate
wave-like manifolds.

1. Introduction

In a n-dimensional Riemannian space, it is a formidable task
to compute the Lie point symmetries of any equation in that
space, and this problem is only exacerbated if such an equa-
tion possesses a small perturbation. In most, if not all cases,
this computation cannot be performed with the aid of soft-
ware programs. It is therefore of great interest to devise an
alternate route to the symmetry vectors. Indeed, one such
approach that has proven effective is to encase the symmetry
determining problem in a geometric setting [1, 2]. The com-
plexity of the computations then decreases dramatically.

In lieu of this, in this paper, we illustrate that the approx-
imate symmetry conditions can be cast into a set of simple
mathematical expressions of a geometric nature. Consider a
C∞ manifold M of dimension n, endowed with a symmetric
connection (the connection needs not be symmetric in
general). The connection defines an autoparallel system
which is a family of curves or paths on the manifold and
where the covariant derivative of the tangent to these curves
is parallel to itself, that is,

∇ _x tð Þ _x tð Þ = ϕ tð Þ _x tð Þ, ð1Þ

where · denotes the derivative with respect to the parameter t
along the curves. In a local coordinate system, equation (1) is

a system of second-order ordinary differential equations (lin-
ear in the highest derivative)

€xi tð Þ + Γi
jk x tð Þ _xj tð Þ _xk tð Þ = tð Þ _xi tð Þ
� �

, ð2Þ

where Γi
jk = ð1/2Þgilgjl,k + gkl,j − gjk,l. An additional point to

note is that if it vanishes, the autoparallel system is affinely
parameterized with the so-called affine parameter. In this
case, the autoparallels are the geodesics of the Riemannian
space. Since the geodesics are dependent on the metric of
the space, some far reaching results have been established
in the context of Lie point symmetries. Studies by Aminova
[3, 4] illustrated that Lie symmetries provide the projective
algebra of a space if the Cartan parametrization of the
geodesics is selected. Other notable research is that contained
in [5, 6] and of course the related works by Katzin and Levine
[7]. It is therefore judicious to expect that the approximate
Lie symmetries of the system of geodesics of a perturbed met-
ric will be closely related to the approximate collineations of
the metric. We aim to apply the results of approximate Lie
point symmetries to perturbative autoparallels and generalize
it in an approximate Riemannian space. Essentially, we
will establish a geometric way of dealing with the autopar-
allel symmetry problem for the first-order perturbative
Riemannian spaces. In a series of papers, we have explored
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connections between geometry and perturbations and
showed how the inherited perturbations affect geometric
symmetry conditions of the induced partial differential equa-
tions [8–11]. We showed that if a Riemannian metric con-
tains small perturbations, any partial differential equation
constructed on such a space will inherit the perturbations.
We show here that this extends to ordinary differential equa-
tions, in particular, autoparallel systems and its subclass of
homogeneous ordinary differential equations. While many
authors have studied approximate symmetries of geodesic
equations, none have explored how to generalize the con-
struction of these symmetries, hence the novelty of this work.
Ultimately, we stipulate a set of simple geometric formulae
that, when solved, provide the approximate symmetries for
the approximate autoparallels and geodesic equations of
motion.

The paper is organized as follows. In Section 2, we discuss
some of the existing theories on approximate symmetries of
differential equations based on the work [12]. Section 3 gives
the approximate nature of autoparallel systems in our work.
Section 4 is the main section that shows the derivation of
the approximate Lie point symmetry conditions of autoparal-
lel systems in general form. Lastly, in Section 5, we present
some examples to showcase the applicability of our results.
In Section 6, we conclude.

2. Approximate Lie Symmetries

In the text, we consider a first-order approximation denoted
by the perturbation parameter. An approximate equation

F z, εð Þ ≡ F0 zð Þ + εF1 zð Þ ≈ 0, z = z1,⋯, zN ð3Þ

is approximately invariant with respect to the one-parameter
approximate transformation group

�zi ≈ h z, α, εð Þ ≡ hi0 z, αð Þ + εhi1 z, αð Þ, i = 1,⋯,N , ð4Þ

(“α, ε” are two infinitesimal parameters) with the gen-
erator

X = X0 + εX1 +O ε2
� �

, ð5Þ

if and only if

X0F0 zð Þ + ε X1F0 zð Þ + X0F1 zð Þð Þð Þequation 3ð Þ =O εð Þ: ð6Þ

The determining equation (6) can be written as follows:

X0F0 zð Þ = λ zð ÞF0 zð Þ, ð7Þ

X1F0 zð Þ + X0F1 zð Þ = λ zð ÞF1 zð Þ: ð8Þ
The factor λðzÞ is determined by (7) and then substituted

into (8), where the latter equation holds for F0ðzÞ = 0: Alter-
natively, one may evaluate (7) to obtain the exact symmetries,

then find an auxiliary functionH by virtue of (7), (8), and (3),
that is,

H = 1
ε
X0 F0 zð Þ + εF1 zð Þð ÞF0 zð Þ+εF1 zð Þ=0: ð9Þ

Thereafter, X1 is calculated by solving the determining
equation for deformations

X1F0 zð ÞjF0 zð Þ=0 +H = 0: ð10Þ

We remark that there exists a secondary approach to deal-
ing with symmetries of differential equations that admit small
perturbations, where dependent variables are first expanded in
a perturbation series and thereafter re-substituted into a given
equation [13].

3. The Approximate Autoparallel System

Below, we consider the approximate autoparallels, not neces-
sarily under the affine parameterization, of a symmetric con-
nection. The construction of an approximate autoparallel
system requires an approximate metric perturbed to the first
order (the perturbation order may be higher, but this will not
be considered here). Hence, consider the manifold M of
dimension n ≥ 3, endowed with a (pseudo) Riemannian met-
ric gij. The metric is decomposed into a sum of an exact and
an approximate metric, according to the perturbation param-
eter ε, viz,

gij = σij + εγij +Oε2, ð11Þ

with inverse

�gij = �σij + ε�γij +O ε2
� �

: ð12Þ

Thus, in the autoparallel system equation (1), we let

Γi
jk = Ai

jk + εBi
jk + εCi

jk

� �
, ð13Þ

where Ai
jk = ð1/2Þ�σilσjl,k + σkl,j − σjk,l, Bi

jk = ð1/2Þ�γilðσjl,k +
σkl,j − σjk,lÞ, and Ci

jk = ð1/2Þ�σilðγjl,k + γkl,j − γjk,lÞ.
A perturbed autoparallel equation is then of the form (3),

where the exact or unperturbed part is

F0 = €xi tð Þ + Ai
jk x tð Þð Þ _xj tð Þ _xk tð Þ − ϕ tð Þ _xi tð Þ ð14Þ

and the approximate constituent is

F1 = Bi
jk x tð Þð Þ + Ci

jk x tð Þð Þ
� �

_xj tð Þ _xk tð Þ: ð15Þ

4. Generalized Formulae for the
Determining Conditions

Next, we construct general symmetry conditions for the
approximate Lie symmetries of equation (3) with (14) and
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(15). Hence, suppose that the symmetry generator (5) is of
the form

X0 = ξ0 t, x, _xð Þ∂t + ηi0 t, x, _xð Þ∂xi , ð16Þ

X1 = ξ1 t, x, _xð Þ∂t + ηi1 t, x, _xð Þ∂xi : ð17Þ
The exact Lie point symmetries (16) of the equation (14)

are found in the standard way. In fact, a detailed study of the
exact symmetries of the autoparallels was completed in [14].
One applies condition (7),

X0 €xi tð Þ + Ai
jk x tð Þð Þ _xj tð Þ _xk tð Þ − ϕ tð Þ _xi tð Þ

� �
= λ €xi tð Þ + Ai

jk x tð Þð Þ _xj tð Þ _xk tð Þ − tð Þ _xi tð Þ
� �

,
ð18Þ

where it is necessary to prolong X0.
The first prolongation is

X 1½ �
0 = X0 +

d
dt

ηi0 − _xi
d
dt

ξ0

� �
∂ _xi , ð19Þ

where

d
dt

ηi0 − _xi
d
dt

ξ0 = ηi0,t + ηi0,j _x
j − ξ0,t _x

i − ξ0,j _x
i _xj, ð20Þ

while a second-order prolongation is

X 2½ �
0 = X 1½ �

0 + d
dt

_ηi0 − _xi _ξ0
� �

− €xi
d
dt

ξ0

� �
∂€xi , ð21Þ

d
dt

_ηi0 − _xi _ξ0
� �

− €xi
d
dt

_ξ0 = _ηi0,tt + 2 _ηi0,t j _xj + _ηi0,kj _x
k _xj − _ξ0,tt _x

i

− 2 _ξ0,t j _xj _xi − _ξ0,jk _x
j _xi _xk + _ηi0,j€x

j

− 2 _ξ0,t€xi − _ξ0,j _x
i€xj − 2 _ξ0,j€xi _xj:

ð22Þ
A solution of condition (18) provides the symmetry coef-

ficients ξ0ðt, x, _xÞ, ηi0ðt, x, _xÞ of (16) and the factor

λ = − _ξ0: ð23Þ

It is then necessary to find the symmetry coefficients
ξ1ðt, x, _xÞ, ηi1ðt, x, _xÞ to obtain (17) explicitly.

The approximate Lie point symmetries of (3) are found
by condition (8)

X0 Bi
jk x tð Þð Þ + Ci

jk x tð Þð Þ
� �

_xj tð Þ _xk tð Þ
� �

+ X1 €xi tð Þ + Ai
jk x tð Þð Þ _xj tð Þ _xk tð Þ − ϕ tð Þ _xi tð Þ

� �
= λ Bi

jk x tð Þð Þ + Ci
jk x tð Þð Þ

� �
_xj tð Þ _x tð Þ

� �
,

ð24Þ

where again it is necessary to prolong X0 and X1 as well. The
prolongation formulae are analogous to (19) and (21), but
with the “0” subscript replaced with “1.”

Omitting the substitution of the prolongation formulae
into (24) and its subsequent lengthy expansion, at this stage,
we collect all salient terms of the same order in _xi in equation
(24) to find the following determining system for (17).

_xð Þ0 terms : ηi1,tt + ηi1,tϕ + ηi0,tt = 0, ð25Þ

_x1
� �

terms : ξ0,ttδij − 2 ηi0,t j + ηk0,tB
i
kjð Þ + ηk0,tC

i
kjð Þ

� �
+ ξ1,ttδ

i
j − ξ1ϕ,tδ

i
j − 2 ηi1,t j + ηk1,tA

i
kjð Þ

� �
− ϕξ1,t + ϕ,kη

k
1

� �
δij = 0,

ð26Þ

_x2
� �

terms : −ηi0, jkð Þ − ηh0B
i
jkð Þ,h − ηh0,kB

i
hj − ηh0,kB

i
jh + ηi0,hB

h
jk

� �
+ 2ξ0,t jδ

i
kð Þ − ξ0B

i
kjð Þ,t + −ηh0C

i
jkð Þ,h − ηh0,kC

i
hj

�
− ηh0,kC

i
jh + ηi0,hC

h
jk

�
− ξ0C

i
kjð Þ,t

+ −ηi1, jkð Þ − ηh1A
i
jkð Þ,h − ηh1,kA

i
hj

�
− ηh1,kA

i
jh + ηi1,hA

h
jk

�
+ 2ξ1,t jδ

i
kð Þ

− 2ϕξ1, jδ
i
kð Þ − ξ1A

i
kjð Þ,t = 0:

ð27Þ
We may simplify the expression (27) to

Lη1A
i
jkð Þ + Lη0B

i
jkð Þ + Lη0C

i
jkð Þ = −2ξ1,t jð δ

i
kÞ + 2ϕξ1, jð δikÞ

+ ξ1A
i
kjð Þ,t − ηi0, jkð Þ:

ð28Þ

_x3
� �

terms : ξ1, jkð − ξ1,∣s∣A
s
jk

� �
δihÞ − ξ0, sj jB

s
jkδ

i
hÞ − ξ0, sj jC

s
jkδ

i
hÞ = 0:

ð29Þ
Once a specific metric is identified, the symmetry condi-

tions (25)–(29) are solved to obtain X1.
Finally, we remark that if one wanted the auxiliary func-

tion H, it is in a general form

H = ε−1 ξ0∂t + ηi0∂xi + ηi0,t + ηi0,j _x
j − ξ0,t _x

i − ξ0,j _x
i _xj

� �
∂ _xi

�h
+ ηi0,tt + 2ηi0,t j _xj + ηi0,kj _x

k _xj − ξ0,tt _x
i − 2ξ0,t j _xj _xi

�
− ξ0,jk _x

j _xi _xk + ηi0,j€x
j − 2ξ0,t€xi − ξ0,j _x

i€xj − 2ξ0,j€xi _xj
�
∂ _xi

�
� €xi tð Þ + Γi

jk x tð Þð Þ _xj tð Þ _xk tð Þ − ϕ tð Þ _xi tð Þ
� �i

,

mod F0 + F1 = 0:
ð30Þ

An important conclusion here is that the approximate Lie
symmetry vector of perturbed spaces is easily found from the
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solution of geometric equations. Next, we demonstrate the
application of the results in various important cases.

5. Applications: The Affine Space

The most valuable application of the above formulae is the
affine parametrization with ϕðtÞ = 0, that is, the equations
of motion. We compute the approximate Lie symmetry vec-
tors for the case of affine parametrization and the assumption
that Γi

jk,t = 0, since the metric does not depend on the affine
parameter.

It is well known that the exact symmetries for geodesic
equations are limited to the following form:

X0 = Rk tð ÞSk xð Þ + T tð Þ
� �

∂t + Pi xð Þt +Qi xð Þ� �
∂xi , ð31Þ

PiðxÞ,QiðxÞ are arbitrary differentiable vector fields,
RkðtÞ, TðtÞ are arbitrary functions of the affine parameter
t, and SkðxÞ is an arbitrary function, but further details
can be mentioned if one makes assumptions about
whether the metric admits gradient Killing vectors or not
[14]. Additionally, the RJðtÞSJðxÞ + TðtÞ is at most a function
of t2. The exact symmetry vectors in each case considered
below are easily identifiable. On the other hand, the approx-
imate vectors are more involved but their determination is
facilitated by the symmetry determining conditions estab-
lished above.

5.1. Case A: Perturbed Cylindrically Symmetric Static Space-
Time. A perturbative cylindrically symmetric static metric
is [15]

ds2 = eρ
2/R2

dt2 − dρ2 − eρ
3/R3

p2dϕ2 + dz2
� �

+ 2tε
T

eρ
2/R2

dt2 − eρ
3/R3

dϕ2 + dz2
� �� �

,
ð32Þ

where p is a constant and R is a constant of dimensions of ρ.
The approximate geodesic equations of the form (3) are:

€z = −
_z

R3T
2R3ε_t + 3Tx2 _x
� �

,

€t = 1
R2T

eρ
3/R3

R2εp2 _ϕ
2 + εeρ

2/R2
_t2R2 + eρ

3/R3
R2ε _z2

�
+ 2eρ2/R2

T _tρ _ρ
�

e−ρ
2/R2

� �
,

€ρ = 1
2

ρ

R3T
−6eρ3/R3

εp2tρ _ϕ
2 − 3eρ3/R3

Tp2ρ _ϕ
2 + 4eρ2/R2

aεt_t2
�

− 6eρ3/R3
εtρ _z2 + 2eρ2/R2

TR_t2 − 3eρ3/R3
Tρ _z2

�
,

€ϕ =
_ϕ

R3T
2R3ε_t + 3Tx2 _x
� �

:

ð33Þ

Application of (25)–(29) and their solution provides the
following 7 (exact and approximate) symmetries:

X1 = ∂s,

X2 = s∂s,

X3 = ε∂t ,

X4 = ∂ϕ,

X5 = ∂z ,

X6 = −z∂ϕ + p2ϕ∂z ,

X7 = 2∂t −
ε

T2R3 t∂t + ϕ∂ϕ + z∂z ,

ð34Þ

where, here, s denotes the affine parameter.

5.2. Case B: Perturbed Plane Symmetric Statics Pace-Time.
The metric in this case is

ds2 = e2x/adt2 − dx2 − e2x
2/a2 dy2 + dz2
� �

+ 2tϵ
T

e2x/adt2 − e2x
2/a2 dy2 + dz2
� �� �

,
ð35Þ

where a is a constant and T is a constant of dimensions of
t [16].

The approximate geodesic equation (1) is

€x = −
_t2

a
e2 x/að Þ + 2 x _y

2

a2
e2 x2/a2ð Þ

−
εt
T

2
_t2

a
e2 x/að Þ − 4 x _y

2

a2
e2 x2/a2ð Þ

 !
,

€y = −
1
2 e

−2 x2/a2ð Þ 4 ε _y
_t

T
e2 x2/a2ð Þ + 8 x _y _x

a2
e2 x2/a2ð Þ

� �
,

€z = −
1
2 e

−2 x2/a2ð Þ 4 ε _z
_t

T
e2 x2/a2ð Þ + 8 x _z _x

a2
e2 x2/a2ð Þ

� �
,

€t = 1
2 e

−2 x/að Þ 2 ε

T
e2 x/að Þ _t2 − e2 x2/a2ð Þ _y2
� ��

− 4 ε
_t2

T
e2 x/að Þ − 4

_t _x
a
e2 x/að Þ

!
:

ð36Þ

The solution of conditions (25)–(29) provide the follow-
ing 7 (exact and approximate) symmetries

Y1 = ∂y,

Y2 = X1,

Y3 = X2,

Y4 = X3,
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Y5 = ∂z ,

Y6 = y∂z − z∂y,

Y7 = ∂t −
ε

T2a2
t∂t + y∂y + z∂z: ð37Þ

6. Concluding Remarks

The objective of this work was to formalize the computation
of approximate Lie point symmetries of autoparallel systems
under a generic Riemannian space up to the first order in the
perturbation parameter ε. To facilitate this, we set up explicit
geometric equations that, when solved, provide the approxi-
mate symmetries of the autoparallel systems. These equa-
tions can be extended to the affinely parametrized geodesics
which are a special case of the autoparallel system. We note
that the application of equations (25)–(29) to the existing
results in the literature [17–19] provides consistent results.
To showcase the applicability of our formulae, we considered
specific perturbed metrics and the symmetry conditions were
applied to the geodesics of an approximate Riemannian space
to find the approximate Lie point symmetry vectors. It is also
possible to extend this analysis to the case of Noether sym-
metries for the Lagrangian function of the geodesic equation
[20] and also the case of quadratic symmetries [21]. In a
forthcoming work, we shall explore the higher-order approx-
imate symmetries of the geodesic Lagrangian function.
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