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The nonlinear wave equation is a significant concern to describe wave behavior and structures. Various mathematical models
related to the wave phenomenon have been introduced and extensively being studied due to the complexity of wave behaviors.
In the present work, a mathematical model to obtain the solution of the nonlinear wave by coupling the classical Camassa-Holm
equation and the Rosenau-RLW-Kawahara equation with the dual term of nonlinearities is proposed. The solution properties
are analytically derived. The new model still satisfies the fundamental energy conservative property as the original models. We
then apply the energy method to prove the well-posedness of the model under the solitary wave hypothesis. Some categories of
exact solitary wave solutions of the model are described by using the Ansatz method. In addition, we found that the dual term
of nonlinearity is essential to obtain the class of analytic solution. Besides, we provide some graphical representations to
illustrate the behavior of the traveling wave solutions.

1. Introduction

In the study of nonlinear wave phenomena, the nonlinear
partial differential equations are one of the great mathemati-
cal models to investigate the problems. A variety of the math-
ematical theory for the wave equations has been achieved
theoretically and numerically, arising in empirical applica-
tions on ion-acoustic and magnetohydrodynamics waves in
plasma, longitudinal dispersive waves in elastic rods, pressure
waves in liquid-gas bubble mixtures, and rotating flow down
a tube. For instance, the various phenomena of shallow-water
waves are led by nonlinear partial differential equations
such as the Korteweg-de Vries (KdV) equation [1–7], the
Benjamin-Bona-Mahony (BBM) equation [8–11], the Sym-
metric Regularized Long Wave (SRLW) equation [12–15],
the Kawahara equation [16–19], and the Rosenau equation
[20–23]. For further understanding of nonlinear behaviors

of shallow-water waves, the generalized Rosenau-RLW
equation was introduced in the following:

ut − uxxt + uxxxxt + ux + βupux = 0, ð1Þ

where p ≥ 1 and β are a constant. Equation (1) is an
extension of the Rosenau equation by adding a viscous
term −uxxt and replacing the nonlinear term with a gen-
eral power of nonlinearity upux . If p = 1 and β = 1, then
equation (1) is called usual Rosenau-RLW equation. When
p = 2, then equation (1) is called the modified Rosenau-RLW
equation. For numerical study for the Rosenau-RLW equa-
tion, we refer to [24–27]. Later, many models related to the
Rosenau and the Rosenau-RLW equations have been studied
and become an essential topic in the study of shallow-water
wave behavior. In [28], the solitons and periodic solutions
for the Rosenau-KdV and Rosenau-Kawahara equations were
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obtained utilizing the sine–cosine and the tanh methods.
Wongsaijai and Poochinapan [29] numerically studied the
Rosenau-RLW-KdV equation by coupling the Rosenau-
RLW equation and the Rosenau-KdV equation. In [30],
Labidi and Biswas obtained the analytical one-soliton solu-
tion for the Rosenau-Kawahara equation by using He’s
semi-inverse variational principle. Biswas et al. [31] obtained
the solitary solution and two invariance of the generalized
Rosenau-Kawahara equation with power law nonlinearity.
Recently, by adding a viscous term −uxxt into the Rosenau-
Kawahara equation, which is called the Rosenau-RLW-
Kawahara equation,

ut − uxxt + uxxxxt + ux + uxxx − uxxxxx + βupux = 0: ð2Þ

It has been a growing interest in computation nonlinear
wave equations. In [32], He and Pan initially studied a
second-order three-level linearly implicit difference scheme
which is energy-conserved and unconditionally stable. In
[33], two conservative high-order accurate finite difference
schemes for the periodic initial value generalized Rosenau-
Kawahara-RLW equation were introduced and extensively
studied. For more related nonlinear wave equations, readers
can refer to [34–43].

As furthermore consideration of the unidirectional
shallow-water waves, one of the equations is a Camassa-
Holm (CH) equation which can be founded:

ut + κux − uxxt + 3uux = 2uxuxx + uuxxx, ð3Þ

where κ is a constant. The equation has been derived by
Camassa and Holm [44] in 1993 and has a solitary peaked
solution which discontinuity in the first derivative. For the
significance of κ, it was shown in [45] that for all κ > 0, there
are smooth solitary wave solutions, and for κ = 0, it has
peaked soliton solution (peakon). A classification of weak
traveling wave solution of Camassa-Holm equation was
given in [46]. Furthermore, Kalisch and Lenells have investi-
gated the kind of traveling wave solution, smooth traveling
waves, cusped traveling waves, and composited traveling
waves [47]. The orbital stability of the peakons and the soli-
tons of the smooth solitary wave of CH equation were shown
in [46, 48, 49]. In 2010, Lai [50] established the existence and
uniqueness of a local solution of the CH equation in Sobolev
space HsðℝÞ, and the well-posedness was established by Li
and Olver [49]. Very recently, Nanta et al. [51] obtained
the numerical study of the generalized Camassa-Holm
equation involving dual-power law nonlinearities. Other
studies of CH-related equation are also reported by various
publications [52–57].

In this paper, our purpose is to investigate the coupling of
the original CH equation and the Rosenau-RLW-Kawahara
equation with the dual-power law nonlinearity:

ut − μuxxt + 2κux + ηuxxx + uxxxxt + γuxxxxx
= f uð Þux + s 2uxuxx + uuxxx½ �, ð4Þ

with the initial condition

u x, 0ð Þ = u0 xð Þ, x ∈ xL, xR½ �, ð5Þ

where u0ðxÞ is a known smooth function, κ, η ∈ℝ, μ > 0. The
function f ðuÞ = Au + Bum represents the dispersive nonlin-
ear terms in both low and high-order nonlinearity, where A,
B ∈ℝ, andm ∈ℕ indicates the power law nonlinearity. More-
over, the solitary wave solution and its derivatives have the fol-
lowing asymptotic values:

u⟶ 0 as x⟶ ±∞, and for n ≥ 1, ∂
nu
∂xn

⟶ 0 as x⟶ ±∞:

ð6Þ

Note that equation (4) reduces to Rosenau-RLW-
Kawahara equation when s = A = 0, and it reduces to CH
equation (3) when μ = 1,κ = 1/2,η = 0,γ = 0,B = 0, and s = 1
and removing viscous term uxxxxt . Moreover, when A = γ = η
= s = 0, equation (4) reduces to the Rosenau-RLW equation.

To study the nature of solutions, researchers have
attempted to find the exact solution of the Rosenau-type
equation. Many methods were introduced and developed
to explore the analytical solution corresponding to nonlin-
ear partial differential equations. By using the sech and trig-
onometric function method, Esfahani [58] (Esfahani and
Pourgholi [59]) studied solitary wave solutions to the gen-
eralized Rosenau-KdV and Rosenau-RLW equation, respec-
tively. The solitons and shock waves were discussed by
Razborave et al. [60] by applying a semi-inverse variational
method. In [29], Wongsaijai and Poochinapan used the
sine–cosine method to find the exact solution of the
Rosenau-RLW-KdV equation. He and Pan [32] also used
the sine–cosine method to obtain the solitary solution for
the generalized Rosenau-Kawahara-RLW equation, and
the solution for the Rosenau-Kawahara-RLW equation
with, notably, the generalized Novikov type perturbation
was solely derived by He [38]. The solution of (2 + 1)
dimensional of nonlinear wave equation using modified
exponential function method and Ansatz function tech-
nique with symbolic computation was proposed in [61].
In [62], solitary wave solution for Ablowitz-Kaup-Newell-
Segur water wave equation was obtained by using the sim-
ple equation method and modified simple equation
method. The generalized extended tanh method and the F-
expansion method were used to derive exact solutions for
the Kadomtsev-Petviashvili and the modified Kadomtsev-
Petviashvili dynamical equations [63]. In addition, readers
can refer to [64, 65] for more methods to find analytic wave
solutions.

The paper has been organized as follows. In Section 2, the
fundamental energy-preserving property of the initial
boundary value problems is proved. By applying the energy
method, the well-posedness of the new model is obtained in
the solution space H2

0ðΩÞ. In addition, the traveling wave
solutions of the equation were employed by the Ansatz
method, which determines solitary solutions and periodic
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solutions. Finally, concluding remarks are reported in the last
section.

2. Solution Properties

We first state that the solution of equations (4)–(6) satisfies
the following energy conservative property.

Theorem 1. If the solution of equations (4)–(6) u and its
derivatives ∂xu, ∂

2
xu go to zero when jxj⟶∞, then equa-

tions (4)–(6) have the following global conservation law:

E tð Þ =
ð∞
−∞

u2 x, tð Þ + μu2x x, tð Þ + u2xx x, tð Þdx

=
ð∞
−∞

u2 x, 0ð Þ + μu2x x, 0ð Þ + u2xx x, 0ð Þdx = E 0ð Þ,
ð7Þ

for all t ∈ ½0, T�.

Proof. Let ut − μuxxt + uxxxxt = −2κux − ηuxxx + γuxxxxx + f ðuÞ
ux + sð2uxuxx + uuxxxÞ. Then,

dE tð Þ
dt

= 2
ð∞
−∞

uutdx+2μ
ð∞
−∞

uxuxtdx+2
ð∞
−∞

uxxuxxtdx

= 2
ð∞
−∞

uutdx−2μ
ð∞
−∞

uuxxtdx+2
ð∞
−∞

uuxxxxtdx

= 2
ð∞
−∞

u −2κux − ηuxxx − γuxxxxx + f uð Þuxð
+ s 2uxuxx + uuxxxð ÞÞdx:

ð8Þ

Using the integration by parts and the assumption u and
its derivatives ∂xu, ∂

2
xu⟶ 0 as ∣x ∣⟶∞, we obtain

ð∞
−∞

uuxdx = 0,

ð∞
−∞

uuxxxdx = 0,

ð∞
−∞

uuxxxxxdx = 0,

ð∞
−∞

uf uð Þuxdx =
ð∞
−∞

Au2 + Bum+1� �
du

= lim
xL⟶−∞

lim
xR⟶∞

A
3 u

3 xR
xL
+ B
m + 2 u

m+2
����

����
xR

xL

" #
= 0,

ð∞
−∞

u 2uxuxx + uuxxxð Þdx =
ð∞
−∞

u uxuxx + uuxxð Þx
� �

dx

=
ð∞
−∞

uuxuxxdx−
ð∞
−∞

uuxuxxdx = 0:

ð9Þ

Therefore, EðtÞ is a constant function, that is,

d
dt

ð∞
−∞

u2 x, tð Þ + μu2x x, tð Þ + u2xx x, tð Þdx = 0, ð10Þ

which yields EðtÞ = Eð0Þ for all t ∈ ½0, T�, as desired.
By assumption (6), problem (4) can be set up in a com-

pact subset of ℝ, namely, Ω = ½xL, xR�. Thereby, we consider
the following initial-boundary value problem (4) with the ini-
tial condition (5) and the boundary conditions

u xL, tð Þ = u xR, tð Þ = 0 ux xL, tð Þ = ux xR, tð Þ = 0 and uxx xL, tð Þ
= uxx xR, tð Þ = 0 t, ∈ 0, T½ �:

ð11Þ

For a nonnegative integer k, let HkðΩÞ denote the usual
Sobolev space of real valued functions defined on the interval
Ω. We define the following Sobolev space:

Hk
0 Ωð Þ = u ∈Hk Ωð Þ ∂

iu
∂xi

����� = 0 on ∂Ω, i = 1, 2,⋯, k − 1
( )

:

ð12Þ

The solutions of equations (4) and (5) with the boundary
condition (11) satisfy the following energy conservative
property. ☐

Theorem 2. Suppose u0 ∈H2
0ðΩÞ; then, the solution of equa-

tions (4), (5), and (11) satisfies the following:

E tð Þ =
ðxR
xL

u2 x, tð Þ + μu2x x, tð Þ + u2xx x, tð Þdx

=
ðxR
xL

u2 x, 0ð Þ + μu2x x, 0ð Þ + u2xx x, 0ð Þdx = E 0ð Þ,
ð13Þ

for all t ∈ ½0, T�.

It should be pointed out that the invariant function EðtÞ
indicates the energy conservation for equations (4) and (5).
Next, we provide the well-posedness of problems (4) and
(5) with the boundary condition (11) on the solution space
H2

0½xL, xR�. Before providing the well-posedness, we first state
the existence, which can be proved by the standard energy
method. By combining the local existence and uniqueness
with Theorem 2, we obtain the global existence. Therefore,
we leave the proof.

Lemma 3 (existence). Suppose u0 ∈H2
0½xL, xR�; then, there

exists a positive constant δ such that kukH2 ≤ δ, and then,
the initial value of problems (4) and (5) has a unique global
solution uðx, tÞ with uðx, tÞ ∈ Cð0,∞;H2½xL, xR�Þ.

Theorem 4. Suppose u0 ∈H2
0½xL, xR�; then, problems (4) and

(5) with the boundary condition (11) are well-posed.
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Proof. First, we let u1 and u2 are two solutions of (4) and (5)
with the boundary condition (11) satisfying the initial condi-
tions u0,1 and u0,2, respectively. Let ε = u1 − u2; then, by
substituting, δ corresponds to the following equation:

εt − μεxxt + 2κεx + ηεxxx + εxxxxt + γεxxxxx
= f u1ð Þ u1ð Þx − f u2ð Þ u2ð Þx + s 2 u1ð Þx u1ð Þxx + u1ð Þ u1ð Þxxx

� �
− s 2 u2ð Þx u2ð Þxx + u2ð Þ u2ð Þxxx
� �

:

ð14Þ

with the initial conditions

ε x, 0ð Þ = u0,1 − u0,2 ð15Þ

and boundary conditions

ε xL, tð Þ = ε xR, tð Þ = 0 εx xL, tð Þ = εx xR, tð Þ
= 0 and εxx xL, tð Þ = εxx xR, tð Þ = 0 t, ∈ 0, T½ �, ð16Þ

where t ∈ ½0, T� and x ∈ ½xL, xR�. By the standard energy
method, we introduce the following energy function

E∗ tð Þ =
ðxR
xL

ε2 + με2x + ε2xxdx: ð17Þ

By similar arguments as that in the proof of Theorem 1,
we have

dE∗ tð Þ
dt

= 2
ðxR
xL

εεtdx + 2μ
ðxR
xL

εxεxtdx + 2
ðxR
xL

εxxεxxtdx

= 2
ðxR
xL

εεtdx − 2μ
ðxR
xL

εεxxtdx + 2
ðxR
xL

εεxxxxtdx

= 2
ðxR
xL

ε −2κεx − ηεxxx − γεxxxxxð Þdx

+ 2
ðxR
xL

ε f u1ð Þ u1ð Þx − f u2ð Þ u2ð Þx
� �

dx

+ 2s
ðxR
xL

ε
�
2 u1ð Þx u1ð Þxx + u1ð Þ u1ð Þxxx

− 2 u2ð Þx u2ð Þxx + u2ð Þ u2ð Þxxx
� ��

dx

= 2
ðxR
xL

ε f u1ð Þ u1ð Þx − f u2ð Þ u2ð Þx
� �

dx

+ 2s
ðxR
xL

ε
�
2 u1ð Þx u1ð Þxx − u2ð Þx u2ð Þxx
� �

+ u1ð Þ u1ð Þxxx − u2ð Þ u2ð Þxxx
� ��

dx:

ð18Þ

Noting that the first nonlinear term can be estimated as

ðxR
xL

ε f u1ð Þ u1ð Þx − f u2ð Þ u2ð Þx
� �
= A
ðxR
xL

ε ε u1ð Þx + u2εx
� �

dx + 2sB
ðxR
xL

ε

� εx u2ð Þm + ε u1ð Þx 〠
m−1

k=1
u1ð Þm−k−1 u2ð Þk

 !

≤ C
ðxR
xL

ε2 + εεx
�� ��dx ≤ C

ðxR
xL

ε2dx +
ðxR
xL

ε2xdx

 !
,

ð19Þ

where Theorem 1 and the Cauchy-Schwarz inequality are
used. For the second term, we see that

2s
ðxR
xL

ε
�
2 u1ð Þx u1ð Þxx − u2ð Þx u2ð Þxx
� �

+ u1ð Þ u1ð Þxxx − u2ð Þ u2ð Þxxx
� ��

dx

= 4s
ðxR
xL

ε u1ð Þx u1ð Þxx − u2ð Þx u2ð Þxx
� �

dx

+ 2s
ðxR
xL

ε u1ð Þ u1ð Þxxx − u2ð Þ u2ð Þxxx
� �

dx≔M1 +M2:

ð20Þ

For the termM1, by Theorem 1 and the Cauchy-Schwarz
inequality, we have

M1 = 4s
ðxR
xL

ε εx u1ð Þxx + u2ð Þxεxx
� �

dx ≤ C
ðxR
xL

ε2d + ε2x + ε2xxdx:

ð21Þ

Next, by simple calculations, we can estimate the term
M2 as

M2 = 2s
ðxR
xL

ε u1ð Þ u1ð Þxxx − u2ð Þ u2ð Þxxx
� �

dx

= −2s
ðxR
xL

εu1ð Þx u1ð Þxx − εu2ð Þx u2ð Þxx
� �

dx

= −2s
ðxR
xL

ε u1ð Þx u1ð Þxx − u2ð Þx u2ð Þxx
� �

+ εx u1 u1ð Þxx − u2 u2ð Þxx
� �

dx

= −2s
ðxR
xL

ε εx u1ð Þxx + u2ð Þxεxx
� �

+ εx ε u1ð Þxx + u2εxx
� �

dx

≤ 2s
ðxR
xL

εk k∞ εxj j u1ð Þxx
�� �� + C εj j εxj j + εxj j εxxj jð Þdx

≤ C
ðxR
xL

ε2 + ε2x + ε2xxdx + s εk k2∞
ðxR
xL

u1ð Þ2xxdx

≤ C
ðxR
xL

ε2 + ε2x + ε2xxdx,

ð22Þ
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where Theorem 1, the Cauchy-Schwarz inequality, and the
Sobolev’s inequality are used. Substituting equations
(19)–(22) into equation (18) gives

dE∗ tð Þ
dt

≤ CE∗ tð Þ, ð23Þ

which yields E∗ðtÞ ≤ eCTE∗ð0Þ for all t ∈ ½0, T�. Obviously, the
uniqueness is consequently obtained when the initial condi-
tions for u1 and u2 are the same. Moreover, if εðx, 0Þ < δ, εx
ðx, 0Þ < δ, and εxxðx, 0Þ < δ, then we have

dE∗ tð Þ
dt

≤ eCTE∗ 0ð Þ ≤ δeCT , ð24Þ

for all t ∈ ½0, T�. That is, the solution is continuously depen-
dent on the initial condition. Since the existence and unique-
ness are obtained by Lemma 3, therefore equations (4) and
(5) with the boundary condition (11) are well-posed as
required. ☐

3. Solitary Wave Solutions

Next, we focus on problems (4) and (5). By introducing ξ =
x − ct, we see that equation (4) reduces to

−cuξ + μcuξξξ + 2κuξ + ηuξξξ − cuξξξξξ + γuξξξξξ
= f uð Þuξ + s 2uξuξξ + uuξξξ

� �
,

ð25Þ

that is,

2κ − c½ �uξ + μc + η½ �uξξξ + γ − c½ �uξξξξξ
= f uð Þuξ + s 2uξuξξ + uuξξξ

� �
,

ð26Þ

where f ðuÞ = Au + Bum. The solitary wave Ansatz method
admits the used assumption

u ξð Þ = λ sec hβ αξð Þ: ð27Þ
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Figure 1: Plot solitary wave solutions (32) when A = −1 and s = 2.
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Simple calculations give

uξ = −λαβ sec hβ αξð Þ tanh αξð Þ,
uξξ = λα2β2 sec hβ αξð Þ − λα2β β + 1ð Þ sec hβ+2 αξð Þ,
uξξξ = λα3β β + 1ð Þ β + 2ð Þ sec hβ+2 αξð Þ tanh αξð Þ

− λα3β3 sec hβ αξð Þ tanh αξð Þ,
uξξξξ = λα4β4 sec hβ αξð Þ − λα4β β + 1ð Þ

� 2β2 + 4β + 4
� �

sec hβ+2 αξð Þ + λα4β β + 1ð Þ β + 2ð Þ
� β + 3ð Þ sec hβ+4 αξð Þ,

uξξξξξ = −λα5β5 sec hβ αξð Þ tanh αξð Þ + λα5β β + 1ð Þ β + 2ð Þ
� 2β2 + 4β + 4
� �

sec hβ+2 αξð Þ tanh αξð Þ
− λα5β β + 1ð Þ β + 2ð Þ β + 3ð Þ β + 4ð Þ sec hβ+4
� αξð Þ tanh αξð Þ:

ð28Þ

Therefore, equation (26) turns into

− 2κ + cð Þ − μc + ηð Þα2β2 − γ − cð Þα4β4� �
λαβ sec hβ αξð Þ

+ μc + ηð Þ + γ − cð Þ 2β2 + 4β + 4
� �

α3
� �

λα3β β + 1ð Þ
� β + 2ð Þ sec hβ+2 αξð Þ − γ − cð Þλα5β β + 1ð Þ β + 2ð Þ
� β + 3ð Þ β + 4ð Þ sec hβ+4 αξð Þ

= −Aλ2β − 3sλ2α3β3� �
sec h2β αξð Þ + sλ2α3β β + 1ð Þ

� 3β + 2ð Þ sec h2β+2 αξð Þ − Bλm+1αβ sec h m+1ð Þβ αξð Þ:
ð29Þ

Balancing sec h2β+2ðαξÞ and sec hðm+1ÞβðαξÞ, we obtain
that 2β + 2 = ðm + 1Þβ; so, β = 1/m − 1.

Setting the coefficients of each term of sec hjðμξÞ to zero,
we have the following system:

−Aαλ2β − 3sλ2α3β3 = 0,
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Figure 2: Plot solitary wave solutions (32) when A = 1 and s = −2.
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sλ2α3β β + 1ð Þ 3β + 2ð Þ − Bλm+1αβ = 0,

2κ + cð Þ + μc + ηð Þα2β2 + γ − cð Þα4β4 = 0,

μc + ηð Þ + γ − cð Þ 2β2 + 4β + 4
� �

α3 = 0,

γ − cð Þλα5β β + 1ð Þ β + 2ð Þ β + 3ð Þ β + 4ð Þ = 0:
ð30Þ

Solving system (30), we obtain the set of parameters.

α = −A m − 1ð Þ2
12s

" #1/2
,

λ = −A m2 + 3m + 2
� �

6B

� �1/ m−1ð Þ
,

γ = c = −
η

μ
,

κ = −
η

2μ :

ð31Þ

For sA < 0, we can obtain the following solitary wave
solutions for equation (4):

u x, tð Þ = −A m2 + 3m + 2
� �

6B

� �1/m−1
sec h2/m−1

� m − 1ð Þ
ffiffiffiffiffiffiffi
−A
12s

r
x + η

μ
t


 � !
:

ð32Þ

Additionally, the following periodic wave solutions for
equation (4) can be obtained when sA > 0

u x, tð Þ = −A m2 + 3m + 2
� �

6B

� �1/m−1
sec2/m−1

� m − 1ð Þ
ffiffiffiffiffiffiffi
A
12s

r
x + η

μ
t


 � !
:

ð33Þ

Figures 1 and 2 plot the analytical solutions in the case of
A = −1 and s = 2 and A = 1 and s = −2, respectively, when
m = 2 and m = 4.

4. Concluding Remarks

In this paper, we successfully studied the nonlinear wave
equation by coupling the classical Camassa-Holm equation
and the Rosenau-RLW-Kawahara equation in the case of
asymptotic boundary conditions. Based on the boundary
conditions, we obtained that the equation possesses the con-
servative energy, which was used to derive the well-posedness
in H2

0ðΩÞ. Moreover, to seek the analytic solution in H2
0ðΩÞ,

we applied the Ansatz method to derive the solitary wave
solution class by balancing linear and nonlinear terms. One
can see that the dual term of nonlinearity f ðuÞ = Au + Bum

is essential to derive the class of analytic solutions.

In view of Theorem 4, the order of the highest-order
derivative appearing in equation (4) is five, but there are six
boundary conditions as defined in equation (11), which
seems that it is overdetermined for the problem on a
bounded interval. It should be pointed out that the boundary
condition (11) is logical to study under the solitary wave con-
ditions, that is, u and its derivative approach to zero when
∣x ∣⟶∞ (see equation (6)). However, there are many qual-
itative differences in the behavior of solutions depending on
the number of boundary conditions used. Therefore, this
question should be of interest in the future.

Data Availability

No data were available in the manuscript.

Conflicts of Interest

No conflict of interest exists. We wish to confirm that there
are no known conflicts of interest associated with this publi-
cation, and there has been no significant financial support for
this work that could have influenced its outcome.

Authors’ Contributions

All authors developed the theoretical formalism and per-
formed the analytic calculations to the writing final version
of the manuscript.

Acknowledgments

This research was supported by Chiang Mai University.

References

[1] D. J. Korteweg and G. de Vries, “XLI.On the change of form of
long waves advancing in a rectangular canal, and on a new type
of long stationary waves,” Philosophical Magazine, vol. 39,
no. 240, pp. 422–443, 1895.

[2] S. Ozer and S. Kutluay, “An analytical-numerical method for
solving the Korteweg-de Vries equation,” Applied Mathemat-
ics and Computation, vol. 164, no. 3, pp. 789–797, 2005.

[3] A. R. Bahadir, “Exponential finite-difference method applied
to Korteweg-de Vries equation for small times,” Applied Math-
ematics and Computation, vol. 160, no. 3, pp. 675–682, 2005.

[4] K. Poochinapan, B. Wongsaijai, and T. Disyadej, “Efficiency of
high-order accurate difference schemes for the Korteweg-de
Vries equation,” Mathematical Problems in Engineering,
vol. 2014, Article ID 862403, 8 pages, 2014.

[5] X. Lv, T. Shao, and J. Chen, “The study of the solution to a gen-
eralized KdV-mKdV equation,” Abstract and Applied Analysis,
vol. 2013, Article ID 249043, 17 pages, 2013.

[6] A. R. Seadawy, “Two-dimensional interaction of a shear flow
with a free surface in a stratified fluid and its solitary-wave
solutions via mathematical methods,” The European Physical
Journal Plus, vol. 518, p. 11, 2017.

[7] M. Elbadri, S. A. Ahmed, Y. T. Abdalla, and W. Hdidi, “A new
solution of time-fractional coupled KdV equation by using
natural decomposition method,” Abstract and Applied Analy-
sis, vol. 2020, Article ID 3950816, 9 pages, 2020.

7Abstract and Applied Analysis



[8] J. L. Bona, W. G. Pritchard, and L. R. Scott, “Numerical
schemes for a model for nonlinear dispersive waves,” Journal
of Computational Physics, vol. 60, no. 2, pp. 167–186, 1985.

[9] D. Bhardwaj and R. Shankar, “A computational method for
regularized long wave equation,” Computers & Mathematcs
with Applications, vol. 40, no. 12, pp. 1397–1404, 2000.

[10] A. Dogan, “Numerical solution of regularized long wave equa-
tion using Petrov-Galerkin method,” Communications in
Numerical Methods in Engineering, vol. 17, no. 7, pp. 485–
494, 2001.

[11] A. Dogan, “Numerical solution of RLW equation using linear
finite elements within Galerkin’s method,” Applied Mathemat-
ical Modelling, vol. 26, no. 7, pp. 771–783, 2002.

[12] C. E. Seyler and D. L. Fenstermacher, “A symmetric
regularized-long-wave equation,” Physics of Fluids, vol. 27,
no. 1, pp. 4–7, 1984.

[13] S. Yimnet, B. Wongsaijai, T. Rojsiraphisal, and K. Poochinapan,
“Numerical implementation for solving the symmetric regular-
ized long wave equation,” Applied Mathematics and Computa-
tion, vol. 273, pp. 809–825, 2016.

[14] S. Li, “Numerical study of a conservative weighted compact
difference scheme for the symmetric regularized long wave
equations,” Numerical Methods for Partial Differential Equa-
tions, vol. 35, no. 1, pp. 60–83, 2019.

[15] J. Kerdboon, S. Yimnet, B. Wongsaijai, T. Mouktonglang, and
K. Poochinapan, “Convergence analysis of the higher-order
global mass-preserving numerical method for the symmetric
regularized long-wave equation,” International Journal of
Computer Mathematics, vol. 98, no. 5, pp. 869–902, 2021.

[16] A. Biswas, “Solitary wave solution for the generalized Kawa-
hara equation,” Applied Mathematics Letters, vol. 22, no. 2,
pp. 208–210, 2009.

[17] R. Chousurin, T. Mouktonglang, B. Wongsaijai, and
K. Poochinapan, “Performance of compact and non-compact
structure preserving algorithms to traveling wave solutions
modeled by the Kawahara equation,” Numerical Algorithms,
vol. 85, no. 2, pp. 523–541, 2020.

[18] G.-W. Wang and T.-Z. Xu, “Group analysis and new explicit
solutions of simplified modified Kawahara equation with var-
iable coefficients,” Abstract and Applied Analysis, vol. 2013,
Article ID 139160, 8 pages, 2013.

[19] A. Atangana, N. Bildik, and S. C. O. Noutchie, “New iteration
methods for time-fractional modified nonlinear Kawahara
equation,” Abstract and Applied Analysis, vol. 2014, Article
ID 740248, 9 pages, 2014.

[20] P. Rosenau, “A quasi-continuous description of a nonlinear
transmission line,” Physica Scripta, vol. 34, no. 6B, pp. 827–
829, 1986.

[21] P. Rosenau, “Dynamics of dense discrete systems,” Progress in
Theoretical Physics, vol. 79, no. 5, pp. 1028–1042, 1988.

[22] M. A. Park, “On the Rosenau equation,” Computation and
Applied Mathematics, vol. 9, pp. 145–152, 1990.

[23] M. A. Park, “Pointwise decay estimate of solutions of the gen-
eralized Rosenau equation,” Journal of the Korean Mathemat-
ical Society, vol. 29, pp. 261–280, 1992.

[24] X. Pan and L. Zhang, “On the convergence of a conservative
numerical scheme for the usual Rosenau-RLW equation,”
Applied Mathematical Modelling, vol. 36, no. 8, pp. 3371–
3378, 2012.

[25] X. Pan and L. Zhang, “Numerical simulation for general
Rosenau-RLW equation: an average linearized conservative

scheme,” Mathematical Problems in Engineering, vol. 2012,
Article ID 517818, 15 pages, 2012.

[26] B. Wongsaijai, K. Poochinapan, and T. Disyadej, “A compact
finite difference method for solving the general Rosenau-
RLW equation,” IAENG International Journal of Applied
Mathematics, vol. 44, pp. 192–199, 2014.

[27] B. Wongsaijai, T. Mouktonglang, N. Sukantamala, and
K. Poochinapan, “Compact structure-preserving approach to
solitary wave in shallow water modeled by the Rosenau-RLW
equation,” Applied Mathematics and Computation, vol. 340,
pp. 84–100, 2019.

[28] J.-M. Zuo, “Solitons and periodic solutions for the Rosenau-
KdV and Rosenau-Kawahara equations,” Applied Mathemat-
ics and Computation, vol. 215, no. 2, pp. 835–840, 2009.

[29] B. Wongsaijai and K. Poochinapan, “A three-level average
implicit finite difference scheme to solve equation obtained
by coupling the Rosenau–KdV equation and the Rosenau–
RLW equation,” Applied Mathematics and Computation,
vol. 245, pp. 289–304, 2014.

[30] M. Labidi and A. Biswas, “Application of He’s principles to
Rosenau-Kawahara equation,” Mathematics in Engineering,
Science & Aerospace (MESA), vol. 2, pp. 183–197, 2011.

[31] A. Biswas, H. Triki, andM. Labidi, “Bright and dark solitons of
the Rosenau-Kawahara equation with power law nonlinear-
ity,” Physics of Wave Phenomenon, vol. 19, no. 1, pp. 24–29,
2011.

[32] D. He and K. Pan, “A linearly implicit conservative difference
scheme for the generalized Rosenau–Kawahara-RLW equa-
tion,” Applied Mathematics and Computation, vol. 271,
pp. 323–336, 2015.

[33] A. Ghiloufi, M. Rahmeni, and K. Omrani, “Convergence of
two conservative high-order accurate difference schemes for
the generalized Rosenau–Kawahara-RLW equation,” Engi-
neering with Computers, vol. 36, no. 2, pp. 617–632, 2020.

[34] M. Mei, “Long-time behavior of solution for Rosenau-Burgers
equation (I),” Applicable Analysis, vol. 63, no. 3-4, pp. 315–
330, 1996.

[35] M. Mei, “Long-time behaviour of solution for Rosenau-
Burgers equation(II),” Applicable Analysis, vol. 68, no. 3-4,
pp. 333–356, 1998.

[36] M. Mei, “Large-time behavior of solution for generalized Ben-
jamin-Bona-Mahony-Burgers equations,” Nonlinear Analysis,
vol. 33, no. 7, pp. 699–714, 1998.

[37] L. Liu and M. Mei, “A better asymptotic profile of Rosenau-
Burgers equation,” Applied Mathematics and Computation,
vol. 131, no. 1, pp. 147–170, 2002.

[38] D. He, “Exact solitary solution and a three-level linearly
implicit conservative finite difference method for the general-
ized Rosenau-Kawahara-RLW equation with generalized
Novikov type perturbation,” Nonlinear Dynamics, vol. 85,
no. 1, pp. 479–498, 2016.

[39] N. Tamang, B. Wongsaijai, T. Mouktonglang, and
K. Poochinapan, “Novel algorithm based on modification of
Galerkin finite element method to general Rosenau-RLW
equation in (2+1)-dimensions,” Applied Numerical Mathe-
matics, vol. 148, pp. 109–130, 2020.

[40] J. Janwised, B. Wongsaijai, T. Mouktonglang, and
K. Poochinapan, “A modified three-level average linear-
implicit finite difference method for the Rosenau-Burgers
equation,” Advances in Mathematical Physics, vol. 2014, Arti-
cle ID 734067, 11 pages, 2014.

8 Abstract and Applied Analysis



[41] S. Ozer, “Numerical solution by quintic B-spline collocation
finite element method of generalized Rosenau–Kawahara
equation,” The Mathematical Scientist, 2021.

[42] B. Wongsaijai, P. Charoensawan, T. Chaobankoh, and
K. Poochinapan, “Advance in compact structure-preserving
manner to the Rosenau–Kawahara model of shallow-water
wave,” Mathematical Methods in the Applied Sciences,
vol. 44, no. 8, pp. 7048–7064, 2021.

[43] B. Wongsaijai and K. Poochinapan, “Optimal decay rates of
the dissipative shallow water waves modeled by coupling the
Rosenau-RLW equation and the Rosenau-Burgers equation
with power of nonlinearity,” Applied Mathematics and Com-
putation, vol. 405, article 126202, 2021.

[44] R. Camassa and D. D. Holm, “An integrable shallow water
equation with peaked solitons,” Physical Review Letters,
vol. 71, no. 11, pp. 1661–1664, 1993.

[45] R. Camassa, D. D. Holm, and J. M. Hyman, “A new integrable
shallow water equation,” Advances in Applied Mechanics,
vol. 31, pp. 1–33, 1994.

[46] J. Lenells, “Traveling wave solutions of the Camassa-Holm
equation,” Journal of Differential Equations, vol. 217, no. 2,
pp. 393–430, 2005.

[47] H. Kalisch and J. Lenells, “Numerical study of traveling-wave
solutions for the Camassa-Holm equation,” Chaos, Solitons
and Fractals, vol. 25, no. 2, pp. 287–298, 2005.

[48] A. Constantin and W. A. Strauss, “Stability of the Camassa-
Holm solitons,” Journal of Nonlinear Science, vol. 12, no. 4,
pp. 415–422, 2002.

[49] Y. A. Li and P. J. Olver, “Well-posedness and blow-up solu-
tions for an integrable nonlinearly dispersive model wave
equation,” Journal of Differential Equations, vol. 162, no. 1,
pp. 27–63, 2000.

[50] S. Lai, “The existence and uniqueness of the local solution for a
Camassa-Holm type equation,” Applied Mathematics and
Computation, vol. 216, no. 4, pp. 1287–1298, 2010.

[51] S. Nanta, S. Yimnet, K. Poochinapan, and B. Wongsaijai, “On
the identification of nonlinear terms in the generalized
Camassa-Holm equation involving dual-power law nonlinear-
ities,” Applied Numerical Mathematics, vol. 160, pp. 386–421,
2021.

[52] K. H. Kwek, H. Gao, W. Zhang, and C. Qu, “An initial bound-
ary value problem of Camassa-Holm equation,” Journal of
Mathematical Physics, vol. 41, no. 12, pp. 8279–8285, 2000.

[53] A. Bressan and A. Constantin, “Global conservative solutions
of the Camassa-Holm equation,” Archive for Rational
Mechanics and Analysis, vol. 183, no. 2, pp. 215–239, 2007.

[54] J. Escher and Z. Yin, “Initial boundary value problems of the
Camassa-Holm equation,” Communications in Partial Differ-
ential Equations, vol. 33, no. 3, pp. 377–395, 2008.

[55] H. Bulut, T. A. Sulaiman, F. Erdogan, and H. M. Baskonus,
“On the new hyperbolic and trigonometric structures to the
simplifiedMCH and SRLW equations,” The European Physical
Journal Plus, vol. 132, p. 12, 2017.

[56] X. Zong, X. Cheng, Z. Wang, and Z. Han, “Initial boundary
value problem and asymptotic stabilization of the two-
component Camassa-Holm equation,” Abstract and Applied
Analysis, vol. 2011, Article ID 635851, 20 pages, 2011.

[57] Z. Yin, “Several dynamic properties of solutions to a general-
ized Camassa-Holm equation,” Abstract and Applied Analysis,
vol. 2013, Article ID 247841, 5 pages, 2013.

[58] A. Esfahani, “Solitary wave solutions for generalized Rosenau-
KdV equation,” Communications in Theoretical Physics,
vol. 55, no. 3, pp. 396–398, 2011.

[59] A. Esfahani and R. Pourgholi, “Dynamics of solitary waves of
the Rosenau-RLW equation,” Differential Equations and
Dynamical Systems, vol. 22, no. 1, pp. 93–111, 2014.

[60] P. Razborova, B. Ahmed, and A. Biswas, “Solitons, shock
waves and conservation laws of Rosenau-KdV-RLW equation
with power law nonlinearity,” Applied Mathematics & Infor-
mation Sciences, vol. 8, no. 2, pp. 485–491, 2014.

[61] H. M. Baskonus, “Complex surfaces to the fractional (2 + 1)-
dimensional Boussinesq dynamical model with the local M-
derivative,” The European Physical Journal Plus, vol. 134,
p. 10, 2019.

[62] A. Ali, A. R. Seadawy, and D. Lu, “Computational methods
and traveling wave solutions for the fourth-order nonlinear
Ablowitz-Kaup-Newell-Segur water wave dynamical equation
via two methods and its applications,” Open Physics, vol. 16,
pp. 219–226, 2018.

[63] A. R. Seadawy and K. El-Rashidy, “Dispersive solitary wave
solutions of Kadomtsev-Petviashvili and modified Kadomtsev-
Petviashvili dynamical equations in unmagnetized,” Results in
Physics, vol. 8, pp. 1216–1222, 2018.

[64] A. R. Seadawy, “Ion acoustic solitary wave solutions of two-
dimensional nonlinear Kadomtsev-Petviashvili-Burgers equa-
tion in quantum plasma,” Mathematical Methods in the
Applied Sciences, vol. 40, no. 5, pp. 1598–1607, 2017.

[65] M. Arshad, A. R. Seadawy, and D. Lu, “Elliptic function and
solitary wave solutions of the higher-order nonlinear Schrö-
dinger dynamical equation with fourth-order dispersion and
cubic-quintic nonlinearity and its stability,” The European
Physical Journal Plus, vol. 371, p. 11, 2017.

9Abstract and Applied Analysis


	On Solitary Wave Solutions for the Camassa-Holm and the Rosenau-RLW-Kawahara Equations with the Dual-Power Law Nonlinearities
	1. Introduction
	2. Solution Properties
	3. Solitary Wave Solutions
	4. Concluding Remarks
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

