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In this paper, the notion of set-valued &-contractions is introduced, and a new fixed point theorem for such contractions is

established. An example to illustrate main theorem is given.

1. Introduction and Preliminaries

Branciari [1] introduced a Branciari distance by replacing the
triangle inequality in a metric with the rectangular inequality
as follows.

A map d : X x X — [0,00), where X is a nonempty set,
is said to be Branciari distance on X if and only if it satisfies
the following conditions:

For all x, y € X and for all distinct points u, v € X, each of
them different from x and y is as follows:

(d1) d(x,y) =0 ifand only if x =y

(d2) d(x.y) = d(y. %)

(d3) d(x,y) <d(x,u) +d(u,v) +d(v, )

The pair (X,d) is called a Branciari distance space,
whenever d is a Branciari distance on X.

In many papers, for example, [2-8], it is called general-
ized metric space, Branciari metric space, or rectangular
metric space. However, these names do not reflect and
indicate the meaning well of the notion of Branciari distance
spaces because Branciari distance can not reduce to the
standard metric. Further it is well known that a Branciari
distance space (X, d) does not have a topology which is com-
patible with d (see [8]). For these reasons, we rename and
use it as Branciari distance space.

Branciari [1] extended the Banach contraction principle
to Branciari distance space.

After that, a lot of authors, for example, [2-15] and
references therein, obtained fixed point results in such

spaces. Jain et al. [16] obtained fixed point results in
extended Branciari b-distance spaces [17] by defining the
notion of certain contractive conditions, and they gave an
application to nonlinear fractional differential equations.

Branciari [1] investigated the existence of fixed points
with the following two conditions:

(i) The topology of a Branciari distance space is a Haus-
dorft topological space

(ii) Any Branciari distance is continuous in each
coordinates

However, it is known that the above two conditions are
not correct (see [14, 15]).

Sarma et al. [15] and Samet [14] (see also [3, 4, 8, 18])
show that Branciari distances have the following topological
disadvantages.

(B1) A Branciari distance does not need to be continuous
in each coordinates

(B2) A convergent sequence in Branciari distance spaces
does not need to be Cauchy

(B3) The topology of a Branciari distance space does not
need to be a Hausdorff topological space

(B4) An open ball does not need to be an open set

Note that it follows from (B3) that the uniqueness of
limits can not be guaranteed.

In despite of the above toplogical feature, the existence of
fixed points can be investigated without additional
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conditions such as continuity of Branciari distances or/
and Hausdorftness of the topology of Branciari distance
spaces. This is why researchers are interested in Branciari
distance spaces.

Let 0 : (0,00) — (1,00) be a function.

Consider the following conditions:

(01) 6 is nondecreasing, i.e., 0(t,) < 0(t,), whenever t, < t,

(62) For any sequence {t,} of points in (0, co)

lim 6(t,)=1 lim t,=0. (1)

n—=~oo n—~oo

(03) There exist r € (0,1) and I € (0,00) such that

t—0" tr

(64) 0 is continuous

(05) 9 is strictly increasing

(06) O(inf A) =inf 6(A) for all A c (0,00) with inf A >0
(67) For any finite sequence {t,};_, € (0,00)

9<i tk> < ﬁ 0(ty.). (3)
k=1 k=1

Jleli and Samet [19] introduced the notion of 8-con-
tractions and generalized the Banach contraction principle
in the setting of Branciari distance spaces, where 9 : (0,00)
—> (1,00) is a function such that (1), (62), and (63) are
satisfied.

Since then, Jleli et al. [7] obtained a generalization of
result of [19] with conditions (01), (82), (63), and (64).
Arshad et al. [20] extended the result of [19] by using the
notion of a-orbital admissible mapping with conditions (0
1), (62), and (63). Also, Ahmad et al. [21] extended the result
of Jleli and Samet [19] to metric spaces by using conditions
(01), (02), and (64). Durmaz and Altun [22] obtained a
generalization of the result of Klim and Wardowski [23] by
defining the concept of set-valued O-contractions with
control function 0 satisfying (01), (02), (83), and (06).
Abdeljawad et al. [17] introduced the concept of extended
Branciari b-distance, and they extended the result of Jleli
and Samet [19] to extended Branciari b-distance spaces with
control function 0 satisfying (62) and (83). Cho [24] intro-
duced the notion of generalized set-valued weak 0-contrac-
tions in metric spaces and obtained fixed point results for
such contractions with control function 6 satisfying (61),
(02), (64), and (7).

Recently, Cho [25] introduced the concept of Z-con-
tractions in Branciari distance spaces and established a
fixed point theorem for such contractions. He unified
concepts of some contractions which exist in literature
including 0-contractions.

Very recently, Saleh et al. [26] extended the result of Cho
[25] by introducing the concepts of generalized &-contrac-
tions in Branciari distance spaces. Aydi et al. [27] extended
the result of Cho [25] to partial metric spaces.

In the paper, we introduce notions of set-valued &
-contractions and set-valued £, -contractions in Branciari
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distance spaces and prove the existence of fixed points for
both type of contractions.

Khojasteh et al. [28] introduced the notion of Z-con-
tractions by using the concept of simulation functions and
unified the some existing metric fixed point results. The
authors of [29-32] gave generalizations of simulation func-
tions and obtained generalizations of results of [28]. More-
over, Demma et al. [33] and Yamaod and Sintunavarat
[34] extended the results of [28] to b-metric spaces by using
the notion of b-simulation functions and s-simulation func-
tions, respectively.

Let { : [0,00) X [0,00) — R be a function. Consider the
following conditions:

(1) (0,0) =0

(€2) &(t,5) <s—tV¥s, t>0

(€2") &(t,s) < y(s) —w(t)Vs, t >0, where y : [0,00) —
[0,00) is continuous and strictly increasing function with
y(0)=0

(¢3) For any sequence {t,}, {s,} ¢ (0,00)

lim t, = lim s, >0=>lim sup{(t,,s,) <0. (4

n—~=00 n—~oo n 00

{4) For any sequence {t,},{s,} c (0,00) with ¢, <s,V
n=123,---

lim t,= lim s, >0=>lim sup{(t,,s,) <0. (5)

({5) If for any sequence {t,}, {s,} € (0,00)

0< lim t, <liminfs, <lim sups, <b lim ¢, <+co, (6)

n—-00 n—o0 n—00 n—00
where b > 1, then we have
lim sup{(bt,, s,) <0. (7)

n—=~a0
(¢6) If for any sequence {t,}, {s,} € (0,00)

0 <lim inft, < slim sups, < s’lim inft,,

n—~oo n 0 n—=a~oo

0 <lim infs, < slim supt, < s’lim infs,,,
n—00 H—00 n—0o0

where s > 1, then we have

lim sup{(t,,s,) <O. (9)

n—aoo

Let { : [0,00) x [0,00) — R be a function.
Then, we say that

(1) ¢ :[0,00) x [0,00) — R is called a simulation func-
tion in the sense of Khojasteh et al. [28] if and only
if ({1), (¢2), and (¢3) hold

(2) £ :[0,00) x [0,00) — R is called a simulation func-
tion in the sense of Argoubi et al. [30] if and only
if ({2) and ({3) hold
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(3) ¢ :[0,00) x [0,00) — R is called a simulation func-
tion in the sense of Rolddn-Lopez-de-Hierro et al.
[32] if and only if ({1), ({2), and ({4) hold

(4) ¢ :[0,00) x [0,00) — R is called a simulation func-
tion in the sense of Isik et al. [31] if and only if
(¢2) and ({4) hold

(5) ¢ :[0,00) x [0,00) — R is called a w-simulation
function [29] if and only if ({ 2"y and (¢3) hold

(6) {:[0,00)x[0,00) — R is called a b-simulation
function [33] if and only if ({2) and ({5) hold

(7) ¢ :[0,00) x [0,00) — Ris calld a s -simulation func-
tion [34] if and only if ({2) and ({6) hold

Denote Z'(resp., Z4, Z,,) by the family of all simula-
tion functions in the sense of Khojasteh et al. (resp., all
simulation functions in the sense of Argoubi et al., all v
-simulation functions).

Note that every simulation function in the sense of
Argoubi et al. is a y-simulation function. In fact, let { €
Z 5. If we take y(t) =1,V >0, then € Z,.

Proposition 1. The following are satisfied.
(1) Zy,cZ,and Z,+Z, ([29])
(2) ZxcZ, and Z+Z, ([30])

Denote Zy (resp., Z;) by the class of all simulations
functions in the sense of Rolddn-Lopez-de-Hierro et al.
(resp., in the sense of Isik et al.). Also, we denote by Z,
and Z| the set of all b-simulation functions and s-simula-
tion functions, respectively.

Example 1 (see [28, 32, 35, 36]). Let {; : [0,00) x [0,00) —
R,i=1,2,3,4,5,6,7 be a function defined as follows:

(1) ¢y(t,s)=ks—1t,Vs,t >0, where 0< k<1

(2) {,(t,s)=¢(s) —t, Vs, t >0, where ¢ :[0,00) — [0,
00) is a function such that ¢(s) <s,V¥s>0 and lim

sup, (1) <

(3) {5(t,5) =s¢(s) —t, Vs, t >0, where ¢ : [0,00) — [0,
1) is a function such that lim sup, . ¢(t) <1,Vs>0

(4) {4(t,s)=s—¢(s) —t,Vs, t >0, where ¢ : [0,00) —
[0,00) is a function such that Vs> 0,lim inf

t—s

¢(t)>0 or ¢:[0,00) — [0,00) is continuous
such that ¢(t)=0 if and only if =0
(5) ¢5(t,s) =y(s) —(t),Vt,s>0 where y,¢:[0,00)

— [0,00) are continuous functions such that y/(¢)
=¢(t)=0if and only if t =0, y(t) <t < ¢(t),Vt>0
and ¢ is increasing

(6) {s(t,s)=n(s)—t,V¥s,t =0, where #:[0,00)— [0,
00) is upper semicontinuous with #(t) <Vt >0
and n(¢t) =0 if and only if t =0

(7) §;(t,s)=s— Lt) ¢(u)du, Vs, t >0, where ¢ :[0,00)
—> [0,00) is a function such that for each ¢ >0, fg
¢(u)du exists and J"f) ¢(u)du >t

Then, {;, 85, 05,84, (5,06, C; € Z-

Example 2. Let (:[0,00)x[0,00)— R be a function
defined by

{(t,s)=s—t—-1. (10)

Then, ({2) is satisfied.
Let {t,}, {s,} be sequnces of points in (0, co) such that

t,<s,¥n=1,2,3,---and lim t, = lim s,>0. (11)

n—~oo n—~oo

Then, we have

lim sup{(t,,s,) =lim sup(s, —t, — 1)

n—oo n—aoo (12)
=lim sups, — lim inft, — 1 <0.
n—00 n—00

Thus, { € Z,, but { ¢ Zy, because {(0,0)+0. Hence,
Z1+ Zy.

Example 3 (see [31]). Let {, :[0,00) x [0,00) — R be a
function defined as

1 if (s, £) = (0,0) ors=t,
(i(ts)=X 2(s—t) ifs<t, (13)
As—t otherwise,

where 0 < A <0.

Then, {; € Z, but {; ¢ Z,. Hence, Z, + Z,. Also, we
know that {; ¢ £ and {; ¢ Z;.

Note that Z ¢ Z. The following examples show that
T+ Ly

Example 4. Let (:[0,00) % [0,00) — R be a function
defined as

0 if (s,¢) = (0, 0),
-1 ifs=t,

“(69)= 20s—1t) ifs<t, )
As—t  otherwise,

where 0 < A < 0. Then, ({1) and ({2) are satisfied.

We show that ({5) is not satisfied.



To show this, let {t,},{s,} € (0,00) be two sequences
such that

lim t,= lim s,>0. (15)
n—a~oo

n—~a~oo

We may assume that s, <t,,Vn=1,2,3,
Then

lim sup{(t,,s,) =0. (16)

n—-=o00

Hence, ({5) is not satisfied. Thus, { ¢ Z.
We now show that ({6) is satisfied.
Let {a,},{b,} c (0,00) be two sequences such that

a,<b,Vn=1,2,3,---and lim a,= lim b,=c>0. (17)

n—~oo n—~oo

Then

lim sup{(a,, b,) = Mlim supb, —lim infa, = Ac— ¢ <0.

o (18)

n—-=00

Hence, ({6) holds. Thus, { € Z . Therefore, Z # Z .
Proposition 2. The following inclusion relations are satisfied.

(1) ZxSZEL¢ ZF,

(2 ZxeZ,c2Z,

() Zx s Zr s Z;

Proposition 3. If { € Z is decreasing in the first coordinate,
then { € Z,,.

Proof. Let { € Z,. Then, ({2) and ({6) hold.
Assume that { € Z is decreasing in the first coordinate.
We show that ({5) holds.
Let {t,}, {s,} € (0,00) be two sequences such that

0< lim t, <liminfs, <lim sups, <b lim t, <+oo, (19)
n—a~aoo n——oo Nn—>00 n—~ao

where b > 1.
From (19), we infer that

0 <lim inft, = lim ¢, <blim infs, < blim sups,

n—=~oo n—~oo n—=a~oo

< b’limt, = b*lim inft,,
n—=ao0
which implies
0 <lim inft, < blim sups, < b*lim inft,.  (21)
n—>00 00 n—00
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It follows from (19) that

0 <lim¢, <lim infs, < blim supt,,

n—~oo

blimt, = blim inft, < b*lim infs,.
Thus, we obtain
0 <lim infs, < blim supt, < b*lim infs,,. (23)
By applying (21) and (23) to ({6), we have
lim sup{(t,,s,) <O. (24)
Since { is decreasing in the first coordinate,
lim sup{(bt,, s,) <lim sup{(t,,s,) <0. (25)

n—~oo n—=oo

Hence, it follows from (19) and (25) that ({5) is satisfied.
Thus, { € Z,,. O

Note that simulation functions {; € Z,i=1,2,3,4,5,6,
7, given in Example 1 are s-simulation and decreasing func-
tions in the first coordinate. Hence, {; € Z,,i=1,2,3,4,5,
6,7 (see also [33]).

For more details and examples of simulation functions,
we refer to [28, 33, 34, 36-40], and for y-simulation func-
tions, we refer to [29, 41, 42].

Now, we recall the concept of &-simulation function
and give the definition of £, -simulation function.

Let & : [1,00) x [1,00) — R be a function. Consider the
following conditions:

(1) &(- -) is a decreasing function on the first
coordinate

(E2) E(1,1) =1

(£3) &(rt,s) = (1/r)&E(t,5), Vr>1

(E4) &(t,s) < (s/t)¥s, t> 1

(£5) For any sequence {t,},{s,} ¢ (1,00) with t,<s,V
n=123,---

lim f,= lim s, >1==lim supé(t,,s,) < L. (26)

n—~oo n—~oo n 0

Let £ : [1,00) x [1,00) — R be a function.
Then, we say that

(1) & is & -simulation function [25] if and only if it sat-
isfies conditions (£2), (£4), and (&5)

(2) & is &, -simulation function if and only if it satisfies

conditions (1), (£2), (€3), (£4), and (£5)

Denote &, by the family of all £, -simulation functions,
and Z by the class of all #-simulation functions.
Note that &(¢,¢) < 1Vt> 1, and &, Cc Z.

Example 5 (see [25]). Let &,,&,,& : [1,00) x [1,00) — R be
functions defined as follows, respectively:
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(1) &,(t,s) = (s*/t)Vt, s = 1 where k € (0,1)

(2) €,(t,s) = (s/td(s))Vt,s=1 where ¢ : [l,00) — [I,
00) is nondecreasing and lower semicontinuous such

that ¢ ({1}) =1

1 if(st)=(L1),
s .
E(ts)d 2 ifs<t, (27)
§
- otherwise,

Vs, t>1, where A € (0, 1).
Then, §,,¢,, € Z,.

Example 6. Let &, :[1,00) x
function defined as follows:

(1) &(t,s) = (w(s)lg(t)),Vt,s>1 where w,¢@: |1,

00)
—> [1,00) are continuous functions such that y(t)
t:llfandonl ift=1, <t< ,VE>1
y ylt p(t
is an increasing function

=(n(s)/t),¥s,t =1, where #:[l,00) — 1,
upper semicontinuous with #(t) <t,Vt > 1
)=1if and onlylft—l

(
(3) &(t,s) = s/fo ), Vs, t>1, ¢ : [0,00)
—>[0,00) is a functlon such that for each t >0, fo
(u)du exists and J"O u)du > t, and Jo u)du=1

[LLoo) —R,i=1,2,3, be a

where

@

Then, £,,¢, € Z,and &, € &Z,.
Note that if ¢ : [1,00) — [1,00) is satisfied condition

(rt)=re(t)Vr>1,t> 1, (28)

then &, € Z,.

We recall the following definitions which are in [1].

Let (X, d) be a Branciari distance space, {x,} C X be a
sequence, and x € X.

Then, we say that

(1) {x,} is convergent to x (denoted by lim, ,  x, =x)
if and only if lim,_,  d(x,x,)=0
(2) {x,} is Cauchy if and only if lim,,,_ . d(x,,x,,) =0

(3) (X,d) is complete if and only if every Cauchy
sequence in X is convergent to some point in X

Let (X, d) be a Branciari distance space.

We denote by CL(X) the class of nonempty closed
subsets of X. Let H(-, -) be the Hausdorff distance on CL
(X), ie., for all A,Be CL(X),

max {supd (a,B),supd(b, A) } if the maximum exists,

H(A, B) = acA beB

00, otherwise,

(29)

where d(a,B)=inf {d(a,b): be B} is the distance from
the point a to the subset B.

For A, B CL(X), let D(A, B) =sup,,d(x, B).

Then, we have D(A, B) < H(A, B) for all A, Be CL(X).

Lemma 4 (see [43]). Let (X, d) be a Branciari distance space,
{x,} € X be a Cauchy sequence, and x, y € X. If there exists a
positive integer N such that

(1) x, #x,Yn,m>N

(2) x, #x¥n>N

(3) x,#y¥Vn>N

(4) lim d(x,,x)=0=lim, , d(x,,y)

n—=ao0
then x =y.
Lemma 5. If (X, d) is a Branciari distance space, then C(X)

C CL(X), where C(X) is the class of nonempty compact
subsets of X.

Proof. Let AeC(X), and let {x,} CA be a sequence
such that

lim d(x,,x)

n—~oo

=0, wherex € X. (30)

It follows from compactness of A that there exists a

convergent subsequence {x, } of {x,}.
Let
nlinood( n(ky ) 0,fora e A. (31)
Since
nlgn(ﬁd( ) =0, (32)
from Lemma 4, x =a € A. Hence, A € CL(X). O

Lemma 6. Let (X, d) be a Branciari distance space, and let
A, BeCL(X).

If a€ A and d(a, B) <, then there exists b € B such that
d(a,b) <c

Proof. Let e=c—d(a, B).

It follows from definition of infimum that there exists b
€ B such that d(a, b) < d(a, B) + €. Hence, d(a,b) <c. O

2. Fixed Point Theorems

We denote by @ the class of all functions 6 : (0,00
00) such that conditions (62), (64), and (65) hold.

) — (1,



Let (X, d) be a Branciari distance space.

A set-valued mapping T : X — 2%, where 2% is the
family of all nonempty subsets of X, is called set-valued &
-contraction with respect to & € & if and only if for all x, y
€ X with d(x,y) >0, and for all u € Tx, there exists ve Ty
with d(u, v) > 0 such that

§(0(d(w,v)), 0(d(x.))) 2 1, (33)

where 0 € ©.
Now, we prove our main result.

Theorem 7. Let (X,d) be a complete Branciari distance
space, and let T : X — CL(X) be a set-valued & -contrac-
tion with respect to & € &.

Then, T has a fixed point.
Proof. Let x, € X be a point, and let x; € Tx, be such that d
(%0, x;) > 0.

From (33), there exists x, € Tx;, with d(x;,x,)>0
such that

0(d(xq, x;))

1<E(O(d(x,,%,)), 0(d(x0: 1)) < B ) (34)
which implies
0(d(x,,%,)) < 6(d(xg %,))» (35)
and 5o
d(x,,%,) < d(x, X,)- (36)

Again, from (33), there exists x; € Tx, with d(x,,x;)
>0 such that

L E(0d(r3)) 0(d. ) < AL (37)

which implies
0(d(xy, x3)) <0(d(x}, %)) (38)
and so
d(x,,x3) <d(x,%,). (39)

Inductively, we can find a sequence {x,} CX such
that, Vn=1,2,3, -,
xn—l 5& xn’ xn € Txrz—l and d(xn’ xn+1> < d(xn—l’ xn)' (40)

Since {d(x,_,,x,)} is a decreasing sequence, there
exists >0 such that
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lim d(x,_,,x,)=r. (41)

n—=~oo

We now show that r=0.
Assume that r # 0.
Then, it follows from (62) that

lim 6(d(x

n—-=00

w1>%,)) # 1,and so lim 6(d(x

n—o0

n—l’xn)) > 1.

(42)

Let t,=0(d(x,
2,3, .
Then, t, <s,Vn=1,2,3,--- and

n—=xsn

)) and s,=0(d(x,_,,x,))Vn=1,

> Xne1

lim t,= lim s, >1. (43)

n—~aoo n—:oo

It follows from (£5) that

1 <lim supé(t,,s,) <1, (44)

n—~oo

which is a contradiction.
Thus, we have

lim d(x, ,,x,)=0, (45)
and so
lim 0(d(x,_;,x,))=1. (46)

We now show that {x,} is a Cauchy sequence.

On the contrary, assume that {x,} is not a Cauchy
sequence.

Then, there exists an € > 0 for which we can find subse-
quences {x,,} and {x, } of {x,} such that m(k) is the
smallest index for which m(k) > n(k) > kVk=1,2,3, -

d(’%(k)»’%(k)) > sandd(xmk),l,xn(k)) <e. (47)

It follows from (47) and condition (d3) that

e< d(xm(k), xn<k)) < d('xn(k)’ xm(k)—Z)
* (2 %ur) 4 (Su k) (49

<£+d( (K)-2> Xm(k) ,1) +d(xm<k),l,xm(k)).

Letting k — oo in above inequality, we have

hm d< (k) X ()) =e=klim d(xm(k)fz,xn(,ﬂ). (49)

—00

From (33), there exists z,,),1 € T, With d(x,,0)41>

Zy(y+1) > OVk=1,2,3, -+ such that
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1<E(0(d (%o 2wty ) )0 (ur %) ))
. 0<d<xm(k),xn(k))) (50)

6 (d (xm(k)+1’ Zn(k)+1) ) ,

which implies

6<d<x (1> Zn(iys ))<6<d( i) n(k>)),\1k=1,z,3,--..

(51)

So

1) < (s

Taking limit supremum in above inequality and using
(49), we have

d(x (k>+1,z (k)),Vk=l,2,3,~--. (52)

lim supd|( x (

n—~oo

k)+1> Zn (k)+1) <e (53)
We deduce that

d(xm(k), xn(k)) < d(xm(k) xm(k)ﬂ) + d(xm(k)ﬂ, Tx,,(k>) + d(Tx,,(k), xn(k))
= d<xm(k)’xm(k)+l) + d(xm(k)+l’ zn(k)+1> + d(xn(k)+1’ xn(k)) .
(54)

Taking limit infimum in above inequality and using (53),
we have

e<lim 1nfd( (k)+1> Zn (k>+1)- (55)

n—~oo

It follows from (53) and (55) that

nh_f)nood( k)+1> Zn (k)+1) =¢&. (56)
Let
te= 9<d (xm(k)H, zn(k)ﬂ)) ands; = 9<d (xm(k), xn(k)) ) .
(57)

Then, £, <5Vk=1,2,3,
It follows from (49), (56), (62), and (64) that

lim s, = lim ¢, > 1. (58)
k—00

k—00

It follows from (&5) that

1< klim sup &(ty, 5) < 1, (59)

which is a contradiction.
Thus, {x,} is a Cauchy sequence.

Since X is complete, there exists a point x, € X such that

lim d(x,,x,)=0. (60)

n—~o

It follows from (33) that there exists y, € Tx, with
d(x,,1,y,) >0 such that

1sawmaﬂw»»maam>»<§%i:3%y (61)

which implies
0(d(Xus15,)) <0(d(x,, %)), (62)
and hence
A(xpi1ry,) < d(x%,). (63)
Thus, we have

lim d( n+1’yn)=0 (64)

Since

d(x*’yn) Sd(x*’xn) +d(xn’xn+1)+d(xn+l’yn)’ 65
lim d(x,,y,)=0 (65)
n—ao00
Because Tx, € CL(X) and {y,} cTx,, x, € Tx,. O

We give an example to illustrate Theorem 7.

Example 1. Let X ={1,2,3,4} and define d: X x X — [0,
00) as follows:

d(1,2)=d(2,1) =3,
d(2,3)=4d(3,2)=d(1,3)=d(3,1) =11,
d(1,4)=d(4,1)=d(2,4)=d(4,2)=d(3,4)=d(4,3) =4,
d(x,x) =0Vx e X.

(66)
Then, (X, d) is a complete Branciari distance space but

not a metric space (see [9]).
Define a map T : X — CL(X) by

_ { {2,3} (x=1,2,3), (@)
(14 (x=9)
and a function 6 : (0,00) —
0(t)=e¢". (68)

We now show that T is a set valued Z-contraction with

respect to &, where & (t,5) = (s/t¢(s))Vt, s > 1, ¢(s) = (1/2)
+(1/2)¥s> 1.



We consider the following cases.

Case 1. x=1and y=2.
For 2 € T1, there exists 3 € T2 with d(2,3) > 0 such that

£,(0(d(2,3)),0(d(1,2))) =£,(6(1),6(3)) = o) :e—;”’

(69)

and for 3 € T1, there exists 2 € T2 with d(3,2) > 0 such that

2
03) _e .
2

§,(0(d(3,2)),0(d(1,2))) =&,(6(1),0(3)) =

(70)

Case 2. x=1and y=3.
For 2 € T, there exists 3 € T3 with d(2, 3) > 0 such that

§u(0(d(2:3)),0(d(1,3))) =5, (6(1), (1)) = 5 =L
(71)

and for 3 € T1, there exists 2 € T3 with d(3,2) > 0 such that

£,(6(d(3,2)),0(d(1,3))) = £,,(6(1), 6(1) = -1

Case 3. x=1and y=4.
For 2 € T1, there exists 1 € T4 with d(2,1) > 0 such that

E,(0(d(2,1)),0(d(1,4))) =£,(0(3), 6(4)) = - 5,
(73)

and for 3 € T1, there exists 1 € T4 with d(3,1) > 0 such that

§,(0(d(3,1)),0(d(1,4))) =8, (0(1),0(4)) = 57—~

Case 4. x=2and y=3.
For 2 € T2, there exists 3 € T3 with d(2, 3) > 0 such that

§(0(d(2,3)),0(d(2,3))) =§(68(1), 0(1))

(75)

and for 3 € T2, there exists 2 € T3 with d(3,2) > 0 such that

£(0(d(3,2)),0(d(2,3))) =§(6(1),0(1)) = -1,

Case 5. x=2and y=4.

Abstract and Applied Analysis

For 2 € T3, there exists 1 € T4 with d(2, 1) > 0 such that

o) _ e oy
03)p(4) 25

(77)

5(0(d(2,1)),6(d(3,4))) =§(6(3).0(4)) =

and for 3 € T3, there exists 1 € T4 with d(3, 1) > 0 such that

E(6(d(3,1)), 6(d(3,4))) = (6(1), 6(4)) =

Case 6. x=3 and y =4.
For 2 € T3, there exists 1 € T4 with d(2, 1) > 0 such that

0(4) :i>1
0(3)p(4) 257 7

(79)

5(6(d(2,1)),6(d(3,4))) =§(6(3).0(4)) =

and for 3 € T3, there exists 1 € T4 with d(3, 1) > 0 such that

§(0(d(3,1)),0(d(3,4))) =§(6(1),0(4)) = 5"~
(80)

Hence, T is a set valued #-contraction with respect to £,

Thus, all hypotheses of Theorem 7 are satisfied, and T
has fixed points 2, 3, and 4.

Note that the Nadler’s fixed point theorem does not
hold. If x =2 and y =4, then

H(T2, T4) <kd(2,4), k € (0, 1), (81)
SO
4k > 4, (82)

which is a contradiction.
From Theorem 7, we have the following corollary.

Corollary 8. Let (X,d) be a complete Branciari distance

space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf ;. d(z, Ty) >0

zeTx
E(O(D(Tx, Ty)), 0(d(x.7))) =7, (83)
where £ € &,,0€® and r> 1.
Then, T has a fixed point.
Proof. Since

inf d(z, Ty) >0, (84)

z€Tx
for each u € Tx, d(u, Ty) > 0. Hence, we have

0(d(u, Ty)) <0(D(Tx, Ty)) <r0(D(Tx, Ty)). (85)
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It follows from (65) that there exists the inverse function
07! of 8, and so from (85), we have

d(u, Ty) <67 (r0(D(Tx, Ty))). (86)
From Lemma 6, there exists v € T’y such that
d(u,v) <07 (r0(D(Tx, Ty))). (87)
Hence
0(d(u,v)) <r0(D(Tx, Ty)). (88)
Thus, we have

E(O(d( 1)), 0(d(x,3)) > E(rO(D(Tx, Ty), 0(d(x, )
= LE(O(D(Tx T)), 0(d(x, 7)) =

Thus, condition (33) holds and from Theorem 7, T has a
fixed point.

Corollary 9. Let (X,d) be a complete Branciari distance

space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf ;. d(z, Ty) > 0

zeTx
§O(H(Tx, Ty)), 0(d(x.y))) =1, (90)
where £ € &,,0€® and r> 1.
Then, T has a fixed point.

Proof. 1t follows from (£1) and (90) that

§(0(D(Tx, Ty)), 0(d(x. y))) 2 §(0(H(Tx, Ty)),0(d(x, y))) =,
(o1)

which implies
§(O(D(Tx, Ty)), 0(d(x,y))) 2 1 (92)
O
Thus, from Corollary 8, T has a fixed point.

3. Consequence

We have fixed point results by applying simulation functions
given in Example 5 and Example 6 to Theorem 7.
By taking & =&, in Theorem 7, we obtain Corollary 10.

Corollary 10. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map.

Suppose that for all x,y € X with d(x,y) >0 and u € Tx,
there exists v € Ty with d(u,v) > 0 such that

0(d(u, v)) < [0(d(x, y))]" (93)
where 0 € ® and k € (0, 1).
Then, T has a fixed point.
Remark 11. Corollary 10 is a generalization of Theorem 7 of
[19] and Theorem 2.2 of [21] without condition (63) to set-
valued maps.
Corollary 12. Let (X,d) be a complete Branciari distance

space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) > 0 and inf,, ;. d(z, Ty) >0

zeTx
8(D(Tx, Ty)) < [B(d(x )] (94)
where 0 € ®,k € (0, 1).
Then, T has a fixed point.

Proof. Since inf .. d(z, Ty) > 0, we have that, for each u €
Tx,

6(d(, Ty)) < O(D(Tx. Ty) < [0(d(x. )\, (95)
and so
d(u, Ty) <67 ([0(d(x.)]")- (96)
Hence, there exists v € T’y such that
d(u,v) <67 ([0(d(x,))]"), and so6(d(w,v)) < [B(d(x, )"
(97)
By Corollary 10, T has a fixed point. O
Corollary 13. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x, y) > 0 and inf ... d(z, Ty) >0
O(H(Tx, Ty)) < [0(d(x»))]", (98)
where 0 € ®,k € (0, 1).
Then, T has a fixed point.

Remark 14. Corollary 13 is a generalization of Theorem 2 of
[44] to Branciari distance spaces with conditions:

(65) and il}fd(z, Ty)>0,Vx,y € X. (99)
zelx

By taking £ =& in Theorem 7, we obtain Corollary 15.
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Corollary 15. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map.

Suppose that for all x,y € X and u € Tx, there exists v €
Ty with d(u,v) > 0 such that

0(d(x.))

0w ) < 6’

(100)
where 0 € ® and ¢ : [1,00) — [1,00) is nondecreasing and
lower semicontinuous such that ¢~ ({1}) = 1.

Then, T has a fixed point.

Remark 16. Corollary 15 is a generalization of Corollary 2.7
[24] to Branciari distance spaces without condition (87).

Corollary 17. Let (X,d) be a complete Branciari distance

space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf,, ;. d(z, Ty) >0

zeTx

(101)

where 0 € ® and ¢ : [1,00) — [1,00) is nondecreasing and
lower semicontinuous such that ¢~ ({1}) = 1.

Then, T has a fixed point.

Proof. Suppose that condition (101) satisfied.
Since inf, ;. d(z, Ty) > 0, we have that, for each u € Tx,

0(d(u, Ty)) <0(D(Tx, Ty)) < o0 ) (102)
Thus
1 (_0(d(xy))
1w <0 (Sacyy) 0
and so there exists v € T’y such that
o Od(xy)
A ) < Slotate ) 1oy
By Corollary 15, T has a fixed point. O

Corollary 18. Let (X, d) be a complete Branciari distance
space, and let T : X — CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf,, ;. d(z, Ty) >0

zeTx

(105)

where 0 € ® and ¢ : [1,00) —> [1,00) is nondecreasing and
lower semicontinuous such that ¢~ ({1}) = 1.

Then, T has a fixed point.

Abstract and Applied Analysis

Corollary 19. Let (X,d) be a complete Branciari distance
space, and let T : X — CL(X) be a set valued map.

Suppose that for all x,y € X with d(x,y) > 0 and for all
u € Tx, there exists v € Ty with d(u, v) > 0 such that

d(u,v) <d(x,y) - o(d(x, 7)), (106)

where ¢ : [0,00) — [0,00) is nondecreasing and lower semi-
continuous such that ¢~ ({0}) = 0.

Then, T has a fixed point.
By the same way as proof of Corollary 15 in [24], we can
prove Corollary 19.

Corollary 20. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf .. d(z, Ty) > 0

zeTx

D(Tx, Ty) <d(x,y) - 9(d(x, y)), (107)
where ¢ : [0,00) — [0,00) is nondecreasing and lower semi-
continuous such that ¢~ ({0}) = 0.

Then, T has a fixed point.

Corollary 21. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf, ;. d(z, Ty) >0

H(Tx, Ty) <d(x.y) - ¢(d(x, 7)), (108)
where ¢ : [0,00) — [0,00) is nondecreasing and lower semi-
continuous such that ¢~ ({0}) = 0.

Then, T has a fixed point.
By taking 6(t) =2 - (2/m) arctan (1/t*), where « € (0,
1),t>0 in Corollary 15, we obtain the following result.

Corollary 22. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map.

Suppose that for all x,y € X and u € Tx, there exists v €
Ty with d(u,v) > 0 such that

) B 2— (2/m) arctan (1/[d(x, y)]%)
[d(wv)]*) = $(2= (2/m) arctan (1/[d(x, y)]*))’
(109)

2
2— — arctan
T

where a € (0,1) and ¢ : [1,00) — [1,00) is nondecreasing
and lower semicontinuous such that ¢~ ({1}) = 1.

Then, T has a fixed point.

Corollary 23. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x, y) >0 and inf .. d(z, Ty) > 0

zeTx
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5 g arctan ( 1 ) 2— (2/m) arctan (1/[d(x, )]
. ¢

[D(Tx, Ty)]" (2= (2/m) arctan (1/[d(x,y)]"‘))’
(110)

where a € (0, 1) and ¢ : [1,00) —> [1,00) is nondecreas-
ing and lower semicontinuous such that ¢! ({1}) = 1.

Then, T has a fixed point.

Corollary 24. Let (X,d) be a complete Branciari distance
space, and let T : X —> CL(X) be a set valued map such that
for all x,y € X with d(x,y) >0 and inf ;. d(z, Ty) > 0

1 ) . 2— (2/m) arctan (1/[d(x, y)]")
[H(Tx, Ty)]*) ~ ¢(2— (2/m) arctan (1/[d(x, y)]%))’
(111)

2
2— — arctan
T

where o€ (0, 1) and ¢ : [1,00) —> [1,00) is nondecreas-
ing and lower semicontinuous such that ¢! ({1})=1.

Then, T has a fixed point.

4. Conclusion

One can unify and merge some existing fixed point theorems
by using Z-simulation functions and Z,-simulation func-
tions in Branciari distance spaces. One can obtain some con-
cequence of the main theorem by applying Z-simulation
functions and Z, -simulation functions given in Example 1
and Example 2. Further, one can derive all the results of
the paper in the setting of metric spaces.

5. Suggestion

We suggest that the b-simulation function can be extended
in a similar way to the one in which the simulation function
is extended to the Z-simulation function. The main theo-
rem can be extended and generalized to b-metric space,
Branciari b-distance space, and extended Branciari b-dis-
tance space using certain extended simulation functions,
and the existing fixed point theorem can be interpreted.
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