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Let o and & be two closed linear relations acting between two Banach spaces X and Y, and let A be a complex number. We study
the stability of the nullity and deficiency of & when it is perturbed by A.%. In particular, we show the existence of a constant p >0
for which both the nullity and deficiency of & remain stable under perturbation by A2 for all A inside the disk |A| < p.

1. Introduction

For purposes of introduction, we shall consider bounded lin-
ear operators A and B with domain X and range in Y. As
usual, let N(A) and R(A) denote the null space and range
of A respectively. The dimensions of N(A) and Y/R(A) are
called the nullity and the deficiency of A respectively and
denoted by a(A) and B(A). It is well known that a(A) and
B(A) have some kind of stability when A is subjected to some
kind of perturbation (see for example [1]). More precisely,
a(A) and (A) are unchanged when A is perturbed by some
bounded linear operator B under certain prescribed condi-
tions. This stability can be described in the form

a(A=B) ~ B(A~B) =a(A) - f(A). (1)

Another convenient way of describing this stability is to
put it in the form

(2)

The stability concept described here is very useful in
studying eigenvalue problems of the form Ax = ABx and A*
y=AB"y, where A* denotes the adjoint operator.

This paper deals with the stability theory for nullity and
deficiency of linear relations, and it can be seen as a general-
ization of the classical theory for the corresponding quanti-

ties for linear operators. The theory and exposition
developed here goes along the lines of the classical texts on
the perturbation theory for linear operators (see for example
[1,2]), but in a more general setting. Some stability theorems
for multivalued linear operators or what we refer to here as
linear relations have been considered in [3] and more
recently in [4]. In either of these cases, the perturbing multi-
valued linear operator % does not vary with the varying A as
the case we consider here.

2. Preliminaries

2.1. Relations on Sets. In this section, we introduce some
notation and consider some basic concepts concerning
relations on sets. Let U and V be two nonempty sets. By
a relation I from U to V, we mean a mapping whose
domain D(J) is a nonempty subset of U and, taking values
in 2"\ &, the collection of all nonempty subsets of V. Such
a mapping 7 is also referred to as a multivalued operator
or at times as a set-valued function. If I maps the elements
of its domain to singletons, then J is said to be a single
valued mapping or operator. Let I be a relation from U
to V, and let 7 (u) denote the image of an element u € U
under 7. If we define 7 (1) =@ for ue U and u ¢ D(T),
then the domain D(J) of T is given by

D(T)={ueU:T(u)#2}. (3)
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Denote by R(U, V) the class of all relations from U to
V. If  belongs to R(U, V), the graph of 7, which we
denote by G(7), is the subset of U x V defined by

G(T)={(wv) € T(w}  (4)

A relation F € R(U, V) is uniquely determined by its
graph, and conversely, any nonempty subset of UxV
uniquely determines a relation € R(U, V).

For a relation 7 € R(U, V), we define its inverse 7' as
the relation from V to U whose graph G(7 ") is given by

UxV:ueD(T),ve

G(T ) ={(wu) eVxU: (4,v)eGT)}.  (5)

Let T € R( , V). Given a subset M of U, we define the
image of M, 7 (M) to be

T (M) =|_J&{T (m

With this notation we define the range of 7 by

): meMnD(T)}. (6)

R(T)=7(U). (7)
Let N be a nonempty subset of V. The definition of 7

given in (5) above implies that
T (N)=

{ueD(T): NN T (u)+ D). (8)

If in particular v € R(J), then

9’1(v):{ueD(9): veT (u)}. 9)
For a detailed study of relations, we refer to [3, 5-8],
and [9].

2.2. Linear Relations. Let X and Y be linear spaces over a field
K=R(or C),andlet T € R(X, Y). We say that T is a linear
relation or a multivalued linear operator if for all x, z € D(T")
and any nonzero scalar « we have

(1) T(x)+ T (2) =

T(x+2z)
(2) aT (x) =T (ax)

The equalities in items (1) and (2) above are understood
to be set equalities. These two conditions indirectly imply
that the domain of a linear relation is a linear subspace.
The class of linear relations in R(X, Y) will be denoted by L
R(X,Y). If X =Y, then we denote LR(X, X) by LR(X). We
say that  is a linear relation in X if 7 € LR(X). We shall
use the term operator to refer to a single valued linear opera-
tor while a multivalue linear operator will be generally
referred to as a linear relation.

If X and Y are normed linear spaces, we say that
T €LR(X,Y) is closed if its graph G(T) is a closed sub-
space of X x Y. The collection of all such  will be denoted
by CLR(X, Y).

We conclude this section with the following theorems
which are taken from [3].
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Theorem 1. Let 7 € R(X,Y
equivalent.

). The following properties are

(i) T is a linear relation
(ii) G(T

(iii) T ! is a linear relation

) is a linear subspace of X X Y

(iv) G(T ) is a linear subspace of Y x X

Corollary 2. Let T € R(X, Y).

(i) Then, T is a linear relation if and only if

T (ax; + Bx,) = aT (x;) + BT (x;) (10)

holds for all x,, x, € D(T
and f8

) and some nonzero scalars o

(i) If T is a linear relation, then I (0) and T '(0) are

linear subspaces
For a linear relation 7, the subspace 7 ' (0) is called the
null space (or kernel) of 7 and is denoted by N (7).

Theorem 3. Let T be a linear relation in a linear space X, and
let x € D(T). Then, y € I (x) if and only if

T (x)=(0) +y. (11)

Theorem 3 shows that 5

7(0)={0}.

Theorem 4. Let T € R(X,Y). Then, T is a linear relation if
and only if for all x;, x, € D(T') and all scalars o and 3

is single valued if and only if

aT (x;) + BT (x,) C T (ax; + Bx,). (12)

Theorem 5. Let 7 € LR(X, Y). Then,

(@) T(M+N)=FM=IN for McX and NcD(T)

(b) 9‘9‘1(M)=Mm (T)+T(0) forMcY

“1(0) for M c X

2.3. Normed Linear Relations. Let X be a normed linear space.
By By, we shall mean the set

By={xeX:|x|<1}. (13)

For a closed linear subspace E of X, we denote by Q; the
natural quotient map with domain X and null space E. For
T €LR(X,Y), we shall denote Q?(O) by Qg. It is well

known that for
valued (see [3]).

T € LR(X,Y), the operator QT is single
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For 7 € LR(X,Y), we set |7 (x)|| = |QsT (x)]|| for x €
D(J) and ||7|| = ||Q4T ||. Note that these notions do not
define a norm since nonzero relations can have zero norm.

Lemma 6. Let o/, B € CLR(X, Y) be such that D(%) > D()
and B(0) c H(0). If x;, x, € D() are such that of (x,) N B
(x,) # O, then o (x;) — B(x,) c L(0).

Proof. Let z € 9/(x,) N %B(x,). Since Q  and Qg are single

valued, we see that

Qu( (%)) = B(x,)) = Qul (1) = QuB(x,) =2~ 2=0.
(14)

Hence, o/(x,) — B(x,) € (0). O

The following lemma is proved in [3].

Lemma 7. The following properties are equivalent for a linear
relation 4.

(i) o is closed
(ii) Qo is closed and 2/(0) is closed

Lemma 8.

(a) Let T € LR(X, Y) be bounded. Then, || T x| < |7 ||||x]|

(b) For 8, € LR(X,Y) with D(§) cD(J) and T (0)
C 8(0), we have

[S(x) + T @) 2 S| = [|T (*)]]- (15)
Proof.
(a) From ([3],11.1.6), we have || T || = sup ||T (x)]| so that
x€Bp()
1
171= sup ||
xen(7) |11l
(16)
1
171l Mo(x) » X€D(T).

The inequality || T ||||x|| = ||F (x)||, for all x € D(T"), then
follows from ([3], I1.1.5).

(b) Since T (0) c $(0), we see that (§+7)(0) =S(0)
+J(0)=8(0) since &(0) is a subspace (linear
subset). For x € D(&), let s € $(x) and let t € T (x).
Then, s+te(S+T)(x) =S(x)+T (x), and so by
([3], I1.1.4), we get

3
|S(x)+ T (x)|| =dist (s + ¢, (S + T)(0)
=dist (s + £, $(0))
> dist (s, $(0)) — dist (¢, ($(0)) (17)
> dist (s, $(0)) — dist (¢, (7(0))
= IS - 17 ()]

O
LetX be a normed space. By X', we denote the norm dual

of X, that is, the space of all continuous linear functionals x'
defined on X, with norm

||x'|| =inf {/\ : ‘ [x,x’] ’ <A||x||» forallxeX}, (18)

where [x, x'] == x (x) denotes the action of x' € X' on x € X.
If M c X and N ¢ X', we write M* and NT to mean

Mt = {x' ex': {x,x'} =0, forallxeM},

(19)
NT:= {XEX: [x,x'} =0, forallx’ GN}.

Let 7 be a linear relation with D(7) c X and R(J) C Y.
We define the adjoint 7' of 7 by

G(7')=6(-7 )" c¥'xX', (20)
where
(D) R et
This means that
(y’,x’) € G(y’) if and only if [y,y'} - [x,x’] -0,

forall (x, y) € G(F).
(22)

From (22), we see that y'(y) =x'(x) for all y € T (x),
x € D(J). Hence,

x'eT’ <y,), if and only if y' 7 (x) = x' (x), forall x € D(T).

(23)

This means that x' is an extension of y'J (x), and
therefore, the adjoint 7' can be characterized as follows:

G(Ffl> = {(y',x') €Y' x X' such that x' is an extension of y' 7.

(24)

Please note that ' € CLR(Y’,X’) (see [3], IIL.1.2).



Lemma9 ([3],111.1.4). Let T be a closed linear relation. Then,

Remark 10. If § and & are closed linear relations with D
(7)cD(S) and &(0)cT(0), then &'(0)cT'(0) by
Lemma 9(2).

3. Lower Bound of a Closed Linear relation

Consider a closed linear relation & on a Banach space X, and
let N(of) denote the null space of & which is closed since of
is closed. Since N (/) ¢ D(/), a coset X € X = X/N (/) which
contains a point of x € D(&) consists entirely of points of D
(o). To see that this is the case, let X € X and let x, y € X with
x€D(). Then, y—x e N(o/) c D(¢f) and the linearity of
D(of) implies that y =x + (y — x) € D(&/). Let D denote the
collection of all such cosets x. On setting,

A(%)=Qud(x), forxeD, (25)
we define a linear operator A : X — X, where X = X/.2/(0).

To see that (25) is well defined, let x,y € x. Then, x—y €
N(&f), and therefore,

0ed(0)=dl(x-y)=al(x) - /(). (26)

We see from (26) that &/(x) N (y)#+D. So, let ue
A(x) N (). Then,

A(x) = A(0) +u=d(y), (27)

so that Q4 (x) = Qu(y). We have

D(A) =D, R(A) =R(Qu4/),N(A) = {0}. (28)

Remark 11. Since &/(0) Cc R(f), we also have that a coset
%€ X that contains a point of R(&/) consists entirely of
element of R(&/). To see that this is the case, let X be a coset
in X and let u, v € X with u € R(&/). Then, v—u € o/(0) € R(
o). The linearity of R(&/) implies that v =u + (v — u) € R(<f).

Lemma 12. The linear operator A defined by (25) is closed.

Proof. Let {X,} be a sequence in D such that X, — X € X,
and let {Qy 9/ (x,)} be a sequence in R(A) such that Qg

d(x,) — y€X. Let x, €%, and x € X. Since ¥, — X, we
see that dist(x, —x, N(¢/)) — 0. This means that x, - x
converges to some element of N(&f), say,
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x,-x—ueN(d). (29)

From (29), we see that x, — x+u=wex.

Since Q9 (x,) — y € X, that is, Z, — 7, we see that
dist(z,, =y, #(0)) — 0 asn— oo and so z, — y+v=z
€y for some v e &(0) (where z, € o/(x,) for each n e N).
The closedness of of implies that w € D(¢f) and z € o (w).
Hence, X € D and A(%) = Q,(x) =7, showing that A is
closed. O

We see that A™! is single valued since A™'(0) = {0}. We
now introduce the quantity y(&/) called the lower bound of
the linear relation &/. By definition,

V()= s (30)

with the understanding that y(«/) =0 if A™' is unbounded
and that (&) = co if A™ = 0. It follows from (30) that

(&) =sup {y €R: [|d(x)[| 2 y|[X]| = dist(x, N()),  Vxe€D()}.

(31)

Note that y(&/) = co if and only if &/(x) = /(0) for all x
€ D(¢/). In order for (31) to hold even for this case, one
should stipulate that cox 0 = 0. Obviously, y(&/) = y(A).

Please note that characterization (31) implies that if y
(¢f) =0 then the domain of &/ cannot consist of the zero
element alone.

The fact that y(</) = oo if and only if &/ (x) = &/(0) for all
x € D(&f) leads to Lemma 13 (see also [3], Proposition 11.2.2).

Lemma 13. For of € CLR(X,Y), we have

co, if D()CN(L),
Y)=q {Ilﬂ(x)ll
inf :

- otherwise.
1]

xeD(d)&x ¢ N(A),
(32)

Remark 14. A bounded linear operator T is closed if and only
if D(T) is closed.

Proof. Suppose that u,, — u with u, € D(T). The bounded-
ness of T implies that T'(u,,) is a Cauchy sequence and there-
fore converges, say T(u,,) — v. The closedness of T implies
that u € D(T) and T(u) = v. This shows that D(T) is closed.

If 8 is a closed linear relation from X to Y, the graph of &,
G(8) is a closed subset of X x Y. Sometimes, it is convenient
to regard it as a subset of Y x X. More precisely, let G' (&) be
the linear subset of Y x X consisting of all pairs of the form
(v, u), where ueD(S) and v e &(u). We shall call G'(s)
the inverse graph of &. As in the case of the graph G(&),
G'(&) is closed if and only §7! is closed. Clearly, G(&) =
G'(8™). Thus, §7! is closed if and only & is closed.
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Lemma 15. If &/ is a closed linear relation in a Banach
space X, then R() is closed if and only if () > 0.

Proof. By definition, y(</) > 0 if and only if A™! is bounded
(where A is the operator defined in (25)), and this is true if and
only if D(A™') = R(A) = R(Q,f) is closed (we use the fact that
A" is closed because A is closed, and then apply Remark (14)).

Now, assume that y(&/) > 0 and let {y, } be a convergent
sequence in R(&/) with

V=) (33)

Since Qg is a bounded linear operator, the
sequence{Q,,(y,)} is a Cauchy sequence in R(Q. <) and
therefore converges to a point z € R(Q, <) ¢ X = X/</(0)
since R(Q, &) is closed. We see that dist(y, —z, #(0)) — 0
as n — 00 so that y, — z — v for some v € &/(0), that is,

Y, ——Z+VEZ. (34)

Since &/(0) C R(&f), a coset X € X that contains a point of
R(&f) consists entirely of element of R(&f). To see that this is
the case, let X be a coset in X and let u, v € X with u € R(<f).
Then, v — u € 9/(0) c R(o/). The linearity of R(</) implies that
v=u+(v-u) e R().

We see from (33) and (34) that y €Z and that y € R(</)
since z € R(&/) and y € Z. This shows that R(&f) is closed.

On the other hand, assume that R(&) is closed. Since A~ is
closed (since A is closed), it is enough, by the closed graph theo-
rem, to show that D(A™') =R(A) =R(Q ) is closed. So,
assume that {Z,,} is a sequence in R(Q &) such thatZ, —Z
€ X. Then, dist(z, — z, &/(0)) —> 0 as n — 00. Hence, there
exists an element w € &/(0) such that z, — z + w € Z. The clo-
sedness of R(&/) implies that z + w € R(&/) so thatz € R(Q, ).

Please see ([3], I11.5.3) for another proof of Lemma 15.
For the definition of continuity and openness of a linear
relation  mentioned in Lemmas 16 and 17, please refer to [3].

Lemma 16 ([3], 11.3.2, I11.1.3, 1IL.1.5, 111.4.6). Let &, T € LR
(X, Y). Then,

(a) T is continuous if and only if || T|| < oo

() (AT)' =AT" (for A #0)

(c) T is open if and only if y(T) > 0

(d) IfD(S) > D(T) and ||S||<co then(T + ) =T+ S’

Lemma 17 ([3], 111.4.6).
(a) T is continuous if and only if D(T ") = T (0)*
(b) T is open if and only if R(T') = N(T)*
(c) If T is continuous, then | T'| = || 7|

(d) If T is open, then y(T) =y(T")

4. The Gap between Closed Linear Manifolds
and Their Dimensions

Let Z be a Banach space, and let L be a closed subspaces
of Z. We denote by S; the unit sphere of L, that is, S;
=={ueL:||ul|=1}. For any two closed linear manifolds
M and N of Z with M # {0}, define the gap between M
and N, denoted by 6(M,N) to be

O(M, N) = supdist(u, N), (35)

ueSy,

and set (M, N) =0 if M ={0}. (M, N) can also be char-
acterized as the smallest number § for which

dist (u, N) <3||u|, forallueM. (36)

It can be seen from the definition that 0 <8(M, N) < 1.
See [1] for Lemma 18.

Lemma 18. Let M and N be linear manifolds in a Banach
space Z. If dim M > dim N, then there exists an x € M such
that

dist(x, N) = ||x|| > 0. (37)

Lemma 18 can be expressed in the language of the quo-
tient space as follows.

Lemma 19. Let M and N be linear manifolds in a Banach
space Z. If dim M > dim N, then there exists an x € M such
that

e X=X/N (N is closed since dim N<o0).
(38)

[1%[| = [|[| > 0,

Lemma 20 is a direct consequence of the preceding one.

Lemma 20. If ||X|| < ||x|| for every none zero x € M, where X
€ X = X/N, then dim M <dim N.

See ([1], Page 200) and [2] for Lemmas 21 and 22
respectively.

Lemma 21. Let M and N be closed linear manifolds of a
Banach space Z. If (M, N) < 1, then dim M < dim N.

Lemma 22. Let x be an element of a normed linear space X,
and let M and N be closed linear subspaces of X. Consider
the quotient space X = X/N, and let % denote the quotient
class of x. For any & > 0, there exists x,, € X such that

dist(xp, M) > (1 —¢) <%) [0 |l- (39)



5. The Quantity v(</ : B)

Let X and Y be two linear spaces and let o/, % € LR(X,Y)
with &(0) c &(0). For n€ N, let M, and N,, be the linear

manifolds of X and M ; and N ; be the linear manifolds of Y’
defined inductively as follows:

n—l))’

(Nn—l))’

M= Y’,M,g:gg"l(w’(M L)) forn=12,-
)

My=X,M, =% (M forn=1,2,---, (40

N,=d'(0),N, =o' (B forn=2,3,---, (41)

» (42)

N!=a'"'(0),N! = d'l(%'<N 1) forn=2,3,-. (43)
)

If M, > M,,,, then o/ (M) > &/ (M,,,), and therefore,

My =B (A (M) > B (A (Myy)) = Mo (44)

Since M, = X > D(9%) > M, we conclude by induction that

My>M,>M,>-->N(RB). (45)

Similarly,
N,cN,cN,c D(d). (46)

Note that
N, =N(«). (47)

Lemma 23. Let n be a positive integer. The following first n con-
ditions are equivalent to one another, and they in turn imply that
condition (x) holds.

(1> Nl CMn
(2)N,cM,_,

(n) N, cM,,

(k) (N4, ;) NB(N,) # BN, CD(B),fork=1,2,---,n

Proof. First, we prove the equivalence of the conditions (1) to
(n). For each r=1,2,---,n—1, (r) implies (r +1). In fact if
N, CM,_,,,, then (44), (45), and (47) imply that N,,, = o/~
(B(N,) C o™ (B(M, ,.,)) € ™ (A (M) + B(0)) c o
(A(M,,_,)+5(0) =l (M,_,)+ A (N ()| =" [A(M,_,)
+N(d)| <M, , + N+ (0)=M,_, +47(0)=M

n-r
+ Nl C Mn—r + Nr C Mn—r + Mn—r+1 = Mn—r
Conversely, (r + 1) implies . In fact, if N,,; ¢ M, _,, then
Nr C]\]r+1 CMn—r:‘%_l('Qi(Mn—r—l))’ (48)

so that each x € N, has the property that there exists a z €
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%B(x) such that ze o(y) for some yeM,_, ;. Then, ye
$2fl(%(Nr)) N,y €M, , and so xeB ' (A(M, )=
M, _,., This proves that N, c M, _,.,.

Next, we prove that (n ) implies (x). So, suppose that (n)
is satisfied. Then, N, c N, c M, =B (#X) c D(B) for
k<mn, so that for each xeNk, there exists a ze€ %B(x)
such that z € &(y) for some y € X. Then, y € o/ (B(N ))
=Ny, and so (Ny,;) N B(N,) + 2.

If N, ¢ M,, then N, c M, /, for all n’ <n since M,, is a
nonincreasing sequence. We denote by v(&/ : %) the smal-
lest number # for which the condition N; ¢ M,, (or any one
of the other equivalent conditions) is not satisfied. We set v
(o : B) =00 if there is no such n. This is the case if for
example o/ (0) c B 7(0).

Lemma 24. Let X and Y be Banach spaces and let o, B € C
LR(X, Y) with D(&f) = D(%) = X. Then,

M, c (B(N,))"

(49)
NLC (A (M) forn=1,2,

Proof. First, we show that (49) holds for n = 1. To begin with,
let y' € M} and let x € D(%) N N,. Then, by definition, y' €
%"_l[ﬂi'(Y’)] and x € #71(0) N D(AB). Hence, there exists
an element x' € o' (Y') N R(A') such that (y', x") € G(&").
Since x" € A'(Y"), there exists an element f' e D(o/') c Y’
such that (f',x") € G(&"). Since (x, 0) € G(f), (22) implies
that ' (0) = x'(x) so that x' (x) = 0. So, for y € B(x), y'(y) =
x'(x) =0, showing the y' € [B(N,)]*.
The second inclusion follows from (see Lemma 9(1)).

Ni=N (") = R()" = [ (M,)]* (50)

We shall therefore assume that (49) has been proved
for n=k and prove it for n=k+1. So, let g’ € M, and
let ze D(B)NN,,,. Then, g'¢ %'_l[d'(M;{)] and z¢€
A7 B(N,) N D(RB). Hence, there exists an element h' €
o'(M;) such that (g',h') € G(B'). Since h' e &' (M), it
follows that there exists an element I' € M, such that (I', k")
€ G(o"). The fact that z € Ny,, means that there is an ele-
ment w € B(N,) such that (z,w) € G(«). This means that
I'(w)=h'(z) and h'(z) =0 since I € [B(N,)]*. So, for u
€ B(z), g'(u)=h'(z) =0 meaning that g' € [B(N,)]*
and that M, C [B(Ny,,)]". This proves the first inclu-
sion in (49). The second inclusion can be proved in a
similar way. O

Lemma 25. Let of € CLR(X, Y). For every f' € N(of)", there
exists g' € Y' such that g' (y) = f' (x), for all y € o (x), and all
xeD(d).
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Proof. Define a linear functional g’ on Y' by setting g'(y)
=f'(x) forall y € &/(x) and all x € D(&/). Then, g’ is defined
on R(</) and is bounded. To show that g’ is indeed bounded,
we first note that for y € /(x),

9’ D)= 1" @) < 1Al (51)

and consider the quotient space X = X/N(&). Let x, € X.
Then, x —x, =u for some u e N(g&f) so that f(x)=f(x,).
This equality means that ||x|| in (51) can be replaced with ||
x,||, for any x; € X without changing the inequality. This
therefore means that

19" 0| < |IF/1E) < |1 [y (et)™ et
= |If"[|y(2) M| Quy| (52)
<l () 1 Qu Iyl

that is, g’ is bounded on R(<f). The Hahn-Banach extension
theorem implies that g' can be extended to the whole of Y’
without changing its bound. O

Remark 26. Lemma 25 above implies that N(</)* c R(</")
and that N(&/)" = R(</") by Lemma 9(3).

Lemma 27. Let of, B € CLR(X,Y) with D(¢f) =D(%) = X,
R(d) closed and 9B bounded. If B(0) c (0), then

M= [B(N))])* (53)
v(ﬂ' : %") =v(d : RB) (54)

Proof. Let f' € [B(N,)]* = (B(71(0)))". Since B(0) c B
(N,), Lemma 16 (a) together with Lemma 17 (a) imply that
fleD(RB'). So, let g' € B'(f'), that is, (f',g") € G(B').
This means that for x € N, and y € B(x), g’ (x) = f'(y) =0,
which shows that g’ € N+ = N(«/)" and therefore g’ € R
(") and so g' €R(</') by Remark 26. It follows that
f'e®' [d'(Y')]= M) This shows that [B(N,)]* c M.,
Equality (53) then is followed by (49). To prove the second
equality, let v=v(/ : B). Then, N, c M,, for all n < v. Since
M, =B [d(M,_,)], we see that

B(Ny) c B(M,) cd(M,) +B0) cd(M,,)+d(0)=d(M,_,),
(55)

where the last equality follows from the fact that &/(0) c
d(M,_;) and Z(M, ;) is a linear space. We see from
(55) that [o/(M, |)]" < [B(N,)]*. It then follows from
(49) and (53) that N| ¢ M. This means that v' = v(of' : B')
>nand that v’ > v.

To prove the opposite inequality, let n<v'. Then, we
have Ni C M; If follows from Lemmas 9(1), (47), and (49)
that [/(X)]* ¢ [#B(N,)]". Since R(&/) = &(X) is closed, this
implies that B(N,) c A(X). Since D(&) =X, we see that

N, cN, +%B(0) c B[ (X)] = M,. This shows that v>n
and therefore v>v'. O

6. Nullity and Deficiency

In this section, we study the behaviour of the nullity and defi-

ciency for linear relations under some perturbations. For ¢/ € L
R(X,Y), the nullity a(2f) and the deficiency 3(&/) are defined by

a(sl) = dim N(d),

(56)
B()=dim Y/R().
Lemma 28 ([3], I11.7.2). Let T be a closed linear relation with y
(T)>0. Then a(T ") = B(T).

Let X and Y be Banach spaces, and let &/ be a closed lin-
ear relation with D(o/) c X and R(&/) C Y. Let n € {NUco}
be such that for any € >0 there exists an n-dimensional
closed linear subset N, of N(&/) such that

|2 (x)|| <e||x|, forallxeN,, (57)
while this is not true if # is replaced by a larger number. In
such a case, we set &' (/) == n and define B’ (/) to be

B () =o' (d’). (58)

Lemmas 29 and 30 show that a' (<) is defined for every
closed linear relation &/.

Lemma 29. Assume that for every € > 0 and any closed linear
subset M of X of finite codimension; thereis anx € M N D(A)
such that ||x|| = 1 and || (x)|| <&, then &' () = 0.

Proof. We have to show that for each &> 0, there exists an
infinite dimensional closed linear subset N, ¢ D(&f) with
the property (57). First, we construct two sequences x,, €
D(f) and f, € X' such that

k=1,2,--,n-1,

1]l = L Lfull = L f(x,) = L fi(x,) =0,
| (x,)]| <3 7", neN.
(59)

For n =1, the result holds by ([1], III-Corollary 1.24).
Suppose that x,, f, have been constructed for k=1,2, -,
n—1. Then, x, and f, can be constructed in he following
way. Let M cX be the collection of all x€X such that
fr(x)=0,k=1,2,---,n—1. Since M is a closed linear sub-
set of X with finite codimension (dim M* <n -1 and use
codim M=dim M%), there is an x, € M N D(&) such that
llx,|=1 and ||A(x,)|| <37 "¢. For this x,, there exists an
f, €X' such that |f,||=1 and f,(x,)=1 (see [1], III-
Corollary 1.24). It follows from (59) that the x, are line-
arly independent so that M,:=span {x;,x,,.--} is infinite
dimensional. Each x € M'E has the form



x=&x, +&x+ -+ & x,, (60)

for some positive integer n. Hence, for k=1,2,:--,n,
Telx) =8uf i +8af (%) + o+ & fr(Xpr) + 8 (61)
We show that the coefficients &, satisfy the inequality
& <257 x||, k=1,2, -, 1. (62)

For k=1, this is clear from (59) and (61). If we
assume that (62) has been proved for k <j, we see from
(61) that

&1 < |750)] * &l Fie0)] + 4 8] 50|
< [l + I+ 1T+ | )
< [lefl + [lxl] + 2[fx]] + - + 277 x|
= |l [2+2(1+2+2% + - + 271 ] =277 |1x]|.

It follows from (59), (61), and (62) that
([ ()| < |& ([ ||+ +(E ]| L, |

1 2 22 2n—1 (64)
S{3+ ottt el <elxl.

3 32 33 3"

Let ue ., and let {u,} be a sequence in ., such
that u, — u. The boundedness of Q & on M, implies
that {Q,o/(x,)} is a Cauchy sequence in % :=Y/of/(0)
and therefore converges, say Q,<(x,) — v€ ¥%. This
means that dist(x, —v,2(0)) — 0 as n— oo, that is,
x,—v—z€d(0) for some z€(0). In other words,
x, — v+z=wev. The closedeness of o/ implies that x
eD(of) and we d(x). Hence, Quef is defined and
bounded on the closure of M. with the same bound. (]

Lemma 30. If o/ is a closed linear relation with closed ran-
ge(thatis, y(f) > 0), then o' (o) = a(A) and ' () = B(A).

Proof. By Lemma 16, y(<f) >0 implies y(</') >0 while
Lemma 28 implies that (/") = B(<f). In view of (58), it is
enough to show that a' (/) = a(f). It is clear that o' (/) >
a(f). Now suppose that there exists a closed linear manifold
N, with dim N, > a(&/) = dim N(&/) and with property (57).
Pick x € N, such that ||X|| = ||x|| = 1 where % € X := X/N (/)
(this is possible by ([2], Lemma 241). For this x, ||</(x)]| =
y(2f) on the one hand and ||/(x)|| <€ on the other hand,
leading to the inequality y(&/) <e. In other words, there is
no N, with dim N, > a(</) = dim N(&/) for € < y(&/). This
proves that a' (¢/) < a(</) and that ' (&) = a(<f). The sec-
ond equality follows from (58) and Lemma 28. O
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Lemma 31. Let T € CLR(X) with nonclosed range (that is,
y(T) =0), then

o' (T) = oc0. (65)

Proof. Let M be any closed linear manifold of X with finite
codimension, and let Q5 be denoted by Q. Consider the
mapping T : X/IM — QT (X)/QTJ (M) defined by setting
T(x) = QT (x). Then, T is clearly well defined and linear. It
is well defined since

T(x+v)=QT (x+v)=QT (x) + Q7 (v) = QT (x) = Tx,
(66)

for any v e M. Tt follows that Q7 (X)/QJ (M) is a finite
dimensional space since M has finite codimension. ([1], III-
Lemma 1.9) implies that Q7 (X) is a closed subset of Y :=
Y/T(0) if Q7 (M) is a closed subspace of the same space.
This would mean that 7 (X) is a closed subset of Y. To see
why this is true, let {y,} be a convergent sequence in 7 (X)
with y, — y € Y. Then, {Qy, } is a Cauchy sequence in Y
and therefore converges to some point Z € Q7 (X). In other
words, y,—z— we J(0), so that y, — z+w ez The
uniqueness of the limit implies that y=z+we€Z and
that y € R(J) since z € R(7) and every coset that contains
and element of R(J") consists entirely of elements of R(J).
Next, we show that if 7 (M) is closed then Q7 (M) is closed.
So, assume that 7 (M) is closed and let {Z} be a sequence in
QT (M) that converges to an element Z € Y. Then, z, -z
—>v€J(0) and so z,— z+veZ The closedness of
T (M) implies that z+v € T (M) and that Z€ QT (M).
The contradiction that I (X) is both open and closed
means that Q7 (M) is not closed and that I (M) is not
closed and therefore y(J,,) =0. Hence, there exists, for
any >0, an x € M N D(J) such that ||x|| =1 and |7 (x)]|
<e||x| < e|x|| = & where X € X = X/N(J). This shows that
the conditions of Lemma 29 are satisfied and therefore
a'(T) =oo. O

Theorem 32. Let X and Y be Banach spaces, and let of be
a closed linear relation with D(&) c X, having closed range
R(H) CY, and with a(<f) finite. Let B be a closed bounded
linear relation such that D(%) > D(), %(0) c (0), and

18| <y(). (67)

Then, the linear relation of + B is closed and has closed
range. Moreover,

a(d + B) <o), B + B) < B(). (68)

Proof. Let {x, } be a sequence in D(&) such thatx, — x € X,
andlet{y,} beasequencein R(¢/ + %) suchthaty, — y €Y,
where y, =u, +v, with u, € o/(x,) and v, € B(x,) for each
n € IN. In other words,

u,+v, —y. (69)
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Note that (67) implies that {Q4%(x,)} is a Cauchy
sequence in Y == Y/98(0) and therefore converges to a point of
Y, say Qz%B(x,) — v € Y. Hence, dist(v, — v, B(0)) — 0
as n — 0, that is, v, — v — z for some z € %(0). Hence, v,
— v+ z € . The closedness of % implies that x € D() and
v+ze%PB(x). Hence, y=y—v—-z+(v+z)ed(x)+RB(x)
and so &/ + A is closed.

To complete the proof, it is enough to show that

o (A +B)<a(d), B (d+B)<B'(A),  (70)

and then apply Lemma 31 to conclude that o/ + & has closed
range and Lemma 30 to establish the inequalities in the
theorem since o (& + B) >a(d +B) by definition and
B' (A + RB) > a(d + B) by (58) and Lemma 28.

To prove (70), suppose that for a given € > 0 there exists a
closed linear manifold N, ¢ D(<f + %) = D(«/) such that

(e + B)(x)|| <e||x||, foreveryxeN,. (71)

It then follows from (71) and Lemma 8 that

([2l1 + &)l 2 [|B x| + [ + B) )| 2 | B o5y
+ ([l x]| = [ B)]) = | ()] = y(L)]|x]];

where X € X = X/N(&/). If we pick & such that 0 < e < y(<f)
— |||, we see from (72) that ||x|| < ||x|| for all nonzero x €
D(&f). 1t therefore follows from Lemma 20 that

dim N, <dim N(«)=«(H), (73)

which means that a' (o + B) < a().
To prove the second inequality, we note that Lemma 16

together with Lemma 17 implies that ||%'(| = |||, y(</')
=y(of), and (A + B)' =o' + B'. 1t therefore follows that
|B' || <y(et"). Applying what has been proved above to
the pair d', B, we see that

B (o +B)=a ((d + @)’) =a (ﬂ’ + @’) < oc(.szf’) = B(A),
(74)
where the last equality follows from Lemma 28. O

Lemma 33. Let X and Y be Banach spaces and let T be a
closed linear relation with D() c X and R(T) C Y. Set

¥y = ¥+ 1T ), x € D(T). (75)
Then, D(T") becomes a Banach space if ||llp(g is chosen
as the norm.

Proof. That || p(5) defines a norm on D() is clear. To prove

completeness, assume that {x,} is a Cauchy sequence in
D(J). Then, {x,} and {Q,J (x,)} are Cauchy sequences
in X and Y = YJ(0), respectively, and therefore converge,

say x, — x€X and QT (x,) — i€ Y. Let u, € T (x,)
for each ne N. Then, &, — % and so dist (u, —u, 7(0))
—> 0 as n— 00, that is, u, —u —> v € J(0). We there-
fore see that u, — u+v=seu. The closedness of I
implies that x € D(J) and that s € I (x). Now,

1% = %[l gy = 1% = %[ + |Qz T (%, = %)

=[xy = [ +[|Qz 1, = Qg 9)||
=||x, = x|| + ||, — #|| — Oasn — co.
(76)

This shows that D(J) is complete. O

Let X and Y be Banach spaces, and let &/, % € CLR(X, Y)
be such that D(&/) ¢ D(%) and $B(0) c #(0). In Theorem
34, we write ||%(x)||, to mean the quantity ||Q_ % (x)].
The quantities ||o/(x)||, and ||98(x)|| i are defined in a sim-
ilar way

Theorem 34. Let X and Y be Banach spaces, and let of be a
closed linear relation with D(f) c X and with closed range
R(gl) C Y. Let B be a closed linear relation such that D(<f)
CcD(%B)cX,R(AB)CY, B(0) cd(0), and

1B ()l <ollx]| + | (x)]y  VxeD(e),  (77)
where o and T are nonnegative constants such that

o+1y(d) <y(A). (78)

Then, the linear relation o + % is closed and has closed
range. If a(f) < co, then

a(dl + B) < (<),

(79)
B( + B) < B().

Proof. Let {x,} be a sequence in D(&f) such thatx, — x € X,
andlet{y, } beasequencein R(¢f + %) suchthaty, — y €Y,
where y, = u, + v, with u, € o/(x,) and v, € B(x,) for each
n € N. Note that (77) implies that

1 ()| = 1B )| 5 2 (L =D)L (*) ]| = 0l|x]|- (80)

Since [|B(x)|lg =[|QpRB(x)|l 5 > [|QyB(x)|| 4 we see
that

1Qud (%)l = 1R B(¥) || = (1 - 7) || (x)]| - ollx]| (81)
and that
Qe (%) + QB (%) || 5 = (1 - 7)[| Qe (%) || - o]|x[|. (82)
Inequality (82) and the linearity of Q,, imply that

1Qu (4 + Vi)l 2 (1= T) | Quyt | = 0%, (83)
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so that
1Yl = [l +vall 2 (1 = )| Quyttu| = 0|, ]]- (84)
It therefore follows that for m, n € N,
10 =Yl 2 (1= D) Quytty = Quythys) || = I, = %, (85)

Sincel — 7> 0by (78) and both {x, } and {y, } are Cauchy
sequences, it follows by (85) that { Q ,u,, } isa Cauchy sequence
and therefore converges, say

i, — i, (86)

where we denote Qu,, by i1, in Y/¢/(0). The convergence in
(86) implies that dist (1, — u, #/(0)) — 0 as n —> c0. This
means that u, — u converges to an element of &/(0) = &/(0),
say u, —u—> z € /(0). This means that u, —z—-u=s.
The closedness of & implies that x € D(&f) and s € /(). Since
u, — s, we see that Qu, = Qs. Applying (77) to x,, — x, we
see that QB (x,) — Qg RB(x), that is, dist (v, — v, %B(0))
—> 0asn —> 00, v € B(x). This shows that v, — v converges
to an element say w of %(0), thatis, v, — w—v=r € %B(x)
since B(x) = B(0) + v.Hence,y =s+r € (o + B)(x), show-
ing that & + 2B is closed.
We introduce a norm on D(&/) by

Ixllp= (o +e)llx][ + (v + e L(x) || zellx]l,  (87)

for some arbitrary but fixed positive constant e. Note that the
space D(&/) becomes a Banach space by Lemma 33, which we
denote by D. We now regard o and & as linear relations
with D(&/) =D(%)=D and denote them by & and &
respectively. Since ||x||; = (o +&)||x|| + (7 + &)|| A (x)]| > o|x

| +7)|<(x)|| = || B(x)]|| for every x €D and ||%|| = sup||&
X€Bj,

(x)]], we see that ||%’|| < 1. From ||&/(x)|| < (T=£)_1HX||D

and the definition of |||, we also see that ||| < (7 +¢)".

It is clear that R(</) = R(&/) is closed and that

oc(éf) = a(&f),ﬁ(@f) =B(A),

(88)
a(&+@) :a(d+93),ﬁ(§{+§g> =B(d + B).

Please note that y(/) = p(&f) if y(/) = co. In order to
relate (/) to y(.f) in the other case, we recall that in this case,

y(.szi) =inf { }ﬁ(ﬁH :xED,x¢N(e§i)}

— inf {M:xeb,xqéN(éi)},

%[l

(89)

where X € X := X/N ().
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But

[y = nf, e~z =_inf [(o+e)|x =2+ (r )|l (x ) |

=(o+ o)X+ (r+e)|L ()],
(90)

where we have used the linearity of the natural quotient map
and the fact that o/(z) = /(0).

Hence,
) =in A b
() =0t { o ey <P <2
- V()
(e (r+ ()’

(91)

where we have used the fact that f(¢) = ¢/(a + t) is an increas-
ing function for any constant a.

In view of (78), we can make y(&/) > 1 by choosing &
small enough. Since || %8| < 1, we can apply Theorem 32 to
the pair &/, % with the result that R(</ + B) = R(of + B) is
closed and (68) holds with o/, % replaced with &/, %. The
result then follows (88). O

7. Stability Theorems

Consider an eigenvalue problem of the form
Ax = AB, (92)

where A and B are linear operators from X to Y and the asso-
ciated problem

A*f' = AB*f', (93)

where the adjoints A* and B* exist. The null space N(A
— AB) of the linear operator A — AB is the solution set of
the eigenvalue problem (92). Similarly, N(A* - AB*)=R
(A-AB)" is the solution set of the eigenvalue problem
(93). In studying the above eigenvalue problems, one
therefore gets interested in the behaviour of N(A - AB)
and N(A* - AB*).

In the setting of linear relations, the eigenvalue problems
(92) and (93) can be formulated as

9 (x) N AB(x) + D, (94)

d/(x') n)h%"(x') +, (95)

where of, & € LR(X, Y). Conditions (94) and (93) are equiv-
alent to

(of = AB)(x) = (of - AB)(0), (%)
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(&f' —Agg’) (x’) = (gf’ —)L%')(O), (97)

respectively.

As before, the solution sets of (96) and (97) are N(&/ — A B)
and N(o/' ~AB') = R(A — AB)*, respectively. In this last
section, we study the stability of the dimensions of the null
spaces of &/ — A% and o' — AR’ as A varies in some specified
subset of the complex plane.

Theorem 35. Let X and Y be Banach spaces and let of, B €
CLR(X,Y) be such that o has closed range, D(%) > D(),
%(0) c A(0), and

B <ollx]| + 7l (x)], foreveryxeD(st), (98)

where o and T are nonnegative constants. Then of — AR is
closed for |A| <y()/(o +1y(H)), and if R(A)\ oA(0) + D,
then y(of — AB) < o0 for |A| = y(H)I(0 + Tp(H)).

Proof. It follows from Theorem 34 that &/ — A% is closed if
A<yt (o + Tp(at)).

If y(o —ARB) =00, then (& —AB)(x)= (o —1%)(0)
= 9/(0). The fact that (of — A%)(x) = (o — ARB)(0) for every
x€D(of —A%B) = D(of) implies that &/ (x) N AB(x) + D for
every x € D(&f). Since %(0) c &/(0), it follows that ||/ (x)||
< ||A%B(x)|| for every x € D(&/) and therefore

[ ()| < M| B ()| < [Al(o|x]| + 7| (x)]),  (99)
so that
(L= A[D[IL (x)|| < a|Al[|x]]- (100)

Since R(&/) #+ 9/(0), we see that there exists at least one x
in X = X/N (/) with % # 0. Inequality (100) implies that

Y(E)|X[| < ([ (x)]| < ol Alllx]|1/(1 = [A[7). (101)

Since x can vary freely in X, we conclude that y(&/) < o
A/(1 - |Alr) and that |A] > p()/(0 + Ty(A)). O

Theorem 36. Let X and Y be Banach spaces, and let <,
% € CLR(X,Y) be such that of has closed range, D(%) >
D(of), %B(0) c 9/(0), and

| B(x)|| <ol|x|| +7||Z(x)||, foreveryxeD(<f), (102)

where o and T are nonnegative constants. If v(f : B) = oo, then

alM|
() = [A[(o +Ty(o))

O(N (o), N(of ~AB)) < - (103)

Proof. Let N be as defined in (41) and consider a sequence z;,
with the following properties:

2 €N A (24,1) N B(z) # D,

(104)
Elzenll < 1(zi)ll, k=12,

11

where & is a positive constant. We show that for each ze N
(/) and &<y(df), there is a sequence z; that satisfies
(104) such that z=2z,. We set z=z, and construct z; by
induction. Suppose z,,z,, :--x; have been constructed with
properties (104). Since z, € N, c M, =B ' (A(X)), there
exists a z;,; € D(&) such that &/(z;,,) N B(z;) + D. Since
V(&) | <117 (2,,)]| and. 2., can be replaced by any
other element of z,,;, we can choose z,,, such that &||z;,,
I < | (zgs1)|l- Since H(zp,q) N Bzy) + D, we see that
Zip €L H(B(N,))=N,,,. This completes the induction
process.

Since 9 (z;,,) N HB(z,) #D and H(0) > FB(0), we see
that

1 (zk1) | < 1B (20| < ollzl| + 7l Az (105)

For k=1, (105) gives ||&(z,)|| < ||%B(z;)|| < ol|z;]| since

z, € N(). For k > 2, (104) implies that

| (zr) || < | B (20) || < o l|2]| + 7| (21) ]
-1 -1 2
< (ot 47) (@) < (08 +7) oz
<< (ot +T>k_1||52f(22)||
=8 (&) (2|
<o& F Do+ &)z,
(106)
We also see from (104) and (106) that
|2kt || < 0& (0 +E0) 2], k=1,2,-

(107)

The bounds in (106) and (107) imply that the series
u(d)= Y Az,
k=1

M) = Z Aded(Zk+1)>
k=1

- (108)
MB) = Y A QuB(2)),
k=1
MBy) = kZAk’ng«@(zk)

are absolutely convergent for |A| < &/(o + &7). The conver-
gence of the last series follows from the fact that ||Q,%B(z;)
1< 11QzB(2,)]| since B(0) c /(0).

Let u,(A), A, (), A,(AB), and A, (B,) denote the
sequences of the partial sums of the above series in that order.
Then, for each n, u,(1) e D(/) and A, (o) € Y = Y//(0).
Furthermore, u,(A) — u(A) and A, (o) — A(). Since
Qud is closed by Lemma 7, we see that u(1) € D(Q ) =
D(¢f) and that
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Qud(u(M)) = M) = i MQud (2,
k=1

(109)

Since & (zy,,) N B(z,) # D, a similar argument shows
that

QuB() =\ By) = 3 110, B(z)
k=1 (110)

Qe (z1,1) = Met).

18

bl
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One also obtains the equality QgpRB(u(A))=A(AB) =
Y% A*Q4%B(z,) using the closedness of .
From (109) and (110), we see that

Q[ (u(1)) = AB(u(A))] =0, (111)
and so u(A) e N(of — A9B).
Furthermore,

N k- a]A|
[u(A) =zl < I;WI izl < (E—IM(CHTE)>|Z1“'

(112)

Since there is such a u(1) € N(of/ — A%) for every z — z;
€ N(&/), we conclude that

il

@@y MY

O(N () N(sf =A%) <

d

We observe that if a(/) < co then Theorem 34 can be
used to conclude that &/ — A% has closed range if |A| <y
()/(o +1y()). However, this conclusion is not possible
if no restriction is imposed on a(¢/). This case is consid-
ered in Lemma 37.

Lemma 37. Let o/ and 9B be as in Theorem 36 with
v(d : B)=00. Then, o —AB has closed range for |A|

<y()(30 + 1y(A)).

Proof. In the present case, let x € X and set y = x — u for any
ueN(of — ARB). Lemma 22 implies that for any € > 0,

91 = disy (et 2 st T -l

(114)
Suppose that x € D(&/) = D(of — A%), and let §:=5(N

(): N(of —ARB)). Since (o —ARB)(u)= (A —AB)(0) =
2(0), we see that,
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(et - AB) ()| = (L ~AB) )| = [0 | - NI B
> ()| - Mol + 7S]
= (1=t - oA
> (1= Ap(eh) 7] - oA |
1-6
> (1= TA)y(e) <m> (1= &)y - oM (by(15))
> [Y(ef) - (20 + 7p()) )1 - &) 7] - oAy by (104))
= [(p() - 2o+ Tp(@) (1 - ) - oAy
(115)

Let X denote the quotient space X/N(&/ — A%B). Since
x—-y=ueN(oA -AB), we see that |ly||>|y] =|%|, and
therefore, (115) implies that

(o = AB)(x)|| 2 [(y() = (20 +7y())|A])(1 — &) = a|A]J||%]]-
(116)

Letting e — 0 in (116) leads to the inequality

(o = ARB)(x)|| 2 [(y() = 20 +7y(A))|A]) = o |A[][|%]];
(117)

from which we conclude that

V(A = AB) 2 (y(A) - (30 +Ty())[A]). (118)
It therefore follows that y(&f — A9%) >0, and therefore,
R(d — AB) is closed if |A| < y()/(30 + 1y(H)). O

Finally, we establish the stability of both the nullity and
deficiency of & — A% for A inside the disk |A| < p for some
constant p.

Theorem 38. Let X and Y be Banach spaces, and let of, B

€ CLR(X,Y) be such that of has closed range, D(%) > D

(), B(0)cg(0), and
1Bl < oljx]| + 7] (X)),

foreveryxeD(f), (119)

where o and T are nonnegative constants. If v(of : B) =
oo, then a(f —ARB) and B(A —APB) are constants for
all A for which |A| <y()I(30 +1y()).

Proof. Let u € N(of — ARB). Then, o (u) N AB(u) + & and we
see from (101) that

[[ul

(L= Aoy(e)

Since ||| = dist(u, N(&f)), we see from characterization
(36) that

14| < o] (120)

oAl

ON (e ~AB). N(e)) < Ty

(121)

Since o|A|/((1-|AT)y()) <1 if |A<y()/(o+Ty
(¢/)), Lemma 21 implies that
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(<)

a(d —ARB) <a(d), W.

for [A| < (122)

The reverse inequality follows from Theorem 36 by not-
ing that the right-hand side of (103) is less than one if |A
| <y()/(20 + tp()). We therefore conclude by Lemma
21 that a(of)<a(d -ARB) if |A| <y(L)/(20 +1y(A)).
Combined with (122), we conclude that

Y()

a(d) = m.

a(d - ARB), for|A|< (123)

To show that B(&f — 1) = B(&f), we make use of the lin-
ear relations &/ and & as defined in the proof of Theorem
34. Since of is bounded, Lemmas 16 (c), 17 (d), and 15
imply that R(¢/') has closed range. Since %(0)' c /(0)'
by Remark 10 and v(<#/' : B') = co by Lemma 27, all the
assumptions of Theorem 38 are satisfied by the pair o'
and B'. Since | B'|=|%| <1 by Lemmas 16 (a) and
17 (c), it follows from (123) that

(52 a(), o< )

Since (&i - }L@)’ = (' -AB") by Lemma 16 (b) and (d)
and (o — A9RB) has closed range (since f — A% has closed
range), it follows from (88), Lemma 28, and (124) that

B(st - 18) = p( <1 -

=a(')=#(%)

(g« Agg)
B(

(125)

d

Theorem 38 remains true if we replace the requirement

V(e : B) = oo with B1(0) c &/~1(0).
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