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In this article, we study the existence of solutions for nonlocal pðxÞ-biharmonic Kirchhoff-type problem with Navier boundary
conditions. By different variational methods, we determine intervals of parameters for which this problem admits at least one
nontrivial solution.

1. Introduction

We consider the problem with Navier boundary conditions.

Pλð Þ
M

ð
Ω

Δu xð Þj jp xð Þ

p xð Þ dx

 !
Δ2
pu = λm xð Þ u xð Þj jq xð Þ−2u xð Þ inΩ,

u = Δu = 0 on ∂Ω

8>><
>>:

ð1Þ

where Ω is a bounded domain in ℝNðN ≥ 3Þ with smooth
boundary ∂Ω, λ > 0, and Δ2

pðxÞ is the pðxÞ-biharmonic oper-

ator defined by Δ2
pðxÞu = ΔðjΔujpðxÞ−2ΔuÞ:

p, q ∈ C+ð�ΩÞ = fh ∈ Cð�ΩÞ, h− > 1g, where h− =min
x∈ �Ω

hðxÞ: We
denoted by p+ = max

x∈ �Ω
pðxÞ:

We assume that the weight m and the Kirchhoff function
M satisfy the following conditions:

(m).m ∈ LβðxÞðΩÞ,mðxÞ > 0 a:e inΩ, with β ∈ C+ð�ΩÞ such
that

q xð Þ < β xð Þ − 1
β xð Þ p∗2 xð Þ, ð2Þ

where

p∗2 xð Þ =
Np xð Þ

N − 2p xð Þ if p xð Þ < N
2 ,

+∞ if p xð Þ ≥ N
2 :

8>><
>>: ð3Þ

(M1). M : ℝ+ ⟶ℝ+ is a continuous function verifying

m1t
α−1 ≤M tð Þ ≤m2t

α−1∀t > 0, ð4Þ

where m1,m2, α are real numbers such that 0 <m1 ≤m2 and
α > 1:

Example 1. A typical example of (Pλ) satisfying the condi-
tions (m)-(M1) is given by

m1 +m2
2

ð
Ω

Δuj jp xð Þ

p xð Þ

 !α−1

Δ2
p xð Þu = λ xj j−s xð Þ uj jq xð Þ−2u inΩ,

u = Δu = 0 on ∂Ω,
ð5Þ
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where s ∈ Cð�ΩÞ such that 0 < s− ≤ s+ <N/2, q− > 1, and

q xð Þ < N − 2s xð Þ
N

p∗2 xð Þ, ∀x ∈ �Ω: ð6Þ

Put βðxÞ =N/2sðxÞ. Then, we have qβ′ðxÞ < p∗2 ðxÞ,
where β′ is the conjugate of β:

Furthermore, jxj−sðxÞ ∈ LβðxÞðΩÞ: Indeed,

ð
Ω

xj j−s xð Þβ xð Þdx =
ð
Ω

xj j−N/2dx <∞because N
2 <N: ð7Þ

Problem (Pλ) is related to the stationary problem of a
model introduced by Kirchhoff [1]. To be more precise,
Kirchhoff established a model given by the equation

ρ
∂2u
∂t2

−
ρ0
h

+ E
2L

ðL
0

∂u
∂x

����
����
2
dx

 !
∂2u
∂x2

= 0, ð8Þ

where ρ, ρ0, h, E, L are constants, which extends the classical
D’Alambert’s wave equation, by considering the effects of
the changes in the length of the strings during the vibrations.
In two dimensions, Kirchhoff equations model the oscilla-
tions of thin plates and the most usual plate operator is the
biharmonic operator Δ2 = Δ · Δ [2].

Fourth-order equations have various applications in
many domains like microelectromechanical systems, surface
diffusion on solids, thin film theory, and interface dynamics;
for recent contributions concerning this type of equations,
we refer to [3–10]. In recent years, the study of variational
problems with variable exponent has received considerable
attention; these problems arises from nonlinear electrorheo-
logical fluids, elastic mechanics, image restoration, and
mathematical biology (see [11–15]). The interplay between
the fourth-order equation and the variable exponent equa-
tion goes to the pðxÞ-biharmonic problems. The pðxÞ
-biharmonic operator possesses more complicated structure
than the p-biharmonic operator Δ2

p, where p > 1 is a real con-
stant; for example, it is not homogeneous. A study on pðxÞ
-biharmonic problems with Navier boundary condition
was treated by many authors (see, for example, [16–20]).
The authors in [21, 22] proved the existence and multiplicity
of weak solutions for the pðxÞ-biharmonic problems under
Navier boundary conditions. Their approach is of variational
nature and does not require any symmetry of the nonlinear-
ities. In [23], a similar problem to ours has been investigated
in the case of pðxÞ-Laplacian and with weight 1. In [17], the
authors examined a pðxÞ-biharmonic Kirchhoff-type prob-
lem but in the case where the weight is bounded and without
parameter λ. Motivated by the above papers and the results
in [24, 25], we determine by different variational methods
intervals of parameters for which this problem admits at
least one nontrivial solution.

2. Preliminaries

We state some definitions and basic properties of variable
exponent Lebesgue-Sobolev spaces. We refer the reader to
[26–29] for details.

For any pðxÞ ∈ C+ð�ΩÞ, we define the variable exponent
Lebesgue space by

Lp xð Þ Ωð Þ = u/u : Ω⟶ℝ is measurable,
ð
Ω

uj jp xð Þdx<∞
� �

,

ð9Þ

with the norm

uj jp xð Þ = inf λ > 0 :

ð
Ω

u xð Þ
λ

����
����
p xð Þ

dx ≤ 1
( )

: ð10Þ

Proposition 1 (see [29]). The space ðLpðxÞðΩÞ, j:jpðxÞÞ is sepa-
rable, uniformly convex, and reflexive and its conjugate space
is Lp0ðxÞðΩÞ, where ð1/pðxÞÞ + ð1/p0ðxÞÞ = 1 for all x ∈ �Ω: For
u ∈ LpðxÞ and v ∈ Lp0ðxÞ, we have

ð
Ω

uvdx
����

���� ≤ 1
p−

+ 1
p−0

� �
uj jp xð Þ vj jp0 xð Þ: ð11Þ

Proposition 2 (see [26]). Let ρðuÞ = Ð
Ω
jujpðxÞdx be the mod-

ular of the LpðxÞðΩÞ space. For u, un ∈ LpðxÞðΩÞ, n = 1, 2,⋯,
we have

uj jp xð Þ < = ;>ð Þ1⇒ ρ uð Þ < = ;>ð Þ1,

uj jp xð Þ > 1⇒ uj jp−p xð Þ ≤ ρ uð Þ ≤ uj jp+p xð Þ,

uj jp xð Þ < 1⇒ uj jp+p xð Þ ≤ ρ uð Þ ≤ uj jp−p xð Þ,

lim
n⟶+∞

unj jp xð Þ = 0⇔ lim
n⟶+∞

ρ unð Þ = 0,

lim
n⟶+∞

unj jp xð Þ = +∞⇔ lim
n⟶+∞

ρ unð Þ = +∞:

ð12Þ

For k ≥ 1, we define the variable exponent Sobolev space

Wk,p xð Þ Ωð Þ = u ∈ Lp xð Þ Ωð Þ: Dαu ∈ Lp xð Þ Ωð Þ, αj j ≤ k
n o

, ð13Þ

where Dαu = ∂jαju/∂α1x1 ⋯ ∂αN xN , where α = ðα1,⋯, αNÞ is a
multi-index and jαj =∑N

i=1αi. The spaceW
k,pðxÞðΩÞ equipped

with the norm

uk kk,p xð Þ = 〠
αj j≤k

Dαuj jp xð Þ ð14Þ

becomes a separable, reflexive, and uniformly convex
Banach space.
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Proposition 3 ([26]). For p, r ∈ C+ð�ΩÞ such that rðxÞ ≤ p∗k ðxÞ
for all x ∈Ω, there is a continuous embedding

Wk,p xð Þ Ωð Þ↪Lr xð Þ Ωð Þ: ð15Þ

If we replace ≤ with <, the embedding is compact.

We denote

X =W2,p xð Þ Ωð Þ ∩W1,p xð Þ
0 Ωð Þ, ð16Þ

where Wk,pðxÞ
0 ðΩÞ is the closure of C∞

0 ðΩÞ in Wk,pðxÞðΩÞ:
For u ∈ X, we define

uk k = inf λ > 0 :

ð
Ω

Δu xð Þ
λ

����
����
p xð Þ

dx ≤ 1
( )

: ð17Þ

X endowed with the above norm is a separable and
reflexive Banach space.

Remark 4. From [30], the norms juj2,pðxÞ and kuk are equiv-
alent in X:

Let d : Ω⟶ℝ be a measurable real function dðxÞ > 0
a.e. x ∈Ω. We define the weighted variable exponent Lebes-
gue space

Lp xð Þ
d xð Þ Ωð Þ = u/u : Ω⟶ℝ ismeasurable,

ð
Ω

d xð Þ uj jp xð Þdx<∞
� �

:

ð18Þ

LpðxÞdðxÞðΩÞ equipped with the norm jujdðxÞ,pðxÞ = inf fλ > 0
:
Ð
Ω
dðxÞðjuðxÞj/λÞdx ≤ 1g is a Banach space which has sim-

ilar properties with the usual variable exponent Lebesgue

spaces. The modular of this space is ρdðxÞ,pðxÞ : L
pðxÞ
dðxÞðΩÞ

⟶ℝ defined by

ρd xð Þ,p xð Þ =
ð
Ω

d xð Þ u xð Þj jp xð Þdx: ð19Þ

Proposition 5 ([31]). For u, un ∈ L
pðxÞ
dðxÞðΩÞ, n = 1, 2,⋯, we

have

(1) jujdðxÞ,pðxÞ < ð= ;>Þ1⇒ ρdðxÞ,pðxÞðuÞ < ð= ;>Þ1

(2) jujdðxÞ,pðxÞ > 1⇒ jujp−dðxÞ,pðxÞ ≤ ρdðxÞ,pðxÞðuÞ ≤ jujp+dðxÞ,pðxÞ
(3) jujdðxÞ,pðxÞ < 1⇒ jujp+dðxÞ,pðxÞ ≤ ρdðxÞ,pðxÞðuÞ ≤ jujp−dðxÞ,pðxÞ
(4) lim

n⟶+∞
junjdðxÞ,pðxÞ = 0⇔ lim

n⟶+∞
ρdðxÞ,pðxÞðunÞ = 0

(5) lim
n⟶+∞

junjdðxÞ,pðxÞ =∞⇔ lim
n⟶∞

ρdðxÞ,pðxÞðunÞ =∞

In the same way as in [32], we show the following
proposition.

Proposition 6. Assume that the boundary of Ω possesses the
cone property and p ∈ Cð�ΩÞ: Suppose that c ∈ LβðxÞðΩÞ, dðxÞ
> 0 for a:e x ∈Ω,

β ∈ C+ð�ΩÞ: If q ∈ C+ð�ΩÞ and

q xð Þ < β xð Þ − 1
β xð Þ p∗2 xð Þ, ∀x ∈ �Ω, ð20Þ

then there is a compact embedding X↪LqðxÞdðxÞðΩÞ:

Denote I : X⟶ X∗ the operator defined by hIðuÞ, vi
=
Ð
Ω
jΔujpðxÞ−2ΔuΔvdx for all u, v ∈ X:

Proposition 7 ([20]). The operator I satisfies the following
assertions:

(i) I is continuous, bounded, and strictly monotone

(ii) I is a mapping of ðS + Þ type, namely, unu and
limsup
n⟶+∞

hIðunÞ, un − ui ≤ 0, which imply un ⟶ u

(iii) I is a homeomorphism

3. The Main Result

We say that u ∈ X is a weak solution of (Pλ) if

M
ð
Ω

Δuj jp xð Þ

p xð Þ dx

 !ð
Ω

Δuj jp−2ΔuΔvdx = λ
ð
Ω

m xð Þ uj jq xð Þ−2uvdx

ð21Þ

for every v ∈ X:
For any λ > 0, the energy functional corresponding to

problem (Pλ) is defined as Jλ : X⟶ℝ,

Jλ uð Þ = M̂
ð
Ω

Δuj jp xð Þ

p xð Þ dx

 !
− λ
ð
Ω

m xð Þ uj jq xð Þ

q xð Þ dx, ð22Þ

where

M̂ tð Þ =
ðt
0
M sð Þds: ð23Þ

Standard arguments imply that Jλ ∈ C1ðX,ℝÞ and

Jλ′ uð Þ, v
D E

=M
ð
Ω

Δuj jp xð Þ

p xð Þ dx

 !ð
Ω

Δuj jp−2ΔuΔvdx

− λ
ð
Ω

m xð Þ uj jq xð Þ−2uvdx,
ð24Þ
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for any u, v ∈ X: Hence, we can infer that critical points of
functional Jλ are the weak solutions for problem (Pλ):

In the sequel, we use fountain theorem to study the exis-
tence of multiple solutions of (Pλ): We obtain the following
result.

Theorem 8. Assume that (M1), (m), and αðp+Þα < q−; then,
for every λ > 0, problem (Pλ) has a sequence of weak solutions
ð±unÞ such that Jλð±unÞ⟶ +∞ as n⟶ +∞:

Before proving Theorem 8, we give some preliminary
results.

Since X is a reflexive and separable Banach space, then
X∗ is too. There exist (see [33]) fen : n = 1, 2,⋯g ⊂ X and
fe∗n : n = 1, 2,⋯g ⊂ X∗ such that

X = �span ej : j = 1, 2,⋯
� �

,

X∗ = �span e∗j : j = 1, 2,⋯
n o

,

ei, e∗j
D E

=
1 if i = j,
0 if i ≠ j,

( ð25Þ

where h:, :i denote the duality product between X and X∗.
We define

Xj = span ej
� �

, Yn = ⊕
j=1

n
Xj,

Zn = �⊕
j=n

∞Xj:
ð26Þ

Theorem 9 (fountain theorem, see [34]). X is a Banach
space; J ∈ C1ðX,ℝÞ is an even functional. If for every n = 1,
2,⋯, there exist ρn > rn > 0 such that

(a) inf fJðuÞ: u ∈ Zn, kuk = rng⟶ +∞as n⟶+∞
(b) max fJðuÞ: u ∈ Yn, kuk = ρng < 0

(c) J satisfies the ðPSÞ condition for every c > 0

Then, J has a sequence of critical values tending to +∞.

Lemma 10. If θn = sup fÐ
Ω
mðxÞjujqðxÞdx : kuk = 1, u ∈ Zng,

then under condition (m), lim
n⟶+∞

θn = 0

Proof. For every n ≥ 1, there exist un ∈ Zn, kunk = 1 such that

θn −
ð
Ω

m xð Þ unj jq xð Þdx
����

���� < 1
n
: ð27Þ

There exists a subsequence of ðunÞ such that unu: For
every j ≥ 1 and for every n > j, we obtain e∗j ðunÞ = 0 and we
conclude that e∗j ðuÞ = 0∀j > 1; hence, u = 0: On the other
hand, by condition (m) and Proposition 5, there is a com-

pact embedding X↪LqðxÞmðxÞðΩÞ; hence, un ⟶ u = 0 in LqðxÞmðxÞð
ΩÞ: By relation (27) we conclude that lim

n⟶+∞
θn = 0:☐

Proof of Theorem 8. Jλ ∈ C1ðX,ℝÞ, and Jλ is even. According
to Lemmas 17 and 18, Jλ satisfies ðPSÞc condition for every
c > 0. We will prove that if n is large enough, then there exist
ρn > rn > 0 such that ðaÞ and ðbÞ hold.

(a) By condition (M1), we have for any u ∈ Zn such that
kuk > 1

Jλ uð Þ = M̂
ð
Ω

Δuj jp xð Þ

p xð Þ dx

 !
− λ
ð
Ω

m xð Þ uj jq xð Þ

q xð Þ dx

≥
m1

α p+ð Þα uk kp−α − λ

q−

ð
Ω

m xð Þ ∣u ∣
uk k

� �q xð Þ
dx uk kq+

≥
m1

α p+ð Þα uk kp−α − λ

q−
θn uk kq+ :

ð28Þ

For n large enough, choose u such that

λ

q−
θn uk kq+ = m1

q−
uk kαp− , ð29Þ

and we take

rn = uk k = m1
λθn

� �1/ q+−αp−ð Þ
: ð30Þ

Then, we have

Jλ uð Þ ≥m1
1

α p+ð Þα −
1
q−

� �
rαp

−

n : ð31Þ

By Lemma 10 and the fact that αðp+Þα < q−, the assertion
ðaÞ is verified.

(b) For any ω ∈ Yn with kωk = 1 and t > 1, using ðM1Þ,
we have

Jλ tωð Þ = M̂
ð
Ω

tΔωj jp xð Þ

p xð Þ dx

 !
− λ
ð
Ω

m xð Þ tωj jq xð Þ

q xð Þ dx

≤
m2

α p−ð Þα t
αp+ −

λ

q+
tq−
ð
Ω

m xð Þ ωj jq xð Þdx:

ð32Þ

By q− > αp+ and dim Yn <∞, it is easy to see that Jλðu
Þ⟶ −∞ as kuk⟶ +∞ for u ∈ Yn:

Now, a nontrivial solution of (Pλ) is given by using the
coercivity and the weakly lower semicontinuity of Jλ.

Theorem 11. If we assume that (M1), (m), and q+ < αp− hold,
then there exists λ∗ > 0 such that for any λ > λ∗, problem (Pλ)
possesses a nontrivial weak solution.

We start with the following auxiliary result

Lemma 12. Assume (M1), (m), and q+ < αp−: Then, the func-
tional Jλ is coercive on X:

4 Abstract and Applied Analysis



Proof. By Proposition 5 and the compact imbedding X↪
LpðxÞmðxÞðΩÞ, there exists C0 such that

ð
Ω

m xð Þ uj jq xð Þdx ≤ uj jq−m xð Þ,q xð Þ + uj jq+m xð Þ,q xð Þ

≤ C0
q− uk kq− + C0

q+ uk kq+ :
ð33Þ

Therefore, for kuk > 1 and under condition (M1), we
obtain

Jλ uð Þ ≥ m1
α p+ð Þα uk kαp− − λ

q−
C0

q− uk kq− + C0
q+ uk kq+

	 

:

ð34Þ

Since q+ < αp−, we infer that JλðuÞ⟶ +∞ as kuk⟶
+∞:☐

Proof of Theorem 11. Jλ is a coercive functional and weakly
lower semicontinuous on X: Then, there exists vλ ∈ X a
global minimizer of Jλ (cf. Theorem 1.2 [35]). Thus, vλ is a
weak solution of (Pλ): Now, we prove that vλ is a nontrivial
solution for λ large enough. Letting t0 > 1 be a constant and
Ω1 be an open subset of Ω with jΩ1j > 0, we assume that φ
∈ C∞

0 ð�ΩÞ is such that φðxÞ = t0 for any x ∈ �Ω1 and 0 ≤ φðx
Þ ≤ t0 in Ω \Ω1: There exists λ∗ > 0 such that ∀λ ∈ ðλ∗,+∞
Þ,

Jλ φð Þ ≤ M̂
ð
Ω

Δφj jp xð Þ

p xð Þ dx

 !
−

λ

q+
t0j jq−

ð
Ω1

m xð Þdx < 0:

ð35Þ

Hence, for λ > λ∗, vλ is a nontrivial weak solution of (Pλ
).

In the following theorem, we apply Ekeland variational
principle [36] to get a nontrivial solution to problem (Pλ).

Theorem 13. Assume that the conditions (M1), (m), and q−

< αp− < q+ are satisfied. Then, there exists λ∗∗ > 0 such that
for any λ ∈ ð0,λ∗∗Þ, problem (Pλ) has at last one nontrivial
weak solution.

We start with two auxiliary results.

Lemma 14. Assume (M1), (m), and q− < αp−: There exists
λ∗∗ > 0 and two positive real numbers r, a such that for any
λ ∈ ð0,λ∗∗Þ,JλðuÞ ≥ a > 0 for any u ∈ X with kuk = r:

Proof. By using the condition (m) and Proposition 6, the

embedding from X to LqðxÞmðxÞðΩÞ is compact. Then, there

exists C1 > 0 such that for all u ∈ X,

uj jq xð Þ,m xð Þ ≤ C1 uk k: ð36Þ

☐

Consider r ∈ ð0, 1Þ such that r < 1/C1. Then, we get

uj jq xð Þ,m xð Þ < 1, ∀u ∈ X with uk k = r: ð37Þ

Furthermore, Proposition 5 yields

ð
Ω

m xð Þ uj jq xð Þdx ≤ uj jq−q xð Þ,m xð Þ, ð38Þ

and we conclude that

ð
Ω

m xð Þ uj jq xð Þdx ≤ C1
q− uk kq− : ð39Þ

For λ > 0, using (M1), (39), and Proposition 2, we get

Jλ uð Þ ≥ m1
αp+

uk kαp+ − λC1
q−

q−
uk kq−

= rq
− m1

αp+
rαp

+−q− −
λC1

q−

q−

� �
:

ð40Þ

By the above inequality, we remark that if we define

λ∗∗ =
m1
2αp+ r

αp+−q− q−

C1
q− , ð41Þ

then for any λ ∈ ð0,λ∗∗Þ and any u ∈ X with kuk = r, there
exists a = ðm1/2αp+Þrαp

+ > 0 such that JλðuÞ ≥ a > 0, which
end the proof of Lemma 14.

Lemma 15. Assume (M1) and q− < αp−: There exists e ∈ X
such that e ≥ 0, e ≠ 0, and JλðteÞ < 0 for t > 0 small enough.

Proof. Since q− < αp−, there exists ε0 > 0 such that q− + ε0 <
αp−. On the other hand, we have q ∈ Cð�ΩÞ; then, there exists
an open ball B ⊂Ω such that ∣qðxÞ − q− ∣ ≤ε0 for all x ∈ B:
Thus, we conclude that qðxÞ ≤ q− + ε0 < αp− for all x ∈ B:
Let ϕ ∈ C∞

0 ðΩÞ be such B ⊂ supp(ϕ), ϕðxÞ = 1 for all x ∈ �B
and 0 ≤ ϕðxÞ ≤ 1 for all x ∈Ω: Then, using the above infor-
mation and ðM1Þ, for all 0 < t < 1, we obtain

Jλ tϕð Þ ≤ m2
α p−ð Þα t

αp−
ð
Ω

Δϕj jp xð Þdx
� �α

−
λ

q+

ð
Ω

m xð Þ tϕj jq xð Þdx

≤
m2

α p−ð Þα t
αp−

ð
Ω

Δϕj jp xð Þdx
� �α

−
λ

q+

ð
B
m xð Þ tϕj jq xð Þdx

≤
m2

α p−ð Þα t
αp−

ð
Ω

Δϕj jp xð Þdx
� �α

−
λ

q+
tq

−+ε0
ð
B
m xð Þ ϕj jq xð Þdx < 0,

ð42Þ
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for all t < δ with

0 < δ <min 1, λα p−ð Þα
m2q+

Ð
Bm xð Þ ϕj jq xð ÞdxÐ
Ω
Δϕj jp xð Þdx

	 
α
0
B@

1
CA

1/ αp−−q−−ε0ð Þ8><
>:

9>=
>;:

ð43Þ

☐

Proof of Theorem 13. Let λ∗∗ > 0 be defined as in (41) and
λ ∈ ð0,λ∗∗Þ. By Lemma 14, it follows that on the boundary
of the ball centered at the origin and of radius r in X,
denoted by Brð0Þ, we have

inf
∂Br 0ð Þ

Jλ > 0: ð44Þ

On the other hand, by Lemma 15, there exists ϕ ∈ X such
that JλðtϕÞ < 0 for all t > 0 small enough. Moreover, by rela-
tions (53), we have for any u ∈ Brð0Þ

Jλ uð Þ ≥ m1
αp+

uk kαp+ − λCq−

q−
uk kq− : ð45Þ

It follows that

−∞ < c = inf
u∈ �Br 0ð Þ

Jλ uð Þ < 0: ð46Þ

Choose 0 < ε < inf
u∈∂Brð0Þ

JλðuÞ − inf
u∈Brð0Þ

JλðuÞ: Applying the

Ekeland variational principle [36] to the functional Jλ
: �Brð0Þ⟶ℝ, we find uε ∈ �Brð0Þ such that

Jλ uεð Þ < c + ε,
Jλ′ uεð Þ�� �� ≤ ε:

ð47Þ

The fact that JλðuεÞ ≤ c + ε ≤ inf
Brð0Þ

Jλ + ε < inf
∂Brð0Þ

Jλ implies

that uε ∈ Brð0Þ: We deduce that there exists a sequence ðun
Þ ⊂ Brð0Þ such that

lim
n⟶∞

Jλ unð Þ = c, ð48Þ

lim
n⟶∞

Jλ′ unð Þ = 0: ð49Þ

It is clear that ðunÞ is bounded in X: Thus, there exists
v1 ∈ X and a subsequence still denoted by ðunÞ such that un
v1 in X: Moreover, by the Hölder inequality, we get

ð
Ω

m xð Þ unj jq xð Þ−2un un − v1ð Þdx
����

����
=
ð
Ω

m xð Þ1/q0 xð Þ unj jq xð Þ−2unm xð Þ1/q xð Þ un − v1ð Þdx
����

����
≤ unj jq xð Þ−1
��� ���

m xð Þ,q0 xð Þ
un − v1j jm xð Þ,q xð Þ,

ð50Þ

where q0ðxÞ is the conjugate exponent of qðxÞ, i.e., ð1/qðxÞÞ
+ ð1/q0ðxÞÞ = 1 for all x ∈ �Ω:

By the compact embedding X↪LqðxÞmðxÞðΩÞ, un ⟶ v1 in

LqðxÞmðxÞðΩÞ: Using Proposition 5, we obtain ρmðxÞ,q0ðxÞð
junjqðxÞ−1Þ = ρmðxÞ,qðxÞðunÞ⟶ ρmðxÞ,qðxÞðv1Þ = ρmðxÞ,q0ðxÞð
jv1jqðxÞ−1Þ and we deduce that

lim
n⟶∞

unj jq xð Þ−1
��� ���

m xð Þ,q0 xð Þ
= v1j jq xð Þ−1
��� ���

m xð Þ,q0 xð Þ
: ð51Þ

Hence, (50) and (51) imply that jÐ
Ω
mðxÞjunjqðxÞ−2unðun

− v1Þdxj⟶ 0 as n⟶ 0:
Using (48), we infer that

M
ð
Ω

Δunj jp xð Þ

p xð Þ

 !ð
Ω

Δunj jp xð Þ−2Δun Δun − Δv1ð Þdx⟶ 0:

ð52Þ

From (M1) and assertion (ii) of Proposition 7, it follows
that un ⟶ v1 in X: Thus, Jλðv1Þ = c < 0 and Jλ′ðv1Þ = 0:

If in addition we have the following condition on
(M2). There exists 0 < γ < 1 such that M̂ðtÞ ≥ γtMðtÞ∀t

> 1.
Then by help of the Mountain Pass theorem, we obtain

the following.

Theorem 16. Assume that (M1), (M2), (m), and αp+ < γq−

hold. For every λ > 0, problem (Pλ) has a nontrivial weak
solution.

To prove Theorem 16, we need the two following
lemmas.

Lemma 17. For λ > 0 and under conditions (M1), (m), and
αp+ < q−, there exist r > 0 and a > 0 such that JλðuÞ > a for
any u ∈ X with kuk = r:

Proof. Let 0 < r < 1: Under conditions (M1), (m), and as in
Lemma 14, we show the existence of a constant C2 > 0 such
that for all u ∈ X with kuk = r, we have

Jλ uð Þ ≥ m1
αp+

uk kαp+ − λC2
q−

q−
uk kq−

= m1
α p+ð Þα −

λC2
q−

q−
uk kq−−αp+

� �
uk kαp+ :

ð53Þ

Since q− > p+α, then we can choose 0 < r <min ð1, 1/C2Þ
such that

a = m1
α p+ð Þα −

λC2
q−

q−
rq

−−αp+
� �

rαp
+ > 0, ð54Þ

and we have JλðuÞ ≥ a > 0 for every u ∈ X, kuk = r:☐
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Lemma 18. For λ > 0 and under conditions (M1) and αp+

< q−, there exists e ∈ X with kek > r where r is given in
Lemma 17, such that JλðeÞ < 0:

Proof. Let ϕ ∈ C+∞
0 ðΩÞ such that ϕ ≥ 0 and ϕ ≢ 0 and t > 1:

By (M1), we have

Jλ tϕð Þ ≤ m2
α p−ð Þα t

p+α
ð
Ω

Δϕj jp xð Þdx
� �α

−
λ

q+
tq

−
ð
Ω

m xð Þ ϕj jq xð Þdx:

ð55Þ

Since αp+ < q−, we obtain lim
t⟶+∞

JλðtϕÞ = −∞: Then, for

t > 1 large enough, we can take e = tϕ such that kek > r and
JλðeÞ < 0:☐

Proof of Theorem 16. By Lemmas 17 and 18 and the moun-
tain pass theorem of Ambrosetti and Rabinowitz [37], we
deduce the existence of a sequence ðunÞ ⊂ X and positive real
number c such that

Jλ unð Þ⟶ c > 0,
Jλ′ unð Þ⟶ 0 as n⟶ +∞:

ð56Þ

Firstly, we prove that ðunÞ is bounded in X: Arguing by
contradiction and passing to a subsequence, we have kunk
⟶ +∞ as n⟶∞: Considering kunk > 1, for n large
enough and using (M1), (M2), (48), and Proposition 2, we
have

1 + c + unk k ≥ Jλ unð Þ − 1
q−

Jλ′ unð Þ, un
D E

≥ γM
ð
Ω

Δunj jp xð Þ

p xð Þ dx

 !ð
Ω

Δunj jp xð Þ

p xð Þ dx

− λ
ð
Ω

m xð Þ unj jq xð Þ

q xð Þ dx

−
1
q−

M
ð
Ω

Δunj jp xð Þ

p xð Þ dx

 !ð
Ω

Δunj jp xð Þdx

+ λ

q−

ð
Ω

m xð Þ unj jq xð Þdx

≥
m1
p+ð Þα−1

γ

p+
−

1
q−

� �
unk kαp−

+ λ
ð
Ω

1
q−

−
1

q xð Þ
� �

m xð Þ unj jq xð Þdx

≥
m1
p+ð Þα−1

γ

p+
−

1
q−

� �
unk kαp− :

ð57Þ

But, this cannot hold true since αp− > 1 and ðγ/p+Þ > ð1
/q−Þ: Hence, ðunÞ is bounded in X: The fact that X is reflex-
ive implies that there exists a subsequence, still denoted by
ðunÞ, and v2 ∈ X such that unv1 in X: Actually, with similar
arguments as those used in the proof of Theorem 13, we

can show that un ⟶ v2 in X: Thus, Jλðv2Þ = c > 0 and Jλ′ð
v2Þ = 0:
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