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In this article, we will recall the main properties of the Fourier transform on the Heisenberg motion group G =ℍn⋊K , where
K =UðnÞ and ℍn =ℂn ×ℝ denote the Heisenberg group. Then, we will present some uncertainty principles associated to this
transform as Beurling, Hardy, and Gelfand-Shilov.

1. Introduction

In Harmonic analysis, the uncertainty principle states that a
nonzero function and its Fourier transform cannot simulta-
neously decay very rapidly. This fact is expressed by several
versions which were proved by Hardy, Cowling-Price, Mor-
gan, and Gelfand-Shilov [1, 2].

In more recent times, Beurling gave a different approach
to expressing this uncertainty principle. The proof of the
theorem was given by Hörmander [3], and it states that if
f ∈ L2ðℝÞ satisfyingð

ℝ

ð
ℝ

f xð Þj j f̂ yð Þ
��� ���e xj j yj jdxdy <∞, ð1Þ

then, f = 0 almost everywhere.
The above theorem of Hörmander was further general-

ized by Bonami, Demange, and Jaming [4], as follows:

Theorem 1. Let N ≥ 0 and let f ∈ L2ðℝnÞ satisfying

ð
ℝn

ð
ℝn

f xð Þj j f̂ yð Þ
��� ���

1+∣x∣+∣y ∣ð ÞN
e xj j yj jdxdy <∞: ð2Þ

Then, f = 0 almost everywhere whenever N ≤ n, and if

N > n, then f ðxÞ = PðxÞe−ajxj2 , where a is a positive real
number and P is a polynomial on ℝn of degree < ðN − nÞ/2.

This last theorem admits another modified version
proved by Parui and Sarkar [5]. It is of the following form.

Theorem 2. Let δ ≥ 0 and f ∈ L2ðℝnÞ be such that

ð
ℝn

ð
ℝn

f xð Þj j f̂ yð Þ
��� ��� Q yð Þj jδ

1+∣x∣+∣y ∣ð ÞN
e xj j yj jdxdy <∞, ð3Þ

where Q is a polynomial of degree m. Then, f ðxÞ = PðxÞe−ajxj2 ,
where a is a positive real number and P is a polynomial with
deg ðPÞ < ðN − n −mδÞ/2.

Beurling’s theorem has been extended to different set-
tings. Huang and Liu established an analogue of Beurling’s
theorem on the Heisenberg group [6]. An analogue of
Beurling’s theorem for Euclidean motion groups was also
formulated by Sarkar and Thangavelu [7].

In [8], Baklouti and Thangavelu gave an analogue of
Hardy’s theorem for the Heisenberg motion group by means
of the heat kernel and also proved an analogue of Miyachi’s
theorem and Cowling-Price uncertainty principle. In my
paper, we would like to establish other uncertainty principles
such as Beurling’s theorem and Gelfand-Shilov and prove
Hardy’s theorem as a consequence of Beurling’s theorem.

This paper is organized as follows. In Section 2, we pres-
ent the group G and the Fourier transform on G, and we will
cite some of its fundamental properties. Section 3 is devoted
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to formulate and prove an analogue of Beurling’s theorem
associated to the group Fourier transform on the Heisen-
berg motion group and prove a modified version of this
principle. Finally, we derive some other versions of uncer-
tainty principles such as Hardy uncertainty principle and
Gelfand-Shilov.

2. Heisenberg Motion Group

Letℍn ≔ℂn ×ℝ be the Heisenberg group with the group law

z, tð Þ: w, sð Þ = z +w, t + s + 1
2 Im z:�wð Þ

� �
, ð4Þ

where z,w ∈ℂn, t, s ∈ℝ.
Let K be the unitary group UðnÞ, we define the Heisen-

berg motion group G to be the semidirect product of ℍn

and K , with the group law

z, t, kð Þ w, s, hð Þ = z, tð Þ: kw, sð Þ, khð Þ, ð5Þ

where ðz, tÞ, ðw, sÞ ∈ℍn, k, h ∈ K .
The Haar measure on G is given by dg = dzdtdk, where

dzdt and dk are the normalized Haar measures onℍn and K
, respectively.

For λ ∈ℝ \ f0g, we define the Schrödinger representa-
tion of ℍn on L2ðℝnÞ by

πλ z, tð Þφ ξð Þ = eiλteiλ x:ξ+ 1
2ð Þx:yð Þφ ξ + yð Þ, ð6Þ

where z = x + iy and φ ∈ L2ðℝnÞ.
Let ðσ,HσÞ be any irreducible, unitary representation of

K . For each λ ≠ 0, we consider the representations ρλσ of G
on the tensor product space L2ðℝnÞ ⊗Hσ defined by

ρλσ z, t, kð Þ = πλ z, tð Þμλ kð Þð Þ ⊗ σ kð Þ, ð7Þ

where μλ are the metaplectic representations [9], satisfying

πλ kz, tð Þ = μλ kð Þπλ z, tð Þμλ kð Þ∗, for all z, t, kð Þ ∈G: ð8Þ

Proposition 1 [9]. Each ρλσ is unitary and irreducible.
For f ∈ L1 ∩ L2ðGÞ, consider the group Fourier transform

f̂ λ, σð Þ =
ð
K

ð
ℝ

ð
ℂn

f z, t, kð Þρλσ z, t, kð Þdzdtdk

=
ð
K

ð
ℂn

f λ z, kð Þρλσ z, kð Þdzdk,
ð9Þ

where ρλσðz, kÞ = ρλσðz, 0, kÞ and the partial Fourier transform
f λðz, kÞ is defined by

f λ z, kð Þ =
ð
ℝ
f z, t, kð Þeiλtdt: ð10Þ

For f ∈ L1 ∩ L2ðGÞ, we haveð
K

ð
ℂn

f λ z, kð Þ
��� ���2dzdk = 2πð Þ−n λj jn〠

σ∈K̂

dσ f̂ λ, σð Þ
��� ���2

HS
,

ð11Þ

and the Plancherel formula for the Fourier transform on G
reads asð

K

ð
ℍn

f z, t, kð Þj j2dzdtdk = 〠
σ∈K̂

dσ

ð
ℝ\ 0f g

f̂ λ, σð Þ
��� ���2

HS
dτ λð Þ,

ð12Þ

where dτðλÞ = ð2πÞ−n−1jλjndλ is the measure defined on ℝ
\ f0g, dσ is the dimension of the space Hσ, and

k f̂ ðλ, σÞk2HS denote the Hilbert-Schmidt norm of f̂ ðλ, σÞ [9].
At the end of this paragraph, we introduce an orthonor-

mal basis for L2ðℂn × KÞ [10]. Let HkðtÞ be the Hermite
polynomials defined by

Hk tð Þ = −1ð Þket2 d
k

dtk
e−t

2
� �

: ð13Þ

The normalized Hemite functions are defined by

hk tð Þ = 2k
ffiffiffi
π

p
k!

� �−1/2
Hk tð Þe− 1/2ð Þt2 : ð14Þ

The n-dimensional Hermite functions Φα are defined on
ℝn by taking the tensor products; that is,

Φα xð Þ =
Yn
j=1

hα j
xj
	 


, ð15Þ

where α = ðα1,⋯, αnÞ ∈ℕn.
It is well known that fΦα, α ∈ℕng form an orthonormal

basis for L2ðℝnÞ [2]. Then, an orthonormal basis for L2ðℝn

Þ ⊗Hσ is given by Bσ = fΦα ⊗ eσi : α ∈ℕn, 1 ≤ i ≤ dσg, where
feσi : 1 ≤ i ≤ dσg is an orthonormal basis for Hσ and dσ =
dim Hσ.

Define the Fourier-Wigner transform Vg
f of f , g ∈ L2ð

ℝnÞ ⊗Hσ on ℂn × K by

Vg
f z, kð Þ = 2πð Þ−n/2 ρ1σ z, kð Þf , g� �

: ð16Þ

Lemma 1 [10]. For f l, gl ∈ L2ðℝnÞ ⊗Hσ, l = 1, 2, the follow-
ing identity holds.ð

K

ð
ℂn

Vg1
f1

z, kð ÞVg2
f2

z, kð Þdzdk = f1, f2h i g1, g2h i: ð17Þ

In particular, Vg
f ∈ L

2ðℂn × KÞ, for f , g ∈ L2ðℝnÞ ⊗Hσ.
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Set Ψσ
α,i =Φα ⊗ eσi , then, by Lemma 1, we infer that

the set

VBσ
= V

Ψσ
β, j

Ψσ
α,i
: Ψσ

α,i,Ψσ
β,j ∈ Bσ


 �
ð18Þ

is an orthonormal basis for Vσ = spanfVg
f : f , g ∈ L2ðℝnÞ

⊗Hσg:

Proposition 2 [10]. The family B = fVBσ
: σ ∈ K̂g is an

orthonormal basis for L2ðℂn × KÞ:

Lemma 2. The function ðz, kÞ↦V
Ψσ

β, j
Ψσ

α,i
ðz, kÞ is a bounded

function.

Proof. Let ðz, kÞ ∈ℂn × K and Ψσ
α,i,Ψσ

β,j ∈ Bσ, we have

V
Ψσ

β, j
Ψσ

α,i
z, kð Þ = 2πð Þ−n/2 ρ1σ z, kð ÞΦα ⊗ eσi ,Φβ ⊗ eσj

D E
= 2πð Þ−n/2 π1 zð Þμ1 kð Þ ⊗ σ kð ÞΦα ⊗ eσi ,Φβ ⊗ eσj

D E
= 2πð Þ−n/2 π1 zð Þμ1 kð ÞΦα,Φβ

� �
σ kð Þeσi , eσj
D E

:

ð19Þ

We know that μ1ðkÞΦα =∑∣γ∣=∣α∣ hμ1ðkÞΦα,ΦγiΦγ (see
[9] p.21); then

V
Ψσ

β, j
Ψσ

α,i
z, kð Þ

���� ���� ≤ 2πð Þ−n/2 〠
∣γ∣=∣α∣

μ1 kð ÞΦα,Φγ

� ��� �� π1 zð ÞΦγ,Φβ

� ��� �� σ kð Þeσi , eσj
D E��� ���:

ð20Þ

Since π1, μ1, and σ are unitary representations, then,

∣V
Ψσ

β, j
Ψσ

α,i
z, kð Þ∣ ≤ 2πð Þ−n/2 m + n − 1ð Þ!

m! n − 1ð Þ! , ð21Þ

where m = ∣α ∣ .

3. An Analogue of Beurling’s Theorem

In this section, we prove an analogue of Beurling’s theorem
on the Heisenberg motion group G =ℍn⋊K whose state-
ment is as follows:

Theorem 3. Let f ∈ L2ðGÞ and d ≥ 0. Suppose that

ð
G

ð
ℝ

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1+∣t∣+∣λ ∣ð Þd
e tj j λj jdτ λð Þdzdtdk <∞:

ð22Þ

Then,

f z, t, kð Þ = e−at
2 〠

m

j=0
φj z, kð Þt j

 !
, ð23Þ

where a > 0, φj ∈ L
1 ∩ L2ðℂn × KÞ and m < ððd − n/2 − 1Þ/2Þ.

Lemma 3. If f satisfies the hypotheses of Theorem 3, then, f
∈ L1ðGÞ.

Proof. As f is not identically zero, then, there exists λ ∈ℝ
\ f0g such that

〠
σ∈K̂

dσ f̂ λ, σð Þ
��� ���2

HS
≠ 0: ð24Þ

By (22), we have

ð
G

∣f z, t, kð Þ ∣
1+∣t∣+∣λ ∣ð Þd

e tj j λj jdzdtdk <∞: ð25Þ

On the other hand, the function ðt, λÞ↦ ðð1+∣t∣+∣λ ∣ Þd
Þ/ejtjjλj is bounded, so there exists a constant C such that

1+∣t∣+∣λ ∣ð Þd
e tj j λj j ≤ C: ð26Þ

From where
Ð
G ∣ f ðz, t, kÞ ∣ dzdtdk ≤ C

Ð
G ð∣f ðz, t, kÞ∣/

ð1+∣t∣+∣λ ∣ ÞdÞejtjjλjdzdtdk and using (25), so we have f ∈ L1
ðGÞ.

Proof of Theorem 3. For any φ ∈ Sðℂn × KÞ, the Schwartz
space of ℂn × K , consider the function

Fφ tð Þ =
ð
ℂn×K

f z, t, kð Þφ z, kð Þdzdk: ð27Þ

Since f ∈ L1ðGÞ, then, Fφ is integrable on ℝ, and for any
λ ∈ℝ \ f0g, the Fourier transform of Fφ is given by

cFφ λð Þ = 2πð Þ−1/2
ð
ℝ
Fφ tð Þe−iλtdt

= 2πð Þ−1/2
ð
ℝ

ð
ℂn×K

f z, t, kð Þφ z, kð Þe−iλtdzdkdt

= 2πð Þ−1/2
ð
ℂn×K

f −λð Þ z, kð Þφ z, kð Þdzdk,

ð28Þ
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then by (11)

∣cFφ λð Þ∣ ≤ 2πð Þ−1/2∥φ∥2
ð
ℂn×K

f −λð Þ z, kð Þ
��� ���2dzdk� �1/2

≤ 2πð Þ−n/2−1∥φ∥2 λj jn/2 〠
σ∈K̂

dσ f̂ λ, σð Þ
��� ���2

HS

 !1/2

:

ð29Þ

As a result,

I =
ð
ℝ2

Fψ tð Þ�� �� cFφ λð Þ
��� ���

1+∣t∣+∣λ ∣ð Þd
e tj j λj j λj jn/2dtdλ ≤ 2πð Þn/2∥φ∥2∥ψ∥∞

�
ð
G

ð
ℝ

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1+∣t∣+∣λ ∣ð Þd
e tj j λj jdzdtdkdτ λð Þ < +∞:

ð30Þ

In particular,

ð
ℝ2

Fφ tð Þ�� �� cFφ λð Þ
��� ���

1+∣t∣+∣λ ∣ð Þd
e tj j λj j λj jn/2dtdλ <∞: ð31Þ

Note that the previous calculations are generalized to a
bounded function φ ∈ L2ðℂn × KÞ, in particular for the
bounded functions φ in the basis B of L2ðℂn × KÞ defined
in (18).

According to Beurling’s theorem in the Euclidean case,
modified version (Theorem 2), for every function φ ∈B,
there exists a polynomial function Pφ with deg ðPφÞ < ðd −
ðn/2Þ − 1Þ/2 and a real aφ > 0 such thatð

ℂn×K
f z, t, kð Þφ z, kð Þdzdk = Pφ tð Þe−aφ tj j2 , ð32Þ

from where

f z, t, kð Þ = 〠
φ∈B

Pφ tð Þe−aφ tj j2φ z, kð Þ: ð33Þ

Let φ, ψ ∈B, since

ð
ℝ

ð
ℝ

Fψ tð Þ�� �� cFφ λð Þ
��� ���

1+∣t∣+∣λ ∣ð Þd
e tj j λj j λj jn/2dtdλ <∞, ð34Þ

then by Lemma 2.2 in [5], we obtain that aφ = aψ = a are
independent of φ.

Let PφðtÞ =∑m
j=0 cj,φt

j, then

f z, t, kð Þ = e−at
2 〠

m

j=0
〠
φ∈B

cj,φφ z, kð Þ
 !

· t j = e−at
2 〠

m

j=0
ξ j z, kð Þ · t j,

ð35Þ

where ξjðz, kÞ =∑m
j=0 cj,φφαðz, kÞ ∈ L2ðℂn × KÞ.

The proof of Theorem 3 is completed.

We will finish this section with a modified version of
previous Theorem 3 as follows:

Proposition 3.3. Let f ∈ L2ðGÞ and p, d, δ ≥ 0. Suppose that

ð
G

ð
ℝ

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1 + zk kð Þp 1+∣t∣+∣λ ∣ð Þd
λj jδe tj j λj jdτ λð Þdzdtdk <∞:

ð36Þ

Then,

f z, t, kð Þ = e−at
2
1 + zk kð Þp 〠

m

j=0
φj z, kð Þt j

 !
, ð37Þ

where a > 0, φj ∈ L
1 ∩ L2ðℂn × KÞ and m < ðd − ðn/2Þ − 1 −

δÞ/2:

Proof. By replacing f ðz, t, kÞ by f ðz, t, kÞ/ð1 + kzkÞp and pro-
ceeding as in the proof of Theorem 3, one can apply Theo-
rem 3 to get the result.

4. Applications to Other Uncertainty Principles

Let us first state and prove the following analogue of Hardy’s
theorem for G.

Theorem 5 (Hardy type). Suppose f is a measurable function
on G satisfying

(i) ∣f ðz, t, kÞ ∣ ≤gðz, kÞe−αt2 , where g ∈ L1 ∩ L2ðℂn × KÞ
and α > 0.

(ii) jλjn/2∥ f̂ ðλ, σÞ∥HS ≤ cσe
−βλ2 , for some β > 0 and cσ > 0

such that ∑σ∈K̂ dσc
2
σ < +∞.

Then,

(1) If αβ > 1/4, f = 0 almost everywhere on G.

(2) If αβ = 1/4, f ðz, t, kÞ = e−αt
2
f ðz, 0, kÞ, for all ðz, t, kÞ

∈ℂn ×ℝ × K .

Proof. From (i) and (ii), we have

ð
G

ð
ℝ

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1+∣t∣+∣λ ∣ð Þd
e tj j λj jdτ λð Þdzdtdk ≤ Cte ×M,

ð38Þ

where

M =
ð
ℝ

ð
ℝ

λj jn/2
1+∣t∣+∣λ ∣ð Þd

e−α ∣t∣− ∣λ∣/2αð Þð Þ2e− β− 1/4αð Þð Þ λj j2dtdλ:

ð39Þ
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Then, if αβ ≥ 1/4, the expression above for d > ðn/2Þ + 2
is finite.

According to Theorem 3, there exist a > 0 and φj ∈ L
1

∩ L2ðℂn × KÞ such that

f z, t, kð Þ = e−at
2 〠

m

j=0
φj z, kð Þt j

 !
, ð40Þ

where m < ðd − ðn/2 + 1ÞÞ/2. En particular for ðn/2Þ + 2 <
d ≤ ðn/2Þ + 3, we have m = 0 and

f z, t, kð Þ = e−at
2
f z, 0, kð Þ: ð41Þ

From condition (i), we haveð
ℂn×K

f z, 0, kð Þj jdzdk ≤ K × e a−αð Þt2 , ð42Þ

where K is a positive constant.
We have

f λ z, kð Þ =
ð
ℝ
f z, t, kð Þeiλtdt =

ffiffiffi
π

a

r
e−λ

2/4a f z, 0, kð Þ: ð43Þ

Then,ð
ℂn×K

f λ z, kð Þ
��� ���2dzdk = π

a
e−λ

2/2a
ð
ℂn×K

f z, 0, kð Þj j2dzdk:

ð44Þ

From (11), we have

2πð Þ−n λj jn〠
σ∈K̂

dσ f̂ λ, σð Þ
��� ���2

HS
= π

a
e−λ

2/2a
ð
ℂn×K

f z, 0, kð Þj j2dzdk:

ð45Þ

From condition (ii), we obtainð
ℂn×K

f z, 0, kð Þj j2dzdk ≤ Ce 1/2að Þ−2βð Þλ2 , ð46Þ

where C is a positive constant.

(1) Case αβ > ð1/4Þ:

(i) Suppose that a < α; then, limt⟶+∞eða−αÞt
2 = 0 andÐ

ℂn×K ∣ f ðz, 0, kÞ ∣ dzdk = 0, by (42). We conclude
that f = 0.

(ii) Suppose that a ≥ α; we have ð1/2aÞ < 2β and
limt⟶+∞eðð1/2aÞ−2βÞλ

2 = 0. From (46), we have
Ð
ℂn×K

j f ðz, 0, kÞj2dzdk = 0, and finally f = 0.

(2) Case αβ = 1/4:

(i) Suppose that f ≠ 0; then (42) and (46) hold if and only if
a = α. We conclude that f ðz, t, kÞ = e−at

2
f ðz, 0, kÞ.

Theorem 6 (Gelfand-Shilov type). Let f ∈ L2ðGÞ and d ≥ 0
satisfy

ð
G

∣f z, t, kð Þ ∣ eαt2
1+∣t ∣ð Þd

dzdtdk < +∞,

ð
ℝ

∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2
eβλ

2

1+∣λ ∣ð Þd
dτ λð Þ < +∞,

ð47Þ

for some positive constants α and β.
Then, αβ > 1/4 implies f = 0.

Proof. Suppose that αβ > 1/4, and consider the following
numerical sequences ðαpÞp∈ℕ∗ and ðβpÞp∈ℕ∗ defined by

αp = α −
1
p
, βp = β −

1
p
: ð48Þ

(i) limp⟶+∞αp = α > 0; therefore, there exists Nα ∈ℕ∗

such that αp > 0 for p >Nα.

(ii) limp⟶+∞βp = β > 0; therefore, there exists Nβ ∈ℕ∗

such that βp > 0 for p >Nβ.

(iii) limp⟶+∞αpβp = αβ > 1/4; therefore, there exists
Nαβ ∈ℕ∗ such that αpβp > 1/4 for p >Nαβ.

Let N =max ðNα,Nβ,NαβÞ, then, for all p >N .

αp > 0, βp > 0, αpβp >
1
4 ,

tj j λj j ≤ αpt
2 + βpλ

2:

ð49Þ
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We have

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1+∣t∣+∣λ ∣ð Þd
e tj j λj j

≤
∣f z, t, kð Þ ∣ eαt2

1+∣t ∣ð Þd
∑σ∈K̂ dσ f̂ λ, σð Þ

��� ���2
HS

� �1/2
eβλ

2

1+∣λ ∣ð Þd
h t, λð Þ,

ð50Þ

where hðt, λÞ = ð1+∣t ∣ Þdð1+∣λ ∣ Þd/ð1+∣t∣+∣λ ∣ Þde−ð1/pÞt2
e−ð1/pÞλ

2
. The function hðt, λÞ is a bounded function, then

there exists a positive constant K such that

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1+∣t∣+∣λ ∣ð Þd
e tj j λj j

≤ K
∣f z, t, kð Þ ∣ eαt2

1+∣t ∣ð Þd
∑σ∈K̂ dσ f̂ λ, σð Þ

��� ���2
HS

� �1/2
eβλ

2

1+∣λ ∣ð Þd
:

ð51Þ
According to the hypotheses of the theorem, the integral

ð
G

ð
ℝ

∣f z, t, kð Þ ∣ ∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2

1+∣t∣+∣λ ∣ð Þd
e tj j λj jdτ λð Þdzdtdk

ð52Þ

is finite. According to Theorem 3, there exist a > 0 and ψj

∈ L2ðℂn × KÞ such that

f z, t, kð Þ = e−at
2 〠

m

j=0
φj z, kð Þt j

 !
, ð53Þ

where m < ðd − ðn/2 + 1ÞÞ/2.
We have

f λ z, kð Þ = 〠
m

j=0
φj z, kð Þ

ð
ℝ
t je−at

2
eiλt

= 〠
m

j=0
φj z, kð ÞPj λð Þe− 1/4að Þλ2 

� where Pj λð Þ is a polynomial function
	 


= 〠
m

j=0
φj z, kð ÞPj λð Þ

 !
e− 1/4að Þt2 :

ð54Þ

Then k f λk2 = hðλÞe−ð1/4aÞλ2 , where hðλÞ is a polynomial
function, and from (11), we have

〠
σ∈K̂

dσ f̂ λ, σð Þ
��� ���2

HS

 !1/2

= 2πð Þn/2
λj jn/2

h λð Þe− 1/4að Þλ2 : ð55Þ

From the hypotheses of the theorem, we obtainð
ℝ

λj jn/2
1+∣λ ∣ð Þd

h λð Þe β− 1/4að Þð Þλ2dλ < +∞: ð56Þ

(i) Suppose that a ≥ α; then β − ð1/4aÞ > 0, so hðλÞ = 0
implies f̂ ðλ, σÞ = 0

By Plancherel formula (12), we conclude that f = 0.

(ii) Suppose that a < α;, according to the hypotheses of
the theorem, we have

ð
ℝ

e α−að Þt2

1+∣t ∣ð Þd
ð
ℂn×K

∣ 〠
m

j=0
φj z, kð Þt j ∣ dzdk

 !
dt < +∞: ð57Þ

Since α − a > 0 and ∑m
j=0 φjðz, kÞt j ∈ L1ðℂn × KÞ for

almost every t ∈ℝ, then, φj = 0 for all j = 0,⋯,m and f = 0.

Corollary 1 (Another version of Hardy). Suppose f ∈ L1 ∩
L2ðGÞ satisfy

(i) ∣f ðz, t, kÞ ∣ ≤gðz, kÞe−αt2 , where g ∈ L1 ∩ L2ðℂn × KÞ
and α > 0.

(ii) ∥ f̂ ðλ, σÞ∥HS ≤ cσe
−βλ2 , for some β > 0 and cσ > 0 such

that ∑σ∈K̂ dσc
2
σ < +∞.

Then:

(1) If αβ > 1/4, f = 0 almost everywhere on G.

(2) If αβ < 1/4, there exist an infinite number of linearly
independent functions meeting hypotheses (i) and (ii).

Proof.

(1) Case αβ > 1/4: if αβ > 1/4 and d > n + 1, then, from
the hypothesis of the theorem, we have

ð
G

∣f z, t, kð Þ ∣ eαt2

1+∣t ∣ð Þd
dzdtdk ≤ C

ð
ℝ

1
1+∣t ∣ð Þd

dt < +∞,

ð
ℝ

∑σ∈K̂ dσ f̂ λ, σð Þ
��� ���2

HS

� �1/2
eβλ

2

1+∣λ ∣ð Þd
dτ λð Þ ≤ K

ð
ℝ

λj jn
1+∣λ ∣ð Þd

dλ < +∞,

ð58Þ

where C, K > 0. Since αβ > 1/4, then, the Gelfand-Shilov the-
orem implies that f = 0.

(2) Case αβ < 1/4: If αβ < 1/4, then, any function of the
form gðz, kÞhkðtÞ where hk are the one-dimensional
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Hermite functions satisfies the hypotheses of the
theorem.

.
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