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The main goal of this paper is to investigate the boundedness and essential norm of a class of product-type operators (T7, o ME N) from
Hardy spaces into nth weighted-type spaces. As a corollary, we obtain some equivalent conditions for compactness of such operators.

1. Introduction

Let D denote the open unit disc of the complex plane C and
H(D) denotes the space of all holomorphic functions on D.
The space of bounded holomorphic functions on D is
denoted by H*; it is a Banach space with the equipped norm

191l e = sup|g(2)]- (1)
zeD

Let 0 < p < co. A Hardy space H? consists of all g € H(D)
such that

1 21
lolhe = 52 (55

When 1<p<oo, H? is a Banach space with the norm
Il - If 0<p<1, H? is a nonlocally convex topological
vector space and it is a complete metric space (see [1]).

Let ne Ny ={0,1,2,---} and p(z) be a weight, continu-
ous, and positive function on D. The nth weighted-type space
%/L”), consists of all g € H(D) such that

g(re’@) ‘pda) v <co. (2)

by, (9) = supu(2) \g’” \ oo. (3)

zeD

It is a Banach space with the following norm

n-1
Iglly = Y- |97(0)|+byyin (9). (4)
i=0

The little nth weighted-type space ‘7/54”3 is a closed

subspace of ‘7/};‘) such that for any g € ‘Wffg

hmy ‘g ‘ 0. (5)

|2]—

For more information about nth weighted-type spaces,
see [2-4]. Let « >0. Then, #" v = H %(growth space),

(1-1=P)
WER‘ oy = = %%(Bloch-type space), and w? =Z%(Zyg-

(12"
mund-type space). Also ‘Wﬂ) :Hy(welghted type space),

(1) — i @) = i
W’ = Bu(weighted Bloch space), W'’ = Z ,(weighted
coincide with

(1-[2]") log (2/(1~[2*))
the logarithmic Bloch space 9.

Let n, k € N, such that k < n; the partial Bell polynomials
are triangular

n! X1\ /1 X Ikt

B =Yy (SR Dkl ,
it =g () (55

(6)

Zygmund space), and a8
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where the sum is taken over all nonnegative integers j,, -+,
Ju_is1 Such that

i +et(n—k+1)j .. =mn,
N ( Vin-ke1 )

i s =k

More information about Bell polynomials can be found
in ([5], p 134).

Let me N, u,ve H(D) and ¢ € S(D) be the set of all
holomorphic self-map of D. In [6], Stevic’, Sharma and
Krishan defined a new product-type operator T3, , as follows:

u(2)g"™ (p(2)) + v(2)g""(9(2)), g €H(D),z€D.

(®)

T,09(2) =

When m = 0, we obtain the Stevic'-Sharma-type operator,
and for v=0, we get the generalized weighted composition
operators D;’fq). Product-type operators on some spaces of
analytic functions on the unit disc have become a subject of
increasing interest in the recent years. We refer the reader to
[6-10] and the references therein.

Liu and Yu have considered boundedness and compact-
ness of operator T?wxp from Hardy spaces and H*® into the
logarithmic Bloch space in [11, 12]. Also, Zhang and Liu have
found some characterizations for boundedness and compact-
ness of operator T¢, » from Hardy spaces into the weighted
Zygmund space in [10].
compactness, and norm of operator T,

Recently, the boundedness,
g H — W, are
considered in [13].

Motivated by previous works, the results found in them

will be generalized for operator T}/, . For this purpose in
the second section of this paper, we give some characteriza-
tions for boundedness of operator T7,, :Hf — 7/}(4")

where m,n € N and 0< p<oco. In the third section, some
new estimates are obtained for the essential norm of such
operators. As a corollary, some equivalent conditions are
acquired for compactness of such operators.

Throughout this paper, if there exists a constant ¢ such
that a>cb, we use the notation a>b. The symbol a=b
means thata > b > a.

2. Boundedness

In this section, some equivalent conditions are found for the
boundedness of operator T}, ,(m € N) from H(0 < p<co)

into nth weighted-type spaces. Firstly, we state some lemmas.

Lemma 1 (see [14], Propositions 8). Let « > 0. Then, for any
geB*andneN,

n-1

Y |g%0)] +sup (1-21?)

i=0 zeD

a—1+n

3@ =gl ©)
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Lemma 2 (see [15],

(1)
7/(1 J21*)"

Lemma 2.1). Let a>0 and RB; =
is bounded in 9B and

2a\*
— . 10
- (%) (10)
From Lemma 1, Proposition 5.1.2 [16] and [1], the next
lemma is obtained.

o The sequence {j*~ 12}

lim j*
j—00

Lemma 3. Let 0 < p< 00, n € Ny and g € H. Then,

191 e

( ||>1/p

Lemma 4 (see [4]). Let ¢ € S(D) and u, g € H(D). Then, for
any m,n € N,

‘g<">(z)‘< zeD. (11)

n

)= 3 et
)

-i()wﬂ@%QVWWAwWMWU
I=i
(12)

(u(2)9™ (9(2)

In this paper, we set

(1-1ap)’

m, 0+a,zeD,i€N,

fi,a(z) =

It0(2) = 12 (2) = 0,

n+1,p

(13)

By using the functions f,,, we obtain the following
lemma. Since the proof of it resembles the proof of Lemma
1 [2], therefore, it is omitted.

Lemma 5. Let 8, be Kronecker delta. For any 0#a €D, m
€Ny, and i €{0,---,n+ 1}, there exists a function g, , € H
such that

(m+k)( ) _ 8ikam+k

ia W (14)

In this case, ), where c are indepen-
l ﬂ

n+2 C}f]a

dent of choice a.

Theorem 6. Let m,neNN, 0<p<oo, u,ve€ H(D), u be a
weight and ¢ € S(D). Then, the following statements are
equivalent

is bounded

(a) The operator T,  : HP — ‘WL”)

P -



Abstract and Applied Analysis

(b) The operator Ty, = B'"0) — W) is bounded

P

(c) The operator T}, , : %’Z;F(”p) — Wf:’) is bounded

(d) sup. P Ty gl

(e) Foreachie {0,1,---,n+ 1}>SuP||Tum,V,¢f1+1aH ) <00
aeD
and supu(2)| (122 + 17 ) (2)] < 00
zeD
(f) For eachi€{0,---,n+1},

u@)| (L + 11, ) 2)]

su
2eD (1 _ |(P(Z)| )m+z+(1/p)

<00 (15)

Proof. (b) = (c) Since %’“Wp c BP) we get (c).
(c) = (d) Tt follows from Lemma 2.
(

(d)= (e) Foreach i€ {0,---,n+ 1} and a €D,
[ee]
i Li+1+(Up)+))
fina(2) = H az.  (16)
frla on JIC(i+1+ (1/p))
So,
(69
1
‘ u,v,(pfiﬂ,a o™ 5 |a| Z |a|] /P‘ ;n,v,(pijW(n)
I j=0 “
i+1 =
. 1 dr=11
< s,up]l/p‘ TTWPJ‘H (1= jal*) Z j'laf’,
21 v =0
i D(i+1+j)
< 1/p ™ H 1- 2y i+l _ ])
Sjg%)] u,v,(pp] 7/5:‘)( |a‘ ) ;) ]'F(1+ 1) ‘a|
i+l :1/p m
<2 illp] ‘ Tu,v,tpijW;‘n)' (17)

Hence, sup,p |l T7gf 1414l 0 <©00. It is remained to

show that for each i€ {0,1,-- ,n+1} sup,epp(2)| (I +

I} ,)(2)| < co. Applying the operator T3, to p,(2), by

using Lemma 4, we have

[Tt
supu(z)|Ins(z) + 1™/ < 18
zel]g‘u( ) O,(p( ) l(p( ) m!
0

Now, assume that we have the following inequalities for

supu(z) | (Ify + 12, ) (2)] < oo, (19)

zeD

where j<n+1. By applying the operator T}, , for pj+m(z)

and using Lemma 4, we get

i+ m)! — J i
supu(2) - P o)y + Y o)
(T 1 ) @< | Ty, <00
(20)

Since ||¢]| €1, so from the triangle inequality, we have

supu(@)| (1@ + 175, ) (@) <00 @1

(e) = (f) Forany ¢(a) # 0and i € {0, --
Lemmas 4 and 5, we obtain

-, n+ 1}, by using

u@lg(a)"| (1 + 124, ) @)
< sup .
(1 _ |§D(a)‘2)m+’+(1/l’) oeh uv,<pgz+1,(u) 7/;(4”)
n+2 )
1 m
-3 Haplreid,
(22)
Therefore from the last inequality,
ua)|(Lig + I, ) (@) nme2
st ’( m1+(zp+)(1/ ) ‘ 2 z G sup T;rfv,q)fiﬂ,a (n) < 00.
9@>012) (1= |g(a)*) Piq e o
(23)

On the other hand, from (e), we have

u@)| (1 + 15, ) (@)
sup ( ml:i)(”p) < sup [J(a)‘(l"“ I?‘i¢>(u)‘<oo.
w@i<02) (1~ |p(a)]?) l9(@)/<(12)

(24)

(f) = (b) Forany f € B"*'?, by using Lemmas 1 and 4,
we obtain

n+l

k@I (T0a) " @)u2) @) 2 1™ @) (15 +125,) )

<z>] Iy + 1) (2)]
Hf”.%’“ 1) Z Sup ( m+1+)(1/p) ’
0 =D (1-p(2))

(25)

Also for each 0 < k < n, we have

k| (IRY 18 ) (0)
Hfllgme (‘( r( oF ):1>+,+<1/L'

(26)

](TZTV,J) 0=

Eg};H(l/p) _ W

. is bounded.

So, the operator T7;,



(b) = (a) From Lemma 3, HPc B
obtain (a).

(a) = (e) It is clear that f, € H” and sup,p||f

SO Wwe

ia ”Hp

< 00. Hence, for each i € {0, -+, n+ 1},
iggHTum,v,JHl,a 7/(") < ‘ TZT‘V,(,O HP—>7I/ Sup”fl+laHHP < 00.

(27)

The proof of the second part of (e) is similar to the proof
(d) = (e), so it is omitted. The proof is complete. O

3. Essential Norm

In this section, we find some approximations for the essential
norm of operator T7', , from Hardy spaces into nth weighted
type-spaces. As a corollary, we give some equivalent condi-
tions for compactness of such operators.

Let X and Y be Banach spaces and T : X — Y be the
continuous linear operator. The essential norm of T is the

distance from T to the compact operators, that is,

[ T||,x—y=inf {|[T - K|: K : X — Yiscompact}. (28)

It is clear that T is compact if and only if || T|,x__,y =0.

Theorem 7. Let m,n €N, 0<p<oo, u,ve H(D), ¢ € S(D),
and y be a weight such that Ty, B1+1P) —>‘ng") be

bounded. Then

HT ~max {A;}1") ~max {B;}I"), (29)

uv,e ‘ ’{%H(I/p)_)c}/'(”)

where

= limsup

lal—1

Tu V(pf1+1 a W(n)’
u

w@|(men,) )|
B, = limsup oG
p@I—1 (1-|p(2)[%) P

(30)

Proof. For each i€ {0, -+, n+1}, sup,pllfisi o/l gram <00
and f,,, , — 0 uniformly on compact subsets of D as |a
— 1. Applying Lemma 2.10 from [17], for any compact
operator K from B+ into W}f’), we have

lim HKfimHWLn) =0. (31)

la|—1
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Hence, for any i € {0, -+, n+ 1},
i~ hmsup Tuv(pfwl a||opm - lim HKfiJrl,aHW(”)
a1 jo|—1 g
< limsu H ( ) 32
\a\—»lp uv,e i+l,a ‘W,(An) ( )
<72 -]
uv,p N "
B! (l/p)_><Wl(4)
So,
n+l _ m
max {A;}7 <151<f‘ Tu,v,(p - KHggMWJ*»WfP = ’ Tu,v,go 0B gy
(33)
Now, we prove that
n+1
max {B }1 0 — ’Tuwp ’ )%1+(1/p)_)7/}(4n>' (34)
Let {zj} be a sequence in D such that lim;__,[¢(z;)]

— 1. Since T, : B ‘Wﬂ

Lemmas 4 and 5 for any compact operator K : Z'+(1/¢)

is bounded, by using

N WL”) and i € {0, ---, n + 1}, we obtain
HT’”"’ H@HWHW( >hjris>ipHT“‘””<gl¢( )>HW;(A”>

- Jim K (gug(e))
u()lo(@) ™| (1 + 153, ()|
(1 _ |<p(z~) ’2)m+z+(1/p) .
]

> limsup

j—00

(35)

So, from the definition of the essential norm, we get (34).
For r € [0,1), we define K, f (z) = f,(z) = f (rz). It is appar-
ent that K, is a compact operator on B*(7), Let {rj}c(0,1)
be a sequence such that r; — 1 as j — co. Since f, — f
uniformly on compact subsets of D as r — 1, then, for any
positive integer j, the operator T 7 A Wf:')

is compact. Based on the definition of the essential norm, we
obtain

u,v,@ I’

H ™ (36)

< limsup H Ty, =T

]_)00 u, v, r

[7RY
P &, BHP) 71/

So, it is sufficient to show that

- T, K, ||2min {max {A;}"], maxmax{B;} "' }.

UVp T

j—00

(37)

Let f € B'*VP) such that ||f|| giom <1 and for all j> N,
> (3/4), therefore,
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n 1

> (o (7-1,))"©

St

wsupp(a)| Yo (F-£,)" " 0o (e 12, ) @)

(= w )1

t=0

H,

wsupp(a)| X (F-1,) " @) (1 + 1, ) )

HZ
(38)
For any s € N, and compact subset of D, (f —fr‘)(s) —0
J
uniformly, hence, from Theorem 6, we obtain
limsupH, =0,
0
(39)
limsupS, =0(t =0, ---,n—1).
j—00
On the other hand
n+l
H, < Z suppt(z)‘f(k”” H(I“”+IZVI¢) z)‘
k=0

My

n+1

+ 2, supu(a) i (@) | (1 + 122 ) )]

Ny

(40)

Now, estimate for M, is obtained. Employing Lemmas 1
and 5,

(L-lo(2)P)" | D ()|

M= sup p(2)

() >y lp(2)|™**
@™ (1 + 1) 2)]
X
(1~ |p(z)2)" ) (41)

=S lgom sup [ 7pgac

| (W(”)

n+
<

z+1

Sup HTuV(pferla

la|>r,

Taking the limit when N — oo, we get

5
n+l
limsupMys ). limsup HWW  <max (A}
A;
limsup M <B,.
j—00
(42)
Likewise, we have
n+l
. . 1
limsupN, < Z limsup H T ivia o STAX {A}E,
j—o0 i=0 "
AI
limsup N, <B,.
J—00
(43)

Thus, by using (38), (39), (40), (42) and (43), we obtain

m
11msup’ g Tu,wK,J

Jj—00

B (1p) _}7/('0

= ]imsup sup (T;nvq) ;nv(p . )fH <max {A }l”’fol)

J00 || f| greup <1

—Tm

hmsup‘ g u,v,cpKr] <max {B, }"” (44)

J—00

g+ *}W(n

Hence, from (36),

. n+l n+l
’ Thvp ‘ggh(w)_}%ﬁmﬁmm {max {A;}1), max {B;}[ }.
(45)
Consequently,
n+l n+1
H T ‘%’H(Wﬁ%w =max {A;}) =max {B;}/. (46)
The proof is complete. O

Theorem 8. Let m,n € N, 0< p < 0o, u,v€ H(D), p € S(D), u
be a weight. If T}?,  : Hf — W}f’)be bounded then

wve
HT’”“’ eH — 7)) = H 31""’ ‘ ) ) (47)

Proof. It is evident that
H Ly e,HP—>‘7I/L”>$‘ g e B g 48)
On the other hand, since f,,(z)=(1- |a\2)i/

(1-az)""P) ¢ H, for any compact operator K : HY —
“W/L”), from Lemma 2.10 in [17], for any i€ {0, -, n+ 1},
we get



> limsup

la]—1

|2

(TZIV 0] )fi+l,u

HKfH-la”W(" =A i

g ‘ w—7 )

2 hmsup HTuV(pf1+1 a

la|—1 a‘*d

(49)
So, from the last inequality and Theorem 7

|2

> max {4; }”“ HT

Uy, Uy,

e’Hp_ﬁy( ‘ ’%u(up)_)%y}(‘n) .

(50)

The proof is complete. O

Theorem 9. Let m,n€N, 0<p<oo, u,v€ H(D), y be a

weight and ¢ €S(D) such that T, : %1+(1/P>(<%’é+<”})))
— W,(f) be bounded. Then,

. 1/p m - m - m

1?15301’] ‘ TivoPj HW}}” = ‘ Tivp B ) - ‘ Tiovg e B g

(51)

Proof. Let j be any positive integer and /,(2) =j(”P)pj(z). Itis
1+(1/
clear that ||h| =Ly ey and ()

to 0 uniformly on compact subsets of D. By using Lemma
1+(1/p)

B+ converge

2.10 in [17], for any compact operator K from %," 7’ into
w,, we get
lim ||Kh;||. @ =0. 52
Jim [ K[|, (52)
Hence,
oy P,
> limsup‘ ”"‘PhJH - hmsupHKh HW
j—
(1p)
_1Enjupj HTMWPPJHW};’).
(53)
So, || u vq;H 1+ (1/p) 7/5:1) z limsupjéooj(lfp)
| TuwP]H )- Now, we prove that
(1p)
lil’is}up_] HTu\“PP]H ( HTuv(p e,‘%’“(”?)—ﬁ/f‘"). (54)

From Theorem 6, for any fixed positive integer k > m and
0<i<n+]1, wehave
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00
+1 (1/p)
) u,v,(pfi+1,a ' <C 1+1 |a| ZOJIWV ? ‘ TZ’V:V’(PPj"WE‘")
i+1 =
o FITy
=Cin(1-1al) ( HaV 1| Tt
j=0

(o]
+ chzwj(l/p), T”m”""ijW("J>
j= “

<2QC; (k= 1) (1~ [af*) (1~ |a?)’

+2"C,,Cl, sup] | T
(55)
where Q=sup;,,j (17p) 1T gPjll. - Letting |a| — 1, we
u

obtain

+1 _hmsupHTuwpferla

(1/p)
(n)—sup] HTMVQUPJH

lal—1 v
(56)
Applying Theorem 7, we get
m n+1 : :(1/p)
T s
(57)

It is clear that HTuV(pH (9?1+(1/P)—>Wl(f‘) SHTva,(pHe’%H(l/p)

—>‘W/M” ; s0, from the last inequalities, we have

. (Lp) || m ~ m

timsup; || Tik ol | =\ Tht| e

J7/ u P Iz (58)

~ m
WVP ||, ggl+(iip) __gp(m”
> [Z
The proof is complete. O
4. Some Applications
1+( l/p

For 0 < p < 00, by using Lemma 3, we have H ¢ %,
Also, for p =00, H® ¢ B, and H® N B, are a Banach space
with the norm |||| yeo- In this case, we get the following
corollary.

Corollary 10. Let m,n €N, u,v € H(D), and [/l be a weight
and ¢ € S(D). The operator T, : H® — ‘W is bounded

: H® n%o_’Wﬂ be

uv,p
if and only if the operator T},
bounded.

Corollary 11. Let m, ne]N, u,ve H(D), € S(D), and y be a

weight. If )}, , : H® — WL”) be bounded, then,
- m
H Tu i —>‘7/§f> " H TM’V’(P e,Hmn%0—>W}f) ’ <59)




Abstract and Applied Analysis

<

Proof. It is clear that ||T

uv¢|‘€,Hmﬂ%0—>W§:)
Tl o and fia(2) = ((1-laf*)/(1-az)") e H®
N%,. So, for any compact operator K : H® N %, —
'“WL”), from Lemma 2.10 in [17], for any i€ {0, -, n+ 1},
we obtain

|2

> limsup
eHOOFL@n—W/( ) |a]—1

m
‘ Tu,v,(pfi+l,u W(,ﬂ

UV, ( [ZRX0] i+l,a 7/;(4")

RS il = Ar

(60)

> limsup

la]—1

u\—»l

Hence, from the last inequality and Theorem 7,

m n+l m
’ Tqu) ,Hooﬂ‘%o—>7/( = max {A } ‘ TuV(P ’ pr)—»W}:’)'
(61)
The proof is complete. O

From Theorems 7, 8 and 9 and Corollary 11, the next
corollaries are obtained.

Corollary 12. Let m,n € N, 0< p < 00, u, v € H(D), ¢ € §(D),
and y be a weight such that T}, , : HP — WL”) be bounded.
Then, the following statements are equivalent.

(a) The operator T},  : HP — W}f) is compact

P

(b) The operator Ty, , B s 977" s compact

u

(c) The operator T}, %é+(1/P) — 7/< " is compact
(@) lim, oo HTWPP,HW -0

(e) For each ie{0,--
” TZTV,(pfi—*—I,uHW[(An) =0

(f) For eachi€{0, -

Sn+1}, limsup,_,,

n+ 1},

u(z)|( Iy + I, ) (2)
limsup ‘( mii)(l - ‘ =0 (62)
w@l—1 (1-|p(z)f)

Corollary 13. Let m, nelN u,VEH( ), 9 €S(D), and p bea
weight such that T}, - H® — ‘7/ ") be bounded. Then, the
following statements are equzvalent

(a) The operator T;’fw

00 () ;
— W, is compact

(b) The operator T, , : H® N %, —> Wﬁ”) is compact

(c) The operator T}, , : B — W}([‘) is compact

7
(d) The operator T, , : By — ‘W/L") is compact
(@) lim; o[ T3, g1,
(f) For each i€e{0,---,n+1}, limsup,

H Tum,v,qlfiﬂ,a”?/l(f) =0

(g) Foreachi€{0,---,n+1}

GG I?%Q} I,
p@l—1  (1-|e(2)[*)

Remark 14. By putting v =0 in Theorems 6, 7, 8, and 9 and
Corollaries 12 and 13, some characterizations are acquired
for boundedness, essential norm, and compactness of the
generalized weighted composition operator from Hardy
spaces (0 < p<co) into nth weighted-type spaces.

Since

(11 oy 11;(/,) (2)=u'(2),
(I + 15 ) (2) = u(2)e' (2) + ' (=), (64)
(Bg+11y) (2) =v(2)9' (2),

we obtain the next remark.

Remark 15. Let a> 0. Setting n=1(u(z) = (1-2*)", (1 -
|z|*) log (2/(1 - |z]))) in Theorems 6, 7, 8, and 9 and Corol-

laries12 and 13 and using (64) we get similar results for oper-
ator Ty, H — R, (T}, : H — B, T} P —

UV, UV, uvq)

%’log)(see [11, 12]).

(12” v,

(By+12y)( @)+ 2/ (99 (9) + Y2 (2]

)@=

(12“+12V) )9 (2) + u(2)9"' (2) +v''(2),
)=
) ()= v )

(IZu IZV

(65)

Remark 16. Putting n =2(u(z) = (1 - |z|*)") in Theorems 6,
7, 8, and 9 and Corollaries 12 and 13 and applying (65),
similar results are achieved for operator T7, , :Hf —
Z,(T},, : H — Z*) (generalizing Theorems 7 and 9 [10]).
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