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The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions. In this
paper, inspired by the concept of θ‐ϕ-contraction in metric spaces, introduced by Zheng et al., we present the notion of θ‐ϕ
-contraction in b-rectangular metric spaces and study the existence and uniqueness of a fixed point for the mappings in this space.
Our results improve many existing results.

1. Introduction

The Banach contraction principle is a fundamental result in
fixed point theory [1]. Due to its importance and simplicity,
several authors have obtained many interesting extensions and
generalizations of the Banach contraction principle (see [2–4]).

Many generalizations of the concept of metric spaces
have been defined, and some fixed point theorems were
proven in these spaces. In particular, b-metric spaces were
introduced by Bakhtin [5] and Czerwik [6] as a generaliza-
tion of metric spaces. Many mathematicians worked on this
interesting space. For more, the reader can refer to [7–10].

In 2000, generalized metric spaces were introduced by
Branciari [11], in such a way that triangle inequality is
replaced by the quadrilateral inequality dðx, yÞ ≤ dðx, zÞ + d
ðz, uÞ + dðu, yÞ for all pairwise distinct points x, y, z, and u.
Any metric space is a generalizedmetric space, but in general,
generalized metric space might not be a metric space. Vari-
ous fixed point results were established on such spaces (see
[12–17] and references therein).

Recently, George et al. [10] announced the notion of b
-rectangular metric space; many authors initiated and stud-
ied many existing fixed point theorems in such spaces (see
[18–23]).

Very recently, Zheng et al. [24] introduced a new concept
of θ‐ϕ-contractions and established some fixed point results
for such mappings in complete metric spaces and generalized
the results of Brower and Kannan. For more works related to
theta-contractions, see [25–27].

In this paper, we introduce a new notion of generalized
θ‐ϕ-contractions and establish some fixed point results for
such mappings in complete b-rectangular metric spaces.
The results presented in the paper extend the corresponding
results of Kannan [3] and Reich [4] on b-rectangular metric
spaces. Also, we derive some useful corollaries of these
results.

2. Preliminaries

Definition 1 (see [7]). Let X be a nonempty set and s ≥ 1 be a
given real number and let d : X × X → ½0,+∞½ be a mapping
such that for all x, y ∈ X and all distinct points u, v ∈ X, each
distinct from x and y: (1) dðx, yÞ = 0, if only if x = y; (2) dðx
, yÞ = dðy, xÞ; and (3) dðx, yÞ ≤ s½dðx, uÞ + dðu, vÞ + dðv, yÞ�
ðb − rectangular inequalityÞ.

Then ðX, dÞ is called a b-rectangular metric space.
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Example 2 (see [19]). Let X = A ∪ B, where A = f1/n : n ∈ f2
, 3, 4, 5, 6, 7gg and B = ½1, 2�. Define d : X × X→ ½0,+∞½ as
follows:

d x, yð Þ = d y, xð Þ for all x, y ∈ X,
d x, yð Þ = 0⇔ y = x,
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d x, yð Þ = ∣x − y ∣ð Þ2 otherwise:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

Then ðX, dÞ is a b-rectangular metric space with coeffi-
cient s = 3.

Lemma 3 (see [20]). Let ðX, dÞ be a b-rectangular metric
space.

(a) Suppose that sequences fxng and fyng in X are such
that xn → x and yn → y as n→∞, with x ≠ y,xn ≠ x,
and yn ≠ y for all n ∈ℕ: Then, we have ð1/sÞdðx, yÞ
≤ lim

n→∞
inf dðxn, ynÞ ≤ lim

n→∞
sup dðxn, ynÞ ≤ sdðx, yÞ

(b) if y ∈ X and fxng is a Cauchy sequence in X with xn
≠ xm for any m, n ∈ℕ,m ≠ n, converging to x ≠ y,
then ð1/sÞdðx, yÞ ≤ lim

n→∞
inf dðxn, yÞ ≤ lim

n→∞
sup dðxn

, yÞ ≤ sdðx, yÞ, for all x ∈ X

Lemma 4. Let ðX, dÞ be a b-rectangular metric space and let
fxng be a sequence in X such that

lim
n→∞

d xn, xn+1ð Þ = lim
n→∞

d xn, xn+2ð Þ = 0: ð2Þ

If fxng is not a Cauchy sequence, then there exist ε > 0 and
two sequences fmðkÞg and fnðkÞg of positive integers such
that

ε ≤ lim
k→∞

inf d xm kð Þ
, xn kð Þ

� �
≤ lim

k→∞
sup d xm kð Þ

, xn kð Þ

� �
≤ sε,

ε ≤ lim
k→∞

inf d xn kð Þ
, xm kð Þ+1

� �
≤ lim

k→∞
sup d xn kð Þ

, xm kð Þ+1

� �
≤ sε,

ε ≤ lim
k→∞

inf d xm kð Þ
, xn kð Þ+1

� �
≤ lim

k→∞
sup d xm kð Þ

, xn kð Þ+1

� �
≤ sε,

ε

s
≤ lim

k→∞
inf d xm kð Þ+1

, xn kð Þ+1

� �
≤ lim

k→∞
sup d xm kð Þ+1

, xn kð Þ+1

� �
≤ s2ε:

ð3Þ

Proof. If fxng is not a Cauchy sequence, then there exist ε > 0
and two sequences fmðkÞg and fnðkÞg of positive integers
such that

m kð Þ > n kð Þ > k, ε ≤ d xm kð Þ
, xn kð Þ

� �
and d xm kð Þ−1

, xn kð Þ

� �
< ε,

ð4Þ

for all positive integers k. By the b-rectangular inequality, we
have

ε ≤ d xm kð Þ
, xn kð Þ

� �
≤ s d xm kð Þ

, xm kð Þ+1

� �h
+ d xm kð Þ+1

, xm kð Þ−1

� �
+ d xm kð Þ−1

, xn kð Þ

� �i
:

ð5Þ

Taking the upper and lower limits as k→∞ in (5) and
using (2) (4), we obtain

ε ≤ lim
k→∞

inf d xm kð Þ
, xn kð Þ

� �
≤ lim

k→∞
sup d xm kð Þ

, xn kð Þ

� �
≤ sε:

ð6Þ

Using the b-rectangular inequality again, we have

ε ≤ d xn kð Þ
, xm kð Þ+1

� �
≤ s d xn kð Þ

, xm kð Þ−1

� �h
+ d xm kð Þ−1

, xm kð Þ

� �
+ d xm kð Þ

, xm kð Þ+1

� �i
:

ð7Þ

Taking the upper and lower limits as k→∞ in (7) and
using (2) and (4), we obtain

ε ≤ lim
k→∞

inf d xn kð Þ
, xm kð Þ+1

� �
≤ lim

k→∞
sup d xn kð Þ

, xm kð Þ+1

� �
≤ sε:

ð8Þ

Using the b-rectangular inequality again, we have

ε ≤ d xm kð Þ
, xn kð Þ+1

� �
≤ s d xm kð Þ

, xm kð Þ−1

� �h
+ d xm kð Þ−1

, xn kð Þ

� �
+ d xn kð Þ

, xn kð Þ+1

� �i
:

ð9Þ

Taking the upper and lower limits as k→∞ in (9) and
using (2) and (4), we obtain

ε ≤ lim
k→∞

inf d xm kð Þ
, xn kð Þ+1

� �
≤ lim

k→∞
sup d xm kð Þ

, xn kð Þ+1

� �
≤ sε:

ð10Þ

Using the b-rectangular inequality again, we have

d xm kð Þ+1
, xn kð Þ+1

� �
≤ s d xm kð Þ+1

, xm kð Þ

� �
+ d xm kð Þ

, xn kð Þ

� �
+ d xn kð Þ

, xn kð Þ+1

� �h i
,

ð11Þ

ε ≤ d xm kð Þ
, xn kð Þ

� �
≤ s d xm kð Þ

, xm kð Þ+1

� �h
+ d xm kð Þ+1

, xn kð Þ+1

� �
+ d xn kð Þ+1

, xn kð Þ

� �i
:

ð12Þ
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Taking the upper and lower limits as k→∞ in (11) and
(12) and using (2) (6), we obtain

ε

s
≤ lim

k→∞
inf d xm kð Þ+1

, xn kð Þ+1

� �
≤ lim

k→∞
sup d xm kð Þ+1

, xn kð Þ+1

� �
≤ s2ε:

ð13Þ

The following definition was given by Ding et al. in [13].

Definition 5 (see [13]). Let Θ be the family of all functions
θ :�0,+∞½→ �1,+∞½ such that ½ðθ1Þ�θ is increasing; ½ðθ2Þ�
for each sequence ðxnÞ ⊂ �0,+∞½; lim

n→0
xn = 0 if and only if

lim
n→∞

θðxnÞ = 1; and ½ðθ3Þ�θ is continuous.

In [21] Radenovic et al. presented the concept of θ‐ϕ
-contractions on metric spaces.

Definition 6 (see [21]). Let Φ be the family of all functions
ϕ : ½1,+∞½→ ½1,+∞½, such that ½ðϕ1Þ�ϕ is nondecreasing; ½ð
ϕ2Þ� for each t ∈ �1,+∞½, limn→∞ϕnðtÞ = 1 ; and ½ðϕ3Þ�ϕ is
continuous.

Lemma 7 (see [21]). If ϕ ∈Φ, then ϕð1Þ = 1, and ϕðtÞ < t for
all t ∈ �1,∞½.

Definition 8 (see [21]). Let ðX, dÞ be a metric space and T
: X→ X be a mapping.

T is said to be a θ‐ϕ-contraction if there exist θ ∈Θ and
ϕ ∈Φ such that for any x, y ∈ X,

d Tx, Tyð Þ > 0⇒ θ d Tx, Tyð Þ½ � ≤ ϕ θ N x, yð Þ½ �ð Þ, ð14Þ

where

N x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þf g: ð15Þ

In [27], Zheng et al. proved the following nice result.

Theorem 9 (see [21]). Let ðX, dÞ be a complete metric space
and let T : X → X be a θ‐ϕ -contraction. Then, T has a unique
fixed point.

3. Main Result

In this paper, using the idea introduced by Zheng et al., we
present the concept θ‐ϕ-contraction in b-rectangular metric
spaces, and we prove some fixed point results for such spaces.

Definition 10. Let ðX, dÞ be a b-rectangular metric space with
parameter s > 1 space and T : X → X be a mapping.

(1) T is said to be a θ-contraction if there exist θ ∈Θ and
r ∈ �0, 1½ such that

d Tx, Tyð Þ > 0⇒ θ s2d Tx, Tyð Þ� �
≤ θ M x, yð Þ½ �ð Þr ,

ð16Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g: ð17Þ

(2) T is said to be a θ‐ϕ-contraction if there exist θ ∈Θ
and ϕ ∈Φ such that

d Tx, Tyð Þ > 0⇒ θ s2d Tx, Tyð Þ� �
≤ ϕ θ M x, yð Þð Þ½ �,

ð18Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g: ð19Þ

(3) T is said to be a θ‐ϕ-Kannan-type contraction if there
exist θ ∈Θ and ϕ ∈Φ such that dðTx, TyÞ > 0, we
have

θ s2d Tx, Tyð Þ� �
≤ φ θ

d x, Txð Þ + d y, Tyð Þ
2

� �� 	
: ð20Þ

(4) T is said to be a θ‐ϕ-Reich-type contraction if there
exist θ ∈Θ and ϕ ∈Φ such that dðTx, TyÞ > 0, we
have

θ s2d Tx, Tyð Þ� �
≤ ϕ θ

d x, yð Þ + d x, Txð Þ + d y, Tyð Þ
3

� �� 	
:

ð21Þ

Theorem 11. Let ðX, dÞ be a complete b-rectangular metric
space and let T : X→ X be an θ -contraction, i.e., there exist
θ ∈Θ and r ∈ �0, 1½ such that for any x, y ∈ X, we have

d Tx, Tyð Þ > 0⇒ θ s2d Tx, Tyð Þ� �
≤ θ M x, yð Þ½ �ð Þr: ð22Þ

Then, T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X and define a
sequence fxng by

xn+1 = Txn = Tn+1x0, ð23Þ
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for all n ∈ℕ: If there exists n0 ∈ℕ such that dðxn0 , xn0+1Þ = 0,
then the proof is finished.

We can suppose that dðxn, xn+1Þ > 0 for all n ∈ℕ:
Substituting x = xn−1 and y = xn, from (22), for all n ∈ℕ,

we have

θ d xn, xn+1ð Þ½ � ≤ θ s2d xn, xn+1ð Þ� �
≤ θ M xn−1, xnð Þð Þ½ �r , ∀n ∈ℕ,

ð24Þ

where

M xn−1, xnð Þ =max d xn−1, xnð Þð , d xn−1, xnð Þ, d xn, xn+1ð Þ, d xn+1, xn+1ð Þ
=max d xn−1, xnð Þð , d xn, xn+1ð Þg:

ð25Þ

If Mðxn−1, xnÞ = dðxn, xn+1Þ, by (24), we have

θ d xn, xn+1ð Þð Þ ≤ θ d xn, xn+1ð Þð Þð Þr < θ d xn, xn+1ð Þð Þ, ð26Þ

which is a contradiction. Hence, Mðxn−1, xnÞ = dðxn−1, xnÞ:
Thus,

θ d xn, xn+1ð Þð Þ ≤ θ d xn−1, xnð Þð Þð Þr: ð27Þ

Repeating this step, we conclude that

θ d xn, xn+1ð Þð Þ ≤ θ d xn−1, xnð Þð Þð Þr

≤ θ d xn−2, xn−1ð Þð Þð Þr2

≤⋯≤ θ d x0, x1ð Þð Þrn :
ð28Þ

From (27) and using ðθ1Þ, we get

d xn, xn+1ð Þ < d xn−1, xnð Þ: ð29Þ

Therefore, fdðxn,xn+1Þgn∈ℕ is a monotone strictly
decreasing sequence of nonnegative real numbers. Conse-
quently, there exists α ≥ 0 such that

lim
n→∞

d xn+1,xnð Þ  = α: ð30Þ

Now, we claim that α = 0. Arguing by contradiction, we
assume that α > 0: Since fdðxn,xn+1Þgn∈ℕ is a nonnegative
decreasing sequence, then we have

d xn,xn+1ð Þ ≥ α ∀n ∈ℕ: ð31Þ

By property of θ, we get

1 < θ αð Þ ≤ θ d x0, x1ð Þð Þrn : ð32Þ

By letting n→∞ in inequality (32), we obtain

1 < θ αð Þ ≤ 1: ð33Þ

It is a contradiction. Therefore,

lim
n→∞

d xn,xn+1ð Þ = 0: ð34Þ

Next, we shall prove that

lim
n→∞

d xn, xn+2ð Þ = 0: ð35Þ

We assume that xn ≠ xm for every n,m ∈ℕ, n ≠m.
Indeed, suppose that xn = xm for some n =m + k with k > 0
and using (29), we have

d xm, xm+1ð Þ = d xn, xn+1ð Þ < d xn−1, xnð Þ: ð36Þ

Continuing this process, we can that

d xm, xn+1ð Þ = d xn, xn+1ð Þ < d xm, xm+1ð Þ: ð37Þ

It is a contradiction. Therefore, dðxn, xmÞ > 0 for every n
,m ∈ℕ, n ≠m:

Applying (22) with x = xn−1 and y = xn+1, we have

θ d xn, xn+2ð Þ½ � = θ d Txn−1, Txn+1ð Þ½ �
≤ θ s2d Txn−1, Txn+1ð Þ� �
≤ θ M xn−1, xn+1ð Þð Þ½ �r ,

ð38Þ

where

M xn−1, xn+1ð Þ =max d xn−1, xn+1ð Þ, d xn−1, xnð Þ, d xn+1, xn+2ð Þ, d xn+1, xnð Þf g
=max d xn−1, xn+1ð Þ, d xn−1, xnð Þf g:

ð39Þ

So, we get

θ d xn, xn+2ð Þð Þ ≤ θ max d xn−1, xnð Þ, d xn−1, xn+1ð Þf gð Þ½ �r:
ð40Þ

Take an = dðxn, xn+2Þ and bn = dðxn, xn+1Þ: Thus, by (40),
one can write

θ anð Þ ≤ θ max an−1, bn−1ð Þð Þ½ �r: ð41Þ

By ðθ1Þ, we get

an <max an−1, bn−1f g: ð42Þ

By (36), we have

bn ≤ bn−1 ≤max an−1, bn−1f g: ð43Þ

It implies that

max an, bnf g ≤max an−1, bn−1f g, ∀n ∈ℕ: ð44Þ

Therefore, the sequence max fan−1, bn−1gn∈ℕ is a non-
negative decreasing sequence of real numbers. Thus, there
exists λ ≥ 0 such that
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lim
n→∞

max an, bnf g = λ: ð45Þ

By (34) assume that λ > 0, we have

λ = lim
n→∞

sup an = lim
n→∞

supmax an, bnf g = lim
n→∞

max an, bnf g:
ð46Þ

Taking the lim supn →∞ in (40) and using the property
of θ, we obtain

θ lim
n→∞

sup an
� �

≤ θ lim
n→∞

max an−1, bn−1f g
� �r

< θ lim
n→∞

max an−1, bn−1f g
� �

:
ð47Þ

Therefore,

θ λð Þ < θ λð Þ: ð48Þ

By ðθ1Þ, we get

λ < λ: ð49Þ

It is a contradiction. Therefore,

lim
n→∞

d xn,xn+2ð Þ = 0: ð50Þ

Next, we shall prove that fxngn∈ℕ is a Cauchy sequence,
i.e., limn→∞dðxn,xmÞ = 0, for all n,m ∈ℕ. Suppose to the
contrary. By Lemma 4 Then, there is an ε>0 such that for
an integer k there exists two sequences fnðkÞg and fmðkÞg
such that [i)] ε ≤ limk→∞ inf dðxmðkÞ , xnðkÞ Þ ≤ limk→∞ sup dð
xmðkÞ , xnðkÞ Þ ≤ sε, [ii)] ε ≤ limk→∞ inf dðxnðkÞ , xmðkÞ+1Þ ≤ limk→∞

sup dðxnðkÞ , xmðkÞ+1Þ ≤ sε, [iii)] ε ≤ limk→∞ inf dðxmðkÞ , xnðkÞ+1Þ
≤ limk→∞ sup dðxmðkÞ , xnðkÞ+1Þ ≤ sε, and [vi)] ε/s ≤ limk→∞

inf dðxmðkÞ+1 , xnðkÞ+1Þ ≤ limk→∞ sup dðxmðkÞ+1 , xnðkÞ+1Þ ≤ s2ε:

Now, using (i), (ii), and (34), we conclude that

lim
k→∞

M xm kð Þ
, xn kð Þ

� �
= lim

k→∞
max d xm kð Þ

, xn kð Þ

� �
, d xm kð Þ

, xm kð Þ+1
� �

, d
n

� xn kð Þ
, xn kð Þ+1

� �
, d xn kð Þ

, xm kð Þ+1

� �o
≤ sε:

ð51Þ

Now, applying (22) with x = xmðkÞ and y = xnðkÞ , we obtain

θ s2d xm kð Þ+1
, xn kð Þ+1

� �h i
≤ θ M xm kð Þ

, xn kð Þ

� �� �h ir
: ð52Þ

Letting k→∞ the above inequality and using ðθ3Þ, (51)
and (iv), we obtain

θ
ε

s
s2

� �
= θ εsð Þ ≤ θ s2 lim

k→∞
d xm kð Þ+1

, xn kð Þ+1

� �� �

≤ θ lim
k→∞

M xm kð Þ
, xn kð Þ

� �� �� 	r
:

ð53Þ

Therefore,

θ sεð Þ ≤ θ sεð Þ½ �r < θ sεð Þ: ð54Þ

Since θ is increasing, we get

sε < sε, ð55Þ

which is a contradiction. Then,

lim
n,m→∞

d xm, xnð Þ = 0: ð56Þ

Hence, fxng is a Cauchy sequence in X. By completeness
of ðX, dÞ, there exists z ∈ X such that

lim
n→∞

d xn, zð Þ = 0: ð57Þ

Now, we show that dðTz, zÞ = 0; arguing by contradic-
tion, we assume that

d Tz, zð Þ > 0: ð58Þ

Since xn → z as n→∞ for all n ∈N, then from Lemma 3,
we conclude that

1
s
d z, Tzð Þ ≤ lim

n→∞
sup d Txn, Tzð Þ ≤ sd z, Tzð Þ: ð59Þ

Now, applying (22) with x = xn and y = z, we have

θ s2d Txn, Tzð Þ
 �
≤ θ M xn, zð Þð Þ½ �r , ∀n ∈ℕ, ð60Þ

where

M xn, zð Þ =max d xn, zð Þ, d xn, Txnð Þ, d z, Tzð Þ, d z, Txnð Þf g:
ð61Þ

Therefore,

θ s2d Txn, Tzð Þ
 �
≤ θ max d xn, zð Þ, d xn, Txnð Þ, d z, Tzð Þ, d z, Txnð Þf gð Þ½ �r:

ð62Þ

By letting n→∞ in inequality (62), using (59) and θ3, we
obtain

θ s2
1
s
d z, Tzð Þ

� 	
= θ sd z, Tzð Þ½ �

≤ θ s2 lim
n→∞

d Txn, Tzð Þ
h i

≤ θ d z, Tzð Þð Þ½ �r < θ d z, Tzð Þð Þ:

ð63Þ

By ðθ1Þ, we get

sd z, Tzð Þ < d z, Tzð Þ, ð64Þ
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which implies that

d z, Tzð Þ s − 1ð Þ < 0⇒ s < 1, ð65Þ

which is a contradiction. Hence, Tz = z.
Uniqueness: now, suppose that z, u ∈ X are two fixed

points of T such that u ≠ z. Therefore, we have

d z, uð Þ = d Tz, Tuð Þ > 0: ð66Þ

Applying (22) with x = z and y = u, we have

θ d z, uð Þð Þ = θ d Tu, Tzð Þð Þ ≤ θ s2d Tu, Tzð Þ
 �
≤ θ M z, uð Þð Þ½ �r ,

ð67Þ

where

M z, uð Þ =max d z, uð Þ, d z, Tzð Þ, d u, Tuð Þ, d u, Tzð Þf g = d z, uð Þ:
ð68Þ

Therefore, we have

θ d z, uð Þð Þ ≤ θ d z, uð Þð Þ½ �r < θ d z, uð Þð Þ, ð69Þ

which implies that

d z, uð Þ < d z, uð Þ, ð70Þ

which is a contradiction. Therefore, u = z.

Corollary 12. Let ðX, dÞ be a complete b-rectangular metric
space and T : X→ X be the given mapping. Suppose that there
exist θ ∈Θ and k ∈ �0, 1½ such that for any x, y ∈ X, we have

d Tx, Tyð Þ > 0⇒ θ s2d Tx, Tyð Þ� �
≤ θ d x, yð Þð Þ½ �k: ð71Þ

Then, T has a unique fixed point.

Example 13. Let X = A ∪ B, where A = f0, ð1/2Þ, ð1/3Þ, ð1/4Þg
and B = ½1, 2�:

Define d : X × X→ ½0,+∞½ as follows:

d x, yð Þ = d y, xð Þ for all x, y ∈ X,
d x, yð Þ = 0⇔ y = x,

(

d 0, 12

� �
= d

1
2 ,

1
3

� �
= 0, 16,

d 0, 13

� �
= d

1
3 ,

1
4

� �
= 0, 04,

d 0, 14

� �
= d

1
2 ,

1
4

� �
= 0, 25,

d x, yð Þ = ∣x − y ∣ð Þ2 otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð72Þ

Then, ðX, dÞ is a b-rectangular metric space with coeffi-
cient s = 3. However, we have the following: (1) ðX, dÞ is

not a metric space, as dð0, ð1/4ÞÞ = 0:25 > 0:08 = dð0, ð1/3ÞÞ
+ dðð1/3Þ, ð1/4ÞÞ. (2) ðX, dÞ is not a rectangular metric space,
as dðð1/2Þ, ð1/4ÞÞ = 0:25 > 0:24 = dðð1/2Þ, 0Þ + dð0, ð1/3ÞÞ +
dðð1/3Þ, ð1/4ÞÞ.

Define mapping T : X→ X by

T xð Þ =
1
4 if x ∈ 1, 2½ �,
1
3 if x ∈ A:

8>><
>>: ð73Þ

Evidently, TðxÞ ∈ X. Let θðtÞ = e
ffiffi
t

p
,r = 8/9. It is obvious

that θ ∈Θ and r ∈ �0, 1½:
Consider the following possibilities:

(1) x ∈ ½1, 2�, y ∈ A. Then,

T xð Þ = 1
4 , T yð Þ = 1

3 , d Tx, Tyð Þ = 0:04: ð74Þ

On the other hand,

θ s2d Tx, Tyð Þ� �
= e0:6,

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g

≥ d x, Txð Þ = x −
1
4




� �2
≥ 1 − 1

4




� �2
= 3

4

� �2
:

ð75Þ

Hence,

θ
3
4

� �2
" #8/9

= e2/3
� �

≤ θ d x, Txð Þð Þ½ �8/9 ≤ θ M x, yð Þð Þ½ �8/9:

ð76Þ

On the other hand,

e0:6 − e2/3 ≤ 0, ð77Þ

which implies that

θ s2d Tx, Tyð Þ

≤ ϕ θ d x, Txð Þð Þ½ �8/9
≤ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þf g, d y, Txð Þð Þ½ �8/9:

ð78Þ

(2) If x, y ∈ ½1, 2� or x, y ∈ A. Then,

T xð Þ = T yð Þ = 1
4 orT xð Þ = T yð Þ = 1

3 , then d Tx, Tyð Þ = 0,

ð79Þ
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which implies that

θ s2d Tx, Tyð Þ

≤ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þf g, d y, Txð Þð Þ½ �8/9:

ð80Þ

Hence, condition (22) is satisfied. Therefore, T has a
unique fixed point z = 1/3.

Theorem 14. Let ðX, dÞ be a complete b-rectangular metric
space and T : X → X be a mapping. Suppose that there exist
θ ∈Θ and ϕ ∈Φ such that for any x, y ∈ X,

d Tx, Tyð Þ > 0⇒ θ s2d Tx, Tyð Þ� �
≤ ϕ θ M x, yð Þð Þ½ �, ð81Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g: ð82Þ

Then, T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point in X and define a
sequence fxng by

xn+1 = Txn = Tn+1x0, ð83Þ

for all n ∈ℕ: If there exists n0 ∈ℕ such that dðxn0 , xn0+1Þ = 0,
then the proof is finished.

We can suppose that dðxn, xn+1Þ > 0 for all n ∈ℕ:
Substituting x = xn−1 and y = xn, from (81), for all n ∈ℕ,

we have

θ d xn, xn+1ð Þ½ � ≤ θ s2d xn, xn+1ð Þ� �
≤ ϕ θ M xn−1, xnð Þð Þ½ �, ∀n ∈ℕ:

ð84Þ

As in the proof of Theorem 11, we conclude that

M xn−1, xnð Þ =max d xn−1, xnð Þ, d xn, xn+1ð Þf g: ð85Þ

If for some n,Mðxn−1, xnÞ = fdðxn, xn+1Þg, it follows from
(84), ðθ1Þ, and using Lemma 7 we get

θ d xn, xn+1ð Þð Þ ≤ ϕ θ d xn, xn+1ð Þð Þð Þ: ð86Þ

It implies that

d xn, xn+1ð Þ < d xn, xn+1ð Þ, ð87Þ

which is a contradiction. Hence,Mðxn−1, xnÞ = fdðxn−1, xnÞg:
Therefore,

θ d xn, xn+1ð Þð Þ ≤ ϕ θ d xn−1, xnð Þð Þð Þ < θ d xn−1, xnð Þð Þ: ð88Þ

Since θ is increasing, so

d xn+1, xnð Þ < d xn, xn−1ð Þ: ð89Þ

Therefore, fdðxn+1,xnÞgn∈ℕ is a monotone strictly
decreasing sequence of nonnegative real numbers. Conse-

quently, there exists α ≥ 0 such that

lim
n→∞

d xn+1,xnð Þ = α: ð90Þ

Now, we claim that α = 0. Arguing by contradiction, we
assume that α > 0: Since fdðxn,xn+1Þgn∈ℕ is a nonnegative
decreasing sequence, we have

d xn,xn+1ð Þ ≥ α ∀n ∈ℕ: ð91Þ

Thus, we have

1 < θ αð Þ ≤ θ d xn, xn+1ð Þð Þ ≤ ϕ θ d xn−1, xnð Þð Þ½ �
≤⋯≤ ϕn θ d x0, x1ð Þð Þ½ �: ð92Þ

By letting n→∞ in inequality (92), using ðΦ2Þ, we
obtain

1 < θ αð Þ ≤ 1: ð93Þ

It is a contradiction. Therefore,

lim
n→∞

d xn,xn+1ð Þ = 0: ð94Þ

Next, we shall prove that

lim
n→∞

d xn, xn+2ð Þ = 0: ð95Þ

We assume that xn ≠ xm for every n,m ∈ℕ, n ≠m:
Indeed, suppose that xn = xm for some n =m + k with k > 0,
so we have xn+1 = Txn = Txm = xm+1.

By (89), we get

d xm, xm+1ð Þ = d xn, xn+1ð Þ < d xn−1, xnð Þ: ð96Þ

Continuing this process, we can that

d xm, xm+1ð Þ < d xm, xm+1ð Þ: ð97Þ

It is a contradiction. Therefore,

d xn, xmð Þ > 0 for every n,m ∈ℕ, n ≠m: ð98Þ

Applying (81) with x = xn−1 and y = xn+1, we have

θ d xn, xn+2ð Þ½ � ≤ θ s2d xn, xn+2ð Þ� �
≤ ϕ θ M xn−1, xn+1ð Þð Þ½ �,

ð99Þ

where

M xn−1, xn+1ð Þ =max d xn−1, xnð Þ, d xn−1, xn+1ð Þ, d xn+1, xn+2ð Þ, d xn+1, xnð Þf g
=max d xn−1, xnð Þ, d xn−1, xn+1ð Þf g:

ð100Þ
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Therefore,

θ xn, xn+2ð Þð Þ ≤ ϕ θ max d xn−1, xnð Þ, d xn−1, xn+1ð Þf gð Þ½ �,
ð101Þ

which implies that

d xn, xn+2ð Þ <max d xn−1, xnð Þ, d xn−1, xn+1ð Þf g: ð102Þ

Take an = dðxn, xn+2Þ and bn = dðxn, xn+1Þ. By (102), we
have

an <max an−1, bn−1f g: ð103Þ

Again by (89), we get

bn ≤ bn−1 ≤max an−1, bn−1f g: ð104Þ

Therefore,

max an, bnf g ≤max an−1, bn−1f g, ∀n ∈ℕ: ð105Þ

Then, the sequence fmax fan, bnggn is monotone nonin-
creasing, so it converges to some β ≥ 0 such that

lim
n→∞

max an, bnf g = β: ð106Þ

By (94) assume thatβ > 0, we have

β = lim
n→∞

sup an = lim
n→∞

supmax an, bnf g = lim
n→∞

max an, bnf g:
ð107Þ

Taking the lim supn→∞ in (101) and using ðθ3Þ, ðϕ3Þ, and
Lemma 7, we obtain

θ lim
n→∞

sup an
� �

≤ ϕ θ limsup
n→∞

max an−1, bn−1f g
� �� 	

, ð108Þ

which implies that

θ βð Þ ≤ ϕ θ βð Þ½ �: ð109Þ

Therefore,

β < β, ð110Þ

which is a contradiction. Therefore,

lim
n→∞

d xn,xn+2ð Þ = 0: ð111Þ

Next, we shall prove that fxngn∈ℕ is a Cauchy sequence, i.e.,
limn→∞dðxn,xmÞ = 0, for all n,m ∈ℕ. Suppose to the con-
trary, then there is an ε>0 such that for an integer k, there
exist two sequences fnðkÞg and fmðkÞgmðkÞ > nðkÞ>k, such that
[i)] ε ≤ limk→∞ inf dðxmðkÞ , xnðkÞ Þ ≤ limk→∞ sup dðxmðkÞ , xnðkÞ Þ
≤ sε, [i)] ε ≤ limk→∞ inf dðxnðkÞ , xmðkÞ+1Þ ≤ limk→∞ sup dðxnðkÞ

, xmðkÞ+1Þ ≤ sε, [iii)] ε ≤ limk→∞ inf dðxmðkÞ , xnðkÞ+1Þ ≤ limk→∞

sup dðxmðkÞ , xnðkÞ+1Þ ≤ sε, and [vi)] ε/s ≤ limk→∞ inf dðxmðkÞ+1 ,
xnðkÞ+1Þ ≤ limk→∞ sup dðxmðkÞ+1 , xnðkÞ+1Þ ≤ s2ε:

Since T is a θ‐ϕ-contraction, applying (81) with x = xmðkÞ
and y = xnðkÞ , we have

θ d xm kð Þ+1
, xn kð Þ+1

� �� �
≤ θ s2d xm kð Þ+1

, xn kð Þ+1

� �� �
≤ φ θ M xm kð Þ

, xn kð Þ

� �� �h i
:

ð112Þ

As in the proof of Theorem 11, we have

M xm kð Þ
, xn kð Þ

� �
=max d xm kð Þ

, xn kð Þ

� �
, d xm kð Þ

, xm kð Þ+1

� �
, xn kð Þ

, xn kð Þ+1

� �
, d xn kð Þ

, xm kð Þ+1

� �n o
,

ð113Þ

lim
k→∞

M xm kð Þ
, xn kð Þ

� �
≤ sε: ð114Þ

By letting k→∞ in inequality (112) and using ðθ1Þ, ðθ3Þ,
ðΦ3Þ, vi), (114) and Lemma 7, we obtain

θ s2
ε

s

� �
= θ sεð Þ ≤ θ s2 lim

k→∞
d xm kð Þ+1

, xn kð Þ+1

� �� 	

≤ φ θ lim
k→∞

M xm kð Þ
, xn kð Þ

� ��� 	
:

ð115Þ

Therefore,

θ sεð Þ < θ sεð Þ: ð116Þ

It is a contradiction. Therefore,

lim
n,m→∞

d xm, xnð Þ = 0: ð117Þ

Hence, fxng is a Cauchy sequence in X. By completeness
of ðX, dÞ, there exists z in X such that

lim
x→∞

d xn, zð Þ = 0: ð118Þ

Now, we show that dðTz, zÞ = 0 arguing by contradiction,
we assume that

d Tz, zð Þ > 0: ð119Þ

As in the proof of Theorem 11, we conclude that

1
s
d z, Tzð Þ ≤ lim

n→∞
sup d Txn, Tzð Þ ≤ sd z, Tzð Þ: ð120Þ

Since T is a θ‐ϕ-contraction, applying (81) with x = xn
and y = z, we conclude that

θ s2d Txn, Tzð Þ
 �
≤ ϕ θ M xn, zð Þð Þ½ �ð Þ, ð121Þ
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where

M xn, zð Þ =max d xn, zð Þ, d xn, Txnð Þ, d z, Tzð Þ, d z, Txnð Þf g:
ð122Þ

This implies that

θ s2d Txn, Tzð Þ
 �
≤ ϕ θ max d xn, zð Þ, d xn, Txnð Þ, d z, Tzð Þ, d z, Txnð Þf gð Þ½ �:

ð123Þ

By letting n→∞ in inequality (123) and using ðθ3Þ, ðΦ3Þ
, (120) and Lemma 7, we obtain

θ s2
1
s
d z, Tzð Þ

� 	
= θ sd z, Tzð Þ½ �

≤ θ s2 lim
n→∞

d Txn, Tzð Þ
h i

≤ ϕ θ lim
n→∞

max d xn, zð Þ, d xn, Txnð Þ, d z, Tzð Þ, d z, Txnð Þf g
� �� �h i

= ϕ θ d z, Tzð Þð Þ½ � < θ d z, Tzð Þð Þ:
ð124Þ

As θ is increasing, then we deduced that

d z, Tzð Þ < sd z, Tzð Þ: ð125Þ

Therefore, s < 1. It is a contradiction. So, z = Tz. Thus, T
has a fixed point.

Uniqueness: let z, u∈ fix ðTÞ where z ≠ u. Then, from

d Tz, Tuð Þ > 0: ð126Þ

Applying (81) with x = z and y = u, we have

θ d z, uð Þð Þ = θ d Tu, Tzð Þð Þ ≤ θ s2d Tu, Tzð Þ
 �
≤ φ θ M z, uð Þð Þ½ �,

ð127Þ

where

M z, uð Þ =max d z, uð Þ, d z, Tzð Þ, d u, Tuð Þ, d u, Tzð Þf g = d z, uð Þ:
ð128Þ

Therefore, we have

θ d z, uð Þð Þ ≤ φ θ d z, uð Þð Þ½ � < θ d z, uð Þð Þ: ð129Þ

This implies that dðz, uÞ < dðz, uÞ. It is a contradiction.
Therefore, u = z.

Following from Theorem 14, we obtain the fixed point
theorems for the θ‐ϕ-Kannan-type contraction and the θ‐ϕ
-Reich-type contraction. The results presented in the paper
improve and extend the corresponding results due to the
Kannan-type contraction and Reich-type contraction on
rectangular b-metric space.

Theorem 15. Let ðX, dÞ be a complete b-rectangular metric
space and T : X → X be a Kannan-type contraction, then T
has a unique fix.

Proof. Since T is a Kannan-type contraction, then there exist
θ ∈Θ and ϕ ∈Φ such that

θ s2d Tx, Tyð Þ� �
≤ ϕ θ

d Tx, xð Þ + d Ty, yð Þ
2

� �� 	
≤ ϕ θ max d x, Txð Þ, d y, Tyð Þf gð Þ½ �
≤ ϕ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf gð Þ½ �:

ð130Þ

Therefore, T is θ‐ϕ-contraction. As in the proof of Theo-
rem 14 we conclude that T has a unique fixed point.

Theorem 16. Let ðX, dÞ be a complete b-rectangular metric
space and T : X→ X be a Reich-type contraction. Then, T
has a unique fixed point.

Proof. Since T is a Reich-type contraction, then there exist
θ ∈Θ and ϕ ∈Φ such that

θ s2d Tx, Tyð Þ� �
≤ ϕ θ

d x, yð Þ + d Tx, xð Þ + d Ty, yð Þ
3

� �� 	
≤ ϕ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf gð Þ½ �:

ð131Þ

Therefore, T is a θ‐ϕ-contraction. As in the proof of The-
orem 14 we conclude that T has a unique fixed point.

Corollary 17. Let ðX, dÞ be a complete b-rectangular metric
space and T : X→ X be a Kannan type mapping, i.e., there
exists α ∈ �0, ð1/2Þ½ such that for all x, y ∈ X,

d Tx, Tyð Þ > 0⇒ s2d Tx, Tyð Þ ≤ α d Tx, xð Þ + d Ty, yð Þð Þ½ �:
ð132Þ

Then, T has a unique fixed point.

Proof. Let θðtÞ =et for all t ∈ �0, +∞½, and ϕðtÞ = t2α for all t
∈ ½1,+∞½. Clearly ϕ ∈Φ and θ ∈Θ. We prove that T is a θ‐
ϕ-Kannan-type contraction. Indeed,

θ s2d Tx, Tyð Þ
 �
= es

2d Tx,Tyð Þ

≤ eα d Tx,xð Þ+d Ty,yð Þð Þ

= e2α
d Tx,xð Þ+d Ty,yð Þ

2ð Þ

= e
d Tx,xð Þ+d Ty,yð Þ

2ð Þh i2α
= ϕ θ

d Tx, xð Þ + d Ty, yð Þ
2

� �� 	
:

ð133Þ

As in the proof of Theorem 15, T has a unique fixed point
x ∈ X:
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Corollary 18. Let ðX, dÞ be a complete b-rectangular metric
space and T : X→ X be a Reich-type mapping, i.e., there exists
λ ∈ �0, ð1/3Þ½ such that for all x, y ∈ X,

d x, yð Þ > 0⇒ s2d Tx, Tyð Þ ≤ λ d x, yð Þ + d Tx, xð Þ + d Ty, yð Þð Þ½ �:
ð134Þ

Then, T has a unique fixed point.

Proof. Let θðtÞ =et for all t ∈ �0, +∞½ and ϕðtÞ = t3λ for all t
∈ ½1,+∞½.

We prove that T is a θ‐ϕ-Reich-type contraction. Indeed,

θ s2d Tx, Tyð Þ
 �
= es

2d Tx,Tyð Þ

≤ eλ d x,yð Þ+d Tx,xð Þ+d Ty,yð Þð Þ

= e3λ
d x,yð Þ+d Tx,xð Þ+d Ty,yð Þ

3ð Þ

= ϕ θ
d x, yð Þ + d Tx, xð Þ + d Ty, yð Þ

3

� �� 	
:

ð135Þ

As in the proof of Theorem 16, T has a unique fixed point
x ∈ X:

Corollary 19. (Theorem 11 Let ðX, dÞ be a complete b-rect-
angular metric space and T : X→ X be a mapping. Suppose
that there exist θ ∈Θ and r ∈ �0, 1½ such that for any x, y ∈ X,

d Tx, Tyð Þ > 0⇒ θ s2d Tx, Tyð Þ� �
≤ θ M x, yð Þð Þ½ �r , ð136Þ

where

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g:
ð137Þ

Then, T has a unique fixed point.

Proof. By taking ϕðtÞ = tr , with r ∈ �0, 1½, obvious ϕ ∈Φ, then
we conclude that T is a θ‐ϕ-contraction. As in the proof of
Theorem 14, T has a unique fixed point.

Very recently, Kari et al. in [8] proved the result (Theo-
rem 1) on ðα, ηÞ-complete rectangular b-metric spaces. In
this paper, we prove this result in complete rectangular b
-metric spaces.

Corollary 20. Let dðX, dÞ be a complete b-rectangular metric
space with parameter s > 1, and let T be self-mapping on X. If
for all x, y ∈ X, we have

d Tx, Tyð Þ > 0⇒ θ s2:d Tx, Tyð Þ
 �
≤ ϕ θ β1d x, yð Þ + β2d Tx, xð Þ + β3d Ty, yð Þ + β4d y, Txð Þð Þ½ �,

ð138Þ

where θ ∈Θ, ϕ ∈Φ, βi ≥ 0 for i ∈ f1, 2, 3, 4g,∑i=4
i=0βi ≤ 1. Then,

T has a unique fixed point.

Proof. We prove that T is a θ‐ϕ-contraction. Indeed,

θ s2:d Tx, Tyð Þ
 �
≤ ϕ θ β1d x, yð Þ + β2d Tx, xð Þð½

+ β3d Ty, yð Þ + β4d y, Txð ÞÞ�
≤ ϕ θ β1 + β2 + β3 + β4ð Þ½
� max d x, yð Þ, d Tx, xð Þ, d Ty, yð Þ, d y, Txð Þf gð Þ�

≤ ϕ θ max d x, yð Þ, d Tx, xð Þ, d Ty, yð Þ, d y, Txð Þf gð Þ½ �:
ð139Þ

As in the proof of Theorem 14, T has a unique fixed
point.

Example 21. Let X = A ∪ B, where A = f1/n : n ∈ f3, 4, 5, 6gg
and B = ½ð1/2Þ, ð3/2Þ�. Define d : X × X→ ½0,+∞½ as follows:

d x, yð Þ = d y, xð Þ for all x, y ∈ X,
d x, yð Þ = 0⇔ y = x,

(

d
1
3 ,

1
4

� �
= d

1
4 ,

1
5

� �
= 0, 1,

d
1
3 ,

1
5

� �
= d

1
4 ,

1
6

� �
= 0, 05,

d
1
3 ,

1
6

� �
= d

1
5 ,

1
6

� �
= 0, 5,

d x, yð Þ = ∣x − y ∣ð Þ2 otherwise:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð140Þ

Then, ðX, dÞ is a b-rectangular metric space with coeffi-
cient s = 3. However we have the following: [1)]ðX, dÞis not
a metric space, as dðð1/5Þ, ð1/6ÞÞ = 0:5 > 0:15 = dðð1/5Þ, ð1/4
ÞÞ + dðð1/4Þ, ð1/6ÞÞ. [2)] ðX, dÞis not ab-metric space
fors = 3, as dðð1/5Þ, ð1/6ÞÞ = 0:5 > 0:45 = 3½dðð1/5Þ, ð1/4ÞÞ +
dðð1/4Þ, ð1/6ÞÞ�. [3)] ðX, dÞis not a rectangular metric space,
as dðð1/5Þ, ð1/6ÞÞ = 0:5 > 0:2 = dðð1/5Þ, ð1/3ÞÞ + dðð1/3Þ, ð1/
4ÞÞ + dðð1/4Þ, ð1/6ÞÞ. Define mapping T : X→ X by

T xð Þ =

ffiffiffi
x

p + 4
5  if x ∈ 1

2 ,
3
2

� 	
,

1 if x ∈ A:

8><
>: ð141Þ

Then, TðxÞ ∈ ½ð1/2Þ, ð3/2Þ�. Let θðtÞ = ffiffi
t

p
+ 1,

ϕðtÞ = ðt + 1Þ/2. It is obvious that θ ∈Θ and ϕ ∈Φ:
Consider the following possibilities:

d Tx, Tyð Þ =
ffiffiffi
x

p
− ffiffiffi

y
p

5

� �2
: ð142Þ

Case 1. x, y ∈ ½ð1/2Þ, ð3/2Þ�, with x ≠ y and assume that x > y.

Therefore,

θ s2d Tx, Tyð Þ = 3
5

� ffiffiffi
x

p
−

ffiffiffi
y

p
 �
+ 1,

ϕ θ d x, yð Þð Þ½ � = x − y
2 + 1:

ð143Þ
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On the other hand,

θ s2d Tx, Tyð Þ

− ϕ θ d x, yð Þð Þ½ �

= 6 ffiffiffi
x

p
− ffiffiffi

y
p
 �

− 5 x − yð Þ
10

= 1
10

ffiffiffi
x

p
−

ffiffiffi
y

p
 �
 �
6 − 5

ffiffiffi
x

p
+ ffiffiffi

y
p
 �� �

:

ð144Þ

Since x, y ∈ ½ð1/2Þ, ð3/2Þ�, then

6 − 5
ffiffiffi
6

p
≤ 6 − 5

ffiffiffi
x

p
+ ffiffiffi

y
p
 �� �

≤ 6 − 10ffiffiffi
2

p ≤ 0, ð145Þ

which implies that

θ s2d Tx, Tyð Þ

≤ ϕ θ d x, yð Þð Þ½ �
≤ ϕ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þf g, d y, Txð Þð Þ½ �:

ð146Þ

Case 2. x ∈ ½ð1/2Þ, ð3/2Þ�, y ∈ A, or y ∈ ½ð1/2Þ, ð3/2Þ�, x ∈ A:

Therefore, TðxÞ = ð ffiffiffi
x

p + 4Þ/5, TðyÞ = 1, then dðTx, TyÞ
= ð∣ð ffiffiffi

x
p

− 1Þ/5 ∣ Þ2.
In this case, consider two possibilities:

(1) x ≥ 1 : then
ffiffiffi
x

p
≥ 1: Therefore,

d Tx, Tyð Þ =
ffiffiffi
x

p
− 1
5

� �2
: ð147Þ

So, we have

θ s2d Tx, Tyð Þ

= 3
5

ffiffiffi
x

p
− 1


 �
+ 1,

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g

≥ d y, Tyð Þ = 1 − yð Þ2 ≥ 1 − 1
3

� �2
= 2

3

� �2
,

ϕ θ
2
3

� �2
 !" #

= 1
3 + 1: ð148Þ

On the other hand,

θ s2d Tx, Tyð Þ

− ϕ θ d 1, 13

� �� �� 	

= 3
5

ffiffiffi
x

p
− 1


 �
−
1
3

= 1
15 9

ffiffiffi
x

p
− 14


 �
:

ð149Þ

Since x ∈ ½1, ð3/2Þ�, then

1
15 9

ffiffiffi
x

p
− 14


 �
≤ 0: ð150Þ

This implies that

θ s2d Tx, Tyð Þ

≤ ϕ θ d y, Tyð Þð Þ½ �
≤ ϕ θ d 1, 13

� �� �� 	
≤ ϕ θ d y, Tyð Þð½ �
≤ ϕ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þf g, d y, Txð Þð Þ½ �:

ð151Þ

(2) x < 1 : then
ffiffiffi
x

p < 1: Therefore,

d Tx, Tyð Þ = 1 − ffiffiffi
x

p
5




� �2
= 1 − ffiffiffi

x
p
5

� �2
: ð152Þ

So, we have

θ s2d Tx, Tyð Þ

= 3
5 1 −

ffiffiffi
x

p
 �
+ 1,

M x, yð Þ =max d x, yð Þ, d x, Txð Þ, d y, Tyð Þ, d y, Txð Þf g

≥
2
3

� �2
,

ϕ θ
2
3

� �2
 !" #

= 1
3 + 1: ð153Þ

On the other hand,

θ s2d Tx, Tyð Þ

− ϕ θ d 1, 13

� �� �� 	
= 3
5 1 −

ffiffiffi
x

p
 �
−
1
3 = 1

15 4 − 9
ffiffiffi
x

p
 �
:

ð154Þ

Since x ∈ ½ð1/2Þ, 1�, then

1
15 4 − 9

ffiffiffi
x

p
 �
≤ 0: ð155Þ

This implies that

θ s2d Tx, Tyð Þ

≤ ϕ θ d y, Tyð Þð Þ½ �
≤ ϕ θ max d x, yð Þ, d x, Txð Þ, d y, Tyð Þf g, d y, Txð Þð Þ½ �:

ð156Þ

Hence, condition (81) is satisfied. Therefore, T has a
unique fixed point z = 1.
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