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In this article, we will recall the main properties of the Fourier transform on the Heisenberg motion group G =1H"XK, where
K =U(n) and H" =C" X R denote the Heisenberg group. Then, we will present some uncertainty principles associated to this

transform as Beurling, Hardy, and Gelfand-Shilov.

1. Introduction

In Harmonic analysis, the uncertainty principle states that a
nonzero function and its Fourier transform cannot simulta-
neously decay very rapidly. This fact is expressed by several
versions which were proved by Hardy, Cowling-Price, Mor-
gan, and Gelfand-Shilov [1, 2].

In more recent times, Beurling gave a different approach
to expressing this uncertainty principle. The proof of the
theorem was given by Hormander [3], and it states that if
f € L*(R) satisfying

|, ] e 7on et dsdy < o (1)

then, f =0 almost everywhere.
The above theorem of Hérmander was further general-
ized by Bonami, Demange, and Jaming [4], as follows:

Theorem 1. Let N > 0 and let f € L*(R") satisfying

J J Meﬂ’ldxdy<oo. (2)

I+|x|+|y | )N

Then, f =0 almost everywhere whenever N <n, and if

N>n, then f(x)= P(x)e’“"“z, where a is a positive real
number and P is a polynomial on R" of degree < (N —n)/2.

This last theorem admits another modified version
proved by Parui and Sarkar [5]. It is of the following form.

Theorem 2. Let § > 0 and f € L*(R") be such that

[ If(x>|}f‘(y)\lo(y)|6ex|y|dxdy<OO’ 5

(L+]xl+]y )N

where Q is a polynomial of degree m. Then, f(x) = P(x)e‘“‘x‘z,
where a is a positive real number and P is a polynomial with
deg (P) < (N —n—-md)/2.

Beurling’s theorem has been extended to different set-
tings. Huang and Liu established an analogue of Beurling’s
theorem on the Heisenberg group [6]. An analogue of
Beurling’s theorem for Euclidean motion groups was also
formulated by Sarkar and Thangavelu [7].

In [8], Baklouti and Thangavelu gave an analogue of
Hardy’s theorem for the Heisenberg motion group by means
of the heat kernel and also proved an analogue of Miyachi’s
theorem and Cowling-Price uncertainty principle. In my
paper, we would like to establish other uncertainty principles
such as Beurling’s theorem and Gelfand-Shilov and prove
Hardy’s theorem as a consequence of Beurling’s theorem.

This paper is organized as follows. In Section 2, we pres-
ent the group G and the Fourier transform on G, and we will
cite some of its fundamental properties. Section 3 is devoted
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to formulate and prove an analogue of Beurling’s theorem
associated to the group Fourier transform on the Heisen-
berg motion group and prove a modified version of this
principle. Finally, we derive some other versions of uncer-
tainty principles such as Hardy uncertainty principle and
Gelfand-Shilov.

2. Heisenberg Motion Group

Let H" := C" x R be the Heisenberg group with the group law

(z,1).(w, ) = <z+w,t+s+ % Im (z.ﬁ;)), (4)

where z,w e C", t,s € R,

Let K be the unitary group U(n), we define the Heisen-
berg motion group G to be the semidirect product of H"
and K, with the group law

(z,t, k) (w, s, h) = ((2, t).(kw, s), kh), (5)
where (z,t), (w,s) e H", k,h e K.

The Haar measure on G is given by dg = dzdtdk, where
dzdt and dk are the normalized Haar measures on H"” and K
, respectively.

For A e R\ {0}, we define the Schrédinger representa-
tion of H" on L*(R") by

m(0p) =Ty, (6)
where z=x + iy and ¢ € L*(R").
Let (0, # ) be any irreducible, unitary representation of

K. For each 1 #0, we consider the representations p! of G
on the tensor product space L*(R") ® %, defined by

Py (2 k) = (m (2 )y (K)) ® o (k), (7)

where y, are the metaplectic representations [9], satisfying
) (kz, t) = uy (k) (2, t)uy (k)" forall(z, t, k) € G.  (8)

Proposition 1 [9]. Each pg is unitary and irreducible.
For f € L' N L?(G), consider the group Fourier transform

f(A0)= JK JR J@ f(z t,k)p} (2, t, k)dzdtdk

i J K J T @hey(o Kdedk, ©)

where p}(z, k) = p}(z, 0, k) and the partial Fourier transform
Mz, k) is defined by

Az k)= J f(zt, k)eMdt. (10)

R
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For f € L' N L*(G), we have

I ).

and the Plancherel formula for the Fourier transform on G
reads as

Mz k)’ dzdk =

’ ‘ ’

(11)

JJ f (2t k)Pdzdtdk =) d (),

ek

o I8,
R\{0}
(12)

where dr(A) = (2r)"[A|"dA is the measure defined on R
\ {0}, d, is the dimension of the space #,, and

If (A, 0) ||12L15 denote the Hilbert-Schmidt norm of f(A, o) [9].

At the end of this paragraph, we introduce an orthonor-
mal basis for L*(C" x K) [10]. Let H,(t) be the Hermite
polynomials defined by

ket? ;tk (e tz). (13)

The normalized Hemite functions are defined by

Hy(t) = (-1)"e

-1/2 )
Hy(t)e M2, (14)

hy(t) = (zkﬁk!)

The n-dimensional Hermite functions @, are defined on
R" by taking the tensor products; that is,

x) = ﬁ hy, (x;)s (15)
i1

where a = (a;, -+, a,) € N".

It is well known that {®,, « € N"} form an orthonormal
basis for L>(R") [2]. Then, an orthonormal basis for L*(R"
)® X is given by B, ={D,®¢J : a e N",1<i<d_ }, where
{e/ :1<i<d_} is an orthonormal basis for %, and d, =
dim % .

Define the Fourier-Wigner transform V? of f,ge L2(
R"® %, on C" xK by

Vi(5K) = (2m) " (pl (5 K)f ). (16)

Lemma 1 [10]. For f), g, € L>(R") ® %, 1 = 1, 2, the follow-
ing identity holds.

| | vireoviERdd- e 1)

In particular, V}’ € L?(C"xK), for f,ge >(R") ® #,.
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Set Vg,
the set

=®,®¢f, then, by Lemma 1, we infer that

b4
VBa:{VJJ Vo, €B } (18)

is an orthonormal basis for V = span{V? : f,geL*(R")

K ,}.

Proposition 2 [10]. The family % ={Vy
orthonormal basis for L>(C" x K).

:0 €K} is an

v
Lemma 2. The function (z,k)— Vyb'(z,k) is a bounded

function.

Proof. Let (z,k) € C" x K and ¥¢

a,i’

ﬁ]EB we have

V:f’j (z, k) = (2ﬂ)_"/2<p(17(z, kYD, @, Dg® e;-’>

= (271)_"/2<711(z)y1(k) ®o(k)D, @, Dy ® e;’>

= (2m)" (my (21, ()P D) (0 ()€ €] )
(19)

We know that p; (k)@ = X1y (1, (K)Dg
[9] p-21); then

D,)D, (see

<@ Y (1 (20 @) |(m (@), @) (o (k) ¢ ).

‘ e
Iyl=lal

(20)
Since 7}, y4;, and o are unitary representations, then,

ap (m+n—1)!

V! (2
vy, (& mi(n—1)1°

k)l < (2m)” (21)

where m = |« | . O

3. An Analogue of Beurling’s Theorem

In this section, we prove an analogue of Beurling’s theorem
on the Heisenberg motion group G=IH"xK whose state-
ment is as follows:

Theorem 3. Let f € L?(G) and d > 0. Suppose that

eeh) (S dsfoo)
(L+|t[+|A 1)

M dr(1)dzdtdk < oo.

I.J.

(22)

Then,

flz t,k) =€ (Z ¢;(z:k >, (23)

where a>0, ¢; € L' N L*(C" x K) and m < ((d - n/2 - 1)/2).

Lemma 3. If f satisfies the hypotheses of Theorem 3, then, f
e L'(G).

Proof. As f is not identically zero, then, there exists A € R
\ {0} such that

2
,\ g H #0. (24)
o€k HS
By (22), we have
J M el dzdtdk < co. (25)
G (1+[tl+AT)

On the other hand, the function (£, 1) — ((1+[¢[+|A | )d
)/e!M is bounded, so there exists a constant C such that

(1+[t+[A ] )

J <C. (26)

From where [ |f(ztk)|dzdtdk<C[_(If(z t,k)/

(1+[t]+|A | )d)e‘twdzdtdk and using (25), so we have f € L'
(G). O

Proof of Theorem 3. For any ¢ € §(C" x K), the Schwartz
space of C" x K, consider the function

F,(t) = Jcn (@t kg(z Kydzdk (27)

Since f € L'(G), then, F, is integrable on R, and for any
A€ R\ {0}, the Fourier transform of F,, is given by

—

F,(A)=(2m)"?| F,(t)e™dt

R

- (2m) " J Flont, K)g(z, k)e M dzdkdt (28)
C"xK

=) Yz k(2 k)dzdk,

C"xK




then by (11)

172

B0l = em a0l |

1/2
. 2
s(zn)’"’z’lllprIZM"/Z( L4 f(A’J)HHS> '
(194

(29)

F (k) rdzdk>

As a result,

[E, (0] Fp )
I=| ——— L el ded) < (2m) " gl Iyl
J. ey okl

Fzt k)] (z 4,7

Ao )
HHS oM dzdtdkdr(1) < +oo.

' GJR (1l +IA )7
(30)
In particular,
F,(t)||F,(A)
JMeV”)‘|M”’ZdtdA<oo. (31)
R (1+[t+A])

Note that the previous calculations are generalized to a
bounded function ¢ € L*(C"xK), in particular for the
bounded functions ¢ in the basis % of L?(C" x K) defined
in (18).

According to Beurling’s theorem in the Euclidean case,
modified version (Theorem 2), for every function ¢ € %,
there exists a polynomial function P, with deg (P,) < (d -
(n/2) - 1)/2 and a real a,, > 0 such that

J f(zt.k)p(z k)dzdk = P, (H)e I, (32)
C"xK

from where
flatky= Y P, (0 oz k). (33)
PeRB
Let ¢, y € &, since
F,(t)||E, (X)
J J Wetﬂ,u“/zdtd)uoo, (34)
RJR (1+|t|+|A|)

then by Lemma 2.2 in [5], we obtain that a,=a
independent of ¢.
Let P (1) =X o Cjpths then

v/:a are

feth=ey (Z ¢ P2 k)> W=e Y E(zk) 0
j=0

j=0 \ g%
(35)

where &;(z, k) = X7 ¢;09,(2. k) € L*(C"xK).

Abstract and Applied Analysis

The proof of Theorem 3 is completed. O

We will finish this section with a modified version of
previous Theorem 3 as follows:

Proposition 3.3. Let f € L*(G) and p, d, 8 > 0. Suppose that

J.J.

Then,

(@t k) | Zoer do || F (M0
< K ‘UHS> |/\|5e|fHMdT(A)dzdtdk<00-
(I+||z])P (1+1E+IA])

(36)

flat,k)=e (1+|2]) (Z(p]Z, ) (37)

where a>0, ¢; € L' N L*(C" xK) and m<(d -
9)/2.

(n12)-1-

Proof. By replacing f(z,t, k) by f(z,t,k)/(1 + ||z||)? and pro-
ceeding as in the proof of Theorem 3, one can apply Theo-
rem 3 to get the result.

4. Applications to Other Uncertainty Principles

Let us first state and prove the following analogue of Hardy’s
theorem for G.

Theorem 5 (Hardy type). Suppose f is a measurable function
on G satisfying

(i) |f(z t.k) | <g(z, k)e**

and a > 0.

(i) [A["IF (A, 0)llys < e PY, for some >0 and c, >0
such that ¥, ¢ d,c2 < +c0.

°, where geL'nL*(C"xK)

Then,

(1) If a3 > 1/4, f = 0 almost everywhere on G.

) If af=1/4, f(z,t,k) = e f(z,0,k), for all (zt,k)
eC"xRxK.

Proof. From (i) and (ii), we have

(et (oo [FL0) )
J ) N () dzdtdk < C* x M,
GJr (L+[tl+AT)

(38)
where

|A|nl2 ~
M=J J — e
rRJR (1+[t]+A])

a(ltl-(1A1/20))? o= (B~(114e)) AP g4 7.

(39)
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Then, if aff > 1/4, the expression above for d > (n/2) + 2
is finite.
According to Theorem 3, there exist a>0 and ¢, € L

N L*(C" x K) such that
f@n@:€”<§¢ﬁkw> (40)
=

where m < (d— (n/2+1))/2. En particular for (n/2)+2<
d < (n/2) + 3, we have m =0 and

f(zt,k) =€ f(z,0,k). (41)
From condition (i), we have

J 1 (20, k)| dedk < K x @", (42)
C"xK

where K is a positive constant.
We have

Az k)= J]R f(z t,k)eMdt = \/ge")‘z/“”f(z, 0,k). (43)

Then,

JC”XK

2 2
Mz, k)‘ dedk="¢* ’ZﬂJ £ (20, k) Pdzdk.
a C"xK

(44)

From (11), we have

-~ 2 2
@) Ay d,||F o)H =T /Z“J 1£(2, 0, k) Pdzdk.
o€k hsoa C'xK
(45)
From condition (ii), we obtain
J £ (20, k) Pdzdk < Cel(1120-2X (46)
C"xK

where C is a positive constant.

(1) Case af3 > (1/4):

(i) Suppose that a < a; then, lim, ,_e* %" =0 and
IC"XK | f(2,0,k) | dzdk =0, by (42). We conclude
that f =0.

(ii) Suppose that a>oa; we have (1/2a)<2f and
lim, ,e((129-2D° 0 From (46), we have J o
|f(z,0, k)[*dzdk = 0, and finally f = 0.

(2) Case afp=1/4:

(i) Suppose that f # 0; then (42) and (46) hold if and only if
a=a. We conclude that f(z, t, k) = ¢ f(z, 0, k).

O

Theorem 6 (Gelfand-Shilov type). Let f € L?(G) and d >0
satisfy

at’?
J VLD 4tk < oo,
¢ (I+|t])

(Bcu|faol]l) o
JR (1+]A 1)

(47)

dr(A) < +oo,

for some positive constants « and .
Then, af8 > 1/4 implies f = 0.

Proof. Suppose that aff>1/4, and consider the following
numerical sequences (“P)pe]N* and (Bp)pe]N* defined by

1 1
a,=a—-—, B, =p-—. (48)
Y
(i) lim,__,, @, = a>0; therefore, there exists N, € N*

such that &, > 0 for p > N,,.

(i) lim, ., B, = B> 0; therefore, there exists N € N*
such that 8, >0 for p > Np.

(iii) lim, ., aB,=af >1/4; therefore, there exists

N € N* such that a8, > 1/4 for p> N 4.

Let N =max (N,, Ng, Nyg), then, for all p> N.

1
a,>0,B,>0,a,5,> 7

[t[A] < @yt + A%



6
We have
2 1/2
bk el?da f As
(a6 (Lo 10 "
(1]t +A )7
R 2 1/2 )
- If (z,t, k) | e’ (Z“ER Ao || f(A G)HHS) et 3
< (t, ),
(1+]¢])? (1+[A 1)
(50)
where h(tA) = (1) A+A DY (144 ] ) e e

e WP¥ The function h(f, 1) is a bounded function, then
there exists a positive constant K such that

If(zt. k) | (Z"ER B |F O G)H;) i ey

(1+[t]+A ] )?
_ 2\ 12 .
faoll,) e

(1+A )4

<K |f(Z, t, k) | eatz (Z‘aef( da

(1+]¢])?

(51)

According to the hypotheses of the theorem, the integral

J.J.

is finite. According to Theorem 3, there exist >0 and v,
€ L*(C" x K) such that

flzt,k)=¢" (Z(pJ z, k ), (53)

(/2 +1))72.

e t)| (z

H 1/2

) )

i IAI)d 17 oM dr(\)dzdtdk
1+|t|+

(52)

where m < (d -
We have

Z (P 2 k ; 1/4a)/\
] bl

- (where P;(1) is a polynomial function)
<Z 9z k)pj(,\)) o~ (4a)?
=0

(1/4a)A?

(54)

Then ||f*]|, = h(A)e , where h(A) is a polynomial
function, and from (11), we have

172 w2
— (27T) h(A)e—(I/ALa)AZ' (55)
HS |A|n/2
ek
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From the hypotheses of the theorem, we obtain

n/2
J th(/l)e(ﬁ—(”‘m))"zd/\ < +00. (56)
R (1+[A])

(i) Suppose that a>«a; then S -
implies f(A,0) =

(1/4a) >0, so h(A) =

By Plancherel formula (12), we conclude that f =0.

(ii) Suppose that a < a;, according to the hypotheses of
the theorem, we have

e(a—a)tz J m
| ) ¢z
JR (1+|t|)d ( C"xK ]Zo J(

Since a-a>0 and Y7,¢;(z k)t €L'(C"xK) for
,mand f =0.
O

k)t | dzdk) dt < +00. (57)

almost every ¢ € R, then, ¢, =0 for all j=0, -

Corollary 1 (Another version of Hardy). Suppose f € L' n
L*(G) satisfy

(i) |f(z t.k) | <g(z, k)e**

and a > 0.

°, where geL'nL*(C"xK)

(i) |f (A, 0) "HS <c, e AV, for some >0 and c, > 0 such
that Y, < 400.

o€k aa

Then:

(1) If a3 > 1/4, f = 0 almost everywhere on G.
(2) If aff < 1/4, there exist an infinite number of linearly

independent functions meeting hypotheses (i) and (ii).
Proof.

(1) Case aff > 1/4: if aff>1/4 and d > n + 1, then, from
the hypothesis of the theorem, we have

at?
J V@bklem \ g
G

1
. dkgCJ _dt < +oo,
(1+t]) R (1+]t])

2 1/2
(SadelFro) .
,[R (1+A | )dHS )< K.LR (1+A 1)

dA < +00,

(58)

where C, K > 0. Since af3 > 1/4, then, the Gelfand-Shilov the-
orem implies that f =0.

(2) Case af3 < 1/4: If aff < 1/4, then, any function of the
form g(z, k)h,(t) where h;, are the one-dimensional
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Hermite functions satisfies the hypotheses of the
theorem.

O
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