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In this article, we study the existence of solutions for nonlocal p(x)-biharmonic Kirchhoff-type problem with Navier boundary
conditions. By different variational methods, we determine intervals of parameters for which this problem admits at least one

nontrivial solution.

1. Introduction

We consider the problem with Navier boundary conditions.

p(x)
u=Au=0o0noQ

wul(x) 1P
o M <JQ [Au()I™” dx> A= Am(x) |u(x)| " u(x) in Q,

(1)

where Q is a bounded domain in RY(N >3) with smooth
boundary 90, A >0, and A}, is the p(x)-biharmonic oper-

ator defined by A;<x>u = A(|AufP 2 Aw).
p,q€C,(Q)={heC(Q),h >1}, where h~ =minh(x). We
denoted by p* = maxp(x). xef2

X€

We assume that the weight m and the Kirchhoft function
M satisty the following conditions:

(m). m € LX) (Q),m(x) > 0a.ein Q, with f € C, (Q) such
that

p3(%)s (2)

where

Np(x) £ N
Eryveedll p(x) < —,

p(x) =4 N7 2P) IZV (3)
+00 if p(x) 2 3

(M;). M : R* — R" is a continuous function verifying
m "t < M(t) < myt* 'Vt > 0, (4)

where my, m,, a are real numbers such that 0 < m, < m, and
a>1.

Example 1. A typical example of (P,) satisfying the condi-
tions (m)-(M,) is given by

P\ *!
2 a P(x) ?

u=Au=0o0noL,

(5)
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where s € C(Q) such that 0 <s™ <s* <N/2,q > 1, and

< N —2s(x)

4 <~ R (), Vxed. (6)

Put B(x)=N/2s(x). Then, we have gqB'(x)<ps(x),
where ' is the conjugate of .
Furthermore, \x|_s<x> € [P (0). Indeed,

N
J |x\’s(">ﬁ(x>dx = J |x|’N/2dx < oobecause — <N. (7)
Q 1o} 2

Problem (P,) is related to the stationary problem of a
model introduced by Kirchhoft [1]. To be more precise,
Kirchhoft established a model given by the equation

u (p, E [
Por ~ <h " ﬁL

where p, p,, b, E, L are constants, which extends the classical
D’Alambert’s wave equation, by considering the effects of
the changes in the length of the strings during the vibrations.
In two dimensions, Kirchhoff equations model the oscilla-
tions of thin plates and the most usual plate operator is the
biharmonic operator A =A- A [2].

Fourth-order equations have various applications in
many domains like microelectromechanical systems, surface
diffusion on solids, thin film theory, and interface dynamics;
for recent contributions concerning this type of equations,
we refer to [3-10]. In recent years, the study of variational
problems with variable exponent has received considerable
attention; these problems arises from nonlinear electrorheo-
logical fluids, elastic mechanics, image restoration, and
mathematical biology (see [11-15]). The interplay between
the fourth-order equation and the variable exponent equa-
tion goes to the p(x)-biharmonic problems. The p(x)
-biharmonic operator possesses more complicated structure
than the p-biharmonic operator A;, where p > 1 is a real con-

ou
Ox

2 0’u
dx) Fre 0, (8)

stant; for example, it is not homogeneous. A study on p(x)
-biharmonic problems with Navier boundary condition
was treated by many authors (see, for example, [16-20]).
The authors in [21, 22] proved the existence and multiplicity
of weak solutions for the p(x)-biharmonic problems under
Navier boundary conditions. Their approach is of variational
nature and does not require any symmetry of the nonlinear-
ities. In [23], a similar problem to ours has been investigated
in the case of p(x)-Laplacian and with weight 1. In [17], the
authors examined a p(x)-biharmonic Kirchhoff-type prob-
lem but in the case where the weight is bounded and without
parameter A. Motivated by the above papers and the results
in [24, 25], we determine by different variational methods
intervals of parameters for which this problem admits at
least one nontrivial solution.
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2. Preliminaries

We state some definitions and basic properties of variable
exponent Lebesgue-Sobolev spaces. We refer the reader to
[26-29] for details.

For any p(x) € C,(Q), we define the variable exponent
Lebesgue space by

LP(")(Q) = {u/u : 00— Ris measurable,J |u|p(x)dx<oo},

©)

Q

with the norm

u =inf A>0:J
[lp( { .

Proposition 1 (see [29]). The space (L") (Q), |-[p(x)) is sepa-
rable, uniformly convex, and reflexive and its conjugate space
is [Po)(Q), where (1/p(x)) + (1/p,(x)) = 1 for all x € Q. For
uel’Y gnd v e IP™ we have

1 1
uvdx| <[ — + — | |u v . 11
[ ] (2 ol D)

Proposition 2 (see [26]). Let p(u) = j9|u|P(x) dx be the mod-

ular of the IP™(Q) space. For u,u, € [P¥)(Q),n=1,2,--,
we have

u(x)

A

p(x)
dx<13. (10)

Ul < (=52)1 = p() < (=5)1,

P P
|ty > 1= [ty < p(0) < [t

U]y < 1= |”|§(x) Sp(u) < |”|§(x)’ (12)
dm ey =0 Hm p(u,) =0,
ninzoo\un\m) =400 & ninzoop(un) = +00.

For k > 1, we define the variable exponent Sobolev space

W) (Q) = {u € PM(Q): D*u e IPM(Q), |a < k}, (13)

where D*u = 01%u/0% x, --- 0 xy, where a = (ay, -+, ay) is a
multi-index and |&| = Y'¥ ;. The space W**) (Q) equipped

with the norm

lllipy = D 1D Ul (14)

|| <k

becomes a separable, reflexive, and uniformly convex
Banach space.
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Proposition 3 ([26]). For p, r € C,(Q) such that r(x) < p (x)
for all x € Q, there is a continuous embedding

WP ()L™ (). (15)

If we replace < with <, the embedding is compact.

We denote
X = w0 (Q)n wy™ (@), (16)

where W™ (Q) is the closure of C(Q) in W ¥ (Q).
For u € X, we define

||u|| = inf )L>O:J
Io)

X endowed with the above norm is a separable and
reflexive Banach space.

Au(x)
A

p(x)
dx<ly.  (17)

Remark 4. From [30], the norms [ul, )
alent in X.

and ||u|| are equiv-

Let d : O — R be a measurable real function d(x) >0
a.e. x € Q. We define the weighted variable exponent Lebes-
gue space

ng; Q)= {u/u :0Q— Ris measurable,J d(x)|u\p(x)dx<oo}.
Q

(18)

g Ex;( ) equipped with the norm [ul ., () =inf {1>0
)|/A)dx <1} is a Banach space Wthh has sim-
f 0 x)| P

ilar propertles with the usual variable exponent Lebesgue

spaces. The modular of this space is Py, :L‘;((fc))(ﬂ)

— R defined by
Paterpio) = L;i(x) ()" dx. (19)

Proposition 5 ([31]). For u,u, € LZ(@ (Q),n=1,2,-, we

have
(D) [z pi) <

) |ulyx)p

(=52)1= Py piay () < (=5>)1

y>1= Iulp px) S Pd(x),p(x)(”) < |u|§(x),p(x)
(3) |ulag)p

(4) hm \u |d ) =

-
y<1= |u|d () = Pd(x)p () < |“|d(x),p(x)

=0e lm pyo . (u,) =0

n—-+00

(5) ninfoo‘”" o)) = ‘:’n@mpd(@,p(x)(”n) =00

In the same way as in [32], we show the following
proposition.

Proposition 6. Assume that the boundary of Q possesses the

cone property and p € C(Q). Suppose that ¢ € LX) (Q), d(x)
>0fora.ex € Q,

BeC,(Q). Ifqe C,(Q) and

PO ., vxe, (20)

q(X) < ﬂ(x) 2

then there is a compact embedding X%LZ((’;; (Q).

Denote I: X — X* the operator defined by (I(u),v)
= IQ|Au|P(x>_2AuAvdx for all u,veX.

Proposition 7 ([20]). The operator I satisfies the following
assertions:

(i) I is continuous, bounded, and strictly monotone
(ii) I is a mapping of (S+) type, namely, u,u and

limsup (I(u,,), u, — u) <0, which imply u, — u
n—+00

(iii) I is a homeomorphism

3. The Main Result

We say that u € X is a weak solution of (P,) if

|Au|P(X)
M (JQ p(x)

dx J \Au\P_ZAuAvdx:/\J m(x)|u\”’(x)_2uvdx
Q Q
(21)

for every v € X.
For any A >0, the energy functional corresponding to
problem (P,) is defined as J; : X — R,

(112 N [ e
]Mu)—M(JO 209 dx> AJQ (x) dx, (22)

q(x)
where

M(t)= J M(s)ds. (23)
Standard arguments imply that ], € C'(X, R) and

<],{(u), v> =M <JQ |A;E|j;x) dx) JQ|Au|P_2AuAvdx

—/\J m(x)|u| 12 uvdx,
Q

(24)



for any u, v € X. Hence, we can infer that critical points of
functional J, are the weak solutions for problem (P, ).

In the sequel, we use fountain theorem to study the exis-
tence of multiple solutions of (P;). We obtain the following
result.

Theorem 8. Assume that (M), (m), and a(p*)" < q~; then,
for every A > 0, problem (P,) has a sequence of weak solutions
(+u,,) such that J,(+u,) — +00 as n — +00.

Before proving Theorem 8, we give some preliminary
results.
Since X is a reflexive and separable Banach space, then

X* is too. There exist (see [33]) {e,:n=1,2,---} cX and
{e} :n=1,2,---} cX* such that
= span {¢; : j i=1,2,- -},
X" = {’!‘:izl,z,.--},
span qe; : j (25)
. 1 ifi=j,
<ei’ ¢ > = L
0 ifi#j,
where (.,.) denote the duality product between X and X*.

We define

n
X =span {ej}, Y,= & X
" (26)
Z,= & 00X,

e

Theorem 9 (fountain theorem, see [34]). X is a Banach
space; ] € C1(X,R) is an even functional. If for every n=1,
2, .-, there exist p, >r, > 0 such that

(a) inf {J(u): ueZ,,||u||=r,} — +00as n—+00

(b) max {J(u): ue¥,, [[ul=p,} <0

(c) ] satisfies the (PS) condition for every ¢ >0

Then, ] has a sequence of critical values tending to +co.
Lemma 10. If 0, = sup { [ ,m( ()" dx : |jul| =L uez,),
then under condition (m), lim 6, =0

n—+00

Proof. For every n > 1, there exist u, € Z,,, ||u, || = 1 such that

< % (27)

0~ | m(x)lu, 1
0

There exists a subsequence of (u,) such that u,u. For
every j>1 and for every n > j, we obtain e} (u,) =0 and we
conclude that e} (u)=0Vj>1; hence, u=0. On the other
hand, by condition () and Proposition 5, there is a com-
pact embedding XHLZEX) (Q); hence, u, — u=0 in qu(éz)(

Q). By relation (27) we conclude that lim 6, =0.0 0

n—+00
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Proof of Theorem 8. ], € C'(X, R), and ], is even. According
to Lemmas 17 and 18, J, satisfies (PS), condition for every
¢> 0. We will prove that if # is large enough, then there exist
p, >, >0 such that (a) and (b) hold.

(a) By condition (M, ), we have for any u € Z, such that

[[ufl >1
s |AM|P(X> ~ ‘u|q(X>
M”)‘M(JQ p() d") RC e
A RS )
() s

m,
. A .
— g [lullP = =0, w7
q

€ -

B “(P*)“
(P*)

(28)
For n large enough, choose u such that
A + m ap-
O, lull” = = Jlu] " (29)
q q

and we take

m, O\ V@ -ap7)
r,=|u| = (ﬁ) ) (30)

Then, we have

1 1\ .,
)z m (e = L) 61)
By Lemma 10 and the fact that a(p*)® < 7, the assertion
(a) is verified.
(b) For any w e Y, with ||w||=1 and ¢ > 1, using (M,),
we have

|tAw]P*

Jaltw) =M (L ()

+ A«
e’ 1P — —tq’J m(x)|w|1 dx
9 Jo

=)

)x— mxwx
i) A

By g > ap* and dim Y, < 00, it is easy to see that [, (u
) — —0o0 as |ju|| — +oo forueY,. O

Now, a nontrivial solution of (P,) is given by using the
coercivity and the weakly lower semicontinuity of J,.

Theorem 11. If we assume that (M), (m), and q* < ap™ hold,
then there exists A, > 0 such that for any A > A, problem (P,)
possesses a nontrivial weak solution.

We start with the following auxiliary result

Lemma 12. Assume (M), (m), and q* < ap™. Then, the func-
tional J, is coercive on X.
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Proof. By Proposition 5 and the compact imbedding X—
o (Q), there exists C, such that

m(x)

q(x) T a
JQm(x)|u| dx < |u|m(x),q(x) + |u|m(x),q(x) (33)

- - + +
<Cof T + G [lull” -

Therefore, for ||u|| >1 and under condition (M,), we
obtain

Ja(u) 2

i @ A (T T+ CT
a1 = o (CoT Il + G ).
(34)

Since g* < ap™, we infer that J,(u) — +00 as ||u|| —
+00.0

Proof of Theorem 11. ], is a coercive functional and weakly
lower semicontinuous on X. Then, there exists vy €X a
global minimizer of J; (cf. Theorem 1.2 [35]). Thus, v, is a
weak solution of (P,). Now, we prove that v, is a nontrivial
solution for A large enough. Letting ¢, > 1 be a constant and
O, be an open subset of Q with |Q;| > 0, we assume that ¢
€ C(Q) is such that ¢(x) =t, for any x € Q; and 0 < ¢(x
)<ty in O\ Q. There exists A, >0 such that VA € (A,,+c0

>

_ AolP®) A )
I(9) SM(JQ | pq()lc) dx) T |to|® Jle(x)dx <0.

(35)

Hence, for A > A, v, is a nontrivial weak solution of (P,
). O

In the following theorem, we apply Ekeland variational
principle [36] to get a nontrivial solution to problem (P,).

Theorem 13. Assume that the conditions (M), (m), and q~
<ap~ <q* are satisfied. Then, there exists A,, > 0 such that
for any A€ (0,A,,), problem (P,) has at last one nontrivial
weak solution.

We start with two auxiliary results.
Lemma 14. Assume (M,), (m), and q~ <ap~. There exists
A.. > 0 and two positive real numbers r, a such that for any

Ae(0A,,).] (1) =a> 0 for any u e X with ||ul| =r.

Proof. By using the condition (m) and Proposition 6, the
embedding from X to 1) (Q) is compact. Then, there

m(x)

exists C, >0 such that for all u € X,
4]y < Co ] (36)

g O

5
Consider r € (0, 1) such that r < 1/C;. Then, we get
(U] gy <1 Y e X with ||u|| =r. (37)
Furthermore, Proposition 5 yields
|| o< aff (39)
and we conclude that
|| meojurds= c,7 a7 (39)
Q
For A > 0, using (M,), (39), and Proposition 2, we get
m ot ACT .
Jau) 2 ;ﬁl\ul\ " - q—fllullq
- (40)
= rq7 ﬁr‘xp -q _ ACI .
ap* q
By the above inequality, we remark that if we define
—_ m, apt—q- q7 41
* % 2“p+ r Cl q > ( )

then for any A € (0,A,,) and any u € X with |u|| =r, there
exists a = (m,/2ap*)r**" >0 such that J,(u)>a >0, which
end the proof of Lemma 14.

Lemma 15. Assume (M;) and q~ < ap™. There exists e€ X
such that e > 0,e+ 0, and J,(te) < 0 for t > 0 small enough.

Proof. Since q~ < ap™, there exists g, > 0 such that g~ + ¢, <
ap™. On the other hand, we have q € C(Q); then, there exists
an open ball Bc Q such that |g(x) — g | <g, for all x€B.
Thus, we conclude that q(x)<q™ +¢,<ap™ for all xeB.
Let ¢ € C3°(02) be such BC supp(¢), ¢(x) =1 for all x€B
and 0 < ¢(x) <1 for all x € Q. Then, using the above infor-

mation and (M), for all 0 < ¢t < 1, we obtain

m . «
Ja(t¢) < (x(pf)a £ (LIMI”Wx) - EJQm(x)|t¢|q(")dx
My o ) A )
S (LJA‘M dx) p JBm(X)ItfPI dx
< m, o <j |A¢|P(x)dx)“ _ itqwgoJ' T’H(X)|¢|q(x)dx <0,
«(p7) Q q* B

(42)



for all ¢ < & with
L(ap™—q —&p)
Aa(p™)* [ ym(x)|p|dx

0<d<min < 1, ; =
UCT| (fQ|A¢|p<x)dx)

(43)
0 O

Proof of Theorem 13. Let A, >0 be defined as in (41) and
Ae(0,A,,). By Lemma 14, it follows that on the boundary
of the ball centered at the origin and of radius r in X,
denoted by B, (0), we have

ag}(t(‘))h > 0. (44)

On the other hand, by Lemma 15, there exists ¢ € X such
that ], (t¢) <0 for all ¢ > 0 small enough. Moreover, by rela-
tions (53), we have for any u € B,(0)

m . ACT -
Ja(u) = —= ||ul|?" - ul|?. (45)
(02 2 = 2
It follows that
—co<c= inf J,(u)<O0. (46)

ueB,(O)

Choose 0 <e< inf
u€0B,(0)

Ekeland variational principle [36] to the functional Jy
: B,(0) — R, we find u, € B,(0) such that

Jy(u) — inf J,(u). Applying the
u€eB,(0)

Jy(u,) <c+e,

(47)
H])It(”s)H <e
The fact that J)(u,) <c+e<inf ], +e< ain(f)]l implies
B, B,(0
that u, € B,(0). We deduce that there exists a sequence (u,
) € B,(0) such that

nlinm]/\(un) =6 (48)
lim J}(u,) =0. (49)

It is clear that (u,) is bounded in X. Thus, there exists
v, € X and a subsequence still denoted by (u,) such that u,,
v, in X. Moreover, by the Holder inequality, we get

U ()6t (1, — v, )dx
0O

= U m(x) 90 |y 19692y () VA (4 — v Ydx| (50)
o

|Mn—V1|

< ‘ u, q(x)—l‘ i
4] (). (x) ma)
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where ¢, (x) is the conjugate exponent of g(x), i.e., (1/g(x))
+(1/gy(x)) =1 for all x € Q.

By the compact embedding X%szzz) (Q), u, — v, in
Lqm<2) (Q). Using Proposition 5, we obtain pm(x))qo(x)(

|un |q(x>71) = pm(x),q(x) (un) - Pm(x),q(x) (Vl) = pm(x),qo(x)(
|v,19)7") and we deduce that

lim ‘|u,,|q<">-1‘
n—~oo

(s

m)ay(x) ‘ () (x)

Hence, (50) and (51) imply that UQm(x)|un|Q(x)72un(un
—vy)dx| — 0 as n — 0.
Using (48), we infer that

Au [P
M <J | ;lgx) )J |Au, P92 Au,, (Au,, — Avy)dx — 0.
o) 0]

(52)

From (M) and assertion (ii) of Proposition 7, it follows
that u,, — v, in X. Thus, J;(v;) =c<0and J;(v,)=0. O

If in addition we have the following condition on

(M,). There exists 0 <y < 1 such that M(t) > ytM(t)Vt
> 1.

Then by help of the Mountain Pass theorem, we obtain
the following.

Theorem 16. Assume that (M), (M,), (m), and ap* <yq~
hold. For every A >0, problem (P,) has a nontrivial weak
solution.

To prove Theorem 16, we need the two following
lemmas.

Lemma 17. For A > 0 and under conditions (M,), (m), and
ap* < q~, there exist r>0 and a >0 such that J,(u) > a for
any u € X with |ju|| =r.

Proof. Let 0 <r < 1. Under conditions (M,), (m), and as in
Lemma 14, we show the existence of a constant C, > 0 such
that for all u € X with ||u|| =7, we have

m wt ACT _
Ta(u) 2 —|[ul| " = ——ju|?

ap q

= ( ml z— Wllullq“’“)Iul“”*o
a(p*) q

(53)

Since g~ > p*a, then we can choose 0 < r < min (1, 1/C,)
such that

< m AC,T
a= a -
«(p*) q

rq_“*f) " >0, (54)

and we have J,(u) >a >0 for every u e X, ||u|| =r.O O
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Lemma 18. For A >0 and under conditions (M,) and ap*
<q, there exists e€ X with || >r where r is given in
Lemma 17, such that ], (e) < 0.

Proof. Let ¢ € C;*°(Q) such that ¢ >0 and ¢ #0 and ¢ > 1.
By (M,), we have

m,

a(pr)”

Ja(t$) < - (JQIMIP(")dx) - %f‘f JQM(x)\¢|q(")dx.

(55)

Since ap* < g~, we obtain . lim J,(t¢) =—co. Then, for
—+00

t>1 large enough, we can take e = t¢ such that ||e|]| > r and
]A(e) <0.0

Proof of Theorem 16. By Lemmas 17 and 18 and the moun-
tain pass theorem of Ambrosetti and Rabinowitz [37], we
deduce the existence of a sequence (u,,) C X and positive real
number ¢ such that

— >0,
, ]/\(un) ¢ (56)
Jy(u,) — 0 asn— +oo.

Firstly, we prove that (u,) is bounded in X. Arguing by
contradiction and passing to a subsequence, we have ||u,,||
—> +00 as n—> 0o. Considering |lu,|| > 1, for n large
enough and using (M), (M,), (48), and Proposition 2, we
have

1
Pt |2 ) = = (JiG)o )

A, [P J A, [P
>yM ———dx ———dx
' (JQ P ))a P

|u, |q(x)

B AJQm(x) q(x)

But, this cannot hold true since ap™ > 1 and (y/p*) > (1
/q”). Hence, (u,,) is bounded in X. The fact that X is reflex-
ive implies that there exists a subsequence, still denoted by
(u,), and v, € X such that u,v, in X. Actually, with similar
arguments as those used in the proof of Theorem 13, we

can show that u, — v, in X. Thus, J;(v,) =¢>0 and J;(
v,) =0. O

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] G. Kirchhoft, Mechanik, Teubner, Leipzig, 1883.

[2] E. Bécache, G. Derveaux, and P. Joly, “An efficient numerical
method for the resolution of the Kirchhoff-Love dynamic plate
equation,” Numerical Methods for Partial Differential Equa-
tions, vol. 21, no. 2, pp- 323-348, 2005.

[3] C.O. Alves, F.J.S. A. Corréa, and T. F. Ma, “Positive solutions
for a quasilinear elliptic equation of Kirchhoff type,” Com-
puters & Mathematics with Applications, vol. 49, no. 1,
Pp. 85-93, 2005.

[4] M. Avci, B. Cekic, and R. A. Mashiyev, “Existence and multi-
plicity of the solutions of thep(x)-Kirchhoff type equation via
genus theory,” Mathematical Methods in the Applied Sciences,
vol. 34, no. 14, pp. 1751-1759, 2011.

[5] B. Cheng, X. Wu, and J. Liu, “Multiplicity of nontrivial solu-
tions for Kirchhoff type problems,” Boundary Value Problems,
vol. 2010, no. 1, Article ID 268946, p. 13, 2010.

[6] F. Julio, S. A. Corréa, and G. M. Figueiredo, “On an elliptic
equation ofp-Kirchhoff type via variational methods,” Bulletin
of the Australian Mathematical Society, vol. 74, no. 2, pp. 263—
277, 2006.

[7] G. Dai and R. Hao, “Existence of solutions for a p(x)-Kirch-
hoff-type equation,” Journal of Mathematical Analysis and
Applications, vol. 359, no. 1, pp. 275-284, 2009.

[8] D. Liu, “On a p-Kirchhoff equation via fountain theorem and
dual fountain theorem,” Nonlinear Analysis, vol. 72, no. 1,
pp. 302-308, 2010.

[9] J.J. Sun and C. L. Tang, “Existence and multiplicity of solu-
tions for Kirchhoft type equations,” Nonlinear Analysis,
vol. 74, no. 4, pp. 1212-1222, 2011.

[10] Z. Yucedag, M. Avci, and R. A. Mashiyev, “On an elliptic sys-
tem of p(x)-Kirchhoff-type under Neumann boundary condi-
tion,” Mathematical Modelling and Analysis, vol. 17, no. 2,
pp. 161-170, 2012.

[11] S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-
rheological viscous flows,” Annali Dell' Universita'Di Ferrara,
vol. 52, no. 1, pp. 19-36, 2006.

[12] Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear
growth functionals in image restoration,” SIAM journal on
Applied Mathematics, vol. 66, no. 4, pp. 1383-1406, 2006.

[13] G. Fragnelli, “Positive periodic solutions for a system of aniso-
tropic parabolic equations,” Journal of Mathematical Analysis
and Applications, vol. 73, pp. 110-121, 2010.

[14] M. Ruzicka, Electrorheological Fluids: Modeling and Mathe-
matical Theory, Springer-verlag, Berlin, 2002.

[15] V. V. Zhikov, “Averaging of functionals of the calculs of vari-
ations and elasticity theory,” Izvestiya Akademii Nauk SSSR.
Seriya Matematicheskaya, vol. 50, pp. 675-710, 1986.

[16] G. A. Afouzi, M. Mirzapour, and N. T. Chung, “Existence and
non-existence of solutions for a p(x)-biharmonic problem,”
Electronic Journal of Differential Equations, vol. 2015, article
158, pp. 1-8, 2015.



(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

G. A. Afrouzi, M. Mirzapour, and N. T. Chung, “Existence and
multiplicity of solutions for Kirchhoft type problems involving
p(x)-biharmonic operators,” Journal of Analysis and its Appli-
cations, vol. 33, pp. 289-303, 2014.

A. Ayoujil and A. R. El Amrouss, “On the spectrum of a fourth
order elliptic equation with variable exponent,” Nonlinear
Analysis, vol. 71, no. 10, pp. 4916-4926, 2009.

A. R. El Amrouss and A. Ourraoui, “Existence of solutions for
a boundary problem involving p(x)-biharmonic operator,”
Boletim da sociedade paranaense de matemdtica, vol. 31,
no. 1, pp. 179-192, 2013.

A. El Amrouss, F. Moradi, and M. Moussaoui, “Existence of
solutions for fourth-order PDEs with variable exponents,”
Electronic Journal of Differential Equations, vol. 2009, article
153, pp. 1-13, 2009,

F. Cammaroto and L. Vilasi, “Sequences of weak solutions for
a Navier problem driven by the p(x)-biharmonic operator,”
Minimax Theory and its Applications, vol. 4, no. 1, pp. 71-
85, 2019.

M. Donatelli and L. Vilasi, “Existence of multiple solutions for
a fourthorder problem with variable exponent,” Discrete ¢
Continuous Dynamical Systems-B, 2021.

G. A. Afrouzi and M. Mirzapour, “Eigenvalue problems for p
(x)-Kirchhoff type equations,” Electronic Journal of Differen-
tial Equations, vol. 2013, no. 253, pp. 1-10, 2013.

X. Fan, “Solutions for p(x)-Laplacian Dirichlet problems with
singular coefficients,” Journal of Mathematical Analysis and
Applications, vol. 312, no. 2, pp. 464-477, 2005.

M. Mihailescu and V. Radulescu, “On a nonhomogeneous
quasilinear eigenvalue problem in Sobolev spaces with variable
exponent,” Proceedings of the American Mathematical Society,
vol. 135, no. 9, pp. 2929-2937, 2007.

X. L. Fan and D. Zhao, “On the spaces LP®) and W™P(®) ” Joyr-
nal of Mathematical Analysis and Applications, vol. 263,
pp. 424-446, 2001.

L. Diening, P. Harjulehto, P. Hist6, and M. Ruzicka, Lebesgue
and Sobolev Spaces with Variable Exponents, lecture Notes in
Mathematics, Springer-verlag, Berlin. Heidelberg, 2011.

D. E. Edmunds, J. Lang, and A. Nekvinda, “On LP®™ norms,”
Proceedings of the Royal Society of London. Series A: Mathe-
matical, Physical and Engineering Sciences, vol. 455, pp. 219-
225, 1999.

0. Kovécik and J. Rékosnik, “On spaces LP® and wkeX) »
Czechoslovak mathematical journal, vol. 41, pp. 592-618,
1991.

A. Zang and Y. Fu, “Interpolation inequalities for derivatives
in variable exponent Lebesgue- Sobolev spaces,” Nonlinear
analysis: theory, methods & applications, vol. 69, no. 10,
Pp. 3629-3636, 2008.

D. E. Edmunds and J. Rakosnik, “Sobolev embeddings with
variable exponent,” Studia Mathematica, vol. 143, no. 3,
pp. 267-293, 2000.

X. L. Fan, J. S. Shen, D. Zhao, and N. T. Chung, “Sobolev
Embedding Theorems for Spaces W***).” Journal of Mathe-
matical Analysis and Applications, vol. 262, no. 2, pp. 749-
760, 2001.

J. E. Zhao, Structure Theory of Banach Spaces, Wuhan Univer-
sity Press, Wuhan, 1991, (in Chinese).

M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.

(35]

(36]

(37]

Abstract and Applied Analysis

M. Struwe, Variational Methods: Applications to Nonlinear
Partial Diferential Equatios and Hamiltonian Systems,
Springer-Verlag, Berlin, 1996.

L. Ekeland, “On the variational principle,” Journal of Mathe-
matical Analysis and Applications, vol. 47, no. 2, pp. 324-
353, 1974.

A. Ambrosetti and P. H. Rabinowitz, “Dual variational

methods in critical points theory and applications,” Journal
of Functional Analysis, vol. 14, pp. 349-381, 1973.



	On a px-Biharmonic Kirchhoff Problem with Navier Boundary Conditions
	1. Introduction
	2. Preliminaries
	3. The Main Result
	Conflicts of Interest

