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In this paper, the notion of set-valued L-contractions is introduced, and a new fixed point theorem for such contractions is
established. An example to illustrate main theorem is given.

1. Introduction and Preliminaries

Branciari [1] introduced a Branciari distance by replacing the
triangle inequality in a metric with the rectangular inequality
as follows.

A map d : X × X⟶ ½0,∞Þ, where X is a nonempty set,
is said to be Branciari distance on X if and only if it satisfies
the following conditions:

For all x, y ∈ X and for all distinct points u, v ∈ X, each of
them different from x and y is as follows:

(d1) dðx, yÞ = 0 if and only if x = y
(d2) dðx, yÞ = dðy, xÞ
(d3) dðx, yÞ ≤ dðx, uÞ + dðu, vÞ + dðv, yÞ
The pair ðX, dÞ is called a Branciari distance space,

whenever d is a Branciari distance on X.
In many papers, for example, [2–8], it is called general-

ized metric space, Branciari metric space, or rectangular
metric space. However, these names do not reflect and
indicate the meaning well of the notion of Branciari distance
spaces because Branciari distance can not reduce to the
standard metric. Further it is well known that a Branciari
distance space ðX, dÞ does not have a topology which is com-
patible with d (see [8]). For these reasons, we rename and
use it as Branciari distance space.

Branciari [1] extended the Banach contraction principle
to Branciari distance space.

After that, a lot of authors, for example, [2–15] and
references therein, obtained fixed point results in such

spaces. Jain et al. [16] obtained fixed point results in
extended Branciari b-distance spaces [17] by defining the
notion of certain contractive conditions, and they gave an
application to nonlinear fractional differential equations.

Branciari [1] investigated the existence of fixed points
with the following two conditions:

(i) The topology of a Branciari distance space is a Haus-
dorff topological space

(ii) Any Branciari distance is continuous in each
coordinates

However, it is known that the above two conditions are
not correct (see [14, 15]).

Sarma et al. [15] and Samet [14] (see also [3, 4, 8, 18])
show that Branciari distances have the following topological
disadvantages.

(B1) A Branciari distance does not need to be continuous
in each coordinates

(B2) A convergent sequence in Branciari distance spaces
does not need to be Cauchy

(B3) The topology of a Branciari distance space does not
need to be a Hausdorff topological space

(B4) An open ball does not need to be an open set
Note that it follows from (B3) that the uniqueness of

limits can not be guaranteed.
In despite of the above toplogical feature, the existence of

fixed points can be investigated without additional
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conditions such as continuity of Branciari distances or/
and Hausdorffness of the topology of Branciari distance
spaces. This is why researchers are interested in Branciari
distance spaces.

Let θ : ð0,∞Þ⟶ ð1,∞Þ be a function.
Consider the following conditions:
(θ1) θ is nondecreasing, i.e., θðt1Þ ≤ θðt2Þ, whenever t1 ≤ t2
(θ2) For any sequence ftng of points in ð0,∞Þ

lim
n⟶∞

θ tnð Þ = 1⟺ lim
n⟶∞

tn = 0: ð1Þ

(θ3) There exist r ∈ ð0, 1Þ and l ∈ ð0,∞Þ such that

lim
t⟶0+

θ tð Þ − 1
tr

= l: ð2Þ

(θ4) θ is continuous
(θ5) θ is strictly increasing
(θ6) θðinf AÞ = inf θðAÞ for all A ⊂ ð0,∞Þ with inf A > 0
(θ7) For any finite sequence ftkgnk=1 ⊂ ð0,∞Þ

θ 〠
n

k=1
tk

 !
≤
Yn
k=1

θ tkð Þ: ð3Þ

Jleli and Samet [19] introduced the notion of θ-con-
tractions and generalized the Banach contraction principle
in the setting of Branciari distance spaces, where θ : ð0,∞Þ
⟶ ð1,∞Þ is a function such that (θ1), (θ2), and (θ3) are
satisfied.

Since then, Jleli et al. [7] obtained a generalization of
result of [19] with conditions (θ1), (θ2), (θ3), and (θ4).
Arshad et al. [20] extended the result of [19] by using the
notion of α-orbital admissible mapping with conditions (θ
1), (θ2), and (θ3). Also, Ahmad et al. [21] extended the result
of Jleli and Samet [19] to metric spaces by using conditions
(θ1), (θ2), and (θ4). Durmaz and Altun [22] obtained a
generalization of the result of Klim and Wardowski [23] by
defining the concept of set-valued θ-contractions with
control function θ satisfying (θ1), (θ2), (θ3), and (θ6).
Abdeljawad et al. [17] introduced the concept of extended
Branciari b-distance, and they extended the result of Jleli
and Samet [19] to extended Branciari b-distance spaces with
control function θ satisfying (θ2) and (θ3). Cho [24] intro-
duced the notion of generalized set-valued weak θ-contrac-
tions in metric spaces and obtained fixed point results for
such contractions with control function θ satisfying (θ1),
(θ2), (θ4), and (θ7).

Recently, Cho [25] introduced the concept of L-con-
tractions in Branciari distance spaces and established a
fixed point theorem for such contractions. He unified
concepts of some contractions which exist in literature
including θ-contractions.

Very recently, Saleh et al. [26] extended the result of Cho
[25] by introducing the concepts of generalized L-contrac-
tions in Branciari distance spaces. Aydi et al. [27] extended
the result of Cho [25] to partial metric spaces.

In the paper, we introduce notions of set-valued L

-contractions and set-valued L∗-contractions in Branciari

distance spaces and prove the existence of fixed points for
both type of contractions.

Khojasteh et al. [28] introduced the notion of Z-con-
tractions by using the concept of simulation functions and
unified the some existing metric fixed point results. The
authors of [29–32] gave generalizations of simulation func-
tions and obtained generalizations of results of [28]. More-
over, Demma et al. [33] and Yamaod and Sintunavarat
[34] extended the results of [28] to b-metric spaces by using
the notion of b-simulation functions and s-simulation func-
tions, respectively.

Let ζ : ½0,∞Þ × ½0,∞Þ⟶ R be a function. Consider the
following conditions:

(ζ1) ξð0, 0Þ = 0
(ζ2) ξðt, sÞ < s − t∀s, t > 0
(ζ2′) ξðt, sÞ < ψðsÞ − ψðtÞ∀s, t > 0, where ψ : ½0,∞Þ⟶

½0,∞Þ is continuous and strictly increasing function with
ψð0Þ = 0

(ζ3) For any sequence ftng, fsng ⊂ ð0,∞Þ

lim
n⟶∞

tn = lim
n⟶∞

sn > 0⟹ lim sup
n⟶∞

ζ tn, snð Þ < 0: ð4Þ

(ζ4) For any sequence ftng, fsng ⊂ ð0,∞Þ with tn < sn∀
n = 1, 2, 3,⋯

lim
n⟶∞

tn = lim
n⟶∞

sn > 0⟹ lim sup
n⟶∞

ζ tn, snð Þ < 0: ð5Þ

(ζ5) If for any sequence ftng, fsng ⊂ ð0,∞Þ

0 < lim
n⟶∞

tn ≤ lim inf
n⟶∞

sn ≤ lim sup
n⟶∞

sn ≤ b lim
n⟶∞

tn < +∞, ð6Þ

where b ≥ 1, then we have

lim sup
n⟶∞

ζ btn, snð Þ < 0: ð7Þ

(ζ6) If for any sequence ftng, fsng ⊂ ð0,∞Þ

0 < lim inf
n⟶∞

tn ≤ slim sup
n⟶∞

sn ≤ s2lim inf
n⟶∞

tn,

0 < lim inf
n⟶∞

sn ≤ slim sup
n⟶∞

tn ≤ s2lim inf
n⟶∞

sn,
ð8Þ

where s ≥ 1, then we have

lim sup
n⟶∞

ζ tn, snð Þ < 0: ð9Þ

Let ζ : ½0,∞Þ × ½0,∞Þ⟶ R be a function.
Then, we say that

(1) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is called a simulation func-
tion in the sense of Khojasteh et al. [28] if and only
if (ζ1), (ζ2), and (ζ3) hold

(2) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is called a simulation func-
tion in the sense of Argoubi et al. [30] if and only
if (ζ2) and (ζ3) hold
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(3) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is called a simulation func-
tion in the sense of Roldán-López-de-Hierro et al.
[32] if and only if (ζ1), (ζ2), and (ζ4) hold

(4) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is called a simulation func-
tion in the sense of Isik et al. [31] if and only if
(ζ2) and (ζ4) hold

(5) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is called a ψ-simulation
function [29] if and only if (ζ2′) and (ζ3) hold

(6) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is called a b-simulation
function [33] if and only if (ζ2) and (ζ5) hold

(7) ζ : ½0,∞Þ × ½0,∞Þ⟶ R is calld a s -simulation func-
tion [34] if and only if (ζ2) and (ζ6) hold

Denote ZK (resp., ZA, Zψ) by the family of all simula-
tion functions in the sense of Khojasteh et al. (resp., all
simulation functions in the sense of Argoubi et al., all ψ
-simulation functions).

Note that every simulation function in the sense of
Argoubi et al. is a ψ-simulation function. In fact, let ζ ∈
ZA. If we take ψðtÞ = t, ∀t ≥ 0, then ζ ∈Zψ.

Proposition 1. The following are satisfied.

(1) ZA ⊂Zψ and ZA ≠Zψ ([29])

(2) ZK ⊂ZA and ZK ≠ZA ([30])

Denote ZR (resp., ZI) by the class of all simulations
functions in the sense of Roldán-López-de-Hierro et al.
(resp., in the sense of Isik et al.). Also, we denote by Zb
and Zs the set of all b-simulation functions and s-simula-
tion functions, respectively.

Example 1 (see [28, 32, 35, 36]). Let ζi : ½0,∞Þ × ½0,∞Þ⟶
ℝ, i = 1, 2, 3, 4, 5, 6, 7 be a function defined as follows:

(1) ζ1ðt, sÞ = ks − t, ∀s, t ≥ 0, where 0 ≤ k < 1
(2) ζ2ðt, sÞ = ϕðsÞ − t, ∀s, t ≥ 0, where ϕ : ½0,∞Þ⟶ ½0,

∞Þ is a function such that ϕðsÞ < s, ∀s > 0 and lim
supt⟶sϕðtÞ < s

(3) ζ3ðt, sÞ = sϕðsÞ − t, ∀s, t ≥ 0, where ϕ : ½0,∞Þ⟶ ½0,
1Þ is a function such that lim supt⟶s+ϕðtÞ < 1, ∀s > 0

(4) ζ4ðt, sÞ = s − ϕðsÞ − t, ∀s, t ≥ 0, where ϕ : ½0,∞Þ⟶
½0,∞Þ is a function such that ∀s > 0, lim inf t⟶s
ϕðtÞ > 0 or ϕ : ½0,∞Þ⟶ ½0,∞Þ is continuous
such that ϕðtÞ = 0 if and only if t = 0

(5) ζ5ðt, sÞ = ψðsÞ − φðtÞ, ∀t, s ≥ 0 where ψ, φ : ½0,∞Þ
⟶ ½0,∞Þ are continuous functions such that ψðtÞ
= φðtÞ = 0 if and only if t = 0, ψðtÞ < t ≤ φðtÞ, ∀t > 0
and φ is increasing

(6) ζ6ðt, sÞ = ηðsÞ − t, ∀s, t ≥ 0, where η : ½0,∞Þ⟶ ½0,
∞Þ is upper semicontinuous with ηðtÞ < t, ∀t > 0
and ηðtÞ = 0 if and only if t = 0

(7) ζ7ðt, sÞ = s −
Ð t
0 ϕðuÞdu, ∀s, t ≥ 0, where ϕ : ½0,∞Þ

⟶ ½0,∞Þ is a function such that for each t > 0, Ð t0
ϕðuÞdu exists and

Ð t
0 ϕðuÞdu > t

Then, ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7 ∈ZK .

Example 2. Let ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ be a function
defined by

ζ t, sð Þ = s − t − 1: ð10Þ

Then, (ζ2) is satisfied.
Let ftng, fsng be sequnces of points in ð0,∞Þ such that

tn < sn∀n = 1, 2, 3,⋯and lim
n⟶∞

tn = lim
n⟶∞

sn > 0: ð11Þ

Then, we have

lim sup
n⟶∞

ζ tn, snð Þ = lim sup
n⟶∞

sn − tn − 1ð Þ
= lim sup

n⟶∞
sn − lim inf

n⟶∞
tn − 1 < 0:

ð12Þ

Thus, ζ ∈Z I , but ζ ∉ZR, because ζð0, 0Þ ≠ 0: Hence,
Z I ≠ZR:

Example 3 (see [31]). Let ζI : ½0,∞Þ × ½0,∞Þ⟶ℝ be a
function defined as

ζI t, sð Þ =
1 if s, tð Þ = 0, 0ð Þ or s = t,
2 s − tð Þ if s < t,
λs − t otherwise,

8>><
>>: ð13Þ

where 0 < λ < 0.

Then, ζI ∈Z I , but ζI ∉ZA. Hence, ZA ≠Z I : Also, we
know that ζI ∉ZK and ζI ∉ZR.

Note that ZK ⊂ZR. The following examples show that
ZK ≠ZR.

Example 4. Let ζ : ½0,∞Þ × ½0,∞Þ⟶ℝ be a function
defined as

ζ t, sð Þ =

0 if s, tð Þ = 0, 0ð Þ,
−1 if s = t,
2 s − tð Þ if s < t,
λs − t otherwise,

8>>>>><
>>>>>:

ð14Þ

where 0 < λ < 0. Then, (ζ1) and (ζ2) are satisfied.

We show that (ζ5) is not satisfied.
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To show this, let ftng, fsng ⊂ ð0,∞Þ be two sequences
such that

lim
n⟶∞

tn = lim
n⟶∞

sn > 0: ð15Þ

We may assume that sn < tn, ∀n = 1, 2, 3,⋯.
Then

lim sup
n⟶∞

ζ tn, snð Þ = 0: ð16Þ

Hence, (ζ5) is not satisfied. Thus, ζ ∉ZK :
We now show that (ζ6) is satisfied.
Let fang, fbng ⊂ ð0,∞Þ be two sequences such that

an < bn∀n = 1, 2, 3,⋯and lim
n⟶∞

an = lim
n⟶∞

bn = c > 0: ð17Þ

Then

lim sup
n⟶∞

ζ an, bnð Þ = λlim sup
n⟶∞

bn − lim inf
n⟶∞

an = λc − c < 0:

ð18Þ

Hence, (ζ6) holds. Thus, ζ ∈ZR: Therefore, ZR ≠ZK :

Proposition 2. The following inclusion relations are satisfied.

(1) ZK ⊊ZA ⊊Z I

(2) ZK ⊊ZA ⊊Zψ

(3) ZK ⊊ZR ⊊ZI

Proposition 3. If ζ ∈Zs is decreasing in the first coordinate,
then ζ ∈Zb:

Proof. Let ζ ∈Zs. Then, (ζ2) and (ζ6) hold.
Assume that ζ ∈Zs is decreasing in the first coordinate.
We show that (ζ5) holds.
Let ftng, fsng ⊂ ð0,∞Þ be two sequences such that

0 < lim
n⟶∞

tn ≤ lim inf
n⟶∞

sn ≤ lim sup
n⟶∞

sn ≤ b lim
n⟶∞

tn < +∞, ð19Þ

where b > 1.
From (19), we infer that

0 < lim inf
n⟶∞

tn = lim
n⟶∞

tn ≤ blim inf
n⟶∞

sn ≤ b lim sup
n⟶∞

sn

≤ b2limtn = b2lim inf
n⟶∞

tn,
ð20Þ

which implies

0 < lim inf
n⟶∞

tn ≤ b lim sup
n⟶∞

sn ≤ b2 lim inf
n⟶∞

tn: ð21Þ

It follows from (19) that

0 < limtn ≤ lim inf
n⟶∞

sn ≤ b lim sup
n⟶∞

tn,

blimtn = blim inf
n⟶∞

tn ≤ b2lim inf
n⟶∞

sn:
ð22Þ

Thus, we obtain

0 < lim inf
n⟶∞

sn ≤ blim sup
n⟶∞

tn ≤ b2lim inf
n⟶∞

sn: ð23Þ

By applying (21) and (23) to (ζ6), we have

lim sup
n⟶∞

ζ tn, snð Þ < 0: ð24Þ

Since ζ is decreasing in the first coordinate,

lim sup
n⟶∞

ζ btn, snð Þ ≤ lim sup
n⟶∞

ζ tn, snð Þ < 0: ð25Þ

Hence, it follows from (19) and (25) that (ζ5) is satisfied.
Thus, ζ ∈Zb.

Note that simulation functions ζi ∈ZK , i = 1, 2, 3, 4, 5, 6,
7, given in Example 1 are s-simulation and decreasing func-
tions in the first coordinate. Hence, ζi ∈Zb, i = 1, 2, 3, 4, 5,
6, 7 (see also [33]).

For more details and examples of simulation functions,
we refer to [28, 33, 34, 36–40], and for ψ-simulation func-
tions, we refer to [29, 41, 42].

Now, we recall the concept of L-simulation function
and give the definition of L∗-simulation function.

Let ξ : ½1,∞Þ × ½1,∞Þ⟶ R be a function. Consider the
following conditions:

(ξ1) ξð·, · Þ is a decreasing function on the first
coordinate

(ξ2) ξð1, 1Þ = 1
(ξ3) ξðrt, sÞ = ð1/rÞξðt, sÞ, ∀r > 1
(ξ4) ξðt, sÞ < ðs/tÞ∀s, t > 1
(ξ5) For any sequence ftng, fsng ⊂ ð1,∞Þ with tn ≤ sn∀

n = 1, 2, 3,⋯

lim
n⟶∞

tn = lim
n⟶∞

sn > 1⟹ lim sup
n⟶∞

ξ tn, snð Þ < 1: ð26Þ

Let ξ : ½1,∞Þ × ½1,∞Þ⟶ R be a function.
Then, we say that

(1) ξ is L -simulation function [25] if and only if it sat-
isfies conditions (ξ2), (ξ4), and (ξ5)

(2) ξ isL∗ -simulation function if and only if it satisfies
conditions (ξ1), (ξ2), (ξ3), (ξ4), and (ξ5)

DenoteL∗ by the family of allL∗-simulation functions,
and L by the class of all L-simulation functions.

Note that ξðt, tÞ < 1∀t > 1, and L∗ ⊂L .

Example 5 (see [25]). Let ξb, ξw, ξ : ½1,∞Þ × ½1,∞Þ⟶ℝ be
functions defined as follows, respectively:
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(1) ξbðt, sÞ = ðsk/tÞ∀t, s ≥ 1 where k ∈ ð0, 1Þ
(2) ξwðt, sÞ = ðs/tϕðsÞÞ∀t, s ≥ 1 where ϕ : ½1,∞Þ⟶ ½1,

∞Þ is nondecreasing and lower semicontinuous such
that ϕ−1ðf1gÞ = 1

ξ t, sð Þ

1 if s, tð Þ = 1, 1ð Þ,
s
2t if s < t,

sλ

t
otherwise,

8>>>>><
>>>>>:

ð27Þ

∀s, t ≥ 1, where λ ∈ ð0, 1Þ.

Then, ξb, ξw, ξ ∈L∗.

Example 6. Let ξi : ½1,∞Þ × ½1,∞Þ⟶ℝ, i = 1, 2, 3, be a
function defined as follows:

(1) ξ1ðt, sÞ = ðψðsÞ/φðtÞÞ, ∀t, s ≥ 1 where ψ, φ : ½1,∞Þ
⟶ ½1,∞Þ are continuous functions such that ψðtÞ
= φðtÞ = 1 if and only if t = 1, ψðtÞ < t ≤ φðtÞ, ∀t > 1
and φ is an increasing function

(2) ξ2ðt, sÞ = ðηðsÞ/tÞ, ∀s, t ≥ 1, where η : ½1,∞Þ⟶ ½1,
∞Þ is upper semicontinuous with ηðtÞ < t, ∀t > 1
and ηðtÞ = 1 if and only if t = 1

(3) ξ3ðt, sÞ = ðs/Ð t0 ϕðuÞduÞ, ∀s, t ≥ 1, where ϕ : ½0,∞Þ
⟶ ½0,∞Þ is a function such that for each t > 0, Ð t0
ϕðuÞdu exists and

Ð t
0 ϕðuÞdu > t, and

Ð 1
0 ϕðuÞdu = 1

Then, ξ1, ξ3 ∈L , and ξ2 ∈L∗.
Note that if φ : ½1,∞Þ⟶ ½1,∞Þ is satisfied condition

φ rtð Þ = rφ tð Þ∀r > 1, t ≥ 1, ð28Þ

then ξ1 ∈L∗.

We recall the following definitions which are in [1].
Let ðX, dÞ be a Branciari distance space, fxng ⊂ X be a

sequence, and x ∈ X.
Then, we say that

(1) fxng is convergent to x (denoted by limn⟶∞xn = x)
if and only if limn⟶∞dðx, xnÞ = 0

(2) fxng is Cauchy if and only if limn,m⟶∞dðxn, xmÞ = 0
(3) ðX, dÞ is complete if and only if every Cauchy

sequence in X is convergent to some point in X

Let ðX, dÞ be a Branciari distance space.
We denote by CLðXÞ the class of nonempty closed

subsets of X. Let Hð·, · Þ be the Hausdorff distance on CL
ðXÞ, i.e., for all A, B ∈ CLðXÞ,

H A, Bð Þ =
max sup

a∈A
d a, Bð Þ, sup

b∈B
d b, Að Þ

� �
, if themaximum exists,

∞, otherwise,

8><
>:

ð29Þ

where dða, BÞ = inf fdða, bÞ: b ∈ Bg is the distance from
the point a to the subset B.

For A, B ∈ CLðXÞ, let DðA, BÞ = supx∈Adðx, BÞ:
Then, we have DðA, BÞ ≤HðA, BÞ for all A, B ∈ CLðXÞ:

Lemma 4 (see [43]). Let ðX, dÞ be a Branciari distance space,
fxng ⊂ X be a Cauchy sequence, and x, y ∈ X. If there exists a
positive integer N such that

(1) xn ≠ xm∀n,m >N

(2) xn ≠ x∀n >N

(3) xn ≠ y∀n >N

(4) limn⟶∞dðxn, xÞ = 0 = limn⟶∞dðxn, yÞ
then x = y.

Lemma 5. If ðX, dÞ is a Branciari distance space, then CðXÞ
⊂ CLðXÞ, where CðXÞ is the class of nonempty compact
subsets of X.

Proof. Let A ∈ CðXÞ, and let fxng ⊂ A be a sequence
such that

lim
n⟶∞

d xn, xð Þ = 0, where x ∈ X: ð30Þ

It follows from compactness of A that there exists a
convergent subsequence fxnðkÞg of fxng.

Let

lim
n⟶∞

d xn kð Þ, a
� �

= 0, for a ∈ A: ð31Þ

Since

lim
n⟶∞

d xn kð Þ, x
� �

= 0, ð32Þ

from Lemma 4, x = a ∈ A: Hence, A ∈ CLðXÞ.

Lemma 6. Let ðX, dÞ be a Branciari distance space, and let
A, B ∈ CLðXÞ.

If a ∈ A and dða, BÞ < c, then there exists b ∈ B such that
dða, bÞ < c.

Proof. Let ε = c − dða, BÞ.
It follows from definition of infimum that there exists b

∈ B such that dða, bÞ < dða, BÞ + ε. Hence, dða, bÞ < c.

2. Fixed Point Theorems

We denote by Θ the class of all functions θ : ð0,∞Þ⟶ ð1,
∞Þ such that conditions (θ2), (θ4), and (θ5) hold.
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Let ðX, dÞ be a Branciari distance space.
A set-valued mapping T : X⟶ 2X , where 2X is the

family of all nonempty subsets of X, is called set-valued L

-contraction with respect to ξ ∈L if and only if for all x, y
∈ X with dðx, yÞ > 0, and for all u ∈ Tx, there exists v ∈ Ty
with dðu, vÞ > 0 such that

ξ θ d u, vð Þð Þ, θ d x, yð Þð Þð Þ ≥ 1, ð33Þ

where θ ∈Θ.
Now, we prove our main result.

Theorem 7. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set-valued L -contrac-
tion with respect to ξ ∈L .

Then, T has a fixed point.

Proof. Let x0 ∈ X be a point, and let x1 ∈ Tx0 be such that d
ðx0, x1Þ > 0.

From (33), there exists x2 ∈ Tx1 with dðx1, x2Þ > 0
such that

1 ≤ ξ θ d x1, x2ð Þð Þ, θ d x0, x1ð Þð Þð Þ < θ d x0, x1ð Þð Þ
θ d x1, x2ð Þð Þ , ð34Þ

which implies

θ d x1, x2ð Þð Þ < θ d x0, x1ð Þð Þ, ð35Þ

and so

d x1, x2ð Þ < d x0, x1ð Þ: ð36Þ

Again, from (33), there exists x3 ∈ Tx2 with dðx2, x3Þ
> 0 such that

1 ≤ ξ θ d x2, x3ð Þð Þ, θ d x1, x2ð Þð Þð Þ < θ d x1, x2ð Þð Þ
θ d x2, x3ð Þð Þ , ð37Þ

which implies

θ d x2, x3ð Þð Þ < θ d x1, x2ð Þð Þ, ð38Þ

and so

d x2, x3ð Þ < d x1, x2ð Þ: ð39Þ

Inductively, we can find a sequence fxng ⊂ X such
that, ∀n = 1, 2, 3,⋯,

xn−1 ≠ xn, xn ∈ Txn−1 and d xn, xn+1ð Þ < d xn−1, xnð Þ: ð40Þ

Since fdðxn−1, xnÞg is a decreasing sequence, there
exists r ≥ 0 such that

lim
n⟶∞

d xn−1, xnð Þ = r: ð41Þ

We now show that r = 0.
Assume that r ≠ 0.
Then, it follows from ðθ2Þ that

lim
n⟶∞

θ d xn−1, xnð Þð Þ ≠ 1, and so lim
n⟶∞

θ d xn−1, xnð Þð Þ > 1:

ð42Þ

Let tn = θðdðxn, xn+1ÞÞ and sn = θðdðxn−1, xnÞÞ∀n = 1,
2, 3,⋯:

Then, tn ≤ sn∀n = 1, 2, 3,⋯ and

lim
n⟶∞

tn = lim
n⟶∞

sn > 1: ð43Þ

It follows from (ξ5) that

1 ≤ lim sup
n⟶∞

ξ tn, snð Þ < 1, ð44Þ

which is a contradiction.
Thus, we have

lim
n⟶∞

d xn−1, xnð Þ = 0, ð45Þ

and so

lim
n⟶∞

θ d xn−1, xnð Þð Þ = 1: ð46Þ

We now show that fxng is a Cauchy sequence.
On the contrary, assume that fxng is not a Cauchy

sequence.
Then, there exists an ε > 0 for which we can find subse-

quences fxmðkÞg and fxnðkÞg of fxng such that mðkÞ is the
smallest index for which mðkÞ > nðkÞ > k∀k = 1, 2, 3,⋯

d xm kð Þ, xn kð Þ
� �

≥ ε and d xm kð Þ−1, xn kð Þ
� �

< ε: ð47Þ

It follows from (47) and condition (d3) that

ε ≤ d xm kð Þ, xn kð Þ
� �

≤ d xn kð Þ, xm kð Þ−2
� �

+ d xm kð Þ−2, xm kð Þ−1
� �

+ d xm kð Þ−1, xm kð Þ
� �

< ε + d xm kð Þ−2, xm kð Þ−1
� �

+ d xm kð Þ−1, xm kð Þ
� �

:

ð48Þ

Letting k⟶∞ in above inequality, we have

lim
k⟶∞

d xm kð Þ, xn kð Þ
� �

= ε = lim
k⟶∞

d xm kð Þ−2, xn kð Þ
� �

: ð49Þ

From (33), there exists znðkÞ+1 ∈ TxnðkÞ with dðxmðkÞ+1,
znðkÞ+1Þ > 0∀k = 1, 2, 3,⋯ such that
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1 ≤ ξ θ d xm kð Þ+1, zn kð Þ+1
� �� �

, θ d xm kð Þ, xn kð Þ
� �� �� �

<
θ d xm kð Þ, xn kð Þ

� �� �
θ d xm kð Þ+1, zn kð Þ+1

� �� � , ð50Þ

which implies

θ d xm kð Þ+1, zn kð Þ+1
� �� �

< θ d xm kð Þ, xn kð Þ
� �� �

,∀k = 1, 2, 3,⋯:

ð51Þ

So

d xm kð Þ+1, zn kð Þ+1
� �

< d xm kð Þ, xn kð Þ
� �

,∀k = 1, 2, 3,⋯: ð52Þ

Taking limit supremum in above inequality and using
(49), we have

lim sup
n⟶∞

d xm kð Þ+1, zn kð Þ+1
� �

≤ ε: ð53Þ

We deduce that

d xm kð Þ, xn kð Þ
� �

≤ d xm kð Þ, xm kð Þ+1
� �

+ d xm kð Þ+1, Txn kð Þ
� �

+ d Txn kð Þ, xn kð Þ
� �

≤ d xm kð Þ, xm kð Þ+1
� �

+ d xm kð Þ+1, zn kð Þ+1
� �

+ d xn kð Þ+1, xn kð Þ
� �

:

ð54Þ

Taking limit infimum in above inequality and using (53),
we have

ε ≤ lim inf
n⟶∞

d xm kð Þ+1, zn kð Þ+1
� �

: ð55Þ

It follows from (53) and (55) that

lim
n⟶∞

d xm kð Þ+1, zn kð Þ+1
� �

= ε: ð56Þ

Let

tk = θ d xm kð Þ+1, zn kð Þ+1
� �� �

and sk = θ d xm kð Þ, xn kð Þ
� �� �

:

ð57Þ

Then, tk ≤ sk∀k = 1, 2, 3,⋯:
It follows from (49), (56), (θ2), and (θ4) that

lim
k⟶∞

sk = lim
k⟶∞

tk > 1: ð58Þ

It follows from (ξ5) that

1 ≤ lim
k⟶∞

sup ξ tk, skð Þ < 1, ð59Þ

which is a contradiction.
Thus, fxng is a Cauchy sequence.

Since X is complete, there exists a point x∗ ∈ X such that

lim
n⟶∞

d x∗, xnð Þ = 0: ð60Þ

It follows from (33) that there exists yn ∈ Tx∗ with
dðxn+1, ynÞ > 0 such that

1 ≤ ξ θ d xn+1, ynð Þð Þ, θ d xn, x∗ð Þð Þð Þ < θ d xn, x∗ð Þð Þ
θ d xn+1, ynð Þð Þ , ð61Þ

which implies

θ d xn+1, ynð Þð Þ < θ d xn, x∗ð Þð Þ, ð62Þ

and hence

d xn+1, ynð Þ < d xn, x∗ð Þ: ð63Þ

Thus, we have

lim
n⟶∞

d xn+1, ynð Þ = 0: ð64Þ

Since

d x∗, ynð Þ ≤ d x∗, xnð Þ + d xn, xn+1ð Þ + d xn+1, ynð Þ,
lim

n⟶∞
d x∗, ynð Þ = 0: ð65Þ

Because Tx∗ ∈ CLðXÞ and fyng ⊂ Tx∗, x∗ ∈ Tx∗.

We give an example to illustrate Theorem 7.

Example 1. Let X = f1, 2, 3, 4g and define d : X × X⟶ ½0,
∞Þ as follows:

d 1, 2ð Þ = d 2, 1ð Þ = 3,
d 2, 3ð Þ = d 3, 2ð Þ = d 1, 3ð Þ = d 3, 1ð Þ = 1,

d 1, 4ð Þ = d 4, 1ð Þ = d 2, 4ð Þ = d 4, 2ð Þ = d 3, 4ð Þ = d 4, 3ð Þ = 4,
d x, xð Þ = 0∀x ∈ X:

ð66Þ

Then, ðX, dÞ is a complete Branciari distance space but
not a metric space (see [9]).

Define a map T : X ⟶ CLðXÞ by

Tx =
2, 3f g x = 1, 2, 3ð Þ,
1, 4f g x = 4ð Þ,

(
ð67Þ

and a function θ : ð0,∞Þ⟶ ð1,∞Þ by

θ tð Þ = et: ð68Þ

We now show that T is a set valued L-contraction with
respect to ξw, where ξwðt, sÞ = ðs/tϕðsÞÞ∀t, s ≥ 1, ϕðsÞ = ð1/2Þ
s + ð1/2Þ∀s ≥ 1.
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We consider the following cases.

Case 1. x = 1 and y = 2.
For 2 ∈ T1, there exists 3 ∈ T2 with dð2, 3Þ > 0 such that

ξw θ d 2, 3ð Þð Þ, θ d 1, 2ð Þð Þð Þ = ξw θ 1ð Þ, θ 3ð Þð Þ = θ 3ð Þ
θ 1ð Þϕ 3ð Þ = e2

2 > 1,

ð69Þ

and for 3 ∈ T1, there exists 2 ∈ T2 with dð3, 2Þ > 0 such that

ξw θ d 3, 2ð Þð Þ, θ d 1, 2ð Þð Þð Þ = ξw θ 1ð Þ, θ 3ð Þð Þ = θ 3ð Þ
θ 1ð Þϕ 3ð Þ = e2

2 > 1:

ð70Þ

Case 2. x = 1 and y = 3.
For 2 ∈ T1, there exists 3 ∈ T3 with dð2, 3Þ > 0 such that

ξw θ d 2, 3ð Þð Þ, θ d 1, 3ð Þð Þð Þ = ξw θ 1ð Þ, θ 1ð Þð Þ = θ 1ð Þ
θ 1ð Þϕ 1ð Þ = 1,

ð71Þ

and for 3 ∈ T1, there exists 2 ∈ T3 with dð3, 2Þ > 0 such that

ξw θ d 3, 2ð Þð Þ, θ d 1, 3ð Þð Þð Þ = ξw θ 1ð Þ, θ 1ð Þð Þ = θ 1ð Þ
θ 1ð Þϕ 1ð Þ = 1:

ð72Þ

Case 3. x = 1 and y = 4.
For 2 ∈ T1, there exists 1 ∈ T4 with dð2, 1Þ > 0 such that

ξw θ d 2, 1ð Þð Þ, θ d 1, 4ð Þð Þð Þ = ξw θ 3ð Þ, θ 4ð Þð Þ = θ 4ð Þ
θ 3ð Þϕ 4ð Þ =

e
2:5 > 1,

ð73Þ

and for 3 ∈ T1, there exists 1 ∈ T4 with dð3, 1Þ > 0 such that

ξw θ d 3, 1ð Þð Þ, θ d 1, 4ð Þð Þð Þ = ξw θ 1ð Þ, θ 4ð Þð Þ = θ 4ð Þ
θ 1ð Þϕ 4ð Þ =

e3

2:5 > 1:

ð74Þ

Case 4. x = 2 and y = 3.
For 2 ∈ T2, there exists 3 ∈ T3 with dð2, 3Þ > 0 such that

ξ θ d 2, 3ð Þð Þ, θ d 2, 3ð Þð Þð Þ = ξ θ 1ð Þ, θ 1ð Þð Þ = θ 1ð Þ
θ 1ð Þϕ 1ð Þ = 1,

ð75Þ

and for 3 ∈ T2, there exists 2 ∈ T3 with dð3, 2Þ > 0 such that

ξ θ d 3, 2ð Þð Þ, θ d 2, 3ð Þð Þð Þ = ξ θ 1ð Þ, θ 1ð Þð Þ = θ 1ð Þ
θ 1ð Þϕ 1ð Þ = 1:

ð76Þ

Case 5. x = 2 and y = 4.

For 2 ∈ T3, there exists 1 ∈ T4 with dð2, 1Þ > 0 such that

ξ θ d 2, 1ð Þð Þ, θ d 3, 4ð Þð Þð Þ = ξ θ 3ð Þ, θ 4ð Þð Þ = θ 4ð Þ
θ 3ð Þϕ 4ð Þ = e

2:5 > 1,

ð77Þ

and for 3 ∈ T3, there exists 1 ∈ T4 with dð3, 1Þ > 0 such that

ξ θ d 3, 1ð Þð Þ, θ d 3, 4ð Þð Þð Þ = ξ θ 1ð Þ, θ 4ð Þð Þ = θ 4ð Þ
θ 1ð Þϕ 4ð Þ = e3

2:5 > 1:

ð78Þ

Case 6. x = 3 and y = 4.
For 2 ∈ T3, there exists 1 ∈ T4 with dð2, 1Þ > 0 such that

ξ θ d 2, 1ð Þð Þ, θ d 3, 4ð Þð Þð Þ = ξ θ 3ð Þ, θ 4ð Þð Þ = θ 4ð Þ
θ 3ð Þϕ 4ð Þ = e

2:5 > 1,

ð79Þ

and for 3 ∈ T3, there exists 1 ∈ T4 with dð3, 1Þ > 0 such that

ξ θ d 3, 1ð Þð Þ, θ d 3, 4ð Þð Þð Þ = ξ θ 1ð Þ, θ 4ð Þð Þ = θ 4ð Þ
θ 1ð Þϕ 4ð Þ = e3

2:5 > 1:

ð80Þ

Hence, T is a set valued L-contraction with respect to ξw
Thus, all hypotheses of Theorem 7 are satisfied, and T

has fixed points 2, 3, and 4.
Note that the Nadler’s fixed point theorem does not

hold. If x = 2 and y = 4, then

H T2, T4ð Þ ≤ kd 2, 4ð Þ, k ∈ 0, 1ð Þ, ð81Þ

so

4k ≥ 4, ð82Þ

which is a contradiction.
From Theorem 7, we have the following corollary.

Corollary 8. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

ξ θ D Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ r, ð83Þ

where ξ ∈L∗, θ ∈Θ and r > 1:

Then, T has a fixed point.

Proof. Since

inf
z∈Tx

d z, Tyð Þ > 0, ð84Þ

for each u ∈ Tx, dðu, TyÞ > 0. Hence, we have

θ d u, Tyð Þð Þ ≤ θ D Tx, Tyð Þð Þ < rθ D Tx, Tyð Þð Þ: ð85Þ
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It follows from (θ5) that there exists the inverse function
θ−1 of θ, and so from (85), we have

d u, Tyð Þ < θ−1 rθ D Tx, Tyð Þð Þð Þ: ð86Þ

From Lemma 6, there exists v ∈ Ty such that

d u, vð Þ < θ−1 rθ D Tx, Tyð Þð Þð Þ: ð87Þ

Hence

θ d u, vð Þð Þ < rθ D Tx, Tyð Þð Þ: ð88Þ

Thus, we have

ξ θ d u, vð Þð Þ, θ d x, yð Þð Þð Þ > ξ rθ D Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ
= 1
r
ξ θ D Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ 1

r
r = 1:

ð89Þ

Thus, condition (33) holds and from Theorem 7, T has a
fixed point.

Corollary 9. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

ξ θ H Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ r, ð90Þ

where ξ ∈L∗, θ ∈Θ and r > 1:

Then, T has a fixed point.

Proof. It follows from (ξ1) and (90) that

ξ θ D Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ ξ θ H Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ r,
ð91Þ

which implies

ξ θ D Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ r: ð92Þ

Thus, from Corollary 8, T has a fixed point.

3. Consequence

We have fixed point results by applying simulation functions
given in Example 5 and Example 6 to Theorem 7.

By taking ξ = ξb in Theorem 7, we obtain Corollary 10.

Corollary 10. Let ðX, dÞ be a complete Branciari distance
space, and let T : X ⟶ CLðXÞ be a set valued map.

Suppose that for all x, y ∈ X with dðx, yÞ > 0 and u ∈ Tx,
there exists v ∈ Ty with dðu, vÞ > 0 such that

θ d u, vð Þð Þ ≤ θ d x, yð Þð Þ½ �k, ð93Þ

where θ ∈Θ and k ∈ ð0, 1Þ.

Then, T has a fixed point.

Remark 11. Corollary 10 is a generalization of Theorem 7 of
[19] and Theorem 2.2 of [21] without condition (θ3) to set-
valued maps.

Corollary 12. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

θ D Tx, Tyð Þð Þ < θ d x, yð Þð Þ½ �k, ð94Þ

where θ ∈Θ, k ∈ ð0, 1Þ.

Then, T has a fixed point.

Proof. Since inf z∈Txdðz, TyÞ > 0, we have that, for each u ∈
Tx,

θ d u, Tyð Þð Þ ≤ θ D Tx, Tyð Þð Þ < θ d x, yð Þð Þ½ �k, ð95Þ

and so

d u, Tyð Þ < θ−1 θ d x, yð Þð Þ½ �k
� �

: ð96Þ

Hence, there exists v ∈ Ty such that

d u, vð Þ < θ−1 θ d x, yð Þð Þ½ �k
� �

, and so θ d u, vð Þð Þ < θ d x, yð Þð Þ½ �k:
ð97Þ

By Corollary 10, T has a fixed point.

Corollary 13. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

θ H Tx, Tyð Þð Þ < θ d x, yð Þð Þ½ �k, ð98Þ

where θ ∈Θ, k ∈ ð0, 1Þ.

Then, T has a fixed point.

Remark 14. Corollary 13 is a generalization of Theorem 2 of
[44] to Branciari distance spaces with conditions:

θ5ð Þ and inf
z∈Tx

d z, Tyð Þ > 0,∀x, y ∈ X: ð99Þ

By taking ξ = ξw in Theorem 7, we obtain Corollary 15.
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Corollary 15. Let ðX, dÞ be a complete Branciari distance
space, and let T : X ⟶ CLðXÞ be a set valued map.

Suppose that for all x, y ∈ X and u ∈ Tx, there exists v ∈
Ty with dðu, vÞ > 0 such that

θ d u, vð Þð Þ ≤ θ d x, yð Þð Þ
ϕ θ d x, yð Þð Þð Þ , ð100Þ

where θ ∈Θ and ϕ : ½1,∞Þ⟶ ½1,∞Þ is nondecreasing and
lower semicontinuous such that ϕ−1ðf1gÞ = 1.

Then, T has a fixed point.

Remark 16. Corollary 15 is a generalization of Corollary 2.7
[24] to Branciari distance spaces without condition (θ7).

Corollary 17. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

θ D Tx, Tyð Þð Þ < θ d x, yð Þð Þ
ϕ θ d x, yð Þð Þð Þ , ð101Þ

where θ ∈Θ and ϕ : ½1,∞Þ⟶ ½1,∞Þ is nondecreasing and
lower semicontinuous such that ϕ−1ðf1gÞ = 1.

Then, T has a fixed point.

Proof. Suppose that condition (101) satisfied.
Since inf z∈Txdðz, TyÞ > 0, we have that, for each u ∈ Tx,

θ d u, Tyð Þð Þ ≤ θ D Tx, Tyð Þð Þ < θ d x, yð Þð Þ
ϕ θ d x, yð Þð Þð Þ : ð102Þ

Thus

d u, Tyð Þ < θ−1
θ d x, yð Þð Þ

ϕ θ d x, yð Þð Þð Þ
� �

, ð103Þ

and so there exists v ∈ Ty such that

θ d u, vð Þð Þ < θ d x, yð Þð Þ
ϕ θ d x, yð Þð Þð Þ : ð104Þ

By Corollary 15, T has a fixed point.

Corollary 18. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

θ H Tx, Tyð Þð Þ < θ d x, yð Þð Þ
ϕ θ d x, yð Þð Þð Þ , ð105Þ

where θ ∈Θ and ϕ : ½1,∞Þ⟶ ½1,∞Þ is nondecreasing and
lower semicontinuous such that ϕ−1ðf1gÞ = 1.

Then, T has a fixed point.

Corollary 19. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map.

Suppose that for all x, y ∈ X with dðx, yÞ > 0 and for all
u ∈ Tx, there exists v ∈ Ty with dðu, vÞ > 0 such that

d u, vð Þ ≤ d x, yð Þ − φ d x, yð Þð Þ, ð106Þ

where φ : ½0,∞Þ⟶ ½0,∞Þ is nondecreasing and lower semi-
continuous such that φ−1ðf0gÞ = 0.

Then, T has a fixed point.
By the same way as proof of Corollary 15 in [24], we can

prove Corollary 19.

Corollary 20. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

D Tx, Tyð Þ < d x, yð Þ − φ d x, yð Þð Þ, ð107Þ

where φ : ½0,∞Þ⟶ ½0,∞Þ is nondecreasing and lower semi-
continuous such that φ−1ðf0gÞ = 0.

Then, T has a fixed point.

Corollary 21. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

H Tx, Tyð Þ < d x, yð Þ − φ d x, yð Þð Þ, ð108Þ

where φ : ½0,∞Þ⟶ ½0,∞Þ is nondecreasing and lower semi-
continuous such that φ−1ðf0gÞ = 0.

Then, T has a fixed point.
By taking θðtÞ = 2 − ð2/πÞ arctan ð1/tαÞ, where α ∈ ð0,

1Þ, t > 0 in Corollary 15, we obtain the following result.

Corollary 22. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map.

Suppose that for all x, y ∈ X and u ∈ Tx, there exists v ∈
Ty with dðu, vÞ > 0 such that

2 −
2
π
arctan 1

d u, vð Þ½ �α
� �

≤
2 − 2/πð Þ arctan 1/ d x, yð Þ½ �αð Þ

ϕ 2 − 2/πð Þ arctan 1/ d x, yð Þ½ �αð Þð Þ ,

ð109Þ

where α ∈ ð0, 1Þ and ϕ : ½1,∞Þ⟶ ½1,∞Þ is nondecreasing
and lower semicontinuous such that ϕ−1ðf1gÞ = 1.

Then, T has a fixed point.

Corollary 23. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0
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2 −
2
π

arctan 1
D Tx, Tyð Þ½ �α

� �
< 2 − 2/πð Þ arctan 1/ d x, yð Þ½ �αð Þ
ϕ 2 − 2/πð Þ arctan 1/ d x, yð Þ½ �αð Þð Þ ,

ð110Þ

where α ∈ ð0, 1Þ and ϕ : ½1,∞Þ⟶ ½1,∞Þ is nondecreas-
ing and lower semicontinuous such that ϕ−1ðf1gÞ = 1.

Then, T has a fixed point.

Corollary 24. Let ðX, dÞ be a complete Branciari distance
space, and let T : X⟶ CLðXÞ be a set valued map such that
for all x, y ∈ X with dðx, yÞ > 0 and inf z∈Txdðz, TyÞ > 0

2 −
2
π

arctan 1
H Tx, Tyð Þ½ �α

� �
< 2 − 2/πð Þ arctan 1/ d x, yð Þ½ �αð Þ
ϕ 2 − 2/πð Þ arctan 1/ d x, yð Þ½ �αð Þð Þ ,

ð111Þ

where α ∈ ð0, 1Þ and ϕ : ½1,∞Þ⟶ ½1,∞Þ is nondecreas-
ing and lower semicontinuous such that ϕ−1ðf1gÞ = 1.

Then, T has a fixed point.

4. Conclusion

One can unify and merge some existing fixed point theorems
by using L-simulation functions and L∗-simulation func-
tions in Branciari distance spaces. One can obtain some con-
cequence of the main theorem by applying L-simulation
functions and L∗-simulation functions given in Example 1
and Example 2. Further, one can derive all the results of
the paper in the setting of metric spaces.

5. Suggestion

We suggest that the b-simulation function can be extended
in a similar way to the one in which the simulation function
is extended to the L-simulation function. The main theo-
rem can be extended and generalized to b-metric space,
Branciari b-distance space, and extended Branciari b-dis-
tance space using certain extended simulation functions,
and the existing fixed point theorem can be interpreted.
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