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The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions. In this
paper, inspired by the concept of 6-¢-contraction in metric spaces, introduced by Zheng et al., we present the notion of 6-¢
-contraction in b-rectangular metric spaces and study the existence and uniqueness of a fixed point for the mappings in this space.

Our results improve many existing results.

1. Introduction

The Banach contraction principle is a fundamental result in
fixed point theory [1]. Due to its importance and simplicity,
several authors have obtained many interesting extensions and
generalizations of the Banach contraction principle (see [2-4]).

Many generalizations of the concept of metric spaces
have been defined, and some fixed point theorems were
proven in these spaces. In particular, b-metric spaces were
introduced by Bakhtin [5] and Czerwik [6] as a generaliza-
tion of metric spaces. Many mathematicians worked on this
interesting space. For more, the reader can refer to [7-10].

In 2000, generalized metric spaces were introduced by
Branciari [11], in such a way that triangle inequality is
replaced by the quadrilateral inequality d(x,y) <d(x,z) +d
(z,u) +d(u, y) for all pairwise distinct points x, y, z, and u.
Any metric space is a generalized metric space, but in general,
generalized metric space might not be a metric space. Vari-
ous fixed point results were established on such spaces (see
[12-17] and references therein).

Recently, George et al. [10] announced the notion of b
-rectangular metric space; many authors initiated and stud-
ied many existing fixed point theorems in such spaces (see
[18-23]).

Very recently, Zheng et al. [24] introduced a new concept
of 0-¢-contractions and established some fixed point results
for such mappings in complete metric spaces and generalized
the results of Brower and Kannan. For more works related to
theta-contractions, see [25-27].

In this paper, we introduce a new notion of generalized
0-¢-contractions and establish some fixed point results for
such mappings in complete b-rectangular metric spaces.
The results presented in the paper extend the corresponding
results of Kannan [3] and Reich [4] on b-rectangular metric
spaces. Also, we derive some useful corollaries of these
results.

2. Preliminaries

Definition 1 (see [7]). Let X be a nonempty set and s> 1 be a
given real number and let d : X x X — [0,+00][ be a mapping
such that for all x, y € X and all distinct points u, v € X, each
distinct from x and y: (1) d(x, y) =0, if only if x = y; (2) d(x
,¥)=d(y,x); and (3) d(x,y) <sld(x,u) +d(u,v) +d(v,y)]
(b - rectangular inequality).

Then (X, d) is called a b-rectangular metric space.
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Example 2 (see [19]). Let X=AUB, where A={1/n:ne{2
,3,4,5,6,7}} and B=[1,2]. Define d : X x X — [0,4+00] as
follows:

.
2’3 45 67
d(l,l):d(l,l):dG,l):o,os,
2’1 37 56
1
o5 )= -a(5 D) -0 W
2’6 34 57
d(l,l):dc,l):d(l,l):o,zzt,
2’5 376 17
d(l,l):d(l,l):d(l,l):o,ls
2’7 35 156
d(x,y) = (Ix - y | )? otherwise.

Then (X, d) is a b-rectangular metric space with coeffi-
cient s = 3.

Lemma 3 (see [20]). Let (X,d) be a b-rectangular metric
space.

(a) Suppose that sequences {x,} and {y,} in X are such
that x, —» x and y, — y as n — 0o, with X # y,x, # x,
and y, #y for all n € N. Then, we have (1/s)d(x, y)
< lim inf d(x,,y,) < lim sup d(x,,y,) <sd(x,y)

(b) if ye X and {x,} is a Cauchy sequence in X with x,,
#x,, for any m,neN,m#n, converging to x#y,
then (1/s)d(x,y) < lim inf d(x,,y) < lim sup d(x,

n—-00 n—00

,y) <sd(x,y), for all x € X

Lemma 4. Let (X, d) be a b-rectangular metric space and let
{x,} be a sequence in X such that

lim d(x,, x,,;) = lim d(x,, x,,,) = 0. (2)
n—00 n—00

If{x,} is not a Cauchy sequence, then there exist ¢ > 0 and
two sequences {m(k)} and {n(k)} of positive integers such
that

e<lim infd(x, ,x
k—00 M) Mg

k—00

< lim i < i <
e< lim inf d(xn(k),xm(k>+1) < khm sup d(xn(k),xm(kw) < sg,
e<lim infd(x, ,x

k00 M) Nk

€ o

- <lim infd(x,, ,x,

s k—00 (k)+1 (k)+1
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Proof. If {x,,} is not a Cauchy sequence, then there exist € > 0
and two sequences {m(k)} and {n(k)} of positive integers
such that

m(k) > n(k) >k e<d (xm(k) , xnm) andd (xm(k),f xn(k)) <&
(4)

for all positive integers k. By the b-rectangular inequality, we
have

< <
€= d(xmm ’ x”<k>) =S [d (x'%’ xm(km)
+d (xn%” , xm(k)_1> +d (xm(k)_l , xn(k)ﬂ .

Taking the upper and lower limits as k — oo in (5) and
using (2) (4), we obtain

(5)

e<lim infd(x, ,x < lim supd(x, ,x < se.
k00 Mgy > 1k k00 P Mgy 1k
(6)

Using the b-rectangular inequality again, we have

< <
esd (x”m ’ xm(km) =S {d (x”m’ x”’(k)—l)

+ d(xm(k)_l , xm(k)) + d(xm(k) , xm(k>+1)] .

Taking the upper and lower limits as k — oo in (7) and
using (2) and (4), we obtain

(7)

< lim i < li <
e< lim inf d (xn(k),xm(k)“) < kli)nol0 sup d(xn(k)’xm(k>+1> <se.

k—o0
(8)

Using the b-rectangular inequality again, we have

< <
e=d (xm<k>’ x”(km) =S {d (x”‘m ’ xm(k)—l)

+d (xm<k>_1 , x%) +d (xn(k) X )} .

Taking the upper and lower limits as k — oo in (9) and
using (2) and (4), we obtain

)

< lim i < li <
e< lim inf d (xm(k),xn(k)“) < klgglo sup d(xm(m,xn(k)“) <se.

k—o0
(10)

Using the b-rectangular inequality again, we have

<
d<xm(k)+1 ’ x”(k)u) =5 [d (xm(k)+1 ’ xW(k;) + d<xmw > x”(k)) + d(x”m > x”(k]ﬂ >} ?

< <
e=d (x’% ’ x”(k)) =S [d (x"’(k)’ x’”(kw)

+d (xm(k)+1 > x”(k)+1) +d (x”(k)n > x”(k) )} :
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Taking the upper and lower limits as k — oo in (11) and
(12) and using (2) (6), we obtain

e . .
- <lim infd(x,, ,x < lim supd(x,, ,x <se.
M1’ " Miye1 k—00 Mgy+1” " Miy+1

S koo
(13)

The following definition was given by Ding et al. in [13].

Definition 5 (see [13]). Let ® be the family of all functions
0 :]0,+00[ — ]1,+00[ such that [(6,)]0 is increasing; [(6,)]
for each sequence (x,)c]0,+00[; lin})xn =0if and only if

lim 6(x,,) = 1; and [(65)]0 is continuous.

In [21] Radenovic et al. presented the concept of 0-¢
-contractions on metric spaces.

Definition 6 (see [21]). Let @ be the family of all functions
¢ : [1,400[ — [1,4+00], such that [(¢,)]¢ is nondecreasing; [(
¢,)] for each t €|l,+c0[, lim, ,¢"(t)=1; and [(¢;)]¢ is
continuous.

Lemma 7 (see [21]). If ¢ € @, then ¢(1) = 1, and ¢(t) <t for
all t € ]1,00].

Definition 8 (see [21]). Let (X, d) be a metric space and T
: X — X be a mapping.

T is said to be a 0-¢-contraction if there exist 6 € ©® and
¢ € @ such that for any x, y € X,

d(Tx, Ty) >0=0[d(Tx, Ty)] < ¢(O[N(x, »)])s (14)

where
N(x, y) = max {d(x,y), d(x, Tx), d(y, Ty)}- (15)

In [27], Zheng et al. proved the following nice result.

Theorem 9 (see [21]). Let (X, d) be a complete metric space
andlet T : X — X be a 0-¢ -contraction. Then, T has a unique
fixed point.

3. Main Result

In this paper, using the idea introduced by Zheng et al., we
present the concept 6-¢-contraction in b-rectangular metric
spaces, and we prove some fixed point results for such spaces.

Definition 10. Let (X, d) be a b-rectangular metric space with
parameter s > 1 space and T : X — X be a mapping.

(1) T is said to be a 6-contraction if there exist 6 € ® and
r €10, 1] such that

d(Tx, Ty) >0 = 0[s’d(Tx, Ty)] < (O[M(x, y)])’,
(16)
where

M(x, y) =max {d(x, y), d(x, Tx),d(y, Ty), d(y, Tx)}. (17)

(2) T is said to be a 0-¢-contraction if there exist 0 € ®
and ¢ € @ such that

d(Tx, Ty) > 0= 0[s*d(Tx, Ty)] < $[0(M(x,y))],
(18)

where

M(x,y) = max {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)}. (19)

(3) T is said to be a 6-¢-Kannan-type contraction if there
exist € ® and ¢ € @ such that d(Tx, Ty) >0, we
have

0[d(Tx, Ty)] < [9 (d(x’ Tx) ; 0. Ty ))] . (20)

(4) T is said to be a 0-¢-Reich-type contraction if there
exist 6 € ® and ¢ € @ such that d(Tx, Ty) >0, we
have

0[2d(Tx, Ty)] < ¢ {9 (d(x,y) +d(x, 3Tx) +d(, Ty))} _

(21)
Theorem 11. Let (X, d) be a complete b-rectangular metric

space and let T : X — X be an 0 -contraction, i.e., there exist
0 €® and r €]0, 1] such that for any x,y € X, we have

d(Tx, Ty) > 0= 9[52d(Tx, Ty)| <(@OM(x.y)])".  (22)
Then, T has a unique fixed point.

Proof. Let x, € X be an arbitrary point in X and define a
sequence {x,} by

xn+1 = Txn = Tn+1x0’ (23)



for all n € N. If there exists n, € N such that d(x, , x
then the proof is finished.
We can suppose that d(x,,,x,,,) >0 for all n € N.
Substituting x = x,_; and y = x,, from (22), for all n € N,
we have

)=0,

ny+1

e[d(xn’xnﬂﬂ < G[SZd(xn, xn+1)] < [Q(M(xn—l’xn))]r’ Vne ]N’

(24)
where

M(xn—l’ xn) = max (d(xnfl’ xn)’ d(xn—h xn)’ d(xn’ xn+1)’ d('xnﬂ’ xn+1)
= max (d(xnfl’ xn)’ d(xn’xn+l)}'

(25)
If M(x,_,,x,) =d(x,,x,,,)> by (24), we have
O(d(xn’xnﬂ)) < (6<d(xn’xn+l)))r < e(d(xn’xnﬂ))’ (26)

which is a contradiction. Hence, M(x,_j,x,) =d(x,_;, x,).
Thus,

0(d(x, %11)) < (0(d(¥-1 %)) (27)

Repeating this step, we conclude that

e(d(xn’ xn+1)) < (e(d('xn—l’ xn)))r
(0(d(%,2%,1)))” (28)
< 0(d(xpx,))"

IN

IN

From (27) and using (6,), we get
d(xn’xnﬂ) < d(xn—l’xn)' (29)

Therefore, {d(x,x,,,)}, 15 a monotone strictly

decreasing sequence of nonnegative real numbers. Conse-
quently, there exists & > 0 such that

lim d(x,,, x,) =a. (30)
n—00

Now, we claim that « = 0. Arguing by contradiction, we
assume that o> 0. Since {d(x,x,,;)},. i @ nonnegative

decreasing sequence, then we have

d(x,x,.1)=2a VYneN. (31)

By property of 0, we get

n

1<6(a) <0(d(xg,x1))" - (32)
By letting n — 00 in inequality (32), we obtain
1<0(a)<1. (33)
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It is a contradiction. Therefore,

lim d(x, x,,,) = 0. (34)

n—00
Next, we shall prove that

lim d(x,,, x,,,) = 0. (35)
n—-o00
We assume that x,#x,, for every n,melN, n#m.

Indeed, suppose that x, = x,, for some n=m +k with k>0
and using (29), we have

d(xm’ xm+1) = d(xn’ xn+1) < d(xn—l’ xn)' (36)
Continuing this process, we can that
d(xm’xn+1) = d('xn’an) < d(xm’xm+1)‘ (37)

It is a contradiction. Therefore, d(x,,, x,,) > 0 for every n
,meN, n#m.
Applying (22) with x=x,_; and y=x

.+1> we have

e[d('xn’ xn+2)] e[d(Txnfl’ Txn+1)]
O[Szd(Txn—l’ Txn+l)] (38)

[6<M(xn71’ xn+1))}r’

IN

IN

where

M(xn—l’ xn+1) =max {d('xn—l’xml)’ d(xn—l’ xn)’ d(xn+1’xn+2)’ d(xm-l’ xn)}

=max {d(xnfl’xnﬂ)’ d(xnfl’ xn)}

(39)
So, we get

Q(d(xn’ xn+2)) < [O(max {d(xn—l’xn)’ d(xn—l’xnﬂ)})]r'
(40)

Take a, =d(x,, x,,,) and b, = d(x,, x,,,, ). Thus, by (40),

one can write
n) < [O(max (a,_;, b,.1))]" (41)
By (6, ), we get
a, <max {a,_;,b,_;}. (42)
By (36), we have
b,<b, ,<max{a, b, }. (43)
It implies that
max {a,,b,} <max {a,_,,b,_,}, VneN. (44)
Therefore, the sequence max {a,_;,b,_;}, is a non-

negative decreasing sequence of real numbers. Thus, there
exists A >0 such that
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lim max {a,,b,}=A. (45)

n—00
By (34) assume that A > 0, we have

A= lim sup a, = lim supmax{a,, b,} = lim max {a,,b,}.
n—o00 n—00 n—00

(46)

Taking the lim sup, — co in (40) and using the property
of 6, we obtain

9( lim sup an> < 0( lim max {a,_, bn,l}y

e e (47)
< 9(111520 max {a,_,, bn_1}>.
Therefore,
0(A) <0(A). (48)
By (6,), we get
A< (49)
It is a contradiction. Therefore,
lim d(x, x,.,,) =0. (50)

n—o00

Next, we shall prove that {x,}, is a Cauchy sequence,
ie, lim, . d(x,x,)=0, for all n,meN. Suppose to the
contrary. By Lemma 4 Then, there is an >0 such that for
an integer k there exists two sequences {n,} and {m}
such that [i)] e <lim_, inf d(x <lim,_,, sup d(
X X
sup d(xn(k),xm(km) <se, [iiD)] e<limy_, ., inf d(x,,

M) x”(k) )

<sg, [ii)] e <limy_, inf d(xn(k ,X

<Ti
) M4 ) = hmkaoo

n)

% X )

)<se, and [vi)] e/s<lim_

2
<
M1’ x”(k)+1) = 5¢E

<limy_,, sup d(x
inf d(xm<k)+1

Now, using (i), (ii), and (34), we conclude that

miy> X

,xn(km) <limy_,, sup d(x

lim M (xm(k), x%)

k—o00

lim max {d(xm(k), x%>, d(xmm , xm<k>+l>, d

B k—o00

. < Ss€.
(x”(k) > x”(k)ﬂ) .d (x"(k) > xm(k)+l) } s s

(51)

Now, applying (22) with x = Xmge and y = Xy, > WE obtain

0 [szd (xm(k)+1 X )} < [0 (M (xm(k) X ) )} B (52)

Letting k — oo the above inequality and using (6;), (51)
and (iv), we obtain

0(25) <00 <0(md (5.5,
< [o(mat(sn, ) )|

(53)

5
Therefore,
0(se) < [0(se)]" < O(se). (54)
Since 0 is increasing, we get
se < sg, (55)
which is a contradiction. Then,
lim d(x,,x,)=0. (56)

n,Mm—00

Hence, {x, } is a Cauchy sequence in X. By completeness
of (X, d), there exists z € X such that

lim d(x,,z) = 0. (57)

n—00

Now, we show that d(Tz,z) = 0; arguing by contradic-
tion, we assume that

d(Tz,z)>0. (58)

Since x,, — z as n — oo for all #n € N, then from Lemma 3,
we conclude that

%d(z, Tz) < nlggo sup d(Tx,, Tz) <sd(z, Tz). (59)
Now, applying (22) with x = x,, and y = z, we have
0(s’d(Tx,, Tz)) < [0(M(x,,2))]', VneN, (60)
where

M(x,, z) = max {d(x,, 2),d(x,, Tx,), d(z, Tz),d(z, Tx,) }.
(61)

Therefore,

9(52d(Txn, Tz)) < [0(max {d(x,, 2),d(x,, Tx,),d(z, Tz), d(z, Tx,)})]".
(62)

By letting n — co in inequality (62), using (59) and 05, we
obtain

6 [széd(z, Tz)] =0[sd(z, T2)]

<0 {szr}Lrgod(Txn, Tz)] (63)
<[0(d(z, Tz))] <0(d(z, Tz)).
By (0,), we get

sd(z, Tz) < d(z, Tz), (64)



which implies that
d(z, Tz)(s—1)<0=>s<1, (65)

which is a contradiction. Hence, Tz = z.
Uniqueness: now, suppose that z,u € X are two fixed
points of T such that u # z. Therefore, we have

d(z,u) =d(Tz, Tu) > 0. (66)
Applying (22) with x =z and y = u, we have

0(d(z,u)) =0(d(Tu, Tz)) < 6(52d(Tu, Tz)) <[O(M(z,u))],
(67)

where

M(z, u) = max {d(z, u), d(z, Tz), d(u, Tu), d(u, Tz) } = d(z, u).

(68)
Therefore, we have
0(d(z u)) < [0(d(z, u))]" < 6(d(z u)), (69)
which implies that
d(z,u) < d(z, u), (70)

which is a contradiction. Therefore, u = z.

Corollary 12. Let (X, d) be a complete b-rectangular metric
spaceand T : X — X be the given mapping. Suppose that there
exist 0 € © and k €10, 1[ such that for any x, y € X, we have

d(Tx, Ty) > 0= 0[d(Tx, Ty)] < [0(d(x,y))]*.  (71)
Then, T has a unique fixed point.
Example 13. Let X = A U B, where A = {0, (1/2), (1/3), (1/4)}

and B=1,2].
Define d : X X X — [0,+00] as follows:

{d(x,y)=d(%x)
dx,y)=0ey=x

forallx,y € X,

(72)

Then, (X, d) is a b-rectangular metric space with coeffi-
cient s=3. However, we have the following: (1) (X,d) is
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not a metric space, as d(0, (1/4)) =0.25 > 0.08 = d(0, (1/3))
+d((1/3), (1/4)). (2) (X, d) is not a rectangular metric space,
as d((1/2), (1/4)) =0.25 > 0.24 = d((1/2),0) + d(0, (1/3)) +
d((1/3), (1/4)).

Define mapping T : X — X by

if x e [1,2],
T(x) = (73)

if x € A.

Q| = ]

Evidently, T(x) € X. Let 6(t) = e"",r = 8/9. It is obvious
that 0 € ® and r €0, 1].
Consider the following possibilities:

(1) x€1,2], y € A. Then,

T(x)= 1, T(y)= %, d(Tx, Ty) =0.04.

) (74)

On the other hand,

0[s°d(Tx, Ty)] = ",

M(x,y) = max {d(x, y), d(x, Tx),d(y, Ty),d(y, Tx)}

> d(x, Tx) = ( !

X — —

4>22<

Hence,

27 8/°
l@ @ ] =[] = [0(d(x, T2))]™” < [O(M(x,9))]"".

On the other hand,
06 3 <,
which implies that

0(sd(Tx, Ty) < ¢[0(d(x, Tx))]*”
< [O(max {d(x, y), d(x, Tx),d(y, Ty)}, d(y, Tx))]w.
(78)

(2) Ifx,y €[1,2] or x,y € A. Then,

T(x)=T(y)= i orT(x)=T(y) = é, thend(Tx, Ty) =0,
(79)
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which implies that

G(SZd(Tx, Ty) < [0(max {d(x, y), d(x, Tx),d(y, Ty)},d(y, Tx))]w.
(80)

Hence, condition (22) is satisfied. Therefore, T has a
unique fixed point z = 1/3.

Theorem 14. Let (X, d) be a complete b-rectangular metric
space and T : X — X be a mapping. Suppose that there exist
0 € ®© and ¢ € O such that for any x,y € X,

d(Tx, Ty)>0= G[SZd(Tx, Ty)| <g[0(M(x,y))],  (81)
where
M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)}. (82)
Then, T has a unique fixed point.

Proof. Let x, € X be an arbitrary point in X and define a
sequence {x,} by

X, = Tx, = T"x,, (83)

for all n € N. If there exists n, € N such that d(x, , x, ,;) =0,

then the proof is finished.
We can suppose that d(x,,, x,,,) >0 for all n € N.
Substituting x = x,_; and y = x,,, from (81), for all n € N,
we have

Vn e N.
(84)

n-1>"n

O[d(x,, %,41)] < O[5*d(x, X,,1)] < POM(x,1, %)),

As in the proof of Theorem 11, we conclude that
M<x X ) =max {d(xn—l’xn)’d(xn’xn+l)}' (85)

n-1>"n

If for some n, M(x,_;,x,) = {d(x,, x,,;) } it follows from
(84), (0,), and using Lemma 7 we get

0(d (x> %11)) < $(O(A (x5 %,11)))- (86)
It implies that
d(xn’xnﬂ) < d(xn’xm-l)’ (87)

which is a contradiction. Hence, M(x,_;, x,,) = {d(x,_,, x,,) }
Therefore,

e(d(xn’ xn+1)) = ¢(9(d(xn—l’ xn))) < e(d(xn—v xn))' (88)
Since 6 is increasing, so
d(xnﬂ’xn) < d(xn’xnfl)' (89)

Therefore, {d(x,,,x,)},, 18 a monotone strictly
decreasing sequence of nonnegative real numbers. Conse-

7
quently, there exists & > 0 such that
lim d(x,,, x,) = a. (90)
n—00

Now, we claim that « = 0. Arguing by contradiction, we
assume that a > 0. Since {d(x,x,,,)},. IS @ nonnegative

decreasing sequence, we have

d(x,x

n,"vn+l

)=a VnelN. (91)
Thus, we have

1< 6(“) < e(d(xn’xnﬂ)) < ¢[6(d(xn—l’ xn))]

< o< §" 1030 x,) .

By letting n— 0o in inequality (92), using (®,), we
obtain

1<0(a)< 1. (93)
It is a contradiction. Therefore,

lim d(x, x,,,
n—00

)=0. (94)

Next, we shall prove that

lim d(x,, x,,,,) =0. (95)

n—oo

We assume that x,#x,, for every n,meNN,n#m.
Indeed, suppose that x, = x,, for some n=m + k with k> 0,
so we have x,,, =Tx, =Tx, =x

By (89), we get

m+1*

A(Xpps Xp1) = (%5 Xpp1) <A(X,, 15 %) (96)
Continuing this process, we can that
A (X Xp1) < A(X s Xy )- (97)
It is a contradiction. Therefore,
d(x,,x,,) > 0forevery n,m € N, n # m. (98)
Applying (81) with x =x,_, and y = x,,,,, we have

e[d(xn’ xn+2)] < 0 [Szd('xn’ xn+2)} < ¢[9(M(xn—l’ xn+1))]’
(99)

where
M(xnfl’ xn+1) =max {d(xnfl’xn)’ d(xnfl’ xn+1)’ d(xn+1’xn+2)’ d(xn+1’ xn)}

=max {d(xnfl’xn)’ d(xnfl’ xn+1)}'

(100)



Therefore,

9(()6”, xn+2)) < ¢[6(max {d('xn—l’xn)’ d(xn—l’xnﬂ)})]’
(101)

which implies that

d(x,, x,,,) <max {d(x,_;, x,), d(x,_1,X,.1) }-

(102)

Take a, =d(x,,x,,,) and b, =d(x,, x,,;). By (102), we
have

a, <max {a,_,b,_}. (103)
Again by (89), we get
b,<b, <max{a, ,b,  }. (104)
Therefore,
max {a,,b,} <max {a,_,,b,_;}, VneN. (105)

Then, the sequence {max {a,, b, }},, is monotone nonin-
creasing, so it converges to some f3 > 0 such that

lim max {a,,b,}=p. (106)
By (94) assume thatf3 > 0, we have
fB=lim sup a, = lim supmax{a,, b,} = lim max {a,,b,}.

(107)

Taking the lim sup, _,  in (101) and using (6,), (¢,), and
Lemma 7, we obtain

9( lim sup an) <¢ [9 (hmsup max {a, ,, bn_1}>], (108)

n—00 n—00

which implies that

0(B) < [0(B)] (109)
Therefore,
B<pB (110)
which is a contradiction. Therefore,
lim d(x, x,.,,) =0. (111)

n—o00

Next, we shall prove that {x, }, ., is a Cauchy sequence, i.e.,
lim,_ d(x,x,,) =0, for all n,m € N. Suppose to the con-
trary, then there is an £>0 such that for an integer k, there
exist two sequences {1, } and {m }m > >k, such that
[i)] e<lim;_, inf d(xm(k ,xn(k)) <limy_,, sup d(x,, ,x

Mk)> “" M) )

<lim;_,, supd (xn(k

)

<se, [i)] e <limy_q, inf d(x, %, ) )
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, meI) <seg [iii)] e<limy_, inf d(x, , xn(kM) <limy_,

sup d(x

(k)

) <sg, and [vi)] /s <lim;_, inf d(xmm“,
2

< s°e.

M)’ x”(k)+1

X <lim;_, supd (xm(k

n(k)+1> )41’ x”(k)+1)

Since T is a 0-¢-contraction, applying (81) with x = Xy

and y = Xy, > WE have

(112)

<ofo (3o 5,)))

As in the proof of Theorem 11, we have

M(xmm, x%) = max {d (me, X ) s d(xm’k] X ) s (x%, E. ) s d(xnm, Koy ) },

(113)

i <
lim M (xm(k), xn(k)) < se.

k—oo

(114)

By letting k — oo in inequality (112) and using (6,), (65),
(@,), vi), (114) and Lemma 7, we obtain

0(22) =0 <0[Fpma (s, )|

(115)
<g {leirgo (M (xmw > X, )} .
Therefore,
0(se) < O(se). (116)
It is a contradiction. Therefore,
lim d(x,,x,)=0. (117)

1,M—00

Hence, {x, } is a Cauchy sequence in X. By completeness
of (X, d), there exists z in X such that

lim d(x,, z) = 0. (118)

X—00

Now, we show that d(Tz, z) = 0 arguing by contradiction,
we assume that

d(Tz,z) > 0. (119)
As in the proof of Theorem 11, we conclude that
1
;d(z, Tz) < lim sup d(Tx,, Tz) < sd(z, Tz). (120)
n—00

Since T is a 0-¢-contraction, applying (81) with x=x,
and y = z, we conclude that

6(d(Tx, T2) <§(0(M(x,,2))]),  (121)
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where

M(x,, z) = max {d(x,, z), d(x,, Tx,), d(z, Tz),d(z, Tx,) }.

(122)
This implies that

G(SZd(Txn, Tz)) < ¢[0(max {d(x,, 2), d(x,, Tx,), d(z, Tz), d(z, Tx,)})].

(123)

By letting # — oo in inequality (123) and using (0,), (®5)
, (120) and Lemma 7, we obtain

0 {sz %d(z, Tz)} =0[sd(z, Tz)|
9[5 hm d(Tx,, Tz) }

< K (Khr& max {d(x,, 2), d(x,, Tx, ), d(z, T2), d(z, Txn)}))]

=¢[0(d(z, Tz))] < 0(d(z, Tz)).

/\

(124)
As 0 is increasing, then we deduced that
d(z,Tz) <sd(z, Tz). (125)
Therefore, s < 1. It is a contradiction. So, z = Tz. Thus, T
has a fixed point.
Uniqueness: let z, ue fix (T') where z # u. Then, from
d(Tz, Tu)>0 (126)
Applying (81) with x =z and y = u, we have

0(d(z, u)) = 6(d(Tu, Tz)) < 0(Sd(Tu, Tz)) < 9[0(M(z, u))],

(127)
where
M(z, u) = max {d(z, u), d(z, Tz), d(u, Tu), d(u, T2)} = d(z, u).
(128)
Therefore, we have
0(d(z, 1)) < pl0(d(z u))] < 0(d(z, u)).  (129)

This implies that d(z, u) <d(z, u). It is a contradiction.
Therefore, u =z.

Following from Theorem 14, we obtain the fixed point
theorems for the 0-¢-Kannan-type contraction and the 0-¢
-Reich-type contraction. The results presented in the paper
improve and extend the corresponding results due to the
Kannan-type contraction and Reich-type contraction on
rectangular b-metric space.

Theorem 15. Let (X, d) be a complete b-rectangular metric
space and T : X — X be a Kannan-type contraction, then T
has a unique fix.

Proof. Since T is a Kannan-type contraction, then there exist
0 € ® and ¢ € @ such that

0[s%d(Tx, Ty)] < { (w)}

¢
$[0(max {d(x, Tx), d(y, Ty)})]
$[0(max {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)})].

(130)

INIA

Therefore, T is 0-¢-contraction. As in the proof of Theo-
rem 14 we conclude that T has a unique fixed point.

Theorem 16. Let (X, d) be a complete b-rectangular metric
space and T : X — X be a Reich-type contraction. Then, T

has a unique fixed point.

Proof. Since T is a Reich-type contraction, then there exist
0 € ® and ¢ € @ such that

0[s°d(Tx, Ty)] <¢|6

3
< ¢[0(max {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)})].
(131)

(d(x, y) +d(Tx, x) +d(Ty, y))}

Therefore, T is a 0-¢-contraction. As in the proof of The-
orem 14 we conclude that T has a unique fixed point.

Corollary 17. Let (X, d) be a complete b-rectangular metric
space and T : X — X be a Kannan type mapping, i.e., there
exists o € 10, (1/2)[ such that for all x,y € X,

d(Tx, Ty) > 0= s°d(Tx, Ty) < a[(d(Tx, x) + d(Ty, y))]-
(132)

Then, T has a unique fixed point.

Proof. Let 0(t) =¢' for all t €]0, +oo], and ¢(t) = t** for all t
€ [1,+00]. Clearly ¢ € @ and 0 € ®. We prove that T is a 0-
¢-Kannan-type contraction. Indeed,

0(s*d(Tx, Ty)) = ¢ d(TxTy)

< Md(Txx)+d(Ty))

_ 2a (d(Tx,x);d(Ty,y))

_ |:e(d(Tx,x);rd(Ty,y)):| 2a

gfo(ATm )T

As in the proof of Theorem 15, T has a unique fixed point
xeX.

(133)
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Corollary 18. Let (X, d) be a complete b-rectangular metric
spaceand T : X — X be a Reich-type mapping, i.e., there exists
A €10, (1/3)[ such that for all x,y € X,

d(x,y)>0= szd(Tx, Ty) < M(d(x,y) +d(Tx, x) +d(Ty, y))].

(134)
Then, T has a unique fixed point.

Proof. Let 6(t) =¢ for all t €]0, +oo[ and ¢(t) = t> for all ¢
€ [1,+00[.
We prove that T is a 0-¢-Reich-type contraction. Indeed,

0(sd(Tx, Ty)) = ")
< exl(d(x,y)er(Tx,X)+d(Ty,y))

_ 3A(d(x,y)+d(T);,x)+d(Ty,y))

! {0 (d(x,y) +d(Tx, x) + d(Ty,y))] .

3
(135)

As in the proof of Theorem 16, T has a unique fixed point
xeX.

Corollary 19. (Theorem 11 Let (X, d) be a complete b-rect-
angular metric space and T : X — X be a mapping. Suppose
that there exist 0 € ©® and r €10, 1] such that for any x,y € X,

d(Tx, Ty)>0= G[SZd(Tx, Ty)} <[O(M(x, )], (136)
where
M(x,y) =max {d(x,y), d(x, Tx),d(y, Ty), d(y, Tx)}.
(137)

Then, T has a unique fixed point.

Proof. By taking ¢(t) = t", with r € ]0, 1], obvious ¢ € @, then
we conclude that T is a 0-¢-contraction. As in the proof of
Theorem 14, T has a unique fixed point.

Very recently, Kari et al. in [8] proved the result (Theo-
rem 1) on (a,#)-complete rectangular b-metric spaces. In
this paper, we prove this result in complete rectangular b
-metric spaces.

Corollary 20. Let d(X, d) be a complete b-rectangular metric
space with parameter s > 1, and let T be self-mapping on X. If
for all x,y € X, we have

d(Tx, Ty) > 0= 0(s*.d(Tx, Ty))
<PO(Pd(x.y) + Pod(Tx.x) + B3d(Ty y) + B,d(y: Tx))l,
(138)

where 0 € ©,¢ € @, B, >0 forie{1,2,3,4},Y =3B, < . Then,
T has a unique fixed point.
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Proof. We prove that T is a 0-¢-contraction. Indeed,

0(s.d(Tx, Ty)) < $[0(B,d(x, y) + B,d(Tx, x)
+B3d(Ty, y) + Byd(y, Tx))]
< OB, + B, + By + By)
- (max {d(x, ), d(Tx, x), d(Ty y), d(y Tx)})]
< ¢[0(max {d(x ), d(Tx, x), d(Ty.y), d(y, Tx)})]-
(139)

As in the proof of Theorem 14, T has a unique fixed
point.

Example 21. Let X =AUB, where A={1/n:ne{3,4,5,6}}
and B=(1/2), (3/2)]. Define d : X x X — [0,+00] as follows:

forallx, y € X,

{d(x)y) =d(y,x)
dx,y)=0y=x,

11 11
dl=,-|=d(-,=-)=0,1,
31 4’5
1
’7):d(1’1):0’05,
46
a(L Y gt D Zos,
36 56

d(x,y)=(lx-yl )2 otherwise.

(140)

QU
W[ =
5

Then, (X, d) is a b-rectangular metric space with coeffi-
cient s = 3. However we have the following: [1)](X, d)is not
a metric space, as d((1/5), (1/6)) =0.5>0.15=d((1/5), (1/4
))+d((1/4),(1/6)). [2)] (X,d)is not ab-metric space
fors=3, as d((1/5),(1/6)) =0.5> 0.45=3[d((1/5), (1/4)) +
d((1/4), (1/6))]. [3)] (X, d)is not a rectangular metric space,
as d((1/5),(1/6)) =0.5>0.2=d((1/5), (1/3)) +d((1/3), (1/
4)) +d((1/4), (1/6)). Define mapping T : X — X by

)
T(x)={ 5 2’2 (141)
1 ifxeA.
Then,  T(x)€[(1/2),(3/2)]. Let O(t)=+t+1,
¢(t) = (t+1)/2. It is obvious that 6 € ® and ¢ € ©.
Consider the following possibilities:
2
d(Tx, Ty) = (\/’_C - W) . (142)

Case 1. x,y € [(1/2), (3/2)], with x # y and assume that x > y.

Therefore,
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On the other hand,

0(s*d(Tx, Ty) — ¢[0(d(x, y))]
_6(vx—\p) —5(x—y)
10

= S (VE= V7)) [6-5(Va+ 3
(144)
Since x, y € [(1/2), (3/2)], then
6—5\/33[6—5(\/9_”\/)7)]36—\1/—%30, (145)

which implies that

[0(d(x:3))]

G(SZd(Tx, Ty) <
< ¢[0(max {d(x, y), d(x, Tx),

¢
¢ d(y, Ty)}. d(y, Tx))].
(146)

Case 2. x € [(1/2), (3/12)],y € A, or y € [(1/2), (3/2)], x € A.
Therefore, T(x) =

= (I(vVx-1)/51)".

In this case, consider two possibilities:

(Vx+4)/5, T(y)=1, then d(Tx, Ty)

(1) x>1: then /x > 1. Therefore,

d(Tx, Ty) = (ﬁs_ 1)2. (147)
So, we have
0(s*d(Tx, Ty) = g(\/y_c— 1)+1,
M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)}

2d(y, Ty)=(1-y)’ 2 (1— %): (%)2

(e
On the other hand
()
Een-L (e
- 5 (9vE-14)

11
Since x € 1, (3/2)], then
1—15 (9vx-14) <0 (150)
This implies that
0(s*d(Tx, Ty) < ¢[0(d(y, Ty )]
< o0(d(ys Ty
< ¢[0(max {d(x,y),d(x, Tx),d(y, Ty)},d(y, Tx))].
(151)
(2) x<1: then \/x < 1. Therefore,
1-vx\> [1-yx\°
d(Tx, Ty) = (' 5 ) =< 5 ) . (152)
So, we have
G(SZd(Tx, Ty) = g (1 - \/y_c) +1,
M(x,y) = max {d(x, y), d(x, Tx), d(y, Ty), d(y, Tx)}
> (3)
3
2\? 1
o)) 2o -

On the other hand,

6(%d(Tx Ty) -¢[e(d<1, §>)} Slve e -avE)

Since x € [(1/2), 1], then

(155)

1
15 (4- 9vx) <0
This implies that

6(d(T, Ty) < $[0(d(y, Ty)|
< ¢[0(max {d(x,y),d(x, Tx),d(y, Ty)},d(y, Tx))].

(156)

Hence, condition (81) is satisfied. Therefore, T has a
unique fixed point z = 1.
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