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This paper proposes a new fitted operator strategy for solving singularly perturbed parabolic partial differential equation with
delay on the spatial variable. We decomposed the problem into three piecewise equations. The delay term in the equation is
expanded by Taylor series, the time variable is discretized by implicit Euler method, and the space variable is discretized by
central difference methods. After developing the fitting operator method, we accelerate the order of convergence of the time
direction using Richardson extrapolation scheme and obtained Oðh2 + k2Þ uniform order of convergence. Finally, three
examples are given to illustrate the effectiveness of the method. The result shows the proposed method is more accurate than
some of the methods that exist in the literature.

1. Introduction

The spatial delay parabolic singularly perturbed differential
equation is a differential equation in which the perturbation
parameter multiply the highest order derivative, and it has at
least one retarded term on the spatial variable. Some mathe-
matical problems can be treated as singularly perturbed
problems such as Navier–Stokes equations, atmospheric pol-
lution, turbulent transport, groundwater flow and solute
transport, and Black–Scholes model, as presented in the sur-
vey paper by Kadalbajoo and Gupta [1]. There are two prin-
ciple approaches for solving singular perturbation problems:
numerical approach and asymptotic approach by Sharma
et al. [2]. The numerical solution of the model problem is
challenging due to the existence of a boundary layer. Fur-
thermore, when using the classical finite difference method,
we are unable to achieve an accurate solution, and the sys-
tem becomes unstable. To tackle this issue, we need to create
a fitted method for uniform or nonuniform meshes. As a
result, ε-uniformly convergent numerical methods were
constructed, with the order of convergence and error con-
stant being independent of the perturbation parameter ε.
For solving singular perturbation problems, some ε-uni-

form numerical schemes have been developed in the
literature.

Most of the scholars studied on time delayed singularly
perturbed problems. Mbroh et al. [3] proposed parameter
uniform method for solving a time delay nonautonomous
singularly perturbed parabolic differential equation. Clavero
and Gracia [4] studied singularly perturbed time-dependent
problem of reaction–diffusion type using Richardson extrap-
olation technique. Woldaregay and Duressa [5] considered a
numerical method for both small time delay and large time
delay singularly perturbed boundary value problem. Kumar
and Kumari [6] show that the influence of a small delay on
the solution is extremely sensitive and that a small change
in the delay can have a significant impact on the solution.
Chakravarthy et al. [7] using the fitted technique, singularly
perturbed differential equations with large delays were
investigated.

Nowadays, a few scholars have examined numerical
solution for spatial delay singularly perturbed parabolic par-
tial differential equations. Bansal and Sharma [8] numerical
solutions for a large delay reaction-diffusion problem has
been developed. Gupta et al. [9] examined spatial delay par-
abolic singularly perturbed partial differential equations and
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its solution using higher order fitted mesh method. Expo-
nentially fitted operator method was developed to solve
differential-difference singularly perturbed problem by Wol-
daregay and Duressa [10]. Das and Natesan [11] presented
the solution of delay singularly perturbed partial differential
equation using second-order convergent method. Singh and
Srinivasan [12] developed Richardson extrapolation method
for solving convection-diffusion equations with retarded
term. Chahravarthy and Kumar [13] presented adaptive grid
method for solving singularly perturbed convection-
diffusion problems with spatial delay. Bansal et al. [14]
designed numerical scheme for solving general shift singu-
larly perturbed parabolic convectional diffusion problems.

In this study, a singularly perturbed delayed partial dif-
ferential equation with small spatial shift right boundary
layer problem is decomposed into three piecewise equations
which are treated using fitted operator difference methods.
To accelerate the order of accuracy in the time variable,
the Richardson extrapolation method is applied. The order
of convergence of the present method is shown to be second
order in both time and spatial variable, whereas the rate of
convergence is two. Furthermore, the numerical results of
the examples considered shows that the present method
has better accuracy compared to some results that appear
in the literature.

2. Statement of the Problem

Consider the parabolic singularly perturbed second-order
differential equation with small spatial delay, on the domain

Ω =D1 ×D2 = ð0, 1Þ × ð0, T� and Ω =Ωl ∪Ωb ∪Ωr , where
Ωl = fðx, tÞ: − γ ≤ x ≤ 0 and 0 ≤ t ≤ Tg, Ωb = fðx, tÞ: 0 ≤ x ≤
1 and 0 ≤ t ≤ Tg, and Ωr = fðx, tÞ: 1 ≤ x ≤ 1 + μ and 0 ≤ t ≤ T
g of the form:

ut − εuxx + A xð Þux + B xð Þu x, tð Þ + C xð Þu x − γ, tð Þ +D xð Þu x + μ, tð Þf
= F x, tð Þ, x, tð Þ ∈Ω,

ð1Þ

with

u x, tð Þ = φl x, tð Þ, ∀ x, tð Þ ∈Ωl,

u x, 0ð Þ = φb xð Þ, x ∈ 0, 1½ �,
u x, tð Þ = φr x, tð Þ, ∀ x, tð Þ ∈Ωr ,

8>><
>>: ð2Þ

where 0 < ε≪ 1 and γ, μ denote the small delay parameters.
The functions AðxÞ, BðxÞ, CðxÞ,DðxÞ, φlðx, tÞ, φbðxÞ, and φrð
x, tÞ are supposed to be bounded and smooth functions on
�Ω, that satisfy the conditions BðxÞ + CðxÞ +DðxÞ ≥ β > 0 on
Ωb = ½0, 1�. When γ = μ = 0, the above problem (1) reduced
to singularly perturbed parabolic partial differential prob-
lem. If AðxÞ ≥ α > 0, CðxÞ < 0 and DðxÞ < 0, ∀x ∈Ωb = ½0, 1�,
then the solution has boundary layer on the right side, i.e.,
at x = 1, where α, β are some constants.

Equation (1) together with initial boundary condition
Equation (2) can be rewrite as

Under the assumption that the data are uniformly
continuous and also meet relevant compatibility condi-
tions at the corner points ð0, 0Þ, ð1, 0Þ, ð−γ, 0Þ, andð1 + μ,

0Þ, it is possible to establish the uniqueness of a solution
to (1) [15]. The compatibility conditions are given as
follows:

Lεu x, tð Þ =
ut − εuxx + A xð Þux + B xð Þu +D xð Þu x + μ, tð Þ = F x, tð Þ − C xð Þφl x − γ, tð Þ, if 0 < x ≤ γ, 0 < t ≤ T ,

ut − εuxx + A xð Þux + B xð Þu + C xð Þu x − γ, tð Þ +D xð Þu x + μ, tð Þ = F x, tð Þ, if γ < x < 1 − μ, 0 < t ≤ T ,

ut − εuxx + A xð Þux + B xð Þu + C xð Þu x − γ, tð Þ = F x, tð Þ −D xð Þφr x + μ, tð Þ, if 1 − μ ≤ x < 1, 0 < t ≤ T:

8>><
>>: ð3Þ

φl 0, 0ð Þ = φb 0ð Þ,
φr 1, 0ð Þ = φb 1ð Þ,

(

∂φl 0, 0ð Þ
∂t

− ε
∂2φb 0ð Þ
∂x2

+ A 0ð Þ ∂φb 0ð Þ
∂x

+ B 0ð Þφb 0ð Þ + C 0ð Þφl −γ, 0ð Þ +D 0ð Þφb μð Þ = F 0, 0ð Þ,

∂φr 1, 0ð Þ
∂t

− ε
∂2φb 1ð Þ
∂x2

+ A 1ð Þ ∂φb 1ð Þ
∂x

+ B 1ð Þφb 1ð Þ + C 1ð Þφb 1 − γð Þ +D 0ð Þφr 1 + μ, 0ð Þ = F 1, 0ð Þ:

8>>><
>>>:

ð4Þ
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Using the above compatibility conditions, there exists a
constant M independent of the perturbation parameter ε
∀ðx, tÞ ∈ �Ω; we have

∣u x, tð Þ − u x, 0ð Þ∣ = ∣u x, tð Þ − φb 0ð Þ∣ ≤Mt,

u x, tð Þ − u 0, tð Þj j = u x, tð Þ − φl 0, tð Þj j ≤M 1 − xð Þ,

(
ð5Þ

for the proof of Equation (5) see [16].

Lemma 1 (Continuous Maximum Principle). Let the func-
tion ψðx, tÞ ∈ C2,1ð�ΩÞ. If ψðx, tÞ ≥ 0, for all ðx, tÞ ∈ ∂Ω and
Lεψðx, tÞ ≥ 0, for all ðx, tÞ ∈Ω, then ψðx, tÞ ≥ 0, for all ðx, tÞ
∈ �Ω.

Proof. Assume ðxy, tzÞ ∈ �Ω − ∂Ω such that ψðxy, tzÞ = min
ðx,tÞ∈ �Ω

ψðx, tÞ and suppose ψðxy , tzÞ < 0. This gives that ψtðxy, tzÞ
= 0, ψxðxy, tzÞ = 0 and ψxxðxy, tzÞ ≥ 0.☐

Now, in order to show Lεψðx, tÞ ≤ 0, consider the follow-
ing cases.

Case 1. 0 < xy ≤ γ and 0 ≤ tz ≤ T

Lεu xy, tz
� �

= ut xy, tz
� �

− εuxx xy, tz
� �

+ A xy
� �

ux xy, tz
� �

+ B xy
� �

u xy, tz
� �

+D xy
� �

u xy + μ, tz
� �

= −εuxx xy, tz
� �

+ B xy
� �

u xy, tz
� �

+D xy
� �

u xy + μ, tz
� �

= −εuxx xy, tz
� �

+ B xy
� �

+D xy
� �� �

u xy, tz
� �

+D xy
� �

u xy + μ, tz
� �

− u xy, tz
� �� �

≤ 0:

ð6Þ

Case 2. 1 − μ < xy < 1 and 0 ≤ tz ≤ T

Lεu xy, tz
� �

= ut xy, tz
� �

− εuxx xy, tz
� �

+ A xy
� �

ux xy, tz
� �

+ B xy
� �

u xy, tz
� �

+ C xy
� �

u xy − γ, tz
� �

= −εuxx xy, tz
� �

+ B xy
� �

u xy, tz
� �

+ C xy
� �

u xy − γ, tz
� �

= −εuxx xy, tz
� �

+ B xy
� �

+ C xy
� �� �

u xy, tz
� �

+ C xy
� �

u xy − γ, tz
� �

− u xy, tz
� �� �

≤ 0:

ð7Þ

Case 3. γ < xy ≤ 1 − μ and 0 ≤ tz ≤ T

Lεu xy, tz
� �

= ut xy, tz
� �

− εuxx xy, tz
� �

+ A xy
� �

ux xy, tz
� �

+ B xy
� �

u xy, tz
� �

+ C xy
� �

u xy − γ, tz
� �

+D xy
� �

u xy + μ, tz
� �

= −εuxx xy, tz
� �

+ B xy
� �

u xy, tz
� �

+ C xy
� �

u xy − γ, tz
� �

+D xy
� �

u xy + μ, tz
� �

≤ 0:
ð8Þ

Since BðxyÞ + CðxyÞ +DðxyÞ ≥ α > 0 and using the above
assumption, we have Lεψðx, tÞ ≤ 0 which contradicts our
assumption.

Thus, ψðxy , tzÞ ≥ 0 which leads to ψðx, tÞ ≥ 0∀ðx, yÞ ∈ �Ω.

Lemma 2. Let uðx, tÞ be the solution of the continuous prob-
lem for Equations (1) and (2). Then, we get the bound

∣u x, tð Þ∣ ≤ ∥f ∥
θ

+max ∣φl x, tð Þ∣,∣φb xð Þ∣,∣φr x, tð Þ ∣f g, ð9Þ

where BðxÞ ≥ θ > 0, ∀x ∈ ½0, 1�.

Proof. Let the barrier function ψ± and defined as

ψ± =
∥f ∥
θ

+max φl x, tð Þj j, φb xð Þj j, φr x, tð Þj j ± u x, tð Þf , ð10Þ

applying Lemma 1, and we get the above bound.☐

Lemma 3. The derivatives of the exact solution uðx, tÞ of
the Equation (1) fulfill the following bound for v = 0, 1,
and 2.

∂vu x, tð Þ
∂tv

����
���� ≤M, ∀ x, tð Þ ∈ �Ω, ð11Þ

where M ∈ℝ is independent of ε.

Proof. The proof of this lemma can be found in [7].☐

Theorem 4. The analytical solution of Equation (1) satisfies

∣
diu x, tð Þ

dxi
∣ ≤ 1 + ε−i exp −

α 1 − xð Þ
ε

� �� �
, 0 ≤ i ≤ 4: ð12Þ

Proof. The proof for the bounds of its derivatives is given in
[4].☐

3. Numerical Method

In this section, we develop an exponentially fitted operator
difference method to solve Equation (1).

3.1. Time Discretization. A uniform mesh with a time step
of k is used to discretize the time domain ½0, T� as fol-
lows:

t j = jk, for j = 0, 1, 2,⋯, n, ð13Þ
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where k = T/n and in the interval ½0, T�, n is the number
of subintervals in the time direction.

We utilize the implicit Euler’s approach to approximate
the time derivative term of Equation (1), which results in a
system of boundary value problems.

uj+1 − uj

k
− εuj+1

xx + A xð Þuj+1
x + B xð Þuj+1 + C xð Þuj+1 x − γ, tð Þ

+D xð Þuj+1 x + μ, tð Þ = F x, tð Þ:
ð14Þ

Using Equations (3) and (14), we have

where EðxÞ = BðxÞ + ð1/kÞ:
3.2. Spatial Discretization. The spatial domain ½0, 1� is subdi-
vided as follows using a uniform mesh with a step length of h
:

xi = ih, for i = 0, 1, 2,⋯,m, ð16Þ

where h = 1/m and m is the number of subintervals in spatial
direction in the interval ½0, 1�. Using expansion of Taylor

series expansion, we have

uj+1 x + μð Þ = uj+1 xð Þ + μuj+1
x +

μ2

2
uj+1 xð Þ +O μ3

� �
,

uj+1 x − γð Þ = uj+1 xð Þ − γuj+1
x +

γ2

2
uj+1 xð Þ +O γ3

� �
:

8>><
>>:

ð17Þ

Substituting Equation (17) into Equation (15) and rear-
ranging gives

with the boundary conditions:

u 0, tð Þ = φl 0, tð Þ, ∀ x, tð Þ ∈Ωl,

u 1, tð Þ = φr 1, tð Þ, ∀ x, tð Þ ∈Ωr ,

(
ð19Þ

and initial condition

u x, 0ð Þ = φb xð Þ, x ∈ 0, 1½ �, ð20Þ

where

p1 xð Þ = ε A xð Þ + μD xð Þð Þ
ε − μ2/2ð ÞD xð Þ ,

p2 xð Þ = ε A xð Þ − γC xð Þ + μD xð Þð Þ
ε − γ2/2ð ÞC xð Þ − μ2/2ð ÞD xð Þ ,

p3 xð Þ = ε A xð Þ − γC xð Þð Þ
ε − γ2/2ð ÞC xð Þ ,

q1 xð Þ = ε D xð Þ + E xð Þð Þ
ε − μ2/2ð ÞD xð Þ ,

q2 xð Þ = ε C xð Þ +D xð Þ + E xð Þð Þ
ε − γ2/2ð ÞC xð Þ − μ2/2ð ÞD xð Þ ,

Lεuj+1 xð Þ =

−εuj+1
xx + A xð Þuj+1

x + E xð Þuj+1 +D xð Þuj+1 x + μð Þ = F x, tð Þ − C xð Þφl x − γ, t j+1
� �

+
uj

k
, if 0 < x ≤ γ, 0 < t ≤ T ,

−εuj+1
xx + A xð Þuj+1

x + E xð Þuj+1 + C xð Þuj+1 x − γð Þ +D xð Þuj+1 x + μð Þ = F x, tð Þ + uj

k
, if γ < x < 1 − μ, 0 < t ≤ T ,

−εuj+1
xx + A xð Þuj+1

x + E xð Þuj+1 + C xð Þuj+1 x − γð Þ = F x, tð Þ −D xð Þφr x + μ, t j+1
� �

+
uj

k
, if 1 − μ ≤ x ≤ 1, 0 < t ≤ T ,

8>>>>>>><
>>>>>>>:

ð15Þ

Lεuj+1 xð Þ =
−εuj+1

xx + p1 xð Þuj+1
x + q1 xð Þuj+1 = g1 x, tð Þ, if 0 < x ≤ γ, 0 < t ≤ T ,

−εuj+1
xx + p2 xð Þuj+1

x + q2 xð Þuj+1 = g2 x, tð Þ, if γ < x < 1 − μ, 0 < t ≤ T ,

−εuj+1
xx + p3 xð Þuj+1

x + q3 xð Þuj+1 = g3 x, tð Þ, if 1 − μ ≤ x ≤ 1, 0 < t ≤ T ,

8>><
>>: ð18Þ
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q3 xð Þ = ε C xð Þ + E xð Þð Þ
ε − γ2/2ð ÞC xð Þ ,

g1 x, tð Þ = ε F x, t j+1
� �

− C xð Þφl x − γ, t j+1
� �

+ uj/k
� �� �

ε − μ2/2ð ÞD xð Þ ,

g2 x, tð Þ = ε F x, t j+1
� �

+ uj/k
� �� �

ε − γ2/2ð ÞC xð Þ − μ2/2ð ÞD xð Þ ,

g3 x, tð Þ = ε F x, t j+1
� �

  −D xð Þφr x + μ, t j+1
� �

+ uj/k
� �� �

ε − γ2/2ð ÞC xð Þ :

ð21Þ

Applying central difference approximation for spatial
variable of Equation (18), we obtain

To obtain more accurate and ε-uniform solution for
Equation (22), introducing fitting factor ðσÞ as follows:

To obtain the value of the fitting factor, multiply both
sides of the equations in (23) by h and evaluating limit as
h⟶ 0.

lim
h⟶0

−σ1
ρ

uj+1
i−1 − 2uj+1

i + uj+1
i+1 + lim

h⟶0
p1 xið Þ u

j+1
i+1 − uj+1

i−1
2

= 0,

ð24Þ

where ρ = h/ε.
The solution of Equation (18) comes from the theory of

singular perturbation [16] given as

u x, tð Þ = u0 x, tð Þ + ae−pv 1ð Þ 1−xð Þ/εð Þ, v = 1, 2, 3, ð25Þ

where u0ðx, tÞ is outer solution.

This implies the approximate solution at ðxi, t jÞ is given
as:

lim
h⟶0

uj
i = uj

o 0ð Þ + ae −pv 1ð Þð Þ/εepv 1ð Þiρ: ð26Þ

Using Equation (26), we have

lim
h⟶0

uj+1
i+1 − uj+1

i−1 = ae −pv 1ð Þð Þ/εepv 1ð Þiρ epv 1ð Þρ − e−pv 1ð Þρ
� �

, ð27aÞ

and

lim
h⟶0

uj+1
i−1 − 2uj+1

i + uj+1
i+1 = ae −pv 1ð Þð Þ/εepv 1ð Þiρ epv 1ð Þρ − 2 + e−pv 1ð Þρ

� �
:

ð27bÞ

−ε
uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ p1 xið Þ u

j+1
i+1 − uj+1

i−1
2h

+ q1 xið Þuj+1
i = g1 xi, tð Þ, if 0 < x ≤ γ, 0 < t ≤ T ,

−ε
uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ p2 xið Þ u

j+1
i+1 − uj+1

i−1
2h

+ q2 xið Þuj+1
i = g2 xi, tð Þ, if γ < x < 1 − μ, 0 < t ≤ T ,

−ε
uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ p3 xið Þ u

j+1
i+1 − uj+1

i−1
2h

+ q3 xið Þuj+1
i = g3 xi, tð Þ, if 1 − μ ≤ x ≤ 1, 0 < t ≤ T:

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

−εσ1
uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ p1 xið Þ u

j+1
i+1 − uj+1

i−1
2h

+ q1 xið Þuj+1
i = g1 xi, tð Þ, for 0 < x ≤ γ, 0 < t ≤ T ,

−εσ2
uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ p2 xið Þ u

j+1
i+1 − uj+1

i−1
2h

+ q2 xið Þuj+1
i = g2 xi, tð Þ, for γ < x < 1 − μ, 0 < t ≤ T ,

−εσ3
uj+1
i−1 − 2uj+1

i + uj+1
i+1

h2
+ p3 xið Þ u

j+1
i+1 − uj+1

i−1
2h

+ q3 xið Þuj+1
i = g3 xi, tð Þ, for 1 − μ ≤ x ≤ 1, 0 < t ≤ T:

8>>>>>>>>><
>>>>>>>>>:

ð23Þ
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Thus, using Equation (24), (27a), and (27b), we get

σv =
pv ið Þρ
2

coth
pv 1ð Þρ

2

	 

, v = 1, 2, 3: ð28Þ

Substituting Equation (28) into Equation (23), we get the
following tri-diagonal system of equations that can be solved
using Thomas algorithm.

Ej+1
i,v u

j+1
i−1 + Fj+1

i,v u
j+1
i +Gj+1

i,v u
j+1
i+1 =Hj+1

i,v , ð29Þ

for i = 1, 2,⋯,m − 1, j = 0, 1,⋯, n − 1 v = 1, 2, 3, where

Ej+1
i,v =

−εσv

h2
−
pv xið Þ
2h

Fj+1
i,v =

2εσv

h2
+ qv xið Þ,

Gj+1
i,v =

−εσv

h2
+
pv xið Þ
2h

Hj+1
i,v = gv xi, tð Þ:

ð30Þ

Since qvðxiÞ is nonnegative, then the system of Equation
(29) becomes diagonally dominant.

i:e: Fj+1
i,v

��� ��� > Ej+1
i,v

��� ��� + Gj+1
i,v

��� ���: ð31Þ

Thus, the present method have convergent solution.

3.3. Convergence Analysis

Lemma 5 (Discrete Maximum Principle). Suppose that the
mesh function wj+1ðxiÞ satisfies wj+1ðx0Þ ≥ 0 and wj+1ðxmÞ
≥ 0. If Lεwj+1ðxiÞ ≥ 0 for 1 ≤ i ≤m − 1, then wj+1ðxiÞ > 0, for
all i, 0 ≤ i ≤m.

Proof. Let wj+1ðxyÞ = min
1≤i≤m−1

wj+1ðxiÞ and suppose that wj+1ð
xyÞ < 0, then

Lεwj+1 xy
� �

= −εσv

wj+1 xy−1
� �

− 2wj+1 xy
� �

+wj+1 xy+1
� �

h2

+ pv xy
� �wj+1 xy+1

� �
−wj+1 xy−1

� �
2h

+ qvw
j+1 xy
� �

< 0,
ð32Þ

which contradicts our assumption.☐

Thus, wj+1ðxiÞ > 0, for all i, 0 ≤ i ≤m:

Lemma 6 (Stability Estimate). The solution Uj+1
i of the dis-

crete method satisfies the bound

U j+1
i

��� ��� ≤ θ−1 max LεU j+1
i

��� ��� +max φl 0, t j+1
� �

, φr 1, t j+1
� ��� ��,

ð33Þ

where qðxiÞ ≥ θ > 0.

Proof. Define the barrier function ψ±
i,j+1 as

ψ±
i,j+1 = θ−1 max ∣LεU j+1

i ∣ +max ∣φl 0, t j+1
� �

, φr 1, t j+1
� �

∣ ±U j+1
i :

ð34Þ

In the barrier function at the boundary condition, we
obtain

ψ±
j+1 0ð Þ = θ−1 max ∣LεU j+1

i ∣ +max ∣φl 0, t j+1
� �

, φr 1, t j+1
� �

∣ ± φl 0, t j+1
� �

≥ 0,

ψ±
j+1 1ð Þ = θ−1 max ∣LεU j+1

i ∣ +max ∣φl 0, t j+1
� �

, φr 1, t j+1
� �

∣ ± φr 1, t j+1
� �

≥ 0:

ð35Þ

The barrier function at spatial domain xi, 1 ≤ i ≤m − 1;
we obtain

Lεψ±
i,j+1 = Lε θ−1 max ∣ LεU j+1

i ∣+ max ∣ φl 0, t j+1
� �

, φr 1, t j+1
� �

∣
h i

± LεU j+1
i = qv xið Þ θ−1 max ∣ LεU j+1

i ∣
h

+ max ∣ φl 0, t j+1
� �

, φr 1, t j+1
� �

∣
�
± LεU j+1

i ≥ 0:

ð36Þ

Using Lemma 5, we have that ψ±
i,j+1 ≥ 0 for all ðxi, t j+1Þ

∈ �Ω. Thus, the required bound in Equation (33) is satisfied.

Consistency of the method: Consider the Taylor series
expansion of

uj+1
i+1 = uj+1

i + huj+1
x,i +

h2

2
uj+1
xx,i +

h3

3!
uj+1
xxx,i+⋯uj+1

i−1

= uj+1
i − huj+1

x,i +
h2

2
uj+1
xx,i −

h3

3!
uj+1
xxx,i+⋯uj

i

= uj+1
i − kuj+1

t,i +
k2

2
uj+1
tt,i −

k3

3!
uj+1
ttt,i+⋯:

ð37Þ
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Using the above expansion of Equation (22) becomes

1
k

uj+1
i − uj+1

i − kuj+1
t,i + k2

2
uj+1
tt,i −⋯

 !" #

−
ε

h2
uj+1
i + huj+1

x,i +
h2

2
uj+1
xx,i +

h3

3!
uj+1
xxx,i+⋯

 !"

− 2uj+1
i + uj+1

i − huj+1
x,i +

h2

2
uj+1
xx,i −

h3

3!
uj+1
xxx,i+⋯

 !#

+
A xið Þ
2h

uj+1
i + huj+1

x,i +
h2

2
uj+1
xx,i +

h3

3!
uj+1
xxx,i+⋯

 !"

− uj+1
i − huj+1

x,i +
h2

2
uj+1
xx,i −

h3

3!
uj+1
xxx,i+⋯

 !#

+ B xið Þuj+1
i + C xið Þu xi − γ, t j+1

� �
+D xið Þu xi + μ, t j+1

� �
− F xi, t j+1
� �

:

ð38Þ

After simplifying the terms, the truncation error
becomes

T:E: = uj+1
i,t − εuj+1

xx,i + A xið Þuj+1
x,i + B xið Þuj+1

i

+ C xið Þu xi − γ, t j+1
� �

+D xið Þu xi + μ, t j+1
� �

uj+1
i

− F xi, t j+1
� �

−
k
2
uj+1
tt,i −

εh2

12
uj+1
xxxx,i + A xið Þ h

2

6
uj+1
xxx,i,

ð39Þ

which gives

T:E: = −
k
2
uj+1
tt,i −

εh2

12
uj+1
xxxx,i + A xið Þ h

2

6
uj+1
xxx,i: ð40Þ

Thus, lim
ðh,kÞ⟶ð0,0Þ

T:E: = 0, which shows that the present

method is consistent. Since the method is consistent and sta-
ble, then using Lax equivalence theorem, the present method
is convergent.

Theorem 7. Let the exact solution and numerical solution of
Equation (1), respectively, are u and U . Then,

sup
0<ε≤1

max
i,j

∣u xi, t j
� �

−U j
i ∣ ≤M h2 + k

� �
: ð41Þ

Proof. For the proof, one can refer [17].☐

4. Richardson Extrapolation Approach

The Richardson extrapolation approach has been described,
and it is designed to improve the accuracy of the computed
solutions in the basic scheme.

Let Dn
2 ⊆D2n

2 , where D2n
2 is the mesh obtained from

bisecting the step size k. Denote the numerical solution
obtained from D2n

2 by �UjðxÞ, we have

uj xð Þ −Uj xð Þ ≤ Ck + Rn
j xð Þ, x, t j

� �
∈D1 ×Dn

2 , ð42aÞ

uj xð Þ − �U j xð Þ ≤ C
k
2

� �
+ R2n

j xð Þ, x, t j
� �

∈D1 ×D2n
2 ,

ð42bÞ

where Rn
j ðxÞ and R2n

j ðxÞ are the remainder terms of the
error. Now, subtracting the inequality (42b) from (42a) to
obtain the extrapolation formula.

uj xð Þ −Uj xð Þ − 2 uj xð Þ − �Uj xð Þ
� �

= Rn
j xð Þ − R2n

j , ð43Þ

which gives that

Uext
j xð Þ = 2�Uj xð Þ −U j xð Þ, ð44Þ

is an approximate solution [12].

Theorem 8. Let uðxi, t j+1Þ and Uext
i,j+1 be the solution of prob-

lems in (1) and (44), respectively, then the proposed scheme
satisfies the following error estimate

sup
0<ε<1

max
xi ,t j+1

∣u xi, t j+1
� �

−Uext
i,j+1∣ ≤ C h2 + k2

� �
: ð45Þ

Proof. Using the error for the temporal and spatial discreti-
zation gives the required bound.☐

5. Numerical Examples

To determine the efficacy of the current scheme, we looked
at model problems that had been addressed in the literature
and had approximate solutions that could be compared.

We used the double-mesh principle to estimate the abso-
lute maximum error of the current approach when the exact
solution for the given problem was unknown. We use the
following formula to approximate the absolute maximum
error at the selected mesh points:

Case 1. If the exact solution is known,

EM,N
ε = max

xi ,t jð Þ∈Ω
u xi, t j
� �

− uext,ji

��� ���: ð46Þ

Case 2. If the exact solution is unknown,

EM,N
ε = max

xi ,t jð Þ∈Ω
uext,ji

� �M,N
− uext,ji

� �2M,2N
����

����: ð47Þ
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We also evaluate the corresponding rate of convergence.

RM,N =
log EM,N

ε − log E2M,2N
ε

log 2
: ð48Þ

Example 1. Let AðxÞ = ð2 − x2Þ, BðxÞ = ðx − 3Þ, CðxÞ = −2,D
ðxÞ = −1, Fðx, tÞ = 10t2e−txð1 − xÞ, where ðx, tÞ ∈ ð0, 1Þ × ð0,
1�, and with initial boundary condition,

u x, tð Þ = 0, ∀ x, tð Þ ∈Ωl = x, tð Þ: − γ ≤ x ≤ 0, and 0 ≤ t ≤ 1f g,
u x, tð Þ = 0, ∀ x, tð Þ ∈Ωr = x, tð Þ: 1 ≤ x ≤ 1 + μ, and 0 ≤ t ≤ 1f g,
u x, tð Þ = 0, ∀ x, tð Þ ∈Ωb = x, tð Þ: 0 ≤ x ≤ 1, and 0 ≤ t ≤ 1f g:

ð49Þ

Example 2. Let AðxÞ = ð1 + x + x2Þ, BðxÞ = ð1 + x2Þ, CðxÞ =
−ð0:25 + 0:5x2Þ, DðxÞ = −0:25, Fðx, tÞ = sin ðπxÞð1 − xÞ,
where ðx, tÞ ∈ ð0, 1Þ × ð0, 1�, with initial and boundary con-
dition,

u x, tð Þ = 0, ∀ x, tð Þ ∈Ωl = x, tð Þ: − γ ≤ x ≤ 0, and 0 ≤ t ≤ 1f g,
u x, tð Þ = 0, ∀ x, tð Þ ∈Ωr = x, tð Þ: 1 ≤ x ≤ 1 + μ, and 0 ≤ t ≤ 1f g,
u x, tð Þ = 0, ∀ x, tð Þ ∈Ωb = x, tð Þ: 0 ≤ x ≤ 1, and 0 ≤ t ≤ 1f g:

ð50Þ

Example 3. Let AðxÞ = ð1 − x2/2Þ, BðxÞ = ðx + 6Þ, CðxÞ = −4,
DðxÞ = −1, Fðx, tÞ = xð1 − xÞ, where ðx, tÞ ∈ ð0, 1Þ × ð0, 3�,
with initial and boundary condition,

u x, tð Þ = 0, ∀ x, tð Þ ∈Ωl = x, tð Þ: − γ ≤ x ≤ 0, and 0 ≤ t ≤ 3f g,
u x, tð Þ = 0, ∀ x, tð Þ ∈Ωr = x, tð Þ: 1 ≤ x ≤ 1 + μ, and 0 ≤ t ≤ 3f g,
u x, tð Þ = 0, ∀ x, tð Þ ∈Ωb = x, tð Þ: 0 ≤ x ≤ 1, and 0 ≤ t ≤ 3f g:

ð51Þ

6. Discussions and Results

We have presented the method for solving spatial delayed
singularly perturbed parabolic partial differential equation.
The basic mathematical procedures are defining the model
problem, decomposing into three equations, approximating
time variable using implicit Euler’s method, approximating
the delay term using Taylor series expansion of order two,
approximating the spatial variable using the central differ-
ence method, and finding fitting factor. Finally, apply Rich-
ardson extrapolation method to accelerate the accuracy of
the method.

Three model examples are used to exemplify the perfor-
mance of the proposed method. The maximum error and
rate of convergence are shown in Tables 1–3 with different
values of ε, delay parameters, and mesh length. The physical

Table 1: Maximum absolute point-wise error and rate of convergence for Example 1 before and after Richardson extrapolation method
applied, where γ = 0:5ε, μ = 0:6ε, and L ≥ 8.

ε↓ M,N ⟶ 32,32 64,64 128,128 256,256 512,512

Before

10−2 5.5909e-03 2.7792e-03 1.3847e-03 6.9081e-04 3.4501e-04

10−4 6.2590e-03 3.3063e-03 1.5449e-03 7.7016e-04 3.8448e-04

10−6 6.2656e-03 3.1096e-03 1.5465e-03 7.7096e-04 3.8488e-04

10−8 6.2657e-03 3.1096e-03 1.5465e-03 7.7097e-04 3.8488e-04

10−10 6.2657e-03 3.1096e-03 1.5465e-03 7.7097e-04 3.8488e-04

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−L 6.2657e-03 3.1096e-03 1.5465e-03 7.7097e-04 3.8488e-04

Rate of convergence

10−L 1.0107 1.0077 1.0043 1.0022

After

10−2 1.8542e-04 5.5542e-05 1.5119e-05 3.9402e-06 1.0055e-06

10−4 2.2699e-04 6.6325e-05 1.7858e-05 4.6297e-06 1.1786e-06

10−6 2.2742e-04 6.6437e-05 1.7886e-05 4.6369e-06 1.1804e-06

10−8 2.2743e-04 6.6438e-05 1.7887e-05 4.6370e-06 1.1804e-06

10−10 2.2743e-04 6.6438e-05 1.7887e-05 4.6370e-06 1.1804e-06

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−L 2.2743e-04 6.6438e-05 1.7887e-05 4.6370e-06 1.1804e-06

Rate of convergence

10−L 1.7753 1.8931 1.9476 1.9739
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Table 2: Maximum absolute point-wise error rate of convergence for Example 2 before and after Richardson extrapolation method applied,
where γ = 0:5ε, μ = 0:6ε, and L ≥ 8.

ε↓ M,N ⟶ 16,16 32,32 64,64 128,128 256,256

Before

10−2 8.9343e-03 4.4707e-03 2.2286e-03 1.1098e-03 5.5384e-04

10−4 9.3800e-03 4.7241e-03 2.3512e-03 1.1687e-03 5.8202e-04

10−6 9.3844e-03 4.7269e-03 2.3526e-03 1.1693e-03 5.8233e-04

10−8 9.3845e-03 4.7269e-03 2.3526e-03 1.1694e-03 5.8233e-04

10−10 9.3845e-03 4.7269e-03 2.3526e-03 1.1694e-03 5.8233e-04

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−L 9.3845e-03 4.7269e-03 2.3526e-03 1.1694e-03 5.8233e-04

Rate of convergence

10−L 0.9894 1.0066 1.0085 1.0058

After

10−2 1.8103e-03 5.1433e-04 1.5297e-04 3.9939e-05 1.0095e-05

10−4 2.0571e-03 6.2361e-04 1.9584e-04 5.1831e-05 1.3148e-05

10−6 2.0599e-03 6.2482e-04 1.9636e-04 5.1977e-05 1.3185e-05

10−8 2.0599e-03 6.2483e-04 1.9637e-04 5.1979e-05 1.3186e-05

10−10 2.0599e-03 6.2483e-04 1.9637e-04 5.1979e-05 1.3186e-05

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−L 2.0599e-03 6.2483e-04 1.9637e-04 5.1979e-05 1.3186e-05

Rate of convergence

10−L 1.7210 1.6699 1.9176 1.9789

Table 3: Maximum absolute point-wise error and rate of convergence for Example 3 before and after Richardson extrapolation method
applied, where γ = 0:1ε, μ = 0:2ε, and L ≥ 6.

ε↓ M,N ⟶ 8,8 16,16 32,32 64,64 128,128

Before

10−2 6.1105e-03 4.0192e-03 2.4412e-03 1.4312e-03 7.9252e-04

10−4 6.5144e-03 4.2051e-03 2.5534e-03 1.4901e-03 8.2602e-04

10−6 6.5190e-03 4.2076e-03 2.5547e-03 1.4908e-03 8.2641e-04

10−8 6.5190e-03 4.2076e-03 2.5547e-03 1.4908e-03 8.2641e-04

10−10 6.5190e-03 4.2076e-03 2.5547e-03 1.4908e-03 8.2641e-04

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−L 6.5190e-03 4.2076e-03 2.5547e-03 1.4908e-03 8.2641e-04

After

10−2 1.9128e-03 9.9156e-04 4.3385e-04 2.1411e-04 4.8046e-05

10−4 2.0383e-03 1.0236e-03 4.5811e-04 2.1921e-04 5.4179e-05

10−6 2.0407e-03 1.0240e-03 4.5837e-04 2.1924e-04 5.4255e-05

10−8 2.0407e-03 1.0240e-03 4.5837e-04 2.1924e-04 5.4256e-05

10−10 2.0407e-03 1.0240e-03 4.5837e-04 2.1924e-04 5.4256e-05

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−L 2.0407e-03 1.0240e-03 4.5837e-04 2.1924e-04 5.4256e-05
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Figure 1: The physical behavior of the solutions for Example 1 at m = n = 32, ε = 10−2, γ = 0:5ε, and μ = 0:6ε.
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Figure 2: The physical behavior of the solutions for Example 1 at m = n = 32, ε = 10−2, γ = 0:5ε, and μ = 0:6ε at different time level.
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behavior of the solution are shown in Figures 1–4. We exam-
ined the suggested numerical scheme for stability, consis-
tency, and ε uniform convergence. As shown in the result,
the current method is second-order convergent with respect
to time and spatial variables, the rate of convergence is two
and more accurate than some of the methods that appear
in the literature.
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