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In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling
type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the
prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the
non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are
determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally,
numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the
dynamics of our proposed model.

1. Introduction

The most influential theme in ecology and mathematical
modeling is the dynamic of the relationship among species.
Many authors extended or modified the work of the Lotka
and Voltera model [1, 2], and they have investigated thse
topics widely by using ordinary differential equations or def-
erence equations, see [3–9], and references therein. Nowa-
days, authors formulate their mathematical models by
fractional order differential equation due to their ability to
give the precise description for various linear and nonlinear
phenomena [10–15]. The increasing of mathematical models
that based on fractional order differential equation has
recently obtained popularity in the studying the behavior
of biological models. Fractional-order differential equation
has been successfully used and applied to model many areas
of science, engineering, and phenomena that cannot be for-
mulated by other types of equations [10, 16]. In [12, 16–21],
authors have investigated the effects of the fractional order
differential equation on a prey predator model as well as
they also discussed the stability analysis of equilibrium
points of fractional order model with and without harvest-

ing, as well as the existence, uniqueness, and boundedness
of the solutions that are proved.

There are several different types of definitions of
fractional-order differential equation in the literatures [16,
22–25], for e.g., Caputo, Riemann-Litouville, Fabrizio, Mar-
echand,Grunwald-Letnikov, wayl, and Riesz fractional-order
derivatives. Throughout this work, we used the Caputo
fractional-order derivatives because it is not necessary to
define the initial conditions of fractional-order and its
fractional-order derivative of constant function is zero, as
well as the similarity of the initial conditions of fractional
order differential and the integer order ones [8]. This work
is organized as follows: in Section 2, some useful definitions
and concept that concern to the fractional order are pre-
sented. In Section 3, a three-dimensional fractional-order
prey-predator model is considered. The uniqueness and
boundedness as well as the nonnegativity of its solution are
proved. In Section 4, all the equilibrium points are deter-
mined, and the conditions to achieve its local stability are
set. In Section 5, numerical simulations are given to confirm
the theoretical results. Finally, conclusions are given in Sec-
tion 6.
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2. Preliminaries

Definition 1. [24, 26]: Caputo’s definition of fractional deriv-
atives is given as follows:

Dα
t f ðtÞ = I½α�−α f ½α�ðtÞ, α > 0,

where ½α� is the least integer which is not less than α, and
Iθ is the Riemann-Liouville integral operator of order θ
which is given by

Iθ f ðtÞ = 1/ΓðθÞÐ t0ðt − τÞθ−1 f ðτÞdτ, θ > 0:
ΓðθÞ is the Euler Gamma function.

Throughout this work, we need some useful results for the
fractional-order derivative. We start with the following
results which are proved in [13, 16, 27].

Lemma 1.

(1) Suppose that f ðtÞ ∈ C½a, b� and Dα
a f ðtÞ ∈ Cða, b� with

0 < α ≤ 1, then we have

f tð Þ = f að Þ + 1
Γ αð Þ Dα

a fð Þ ξð Þ t − að Þα, ð1Þ

where a ≤ ξ ≤ x, ∀x ∈ ða, b�.

(2) Suppose f ðtÞ ∈ C½a, b� and Dα
t f ðtÞ ∈ Cða, bÞ, 0 < α ≤

1. IfDα
a f ðtÞ ≥ 0, ∀t ∈ ða, bÞ, then f ðtÞ is a nondecreas-

ing function ∀t ∈ ½a, b�, and if ct0D
α
a
f ðtÞ ≤ 0, ∀t ∈ ða, bÞ

, then f ðtÞ is a nonincreasing function ∀t ∈ ½a, b�
(3) Consider the Cauchy problem

Dα
ax tð Þ = λx tð Þ + f tð Þ,
x að Þ = b  b ∈ℝð Þ:

ð2Þ

With 0 < α ≤ 1 and λ ∈ℝ, then the form of the solution is
given by

x tð Þ = bEα λ t − að Þα½ � +
ðt
a
t − sð Þα−1Eα,α λ t − sð Þα½ �f sð Þds: ð3Þ

While the solution to the problem

Dα
ax tð Þ = λx tð Þ,

x að Þ = b  b ∈ℝð Þ,
ð4Þ

is given by

x tð Þ = bEα λ t − að Þα½ �: ð5Þ

(4) Let uðtÞ be a continuous function on ½t0,∞� and
satisfy

Dα
au tð Þ ≤ −λu tð Þ + μ, ð6Þ

where 0 < α < 1, ðλ, μÞ ∈ℝ2, λ ≠ 0, and t0 ≥ 0 is the initial
time. Then, its solution has the form

u tð Þ ≤ ut0 −
μ

λ

� �
Eα −λ t − t0ð Þα½ � + μ

λ
: ð7Þ

For the existence a unique solution for the general
fractional-order derivative, we have the next lemma that
appeared in [28].

Lemma 2. Consider the system
Dα
t xðtÞ = f ðt, xÞ, t > t0

with the initial condition xt0 , where 0 < α ≤ 1, f : ½t0,∞Þ
×Ω⟶ℝn. If f ðt, xÞ satisfies the locally Lipchitz condition
with respect to x, then there exists a unique solution of the
above system on ½t0,∞Þ ×Ω.

3. Model Formulation

Frist, the following three dimension prey-predator model
with functional response of Holling type III is considered
as follows:

dX
dT

= R0X 1 − X
K0

� �
−

a1Y X2

B1 + X2

dY
dT

= a2Y X2

B1 + X2 −
b1Z Y2

B2 + Y2 − c1Y − h2Y

dZ
dT

= b2Z Y2

B2 + Y2 − c2Z

9>>>>>>>>>=
>>>>>>>>>;

, ð8Þ

where X, Y , and Z are the density of prey species, mid-
dle species, and the top predator species. R0, K0,, c1, c2 , and
b1 are the intrinsic growth rates, the carrying capacity of
the prey population, the death rates for middle predator
population and top predator population, and capture rate
of prey and middle predator, respectively. The para-
meter a1is the conservation rate of preyX, and the parame-
ters a2and b2 are the conservation rate of middle predator
Y to the top predator Z, respectively. The constants B1 and
B2 are the predation rates and half saturation constants,
respectively. The parameter h2 denotes to the constant har-
vesting rate.

We use the following transformation to reduce the
dimension of model (8). x = X/k, y = ða1/k0R0ÞY
, z = ða1b1/R2

0k0ÞZ, and t = R0T , and then we obtain the fol-
lowing system:

dx
dt

= x 1 − xð Þ − ax2y
1 + ax2

dy
dt

= bx2y
1 + ax2

−
dy2z

1 + dy2
−m1y − hy

dz
dt

= cy2z
1 + dy2

−m2z

9>>>>>>>>=
>>>>>>>>;

, ð9Þ
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where a = k20/B1, b = aa2/R0, c = R0d/b2, d = k20R
2
0/a21B2,

m1 = c1k
2
0R0/a1, m2 = R0/c2, and h = h2k0R0/a1.

Next, we introduce the fractional–order derivative α in
model (2) with the help of fractional order Caputo type
derivative. Then, the system (9) becomes as follows:

Dα
t x tð Þ = x 1 − xð Þ − ax2y

1 + ax2

Dα
t y tð Þ = bx2y

1 + ax2
−

dy2z
1 + dy2

−m1y − hy

Dα
t z tð Þ = cy2z

1 + dy2
−m2z

9>>>>>>>>=
>>>>>>>>;

: ð10Þ

Remark 3. Because of the biological significance, we are
interesting solutions that are nonnegative and bounded only,
so that we will prove the following theorem.

Theorem 4. Let Ω+ = fðx, y, zÞ ∣ x ≥ 0, y ≥ 0 and z ≥ 0g and
denotes all nonnegative real numbers inℝ3, and then all solu-
tions of the system (10) with x0 ≥ 0, y0 ≥ 0 and z0 ≥ 0 are uni-
formly bounded and nonnegative.

Proof. we have to show that xðtÞ ≥ 0, ∀t ≥ 0, assuming xð0Þ
> 0 for t = 0 considering that xðtÞ ≥ 0, ∀t ≥ 0 is not true.
Then, there exists a constant t1 > 0 such that

x tð Þ > 0, 0 ≤ t < t1,
x tð Þ = 0, t = t1,
x tð Þ < 0, t > t1:

8>><
>>:

ð11Þ

From the first equation of system (10), we have

Dα
t1
x tð Þ

���
t=t1

= 0: ð12Þ

According to part 1 in Lemma 1, we have xðt+1 Þ = 0,
which contradicts the fact that xðt+1 Þ < 0, i.e., xðtÞ < 0, t > t1.
Therefore, we have xðtÞ ≥ 0, ∀t ≥ 0. By the same arguments,
yðtÞ ≥ 0, ∀t ≥ 0 and zðtÞ ≥ 0 can get ∀t ≥ 0.For the uniformly
bounded, Let VðtÞ = ð1/aÞx + ð1/bÞy + ðd/bcÞz, and then we
have

DαV tð Þ = 1
a
Dαx tð Þ + 1

b
Dαy tð Þ + d

bc
Dαz tð Þ

= 1
a
x 1 − xð Þ − 1

b
m1 + hð Þy − d

bc
m2z:

ð13Þ

Now, for each η > 0, we have

DαV tð Þ + ηV tð Þ = 1
a
x 1 − xð Þ − 1

b
m1 + hð Þy − d

bc
m2z + η

1
a
x

+ η
1
b
y + η

d
bc

z ≤ −
1
a
x2 + η + 1ð Þ 1

a
x

+ η − m1 + hð Þð Þ 1
b
y + η −m2ð Þ d

bc
z

≤ −
1
a

x2 − η + 1ð Þx + 1
4 η + 1ð Þ2 − 1

4 η + 1ð Þ2
� �

+ η − m1 + hð Þð Þ 1
b
y + η −m2ð Þ d

bc
z

= −
1
a

x −
1
2 η + 1ð Þ

� �2
+ η + 1ð Þ2

4a

+ η − m1 + hð Þð Þ 1
b
y + η −m2ð Þ d

bc
z

≤
1
4a η + 1ð Þ2 + η − m1 + hð Þð Þ 1

b
y + η −m2ð Þ d

bc
z:

ð14Þ

Therefore,
DαVðtÞ + ηVðtÞ ≤ l, by taking η <minððm1 + hÞ,m2Þ,
where l = ð1/4aÞðη + 1Þ2 > 0.
Now by using part 4 in Lemma 1, we have

V tð Þ ≤ V 0ð Þ − l
η

� �
Eα −η t − 0ð Þα½ � + l

η
,

≤V 0ð ÞEα −ηt
α½ � + l

η
1 − Eα −ηt

α½ �ð Þ:
ð15Þ

Thus, VðtÞ⟶ l/η as t⟶∞ and 0 <VðtÞ ≤ l/η.
Therefore, all solutions of system (10) that starts from
Ω+ are confined in the regionΩ = fðx, y, zÞ ∈ℝ3 ∣VðtÞ ≤
ðl/ηÞ + ε, for any ε > 0g.

Now, the existence and uniqueness of the solution of the
considered system (10) are shown in the next theorem:

Theorem 5. Let γ be a sufficiently large, and then for each
S0 = ðx0, y0, z0Þ ∈ fðx, y, zÞ ∈ℝ3 ∣max fjxj, jyj, jzj ≤ γgg,
there exists a unique solution S = ðx, y, zÞ ∈Ω of the
fractional-order system (10) with initial condition S0, which
is defined for all t ≥ 0.

Proof. Let S = ðx, y, zÞ, �S = ð�x, �y, �zÞ, and consider a mapping
HðSÞ = ðH1ðSÞ,H2ðSÞ,H3ðSÞÞ, such that

H1 Sð Þ = x 1 − xð Þ − ax2y
1 + ax2

H2 Sð Þ = bx2y
1 + ax2

−
dy2z

1 + dy2
−m1y − hy

H3 Sð Þ = cy2z
1 + dy2

−m2z

9>>>>>>>>=
>>>>>>>>;

: ð16Þ
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For any S, �S ∈Ω, we have

H Sð Þ −H �S
	 
�� �� = H1 Sð Þ −H1 �S

	 
�� �� + H2 Sð Þ −H2 �S
	 
�� ��

+ H3 Sð Þ −H3 �S
	 
�� �� = x 1 − xð Þ − ax2y

1 + ax2

����
− �x 1 − �xð Þ + a�x2�y

1 + a�x2

���� + bx2y
1 + ax2

−
dy2z

1 + dy2

����
−m1y − hy −

b�x2�y
1 + a�x2

+ d�y2�z
1 + d�y2

+m1�y + h�y
����

+ c�y2�z
1 + d�y2

−m2z −
c�y2�z

1 + d�y2
+m2�z

����
����

= x − �xð Þ 1 − x + �xð Þð Þj

− a
x2y − �x2�y
	 


+ ax2�x2 y − �yð Þ
1 + ax2ð Þ 1 + a�x2ð Þ

� �����
+ b

x2y − �x2�y
	 


+ ax2�x2 y − �yð Þ
1 + ax2ð Þ 1 + a�x2ð Þ

� �����
− d

y2z − �y2�z
	 


+ dy2�y2 z − �zð ÞÞ
1 + dy2ð Þ 1 + d�y2ð Þ

� �

−m1 y − �yð Þ − h y − �yð Þ
����

+ c
y2z − �y2�z
	 


+ dy2�y2 z − �zð ÞÞ
1 + dy2ð Þ 1 + d�y2ð Þ

� �
−m2 z − �zð Þ

����
����:

ð17Þ

Since j1/ð1 + dy2Þð1 + d�y2Þj ≤ 1 and j1/ð1 + ax2Þð1 + a
�x2Þj ≤ 1 and max fjxj, jyj, jzjg ≤ γ, we can have

H Sð Þ −H �S
	 
�� �� ≤ x − �xj j 1 − x + �xð Þj j

+ a + bð Þ x2y − �x2�y
�� �� + a x2

�� �� �x2�� �� y − �yj j
1 + ax2ð Þ 1 + a�x2ð Þj j

+ d + cð Þ y2z − �y2�z
�� �� + d y2

�� �� �y2�� �� z − �zj j
1 + dy2ð Þ 1 + d�y2ð Þj j

+ m1 + hð Þ y − �yj j +m2 z − �zj j
≤ 1 + 2γ + 2γ2 a + bð Þ	 


x − �xj j
+ a + bð Þγ2 + a a + bð Þγ4 + 2γ2 d + cð Þ	
+ m1 + hð ÞÞ y − �yj j + d + cð Þγ2	
+ d d + cð Þγ4 +m2Þ z − �zj j = L S − �S

�� ��,
ð18Þ

where L =max fð1 + 2γ + 2γ2ða + bÞÞ, ðða + bÞγ2 + aða
+ bÞγ4 + 2γ2ðd + cÞ + ðm1 + hÞÞ, ððd + cÞγ2 + dðd + cÞγ4 +
m2Þg.

Therefore, HðSÞ satisfies the Lipchitz condition. By
Lemma 2, the proof is finished.

4. The Equilibrium Points and Local
Stability Analysis

In this section, the existence and the local stability of equilib-
rium points of the considered system (10) are studied and
investigated. Before that, we need the following theorem.

Theorem 6 (see [29]). Consider the fractional–order differen-
tial system dαx/dtα = f ðxÞ; xð0Þ = x0, with α ∈ ð0, 1Þ and x ∈
ℝn. The equilibrium points of the above system are solutions
to the equation f ðxÞ = 0. An equilibrium point is locally
asymptotically stable if all the eigenvalues λj of the Jacobian
matrix J = ∂f /∂x evaluated at the equilibrium satisfy jarg
ðλjÞj > απ/2.

Proof (see [29]). To obtain the equilibrium points of the con-
sidered system (10), we solve the following simultaneous
equations:

Dα
t x tð Þ = 0,

Dα
t y tð Þ = 0,

Dα
t z tð Þ = 0:

ð19Þ

Thus, the considered system (10) has the following pos-
sible equilibrium points:

(1) The trivial equilibrium point E0 = ð0, 0, 0Þ and the
equilibrium point E1 = ð1, 0, 0Þ without any restric-
tion on the parameters

(2) The top predator free equilibrium point E2 = ð�x, �y, 0Þ
exists if b > aðm1 + hÞ and 0 < �x < 1, where �x =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 + h/b − aðm1 + hÞp

and �y = ð1/axÞð1 − �xÞð1 + a
�x2Þ

(3) The interior equilibrium point E3 = ðx∗, y∗, z∗Þ exists
if c >m3d and bx∗2/1 + ax∗2 > ðm1 + hÞ, where y∗ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2/c −m2d

p
, x∗, is the positive root of the equation

ax3 − ax2 + ðay∗ + 1Þx − 1 = 0 and z∗ = ð1 + dy∗2/d
y∗Þðbx∗2/1 + ax∗2 − ðm1 + hÞÞ

The Jacobian matrix of system (10) at ðx, y, zÞ is given
by

J x, y, zð Þ =

1 − 2x − 2axy
k2

−
ax2

k
0

2bxy
k2

bx2

k
−
2dyz
k21

−m1 − h −
dy2

k1

0 2cyz
k21

cy2

k1
−m2

2
6666666664

3
7777777775
,

ð20Þ

where k = ð1 + ax2Þ and k1 = ð1 + dy2Þ.

The next theorems give the local stability of E0, E1, and
E2, respectively.

Theorem 7. The trivial equilibrium point E0 of the system
(10) is always unstable point.
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Proof. The Jacobian matrix J at E0 is given by

J E0ð Þ =
1 0 0
0 − m1 + hð Þ 0
0 0 −m2

2
664

3
775: ð21Þ

The characteristic equation of the Jacobian matrix JðE0Þ is
given by

1 − λð Þ − m1 + hð Þ − λð Þ −m2 − λð Þ = 0: ð22Þ

Therefore, the roots of the above characteristic equation
are λ1 = 1, λ2 = −ðm1 + hÞ, and λ3 = −m3. Then, jarg ðλ1Þj
= 0 < απ/2, jarg ðλ2Þj = π > απ/2 and also jarg ðλ3Þj = π > α
π/2. Hence, the trivial equilibrium point is always unstable
point.

Theorem 8. The equilibrium point E1 of system (10) is locally
asymptotically stable if <ðm1 + hÞð1 + aÞ.

Proof. The Jacobian matrix J at E1 is given by

J E1ð Þ =

−1 −a
1 + a

0

0 b
1 + að Þ − m1 + hð Þ 0

0 0 −m2

2
666664

3
777775
: ð23Þ

The characteristic equation of the Jacobian matrix JðE1Þ is
given by

−1 − λð Þ b
1 + að Þ − m1 + hð Þ − λ

� �
−m2 − λð Þ = 0: ð24Þ

The roots of the above characteristic equation are λ1 =
−1, λ2 = b/ð1 + aÞ − ðm1 + hÞ and λ3 = −m2. Then, jarg ðλ1Þj
= jarg ðλ2Þj = π > απ/2 and jarg ðλ3Þj = π > απ/2. Hence,
the equilibrium point E1 is locally asymptotically stable if <
ðm1 + hÞð1 + aÞ . Otherwise, it is unstable point.

Theorem 9. The equilibrium point E2 is locally asymptoti-
cally stable if one of the following holds:

(i) cy2/k1 <m2 l1 < 0, l2 > 0, and Δ≥0

(ii) cy2/k1 <m2 l1 < 0 and Δ<0 and jarg ðλiÞj = tan−1ðffiffiffiffiffiffi
−Δ

p
/l1Þ > απ/2, i = 2, 3 where λ2,3 = l1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 − 4l2

q
/2,

l1 = 1 − 2x − ð2ð1 − xÞ − bx2/kÞ − ðm1 + hÞ, l2 = ðbx2/
kÞð1 − 2xÞ − ðm1 + hÞð1 − 2x − 2ð1 − xÞ/kÞ, and Δ =
l21 − 4l2

Proof. The Jacobian matrix J at E2 is given by

J E2ð Þ =

1 − 2x − 2axy
k2

−
ax2

k
0

2bxy
k2

bx2

k
− m1 + hð Þ −

dy2

k1

0 0 cy2

k1
−m2

2
666666664

3
777777775
:

ð25Þ

The characteristic equation of the Jacobian matrix JðE2Þ
is given by

cy2

k1
−m2 − λ

� �
λ2 − l1λ + l2
	 


= 0: ð26Þ

It is clear that λ1 = cy2/k1 −m2 is negative if cy
2/k1 <m2

so that jarg ðλ1Þj = π > απ/2. The other two roots λ2 and λ3

are λ2,3 = l1 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 − 4l2

q
/2. Hence, if Δ≥0. then the eigenvalue

λ2 and the eigenvalue λ3 are taken negative value; thus, j
arg ðλ2Þj = jarg ðλ3Þj = π > απ/2. Therefore, the point E2 is
locally asymptotically stable. Also, if Δ<0 and if jarg ðλiÞj
= tan−1ð ffiffiffiffiffiffi

−Δ
p

/l1Þ > 0, i = 2, 3 hold, then the equilibrium
point E2 is asymptotically stable. Otherwise, it is unstable
point.

In order to discuss the local stability of the interior point,
we need the following definition and lemma.

Definition 10 (see [30]). The discriminant Dð f Þ of a polyno-
mial

f xð Þ = xn + a1x
n−1 + a2x

n−2+⋯+an ð27Þ

is defined by Dð f Þ = ð−1Þnðn−1Þ/2Rð f , f ′Þ, where f ′ is the
derivative of f and where gðxÞ = xn + b1x

l−1 + b2x
l−2 +⋯ +

bl and Rð f , gÞ is an ðn + lÞ⨂ðn + lÞ determinant. If n = 3,
then Dð f Þ is given by

D fð Þ = 18a1a2a3 + a1a2ð Þ2 − 4a3 a1ð Þ3 − 4 a2ð Þ3 − 27 a3ð Þ2:
ð28Þ

Lemma 11 (see [30]). Let DðpÞ be a discriminant of the cubic
polynomial equation, pðλÞ = λ3 + a1λ

2 + a2λ + a3 = 0, then

(1) If DðpÞ > 0, a1 > 0, a3 > 0, a1a2 > a3, then jarg ðλiÞj >
απ/2, i = 1, 2, 3∀α ∈ ð0, 1Þ

(2) If DðpÞ < 0, a1 ≥ 0, a2 ≥ 0, and a3 > 0, then jarg ðλiÞj
> απ/2, i = 1, 2, 3 for α < 2/3

(3) If DðPÞ < 0, a1 < 0, a2 < 0, and α > 2/3, then jarg ðλiÞj
< απ/2, i = 1, 2, 3

(4) If DðPÞ < 0, a1 > 0, a2 > 0, and a1a2 = a3, then jarg
ðλiÞj > απ/2, i = 1, 2, 3. ∀α ∈ ð0, 1Þ
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Proof (see [30]).

Theorem 12. The interior equilibrium point E3 is locally
asymptotically stable if one of the following conditions holds:

(1) If DðpÞ > 0,N1 > 0,N3 > 0 and N1N2 −N3 > 0, for 0
< α < 1

(2) If DðpÞ < 0,N1 ≥ 0,N2 ≥ 0, N3 > 0, for 0 < α < 2/3
(3) If DðpÞ < 0,N1 > 0,N2 > 0, N1N2 =N3, for 0 < α < 1

where N1 = −1 + 2x + ð2axy/k2Þ − ðbx2/kÞ + ð2dyz/k21Þ +
ðm1 + hÞ − ðcy2/k1Þ +m2, N2 = ð1 − 2x − 2axy/k2Þðbx2/k − 2
dyz/k21 − ðm1 + hÞ + ðcy2/k1Þ −m2Þ + ðbx2/k − 2dyz/k21 − ðm1
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Figure 1: This figure shows the local stability of the point E1 and the time series of the three species. (a) The point E1. (b) Time series of the
three species.
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Figure 3: This figure shows the local stability of the point E3 and the time series of the three species. (a) The point E3. (b) Time series of the
three species.
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+ hÞÞðcy2/k1 −m2Þ + ð2abx3y/k3Þ + ð2cdy3z/k13Þ, and N3 =
−ð1 − 2x − 2axy/k2Þ½ðbx2/k − 2dyz/k21 − ðm1 + hÞÞðcy2/k1 −
m2Þ + ð2cdy3z/k31Þ� − ð2abx3y/k3Þðcy2/k1 −m2Þ.

Proof. The Jacobian matrix of system (10) at E3 is given by

J E3ð Þ =

1 − 2x − 2axy
k2

−
ax2

k
0

2bxy
k2

bx2

k
−
2dyz
k21

− m1 + hð Þ −
dy2

k1

0 2cyz
k21

cy2

k1
−m2

2
6666666664

3
7777777775
:

ð29Þ

Therefore, the characteristic equation of JðE3Þ is given
by

p λð Þ = λ3 + N1λ
2 + N2λ + N3 = 0: ð30Þ

Thus, the discriminant DðpÞ of the cubic polynomial
pðλÞ is

D pð Þ = −

1 N1 N2

0 1 N1

3 2N1 N2

N3 0
N2 N3

0 0
0 3 2N1

0 0 3
N2 0
2N1 N2

�������������

�������������

, ð31Þ

where DðpÞ = 18N1N2N3 + ðN1N2Þ2 − 4N3
1N3 − 4N3

2 −
27N2

3.

Then, all results can be obtained by Lemma 6.

5. Numerical Simulation

All previous theoretical results in Section 4 are confirmed by
giving numerical simulations. At different set of values of
parameters, the local stability of E1, E2, and E3 of the consid-
ered system (10) is investigated numerically.

First, for the point E1, the following set of values of the
parameters is chosen : a1 = 0:5 ; c1 = 0:1 ; b1 = 0:5 ; d1 = 0:2 ;
m1 = 0:15 ;m2 = 0:1 ; h = 0:8,α = 0:98, and (0.1,0.5,0.9) is
the initial value. Therefore, the condition in Theorem 4 is
satisfied. Figure 1 shows that the point E1 is locally stable.

For the point E2, we choose the values of parameters as
following E2, a1 = 0:6; c1 = 0:1; b1 = 0:3; d1 = 0:2; m1 = 0:03;
m2 = 0:32; and h = 0:01, α = 0:9 5, and (0.5,2.5,03) is the ini-
tial value. According to Theorem 9, the local stability of E2 is
satisfied. Figure 2 illustrates the local stability of the point E2.

To show the local stability of the unique positive equilib-
rium point E3, these values of parameters are chosen a1 =
0:75; c1 = 0:17; b1 = 0:3; d1 = 0:3; m1 = 0:03; m2 = 0:3; h =
0:02, and α = 0:9 5, (0.82,1.95,0.9) is the initial value so that
according to Theorem 12, the equilibrium point E3 is local

stability point, and the trajectories of prey and predator are
shown in Figure 3.

6. Conclusions

Fractional-order differential equations have recently been
successfully used and applied to model many areas of sci-
ence, especially, phenomena that cannot be formulated by
other types of equations, so that this work concerns a study
of a three-dimensional fractional-order prey-predator model
with Holling type III functional response and constant rate
harvesting. It is shown that the model possesses the exis-
tence, nonnegativity, boundedness, and uniqueness of the
solutions, as desired in any population dynamics. The local
stability of all possible equilibrium points of the considered
system is investigated analytically then confirms by numeri-
cal verifications.

Data Availability
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