Research Article

Maximum Norm Estimates of the Solution of the Navier-Stokes Equations in the Halfspace with Bounded Initial Data

Santosh Pathak

Department of Mathematics, University of Utah Asia Campus, 119-3 Songdo Moonhwa-Ro Yeonsu-Gu, Incheon, Republic of Korea 21985

Correspondence should be addressed to Santosh Pathak; s.pathak@utah.edu

Received 4 January 2021; Accepted 6 February 2021; Published 17 February 2021

Abstract and Applied Analysis

Hindawi

Volume 2021, Article ID 6686526, 13 pages

https://doi.org/10.1155/2021/6686526

1. Introduction

We consider the Cauchy problem of the incompressible Navier-Stokes equations in \mathbb{R}^n, $n \geq 3$:

$$
\begin{align*}
 u_t + u \cdot \nabla u + \nabla p &= \Delta u \quad \text{for } x \in \mathbb{R}^n_+, t > 0, \\
 \nabla \cdot u &= 0 \quad \text{for } x \in \mathbb{R}^n_+, t > 0, \\
 u|_{t=0} &= f \quad \text{for } x \in \mathbb{R}^n, \\
 u|_{x_n=0} &= 0 \quad \text{for } t > 0,
\end{align*}
$$

(1)

where $u = u(x, t) = (u_1(x, t), \ldots, u_n(x, t))$ and $p = p(x, t)$ stand for the unknown velocity field of the fluid and its pressure, while $f = f(x) = (f_1(x), \ldots, f_n(x))$ is the given initial velocity vector field, with $\nabla f = 0$ and $f|_{x_n=0} = 0$. In what follows, we will use the same notations for the space of vector-valued and scalar functions for convenience in writing.

There is a large literature on the existence and uniqueness of solution of the Navier-Stokes equations in \mathbb{R}^n. For the given initial data, solutions of (1) have been constructed in various function spaces. For example, if $f \in L^r$ for some r with $3 \leq r < \infty$, then it is well known that there is a unique classical solution in some maximum interval of time: $0 \leq t < T_f$, where $0 < T_f \leq \infty$. But, for the uniqueness of the pressure, one requires $|p(x, t)| \rightarrow 0$ as $|x| \rightarrow \infty$. See [1] and [2] for $r = 3$ and [3] for $3 < r < \infty$. The solution is C^{∞} for $0 < T_f < \infty$.

It is well known that for $f \in L^{\infty}(\mathbb{R}^n)$, there is a unique, smooth, and local-in-time solution u for the Navier-Stokes equations with

$$
p = \sum_{i,j} R_i R_j u_i u_j,
$$

(2)

where $R_i = (-\Delta)^{-1/2} \partial_{x_i}$ is the ith Riesz operator. It is known that in \mathbb{R}^2, this solution can be extended globally in time. For $f \in L^{\infty}(\mathbb{R}^n)$, where $n \geq 3$, the existence of a regular solution follows from [4]. The solution is only unique if one puts some growth restrictions on the pressure as $|x| \rightarrow \infty$. A simple example of nonuniqueness is demonstrated in [5], where the velocity u is bounded, but $|p(x, t)| \leq C|x|$. In addition, an estimate $|p(x, t)| \leq C(1 + |x|^\sigma)$ with $\sigma < 1$ (see [6]) implies uniqueness. Also, the assumption $p \in L^{1}_{\text{loc}}(0, T; \text{BMO})$ (see [7]) implies uniqueness.
For \(f \in L^{\infty}(\mathbb{R}^n) \), where \(n \geq 3 \), the existence of a local mild solution is proved by Bae and Jin in [8]. In the same paper, it is also proved that such mild solution is indeed a strong solution of the Navier-Stokes equations (1). Before the result of Bae and Jin, the local-in-time existence of mild (strong) solution of the halfspace problem was provided in [9] by Solonnikov for continuous bounded initial data in \(\mathbb{R}^n \).

In this paper, I am interested in obtaining estimates of the maximum norm of the derivatives of \(u \) in terms of the maximum norm of the initial function \(f \), assuming that the solution exists, and it is \(C^{\infty}(\mathbb{R}^n) \) for \(0 < t < T_f \). The work of this paper is a continuation of the work of my papers [10] and [11] to the halfspace case for nondecaing initial data. Non-empty boundary in the domain in this paper makes this work different, in some aspects, and significantly more challenging in proving the key lemmas than the work in my previous works where the initial functions are in \(\mathbb{R}^n \) or \(\Gamma^n \).

We begin by transforming the momentum equations of (1) into the abstract ordinary differential equations:

\[
\dot{u} + Au = -\mathcal{P}(u \cdot \nabla u),
\]

where \(A = -\mathcal{P}A \) is the Stokes operator and \(\mathcal{P} \) is the Leray projector, which is given by

\[
\mathcal{P}f(x) \equiv f(x) + \nabla_x \int_{\mathbb{R}^n} \nabla_y G(x,y) \cdot f(y)dy,
\]

where \(f_n|_{x_n=0} = 0 \). Note that

\[
G(x,y) \equiv N(x-y) + N(x-y^*),
\]

where \(y^* = (y_1, \ldots, y_n, 1-y_n) \), \(N(x) = (1/(2 - n))x^{2-n} \), if \(n \geq 3 \), and \(\omega_n \) denotes the surface area of the unit sphere in \(\mathbb{R}^n \) which is given by \(\omega_n = 2\pi^{n/2}/\Gamma(n/2) \).

The solution of (3) is formally expressed in the integral form:

\[
u(t) = e^{-At}f - \int_0^t e^{A(t-s)}\mathcal{P}(u \cdot \nabla u)(s)ds.
\]

Solonnikov [9] has expressed the solution operator of the Stokes equations in \(\mathbb{R}^n \) in the integral form

\[
e^{-At}f \equiv \int_{\mathbb{R}^n} G(x,y,t) \cdot f(y)dy,
\]

where \(G = (G_{ij})_{i,j=1,\ldots,n} \) is given by

\[
G_{ij}(x,y,t) = \delta_{ij}(\Gamma(x-y,t) - \Gamma(x-y^*,t))
+ 4(1-\delta_{in}) \frac{\partial}{\partial x_j} \int_0^t \frac{\partial}{\partial x_i} N(x-z)
\cdot \Gamma(z-y^*,t)dz.
\]

The function \(\Gamma(x,t) \) is the \(n \)-dimensional Gaussian kernel defined by \(\Gamma(x,t) \equiv \Gamma(x) \equiv (1/(4\pi t)^{n/2})e^{-|x|^2/4t} \).

A solution formula of the Stokes equations (3) in \(\mathbb{R}^n \) has also been provided by Ukai in [12]. Such solution formula has been used in the \(L^q \) setting, particularly for \(1 < q < \infty \) (see [13, 14]). For \(L^1 \) and \(L^{\infty} \) estimates of the Stokes flow or its gradient, see [15, 16]. The solution formula provided by Solonnikov [9] has mainly been used for \(L^{\infty} \) framework (see [14, 17]).

To formulate the main result of this paper, we first introduce some notations as follows:

\[
|f|_\infty = \sup_x |f(x)| \quad \text{and} \quad |f|_t^2 = \sum_i f_i^2(x),
\]

and \(D^\alpha = D_1^\alpha \cdots D_n^\alpha \), \(\partial x_i = D_i = (\partial/\partial x_i) \) for a multi – index \(\alpha = (\alpha_1, \ldots, \alpha_n) \). In what follows, if \(|\alpha| = j \), for any \(j = 0, 1, \cdots \), then we will denote \(D^\alpha = D_1^\alpha \cdots D_n^\alpha \) by \(D^j \). We also set

\[
|D^j u(t)|_\infty = \max_{|\alpha| = j} |D^\alpha u(t)|_\infty.
\]

Clearly, \(|D^j u(t)|_\infty \) measures all space derivatives of order \(j \) in maximum norm. For later purposes, let us also introduce a few other notations:

\[
\Gamma(x,t) = \Gamma_i(x) = \Gamma_1(x) \Gamma_n(x_n) = \left(\frac{1}{(4\pi t)^{(n-1)/2}} e^{-|x|^2/4t} \right) \left(\frac{1}{(4\pi t)^{1/2}} e^{-x_n^2/4t} \right),
\]

\[
D^\alpha = \left(D_1^\alpha, \cdots, D_{n-1}^\alpha, 1 \right), \quad D^\alpha = D^\alpha D_n, \quad \alpha = (\beta, 1), \quad \nabla = \text{div}.
\]

Throughout this paper, \(D^j \) will be understood as the derivative of order \(j = |\alpha| = |\beta| + 1 \). In addition, \(1_{\mathbb{R}^n} \) denotes the characteristic function which is 1 on \(\mathbb{R}^n \) and 0 otherwise. \(\tau_a \) is a translation operator defined by \(\tau_a f(x) : = f(a - x) \).

The goal of this paper is to prove the following theorem.

Theorem 1. Consider the Cauchy problem for the Navier-Stokes equations (11) where \(f \in L^{\infty}(\mathbb{R}^n) \) and \(\nabla f = 0 \) is understood in the sense of distribution. There is a constant \(c_0 > 0 \), and for any \(\alpha = (\alpha_j, \cdots, \alpha_{n-1}, 1) \) with \(|\alpha| = j \) where \(j = 0, 1, \cdots \) there is a constant \(K_j \) so that

\[
t^{\frac{1}{2}} |D^j u(t)|_\infty \leq K_j |f|_\infty \quad \text{for} \quad 0 < t \leq t_0 - \frac{c_0}{|f|_\infty}.
\]

The constants \(c_0 \) and \(K_j \) are independent of \(t \) and \(f \).

One of the important tools in the proof of Theorem 1 is the uniform estimates of the composite operator \(D^j e^{-At} \mathcal{P} \nabla \text{div} \). But, obtaining such uniform estimates is complicated because of the possible noncommutativity nature of the Leray projector with the derivatives in the direction of normal to the boundary of the domain; hence, \(D^j \) and \(e^{-At} \mathcal{P} \) may not be commutative.
To overcome this difficulty, we will generalize the techniques of obtaining the uniform estimates on $V e^{-At} P V \div$ of the paper [8] by Bae and Jin to obtain our desired uniform estimates on $D e^{-At} P V \div$. In their paper, they require the uniform estimates to prove the existence of the local solution of the Navier-Stokes equations in half-space for bounded initial data.

This paper is organized in the following ways. In "Some Auxiliary Results," we introduce some auxiliary results which will be labelled as propositions. In "Estimate of $D e^{-At} P V$-g," we derive an important estimate on the composite operator $D e^{-At} P V \div$. In "Estimates for the Navier-Stokes Equations," we establish some estimates on the solution of the Navier-Stokes equations. In "Estimates for the Navier-Stokes Equations," a proof of Theorem 1 will be provided. Finally, Appendices A, B, and C contain proofs of the propositions which are introduced in "Some Auxiliary Results."

2. Some Auxiliary Results

Let us consider the Stokes problem in \mathbb{R}^m_n, $n \geq 3$:

$$
\begin{aligned}
 u_0 - \Delta u + \nabla p &= -\nabla \cdot g(x) \quad \text{for} \quad x \in \mathbb{R}^m_n, \ t > 0, \\
 \nabla u &= 0 \quad \text{for} \quad x \in \mathbb{R}^m_n, \ t > 0, \\
 u_{|z=0} &= f \quad \text{for} \quad x \in \mathbb{R}^m_n, \\
 u_{|y=0} &= 0 \quad \text{for} \quad t > 0.
\end{aligned}
$$

(13)

where $g = u \otimes u + (g_{ij})_{1 \leq i,j \leq n}$. Here, we note that each g_{ij} is quadratic in components of u.

Solonikov in [9] has obtained the solution of (13) which is given by

$$
 u(x, t) = \int_0^t \int_{\mathbb{R}^m_n} G(x, y, t) \cdot f(y) dy - \int_0^t \int_{\mathbb{R}^m_n} G(x, y, t-s) \cdot (\nabla \cdot g)(y, s) dy ds.
$$

(14)

Next, we state the following proposition.

Proposition 2. If $k = 1, \ldots, n-1$, then we have

$$
\frac{\partial}{\partial x_k} G_{ij}(x, y, t) = -\frac{\partial}{\partial y_k} G_{ij}(x, y, t)
$$

and

$$
\frac{\partial}{\partial x_n} G_{ij}(x, y, t) = \frac{\partial}{\partial y_n} G_{ij}(x, y, t) - 2 \delta_{ij} \frac{\partial}{\partial y_n} G(x, y, t) \\
+ 4(1 - \delta_{jn}) \frac{\partial}{\partial x_j} \int_{\mathbb{R}^m_n} \frac{\partial}{\partial x_i} N(\tilde{z}, \tilde{y}, x_n) \\
\cdot \Gamma(\tilde{z}, \tilde{y}, y_n, t) d\tilde{z}.
$$

(15)

Proof. The proof is given in Appendix A.

Proposition 3. Let $x \in \mathbb{R}^m_n$ and f be any Hölder continuous function with the exponent $0 < \alpha < 1$:

$$
[f]_\alpha = \sup_{x, z} \frac{|f(x) - f(z)|}{|x - z|^\alpha} < \infty.
$$

(17)

Then, for $i, j \neq n$ or $i, j = n$, we have

$$
\frac{\partial}{\partial x_i} \int_0^t \int_{\mathbb{R}^m_n} \frac{\partial}{\partial x_j} N(x-z)f(z)dz = -\frac{\delta_{ij}}{2n} f(x) \\
+ \int_0^t \int_{\mathbb{R}^m_n} \partial^2_{x_j} N(x-z)f(z)dz \\
+ \delta_{jn} \int_{\mathbb{R}^m_n} \partial_{x_j} N(\tilde{z}, \tilde{y}) f(z, x_n) d\tilde{z}.
$$

(18)

For $i = n, j \neq n$ or $j = n, i \neq n$, we have

$$
\frac{\partial}{\partial s} \int_0^t \int_{\mathbb{R}^m_n} \partial_{x_j} N(x-z)f(z)dz = \int_0^t \int_{\mathbb{R}^m_n} \partial^2_{x_j} N(x-z)f(z)dz.
$$

(19)

Proof. The proof is given in Appendix B.

Next, we define the Hardy space \mathcal{H}. Let $\mathcal{A} h(x) = \sup_{x > 0} |h \ast \Gamma_I(x)|$. Let $\mathcal{H} = L^1(\mathbb{R}^n)$ be the space of functions h so that $\mathcal{A} h \in L^1(\mathbb{R}^n)$ with the norm $\|h\|_{\mathcal{H}} = \|\mathcal{A} h\|_{L^1(\mathbb{R}^n)}$. Let $\mathcal{H} = (\mathbb{R}^n)$ be the space of functions h so that there is $\tilde{h} \in \mathcal{H}$ with $\tilde{h}_{|\mathbb{R}^n} = h$ with the norm $\|h\|_{\mathcal{H}} = \inf\{\|\tilde{h}\|_{\mathcal{H}} : \tilde{h}_{|\mathbb{R}^n} = h\}$.

Next, we state a few well-known results related to the Hardy-norm estimates of the Gaussian kernel Γ_I.

Proposition 4. Fix $a \in \mathbb{R}^n$. Then $1_{\mathbb{R}^n} D^j(\tau_a \Gamma_I) \in \mathcal{H}$ with

$$
\|1_{\mathbb{R}^n} D^j(\tau_a \Gamma_I)\|_{\mathcal{H}} \leq C t^{-j/2}
$$

(20)

and

$$
\|1_{\mathbb{R}^n} D^j(\tau_a \Gamma_I - \tau_b \Gamma_I)\|_{\mathcal{H}} \leq C t^{|j+j'/2|} e^{-\alpha |\tilde{a} - \tilde{b}|^2}
$$

(21)

for $0 < \alpha < 1$.

We omit the proofs of well-known results of Proposition 4.
Proposition 5. Let $j = 1 \cdots, n-1$ and $i = 1 \cdots n$. Then we have
\[
\int_{x_i}^{x_i} \int_{x_j}^{x_j} \frac{\partial^2}{\partial x_i \partial x_j} N(x-z)f(z,y)dzdy
\leq C \sup_{x \in R^n} \int_{R^n} \left| f(x,y) \right| dy
\]
\[
+ Cx_n^2 \sup_{x_i-x_j \in R^n} \frac{\int_{R^n} \left| f(x,z_n,y) - f(x,z_n,y) \right| dy}{|x-z|^n}.
\]
(22)

Proof. The proof is given in Appendix C.

3. Estimate of $D^i e^{-At} \nabla \cdot \mathbf{g}$

Solonikov in [9] and Shimizu in [16] provide the following estimates:
\[
\left| D^i e^{-At} f \right|_{\infty} \leq C t^{-1/2} \left| f \right|_{\infty}, \tag{23}
\]
\[
\left| e^{-At} \nabla \cdot \mathbf{g} \right|_{\infty} \leq C t^{-1/2} \left| \mathbf{g} \right|_{\infty}, \tag{24}
\]
where $f \in L^{\infty}(R^n)$, $g = (g_{ij})$, $1 \leq i, j \leq n$, and $g_{ij} \in L^{\infty}(R^n)$ for each i, j. Also, f and g vanish on the boundary. In addition, in paper [8] by Bae and Jin, they prove
\[
\left| \nabla e^{-At} \nabla \cdot \mathbf{g} \right|_{\infty} \leq C t^{-1/2} \left| \nabla \cdot \mathbf{g} \right|_{\infty}, \tag{25}
\]
as a critical estimate to prove their desired result.

With all the above estimates in hand, we begin to obtain the uniform estimate on the composite operator $D^i e^{-At} \nabla \cdot \mathbf{g}$. For that purpose, recall
\[
e^{-At} f = \int_{R^n} G(x,y,t) \cdot f(y)dy, \tag{26}
\]
where $G(x,y,t)$ is defined by (8). In the following, consider $i \neq n$, and denote by $H = (H_{ijk})_{i,j,k=1}^{n}$ the kernel tensor of the operator $e^{-At} \nabla \cdot \mathbf{g}$. Div. For simplicity in computational purpose, we consider g_{ij} as a Schwartz class function in R^n vanishing on the boundary for each i, j. Thus, we begin by writing
\[
\left[\partial_x e^{-At} \nabla \cdot D^j \mathbf{g} \right] \mathbf{g} = \sum_{j,k=1}^{n} \partial_x H_{ijk}(x,y,t)D^j g_{jk}(y)dy, \tag{27}
\]
where
\[
H_{ijk}(x,y,t) = -\partial_x G_{ij}(x,y,t)
\]
\[
+ \sum_{j=1}^{n} \partial_x \mathbf{g}(z, y) \partial_z G_{ij}(x, z, y)dz.
\]
(28)

With integration by parts, we obtain
\[
\left[\partial_x e^{-At} \nabla \cdot D^j \mathbf{g} \right] \mathbf{g} = \sum_{j,k=1}^{n} (-1)^{|\beta|} \int_{R^n} \partial_x D^j H_{ijk}(x,y,t)g_{jk}(y)dy.
\]
(29)

Use $G_{in} = 0$ for $i \neq n$ to write the following:
\[
\partial_x D^j H_{ijk}(x,y,t) = -\partial_x \partial_y D^j G_{ij}(x,y,t)
\]
\[
+ \sum_{j=1}^{n} \partial_x \partial_j D^j G_{ij}(x,y,t)dz.
\]
(30)

Therefore, (29) can be rewritten as
\[
\left[\partial_x e^{-At} \nabla \cdot D^j \mathbf{g} \right] \mathbf{g} = \sum_{j,k=1}^{n} (-1)^{|\beta|} \int_{R^n} \partial_x D^j G_{ij}(x,y,t)g_{jk}(y)dy.
\]
(32)

where
\[
I_1(x,t) = (-1)^{|\beta|} \sum_{j,k=1}^{n} \int_{R^n} \partial_x D^j H_{ijk}(x,y,t)g_{jk}(y)dy,
\]
\[
I_2(x,t) = (-1)^{|\beta|} \sum_{j,k=1}^{n} \int_{R^n} \partial_x \mathbf{g}(z, y) \partial_z G_{ij}(x, z, y)dz
\]
\[
\cdot D^j G_{ij}(x, z, t)dzg_{jk}(y)dy.
\]
(33)

First, we estimate I_1 for $k \neq n$. For that purpose, recall
\[
\partial_x G_{ij}(x,y,t) = -\partial_x G_{ij}(x,y,t).
\]
Therefore,
\[
I_1(x,t) = \sum_{j,k=1}^{n} \int_{R^n} D^{j+1} G_{ij}(x,y,t)g_{jk}(y)dy.
\]
(34)

Clearly, $I_1(x,t)$ is the derivative of the ith component of the solution of the Stokes equations. So, using estimate
(23), we get the desired estimate on I_1 as below
\[|I_1(x,t)| \leq C r^{-(j+1)/2} |g|_{\infty} \quad \text{for} \quad k \neq n. \] (35)

Next, we estimate I_1 for $k = n$. In [9], G_{ij} is given as
\[G_{ij}(x,y,t) = \delta_{ij} \Gamma(x-y,t) + G^*_j(x,y,t), \] (36)
where
\[G^*_j(x,y,t) = -\delta_{ij} \Gamma(x-y^*,t) \]
\[+ 4(1 - \delta_{jk}) \int_0^t \int_{\mathbb{R}^{n-1}} \partial_{\xi_j} N(x-z) \tilde{\Gamma}(z-y^*,t) dz. \]

Next, we use the estimate
\[|D^i_j D^l_y G^*_j(x,y,t)| \leq C r^{-m_j/2} (t + x^2) \]
\[\cdot \left(|x-y^*|^2 + t \right) \frac{e^{-Cg_j}}{e^{Cg_j}}, \] (38)
where $m' = (m_1, m_2, \ldots, m_{n-1})$, $k' = (k_1, k_2, \ldots, k_{n-1})$, provided in [18], to obtain the desired estimate on I_1 for $k = n$. Therefore, we use modified G_{ij} for $k = n$ and rewrite I_1 as
\[I_1(x,t) = (-1)^{[\beta]} \sum_{j,k=1}^n \left[\partial_{\xi_j} D^l_y G^*_j(x,y,t) \right] \]
\[+ G^*_j(x,y,t) [g_{jk}(y) dy] \]
\[= (-1)^{[\beta] + 1} \sum_{j,k=1}^n \left[\partial_{\xi_j} D^l_y \delta_{ij} \Gamma(x-y,t) g_{jk} \right] \]
\[\cdot (y) dy + (-1)^{[\beta]} \sum_{j,k=1}^n \left[\partial_{\xi_j} D^l_y G^*_j(x,y,t) \right] \]
\[\cdot g_{jk}(y) dy = I_1^* + I_1^{**} \).

The estimate for I_1^* follows as
\[|I_1^*(x,t)| \leq C |g|_{\infty} \int_{\mathbb{R}^n} |1_{B_1^n} \partial_{\xi_j} D^l_y \delta_{ij} \Gamma(x-y,t)| \cdot dy \leq C |g|_{\infty} \left\| 1_{B_1^n} D^l_y \partial_{\xi_j} \Gamma(x-y,t) \right\|_{\mathfrak{H}^1(\mathbb{R}^n)} \] (40)

Applying Proposition 4, we obtain
\[|I_1^*(x,t)| \leq C |g|_{\infty} r^{-(j+1)/2}. \] (41)

To estimate I_1^{**}, we use the estimate of (38) and obtain
\[|I_1^{**}(x,t)| \leq C |g|_{\infty} r^{-1/2} \]
\[\cdot \int_{B_1^n} \left(|x-y^*|^2 + t \right)^{n/2} e^{-Cg_j} dy \leq C |g|_{\infty} r^{-(j+1)/2} \]
\[\cdot \int_{B_1^n} \left(|x-y^*|^2 + t \right)^{n/2} \frac{e^{-Cg_j}}{e^{Cg_j}} \leq C |g|_{\infty} r^{-(j+1)/2} (t + x^2) \] (42)

Finally, we get
\[|I_1^{**}(x,t)| \leq C r^{-(j+1)/2} |g|_{\infty}. \] (43)

We obtain
\[|I_1|_{\infty} \leq |I_1^{**} + I_1^*|_{\infty} \leq C r^{-(j+1)/2} |g|_{\infty} \quad \text{for} \quad k = n. \] (44)

Therefore, from (35) and (44), we obtain
\[|I_1|_{\infty} \leq C r^{-(j+1)/2} |g|_{\infty} \quad \text{for all} \quad k. \] (45)

Next, we estimate I_2: For that, let us begin by rewriting I_2 after dropping the summation notations and negative signs for convenience in writing.
\[I_2(x,t) = \int_{\mathbb{R}^n} \partial_{\xi_j} \mathcal{G}(z,y) \partial_{\xi_j} D^l_y G(x,y,t) dz g_{jk}(y) dy. \] (46)

Equivalently, we write
\[I_2(x,t) = \int_{\mathbb{R}^n} T(x,y,t) g_{jk}(y) dy, \] (47)

where
\[T(x,y,t) = \partial_{\xi_j} \mathcal{G}(z,y) \]
\[\cdot D^l_y \delta_{ij} \Gamma(x-z,t) - \Gamma(x-z^*,t) \]
\[+ 4 \partial_{\xi_j} \int_0^t \partial_{\xi_j} N(x-z) \Gamma(w-z^*,t) dw \]
\[\cdot dz = T_1 + T_2 + T_3, \] (48)

Using expression for G_{ij} from (8) for $i, l \neq n$, we obtain
\[T_1(x,y,t) = \partial_{\xi_j} \mathcal{G}(z,y) \]
\[\cdot D^l_y \delta_{ij} \Gamma(x-z,t) - \Gamma(x-z^*,t) \]
\[+ 4 \partial_{\xi_j} \int_0^t \partial_{\xi_j} N(x-w) \Gamma(w-z^*,t) dw \]
\[\cdot dz. \] (49)

where
\[T_1(x,y,t) = \partial_{\xi_j} \mathcal{G}(z,y) \]
\[\cdot D^l_y \delta_{ij} \Gamma(x-z,t) - \Gamma(x-z^*,t) \]
\[+ 4 \partial_{\xi_j} \int_0^t \partial_{\xi_j} N(x-w) \Gamma(w-z^*,t) dw \]
\[\cdot dz, \] (50)
To estimate T_1, let us proceed by writing

$$T_1(x, y, t) = \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(z - y) + N(z - y^*)]$$

$$\cdot d_z^\beta \Gamma(x - z, t) dz = \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(z - y) 1_{[z, 0]_+}]$$

$$\cdot d_z^\beta \Gamma(x - z, t) dz + \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(z - y) 1_{[z, 0]_+}]$$

$$\cdot d_z^\beta \Gamma(x - z^*, t) dz.$$ \hspace{1cm} (51)

Using the estimates of Proposition 4, we arrive at

$$\int_{\mathbb{R}^n} |T_1(x, y, t)| dy \leq C \left\| 1_{\mathbb{R}^n} D_z^\beta \Gamma(x - z, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)} + C \left\| 1_{\mathbb{R}^n} D_z^\beta \Gamma(x - z^*, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)}.$$ \hspace{1cm} (52)

Using the estimates of Proposition 4, we arrive at

$$\int_{\mathbb{R}^n} |T_1(x, y, t)| dy \leq C t^{-\frac{j+1}{2}}.$$ \hspace{1cm} (53)

With exactly the same argument as for T_1, we also obtain

$$\int_{\mathbb{R}^n} |T_2(x, y, t)| dy \leq C t^{-\frac{j+1}{2}}.$$ \hspace{1cm} (54)

It remains to obtain an estimate for T_3. We use Proposition 3 for $i, l \neq n$ by replacing f by $\Gamma(u,)$ and also use $G_m = 0$ to rewrite T_3 as

$$T_3(x, y, t) = 4 \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [\mathcal{G}(z, y) + N(z - y) + N(z - y^*)]$$

$$\cdot d_z^\beta \Gamma(x - z, t) dz + \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [\mathcal{G}(z, y) + N(z - y) 1_{[z, 0]_+}]$$

$$\cdot d_z^\beta \Gamma(x - z^*, t) dz + \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [\mathcal{G}(z, y) 1_{[z, 0]_+}]$$

$$\cdot d_z^\beta \Gamma(x - z^*, t) dz.$$ \hspace{1cm} (55)

By the same argument as for T_1, we can obtain

$$\int_{\mathbb{R}^n} |T_3(x, y, t)| dy \leq C t^{-\frac{j+1}{2}}.$$ \hspace{1cm} (56)

Let us rewrite T_3^{**} as

$$T_3^{**}(x, y, t) = \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(x - w) - N(z - y^*)]$$

$$\cdot d_z^\beta \Gamma(w - z^*, t) dz.$$ \hspace{1cm} (57)

Set

$$T_{jk}(w, y, t) = \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(x - w) - N(z - y^*)]$$

$$\cdot d_z^\beta \Gamma(w - z^*, t) dz.$$ \hspace{1cm} (58)

By Proposition 5,

$$\int_{\mathbb{R}^n} |T_{jk}(w, y, t)| dy \leq C \sup_{y, z \in \mathbb{R}^n} \left\| T_{jk}((w, w_n), y, t) - T_{jk}((w, w_n), y, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)} + C \sup_{y, z \in \mathbb{R}^n} \left\| T_{jk}((w, w_n), y, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)}$$

$$\leq C \left\| T_{jk}((w, w_n), y, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)}.$$ \hspace{1cm} (59)

Notice that

$$T_{jk}(w, y, t) = \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(x - y^*) - N(z - y^*)]$$

$$\cdot d_z^\beta \Gamma(w - z^*, t) dz + \frac{1}{t^\frac{n}{2}} \int_{\mathbb{R}^n} \frac{\partial^2}{\partial x_i \partial y_j} [N(x - y^*) - N(z - y^*)]$$

$$\cdot d_z^\beta \Gamma(w - z^*, t) dz.$$ \hspace{1cm} (60)

We also recall that $1_{\mathbb{R}^n} D_z^\beta \Gamma(w - z^*, t) + 1_{\mathbb{R}^n} D_z^\beta \Gamma(w - z, t)$ are in the Hardy space $\mathcal{F}^1(\mathbb{R}^n)$, for any fixed $w \in \mathbb{R}^n$. Since the Calderon-Zygmund type transforms are bounded in Hardy space, after using $D_z^\beta \Gamma(w - z, t) = (-1)^{j+1} D_z^\beta \Gamma(w - z, t)$, we arrive at

$$\int_{\mathbb{R}^n} |T_{jk}(w, y, t)| dy \leq C \left\| 1_{\mathbb{R}^n} D_z^\beta \Gamma(w - z, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)} + C \left\| 1_{\mathbb{R}^n} D_z^\beta \Gamma(w - z^*, t) \right\|_{\mathcal{F}^1(\mathbb{R}^n)} \leq C t^{-\frac{j+1}{2}}.$$ \hspace{1cm} (61)

Let us recall a result of Proposition 4:

$$1_{\mathbb{R}^n} D_z^\beta \Gamma(t_a * \Gamma_i) - (t_b * \Gamma_i) \in \mathcal{F}^1(\mathbb{R}^n),$$ \hspace{1cm} (62)

for any $a, b \in \mathbb{R}^n$, and is bounded by $C t^{-\frac{(j+1+\gamma)}{2}} e^{-\frac{\nu^2}{4t}} |w - x|^\gamma$ for $0 < \gamma < 1$. Hence, in similar way as for Proposition 4, we obtain

$$\int_{\mathbb{R}^n} |P_{jk}((w, w_n), y, t) - P_{jk}((w, w_n), y, t)| dy \leq C t^{-\frac{(j+1+\gamma)}{2}} e^{-\frac{\nu^2}{4t}} |w - x|^\gamma.$$ \hspace{1cm} (63)
Therefore,
\[
\int_{\mathbb{R}^n} |T^*_{ij}(x, y, t)|dy \leq C T^{- (j+y^{1/2})^2/2} + C T^{- (j+y^{1/2})^2} x^2 e^{-x^2} \leq C T^{- (j+y^{1/2})^2}.
\]
(64)

Using (56) and (64) leads us to obtain
\[
\int_{\mathbb{R}^n} |T_3(x, y, t)|dy \leq C T^{- (j+y^{1/2})^2}.
\]
(65)

Since \(T = T_1 + T_2 + T_3 \), with the use of (53), (54), and (65), we obtain
\[
|f_2(x, t)| \leq |g|_{\infty} \int_{\mathbb{R}^n} |T(x, y, t)|dy \leq C T^{- (j+y^{1/2})^2} |g|_{\infty}.
\]
(66)

Finally, using (45) and (66) with the fact that \(e^{-At} \) commutes with \(D_x^\beta \), we have proved the following important lemma.

Lemma 6. For any \(g = (g)_{ij} \), \(1 \leq i, j \leq n \) with \(g_{ij} \in L^\infty(\mathbb{R}^n) \), and \(g_{ij}(\bar{x}, 0) = 0 \), there exists a constant \(C \) independent of \(t \) and \(g \) such that
\[
|D^\beta e^{-At} \mathbb{P}(\nabla g)|_{\infty} \leq C T^{- (j+y^{1/2})^2} |g|_{\infty},
\]
for \(0 < t < T \), for some \(T > 0 \).

Corollary 7. Let \(g \) be as in the previous lemma, then the solution of
\[
\begin{align*}
\frac{\partial u}{\partial t} + Au &= \nabla \cdot g, & u|_{t=0} &= 0, & u|_{x=0} &= 0
\end{align*}
\]
(68)

satisfies
\[
|u(t)|_{\infty} \leq C t^{1/2} \max_{0 \leq s \leq T} |g(s)|_{\infty}, \quad 0 < t < T,
\]
(69)

for some \(T > 0 \).

Proof. The solution of (38) is given by
\[
\begin{align*}
u(t) &= \int_0^t e^{-A(t-s)} \nabla \cdot g(s)ds, \quad 0 < t < T
\end{align*}
\]
(70)

and
\[
|u(t)|_{\infty} \leq \int_0^t |e^{-A(t-s)} \nabla \cdot g(s)|_{\infty} ds.
\]
(71)

Applying the estimate (24), we obtain
\[
|u(t)|_{\infty} \leq \max_{0 \leq s \leq T} |g(s)|_{\infty} \int_0^t (t-s)^{-1/2} ds.
\]
(72)

Hence, we obtain
\[
|u(t)|_{\infty} \leq C t^{1/2} \max_{0 \leq s \leq T} |g(s)|_{\infty}.
\]
(73)

4. Estimates for the Navier-Stokes Equations

Recall the transformed abstract ordinary differential equation (3):
\[
u_t + Au = -\mathbb{P}(u \cdot \nabla u).
\]
(74)

Solution of (74) with given initial and boundary condition as in (1) is given by
\[
\begin{align*}
\frac{\partial u}{\partial t} &= \nabla \cdot f, & u|_{t=0} &= f,
\end{align*}
\]
(75)

Using the solution (75) along with the use of estimates (23), (24), and (25), we prove the following important lemma.

Lemma 8. Set
\[
V(t) = |u(t)|_{\infty} + t^{1/2} |\mathbb{P}(u(t))|_{\infty}, \quad 0 < t < T.
\]
(76)

There is a constant \(C > 0 \), independent of \(t \) and \(f \), so that
\[
V(t) \leq C |f|_{\infty} + C t^{1/2} \max_{0 \leq s \leq T} V^2(s), \quad 0 < t < T.
\]
(77)

Proof. Using estimate (23) for the solution of the Stokes equations in (75), we obtain
\[
|u(t)|_{\infty} \leq |f|_{\infty} + \int_0^t e^{-A(t-s)} (\nabla \cdot g)(s)ds_{\infty}.
\]
(78)

From (74), after using estimate (24), with the fact that \(g \) is quadratic in \(u \) gives us
\[
|u(t)|_{\infty} \leq |f|_{\infty} + C \int_0^t (t-s)^{-1/2} |u(s)|_{\infty}^2 ds = |f|_{\infty}
\]
(79)

\[
+ C \max_{0 \leq s \leq T} \{ s^{1/2} |u(s)|_{\infty} \} \int_0^t (t-s)^{-1/2} s^{-1/2} ds.
\]
(79)

Since \(\int_0^t (t-s)^{-1/2} s^{-1/2} ds = C > 0 \), which is independent of \(t \), we arrive at the following estimate
\[
|u(t)|_{\infty} \leq |f|_{\infty} + C \max_{0 \leq s \leq T} \{ s^{1/2} |u(s)|_{\infty} \},
\]
(80)

\[
|u(t)|_{\infty} \leq |f|_{\infty} + C t^{1/2} \max_{0 \leq s \leq T} V^2(s).
\]
(81)

Next, apply \(D_t \) to \(u(t) \) in the integral form to obtain and
estimate for \(D_t u = v \):

\[
v(t) = D_t e^{-At} f - D_t \int_0^t e^{-A(t-s)} \nabla \cdot g(u(s)) \, ds = D_t e^{-At} f - \int_0^t D_t e^{-A(t-s)} \nabla \cdot g(u(s)) \, ds.
\]

(82)

Let us estimate the integral in the above expression as below.

\[
\int_0^t D_t e^{-A(t-s)} (\nabla \cdot g)(s) \, ds \leq \int_0^t [D_t e^{-A(t-s)} (\nabla \cdot g)](s) \, ds.
\]

(83)

We use the estimate (25) again with the fact that \(g \) is quadratic in \(u \) to obtain

\[
\int_0^t D_t e^{-A(t-s)} (\nabla \cdot g)(s) \, ds \leq C \int_0^t [t-s]^{-1/2} |u(s)|_\infty |\nabla u(s)|_\infty \\
\leq C \int_0^t (t-s)^{1/2} |u(s)|_\infty |\nabla u(s)|_\infty \\
\leq C \max_{0 \leq s \leq t} \{ |u(s)|_\infty + |\nabla u(s)|_\infty \}
\]

(84)

Therefore, we have the following estimate for \(v = D_t u \)

\[
|v(t)|_\infty \leq Ct^{-1/2} f_\infty + C \max_{0 \leq s \leq t} \{ |u(s)|_\infty + \frac{1}{C} |\nabla u(s)|_\infty \}. \tag{85}
\]

Thus

\[
1 \leq 4C^2 t_0^{1/2} f_\infty^2. \tag{90}
\]

Therefore, \(t_0 \geq C_0 / f_\infty^2 \). This contradiction proves (88) and \(T > C_0 / f_\infty^2 \).

5. Proof of Theorem 1

Lemma 9 proves Theorem 1 for \(j = 0, 1 \) for \(0 < t < C_0 / f_\infty^2 \). Now, we apply induction on \(j \) to prove Theorem 1. Suppose \(j \geq 1 \) and assume

\[
I^{1/2} \left| \nabla^\beta u(t) \right|_\infty \leq K_n |f_\infty|, \quad \text{for} \quad 0 \leq t \leq \frac{c_0}{|f_\infty|}, \quad 0 \leq k \leq j - 1.
\]

(91)

Apply \(D_t^\beta = D_t^\beta \) to \(u_t + Au = -\nabla \cdot g \) with the fact that \(\nabla \cdot g \) commutes with \(D_t^\beta \). Also let \(D_t^\beta u = v \) to obtain

\[
v_t + Av = -D_t^\beta \nabla \cdot g \quad \text{with} \quad v \mid_{[0, R^2]} = 0, \quad \nabla v = 0.
\]

(92)

The solution of above system can be written as

\[
v(t) = D_t^\beta e^{-At} f - \int_0^t e^{-A(t-s)} D_t^\beta \nabla \cdot g(u(s)) \, ds.
\]

(93)

Since \(\nabla v = 0 \), we can write

\[
\partial_x \nu(t) = - \sum_{i=1}^{n-1} \partial_{x_i} v(t).
\]

(94)

Using integral form of \(v(t) \) from above, we can write

\[
\partial_x \nu(t) = - \int_0^{R^2} \partial_{x_i} \left[D_t^\beta e^{-At} f - \int_0^t e^{-A(t-s)} D_t^\beta \nabla \cdot g(u(s)) \, ds \right]
\]

(95)

Our goal is to prove \(|\partial_x \nu(t)|_\infty \leq C t^{-1/2} f_\infty^2 \). For that, let us start with the following where \(i \neq n \).

\[
|\partial_x \nu(t)|_\infty \leq C \left| D_t^\beta e^{-At} f \right|_\infty + C \left| \partial_{x_i} \int_0^t e^{-A(t-s)} D_t^\beta \nabla \cdot g(u(s)) \, ds \right|_\infty.
\]

(96)

Using the estimate (23) in the first term of the above expression, we obtain

\[
\left| \partial_x \nu(t) \right|_\infty \leq C t^{-1/2} \\
\cdot f_\infty + C \left| \partial_{x_i} \int_0^t e^{-A(t-s)} D_t^\beta \nabla \cdot g(u(s)) \, ds \right|_\infty + C \left| \partial_{x_i} \int_0^t e^{-A(t-s)} f_\infty \right|.
\]

(97)
\[\leq C t^{-1/2} [f]_{1 \infty} + I_1 + I_2, \]
\text{where}

\[
I_1(x,t) = C \partial_x \left[e^{-A(s-t)} D^\beta \nabla \cdot \nabla u(s) ds \right],
\]

\[
I_2(x,t) = C \partial_x \left[e^{-A(s-t)} D^\beta \nabla \cdot \nabla u(s) ds \right].
\]

To estimate \(I_1 \) uniformly, we proceed as

\[
|I_1|_{1 \infty} \leq C \int_0^t \partial_x e^{-A(s-t)} D^\beta \nabla \cdot \nabla u(s) ds.
\]

Using Lemma 6, we obtain

\[
|I_1|_{1 \infty} \leq C \int_0^t (t-s)^{-1/2} |g(u(s))|_{1 \infty} ds.
\]

We use simple integration, and the fact that \(g \) is quadratic in \(u \) to arrive at

\[
|I_1|_{1 \infty} \leq C t^{-1/2} [f]_{1 \infty}^2.
\]

Next, we estimate \(I_2 \). For that, we proceed in the following way:

\[
|I_2|_{1 \infty} \leq C \int_0^t \partial_x e^{-A(s-t)} D^\beta \nabla \cdot \nabla u(s) ds.
\]

Since the order of the derivatives of \(D^\beta \nabla \cdot \nabla g \) is \(|\beta| + 1 \), for convenience in writing, we use \(D^\beta g \) to estimate \(D^\beta \nabla \cdot \nabla g \). Since \(g(u) \) is quadratic in \(u \); therefore

\[
|D^\beta g(u)|_{1 \infty} \leq C|u|_{1 \infty} |D^\beta u|_{1 \infty} + \sum_{k=1}^{1} |D^\beta u|_{1 \infty} |D^{\beta+k} u|_{1 \infty}.
\]

By induction hypothesis (91) we obtain

\[
\sum_{k=1}^{1} |D^\beta u(s)|_{1 \infty} |D^{\beta+k} u(s)|_{1 \infty} \leq C S^{1/2} [f]_{1 \infty}^2.
\]

Apply estimate (25) to the integral (103) with the use of (104) to obtain

\[
|I_2(t)|_{1 \infty} \leq C \int_0^t (t-s)^{-1/2}
\cdot \left(C|u(s)|_{1 \infty} |D^\beta u(s)|_{1 \infty} + \sum_{k=1}^{1} |D^\beta u(s)|_{1 \infty} |D^{\beta+k} u(s)|_{1 \infty} \right) ds = I_1 + I_2,
\]

\text{where}

\[
J_1(x,t) := C \int_0^t (t-s)^{-1/2} |u(s)|_{1 \infty} |D^\beta u(s)|_{1 \infty} ds,
\]

\[
J_2(x,t) := C \sum_{k=1}^{1} \int_0^t (t-s)^{-1/2} |D^\beta u(s)|_{1 \infty} |D^{\beta+k} u(s)|_{1 \infty} ds.
\]

Since \(\int_0^t (t-s)^{-1/2} ds = Ct^{-1/2} \), where \(C \) is independent of \(t \), and the using the estimate of (105), we obtain

\[
|J_2|_{1 \infty} \leq C |f|_{1 \infty}^2 t^{-1/2}.
\]

For \(I_1 \), let us begin as below.

\[
|J_1(t)|_{1 \infty} \leq C \int_0^t (t-s)^{-1/2} |u(s)|_{1 \infty} |D^\beta u(s)|_{1 \infty} \cdot ds \leq C |f|_{1 \infty} \int_0^t (t-s)^{-1/2} \cdot s^{1/2} |D^\beta u(s)|_{1 \infty} \cdot ds
\]

\[
\cdot ds \leq C |f|_{1 \infty} t^{-1/2} \max_{0 \leq s \leq t} \left\{ s^{1/2} |D^\beta u(s)|_{1 \infty} \right\}.
\]

Therefore

\[
|I_2(t)|_{1 \infty} \leq |I_1(t)|_{1 \infty} + |J_2(t)|_{1 \infty},
\]

\[
|I_2(t)|_{1 \infty} \leq C t^{-1/2} [f]_{1 \infty}^2 + C |f|_{1 \infty} t^{-1/2} \max_{0 \leq s \leq t} \left\{ s^{1/2} |D^\beta u(s)|_{1 \infty} \right\}.
\]

We use these bounds to bind the integral in (97). We have \(D^\beta u = \partial_x D^\beta u \). Then, maximizing the resulting estimate for \(t^{1/2} |D^\beta u(t)|_{1 \infty} \) over all derivatives \(D^\beta \) of order \(\beta \) and setting

\[
\phi(t) := t^{1/2} |D^\beta u(t)|_{1 \infty},
\]

and from (98), we obtain the following estimate:

\[
\phi(t) \leq C |f|_{1 \infty} + C t^{1/2} |f|_{1 \infty}^2 + C |f|_{1 \infty} t^{1/2} \max_{0 \leq s \leq t} \phi(s) \text{ for } 0 \leq t \leq \frac{\epsilon_0}{|f|_{1 \infty}}.
\]

Since \(t^{1/2} |f|_{1 \infty} \leq \sqrt{\epsilon_0} \), then \(C t^{1/2} |f|_{1 \infty}^2 \leq C \sqrt{\epsilon_0} |f|_{1 \infty} \). Therefore

\[
\phi(t) \leq C |f|_{1 \infty} + C |f|_{1 \infty} t^{1/2} \max_{0 \leq s \leq t} \phi(s) \text{ for } 0 \leq t \leq \frac{\epsilon_0}{|f|_{1 \infty}}.
\]

Let us fix \(C_1 \) so that the above estimate holds and set

\[
\epsilon_j = \min \left\{ \epsilon_0, \frac{1}{4C_1} \right\}.
\]
First, let us prove the following:

$$\phi(t) < 2C_j |f|_\infty \quad \text{for} \quad 0 \leq t < \frac{c_j}{|f|_\infty}. \quad (114)$$

Suppose there is a smallest time t_0 such that $0 < t_0 < c_j/|f|_\infty^2$, with $\phi(t_0) = 2C_j |f|_\infty$. Then, using (88), we obtain

$$2C_j |f|_\infty = \phi(t_0) \leq C_j |f|_\infty + 2C_j^2 |f|_\infty^2 t_0^{1/2}. \quad (115)$$

Thus

$$1 \leq 2C_j |f|_\infty t_0^{1/2} \quad \text{gives} \quad t_0 \geq \frac{c_j |f|_\infty^2}{2C_j}. \quad (116)$$

which contradicts the assertion. Therefore, we proved the estimate

$$t^{1/2} |D^j u(t)|_\infty \leq 2C_j |f|_\infty \quad \text{for} \quad 0 \leq t \leq \frac{c_j |f|_\infty^2}{2C_j}. \quad (117)$$

If

$$T_j = \frac{c_j}{|f|_\infty} < t \leq \frac{c_0}{|f|_\infty} = T_0, \quad (118)$$

then we start the corresponding estimate at $t - T_j$. Using Lemma 9, we have $|u(t - T_j)|_\infty \leq 2|f|_\infty$ and obtain

$$T_j^{1/2} |D^j u(t)|_\infty \leq 4C_j |f|_\infty. \quad (119)$$

Finally, for any t satisfying (118)

$$t^{1/2} \leq T_0^{1/2} = \left(\frac{c_0}{c_j}\right)^{1/2} T_j^{1/2}, \quad (120)$$

and (119) yield

$$t^{1/2} |D^j u(t)|_\infty \leq 4C_j \left(\frac{c_0}{c_j}\right)^{1/2} |f|_\infty. \quad (121)$$

This completes the proof of Theorem 1.

In the following appendices, we provide proofs of the propositions that are introduced in "Some Auxiliary Results." However, these proofs have also been provided in [8]. For the reader's convenience, we provide them with more details in this paper as well.

Appendix

A. Proof of Proposition 2

We first let the case $k \neq n$. Differentiate G_{ij} with respect to x_k to obtain

$$\partial_{x_k} G_{ij}(x, y, t) = \delta_{ij} \partial_{x_k} [\Gamma_i(x - y) - \Gamma_i(x - y^*)]$$

$$+ 4(1 - \delta_{jm}) \partial_{x_k} \int_{\mathbb{R}^{n-1}} \partial_{x_i} N(x - z) \Gamma_i(z - y^*) \cdot dz = \delta_{ij} \partial_{x_k} [\Gamma_i(x - y) - \Gamma_i(x - y^*)] + 4(1 - \delta_{jm}) \partial_{x_i} N(x - z) \partial_{x_k} \Gamma_i(z - y^*) dz. \quad (A.1)$$

Observe that for $k \neq n$

$$\partial_{x_k} \Gamma_i(x - y) = -\partial_{x_i} \Gamma_i(x - y),$$

$$\partial_{x_k} \Gamma_i(x - y^*) = -\partial_{x_i} \Gamma_i(x - y^*). \quad (A.2)$$

This proves the desired result of Proposition 2 for $k \neq n$. For the case $k = n$. We start with the expression for some appropriately chosen function g:

$$\partial_{x_k} \int_{0}^{\epsilon_n} \partial_{x_i} N(x - z) g(z) dz = \int_{0}^{\epsilon_n} \partial_{x_i} \partial_{x_k} N(x - z) g(z)$$

$$\cdot dz + \frac{\delta_m}{2n} g(x) + \int_{\mathbb{R}^{n-1}} \partial_{x_i} N(\tilde{x} - \tilde{z}, 0) g(\tilde{x}, x_n) d\tilde{z}, \quad (A.3)$$

and

$$-\int_{0}^{\epsilon_n} \partial_{x_i} \partial_{x_k} N(x - z) g(z) dz = \int_{0}^{\epsilon_n} \partial_{x_i} \partial_{x_k} N(x - z) g(z)$$

$$\cdot dz + \frac{\delta_m}{2n} g(x) + \int_{\mathbb{R}^{n-1}} \partial_{x_i} N(\tilde{x} - \tilde{z}, 0) g(\tilde{x}, x_n) d\tilde{z} - \int_{\mathbb{R}^{n-1}} \partial_{x_k} N(\tilde{x} - \tilde{z}, 0) g(\tilde{x}, x_n) d\tilde{z}. \quad (A.4)$$

Therefore, we arrive at

$$\partial_{x_k} \int_{0}^{\epsilon_n} \partial_{x_i} N(x - z) \Gamma(z - y^*, t)$$

$$\cdot dz = \int_{0}^{\epsilon_n} \partial_{x_i} N(x - z) \partial_{x_k} \Gamma(z - y^*, t) \cdot dz + \int_{\mathbb{R}^{n-1}} \partial_{x_k} N(\tilde{x} - \tilde{z}, x_n) \Gamma(\tilde{x} - \tilde{y}, y_n, t) d\tilde{z}. \quad (A.5)$$
Since
\begin{align}
\partial_x \Gamma_i(x-y) &= -\partial_{x^i} \Gamma_i(x-y), \\
\partial_{x^i} \Gamma_i(x-y^*) &= \partial_x \Gamma_i(x-y^*),
\end{align}
(A.6)

therefore, after differentiating \(G_{ij} \) with respect to \(x_a \) variable, we have
\begin{align}
\partial_{x_a} G_{ij}(x,y,t) &= -\delta_{ij} \Gamma_{a}(x-y, t) + \Gamma(x-y^*, t) \\
&\quad + 4(1 - \delta_{ij}) \partial_{x^a} \partial_{x^i} \int_{0}^{x} \partial_{x^a} N(x-z) \\
&\quad \cdot \Gamma(z-y^*, t)dz + 4(1 - \delta_{ij}) \\
&\quad \cdot \partial_{x^j} \int_{0}^{x} \partial_{x^j} N(\bar{x} - z, x_n) \Gamma(\bar{z} - \bar{y}, y_n, t) \\
&\quad \cdot d\bar{z} = \partial_{x_a} G_{ij}(x,y,t) - 2\delta_{ij} \partial_{x_a} \Gamma(x-y, t) \\
&\quad + 4(1 - \delta_{ij}) \partial_{x^j} \int_{0}^{x} \partial_{x^i} N(\bar{x} - z, x_n) \\
&\quad \cdot \Gamma(\bar{z} - \bar{y}, y_n, t) d\bar{z}.
\end{align}
(A.7)

B. Proof of Proposition 3

Define a smooth cut-off function \(\phi \) such that \(\phi(r) = 1 \) if \(0 \leq r \leq 1 \) and \(0 \) if \(r \geq 2 \) with \(\int_{0}^{\infty} \phi(r) dr = 1 \). For \(x \in \mathbb{R}^n \) and \(\epsilon < x_n / 2 \), also define
\begin{align}
\phi_{ex}(z) &= \phi \left(\frac{|x - z|}{\epsilon} \right).
\end{align}
(B.1)

Then, \(\phi_{ex} \) is compactly supported in \(\mathbb{R}^n \). Let us define
\begin{align}
v_{\epsilon}(x) &= \int_{0}^{\epsilon} \int_{x}^{x_n} \phi_{ex}(z) \partial_{x^i} N(x-z) f(z) dz.
\end{align}
(B.2)

Differentiating with respect to \(x_j \) for \(j \neq n \) yields
\begin{align}
\partial_{x_j} v_{\epsilon}(x) &= \int_{0}^{\epsilon} \int_{x}^{x_n} \left[\partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) + \phi_{ex}(z) \partial_{x^i} \partial_{x^j} N(x-z) \right] f(z) dz.
\end{align}
(B.3)

If \(j = n \), we have
\begin{align}
\partial_{x_n} v_{\epsilon}(x) &= \int_{0}^{\epsilon} \int_{x}^{x_n} \left[\partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) + \phi_{ex}(z) \partial_{x^i} \partial_{x^j} N(x-z) \right] f(z) \\
&\quad \cdot d\bar{z} + \int_{0}^{\epsilon} \phi_{ex}(\bar{z}, x_n) \partial_{x^i} N(\bar{x} - \bar{z}, 0) f(\bar{z}, x_n) d\bar{z}.
\end{align}
(B.4)

Let us set
\begin{align}
I_{\epsilon x}(x) &= \int_{0}^{\epsilon} \int_{\mathbb{R}^n} \partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) f(z) dz \\
&\quad \cdot d\bar{z} + \int_{0}^{\epsilon} \phi_{ex}(z) \partial_{x^j}^2 N(x-z) f(z) dz.
\end{align}
(B.5)

It is clear that
\begin{align}
\lim_{\epsilon \to 0} I_{\epsilon x} &= \int_{0}^{\epsilon} \int_{\mathbb{R}^n} \partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) f(z) dz.
\end{align}
(B.6)

Let us denote \(I_{\epsilon x} = I_{\epsilon x}^* + I_{\epsilon x}^\ast \) where
\begin{align}
I_{\epsilon x}^* &= \int_{0}^{\epsilon} \int_{\mathbb{R}^n} \partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) [f(z) - f(x)] dz, \\
I_{\epsilon x}^\ast &= f(x) \int_{\mathbb{R}^n} \partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) dz.
\end{align}
(B.7)

Observe that \(I_{\epsilon x}^\ast (x) \to 0 \) as \(\epsilon \to 0 \), since
\begin{align}
|I_{\epsilon x}^\ast(x)| &\leq \int_{|z - x| \leq \epsilon} \left| \partial_{x^j} \phi_{ex}(z) \right| \left| \partial_{x^i} N(x-z) \right| |f(z) - f(x)| d\bar{z} \\
&\leq \int_{|z - x| \leq \epsilon} \frac{1}{|z - x|^{|n|}} |f(z) - f(x)| \leq \epsilon^{|n|} [f]_a,
\end{align}
(B.9)

where
\begin{align}
[f]_a &= \sup_{x \in a} \left| \frac{f(x) - f(z)}{|x - z|^{|n|}} \right|.
\end{align}
(B.10)

Next, we will show that
\begin{align}
\int_{0}^{\epsilon} \int_{\mathbb{R}^n} \partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) \\
&\quad \cdot d\bar{z} = \begin{cases}
\frac{\delta_{ij}}{2n} & \text{if } i, j \neq n \text{ or } i = j = n \\
0 & \text{if } i = n, j \neq n \text{ or } j = n, i \neq n.
\end{cases}
\end{align}
(B.11)

Let us apply a change of variables and let \(\epsilon \to 0 \), we get
\begin{align}
\int_{0}^{\epsilon} \int_{\mathbb{R}^n} \partial_{x^j} \phi_{ex}(z) \partial_{x^i} N(x-z) \\
&\quad \cdot d\bar{z} = \frac{1}{\epsilon} \int_{0}^{\epsilon} \int_{\mathbb{R}^n} \frac{(z_i - x_i)(z_j - x_j)}{\epsilon} \phi' \left(\frac{|x - z|}{\epsilon} \right) \\
&\quad \cdot d\bar{z} \int_{0}^{\epsilon} \frac{w_i w_j}{\epsilon} \phi' \left(\frac{|w|}{\epsilon} \right) dw.
\end{align}
(B.12)
If \(i, j \neq n \) or \(i = j = n \), then by the symmetry of \((w_i w_j/|w|^{n+1})\phi'(|w|)\) in terms of \(w_n\) variables, we obtain
\[
\int_0^\infty \int_{\mathbb{R}^{n-1}} \frac{w_i w_j}{n w_n |w|^{n+1}} \phi'(|w|) dw = \frac{1}{2} \int_{\mathbb{R}^n} \frac{w_i w_j}{n w_n |w|^{n+1}} \phi'(|w|) dw = \frac{1}{2n} \delta_{ij}.
\]
This completes the proof of Proposition 3.

C. Proof of Proposition 5

Denote
\[
I = \int_0^{x_n/2} \int_{\mathbb{R}^{n-1}} \partial_{x_n}^2 N(x - z) f(z, y) dz,
\]
\[
II = \int_{x_n/2}^x \int_{\mathbb{R}^{n-1}} \partial_{x_n}^2 N(x - z) [f(z, y) - f(\bar{x}, z_n, y)] dz,
\]
\[
III = \int_0^x f(\bar{x}, z_n, y) \int_{\mathbb{R}^{n-1}} \partial_{x_n}^2 N(x - z) d\bar{z} dz_n.
\]

Then
\[
\int_0^x \int_{\mathbb{R}^{n-1}} \partial_{x_n}^2 N(x - z) f(z, y) dz = I + II + III.
\]
Notice that
\[
|\partial_{x_n}^2 N(x - z)| \leq C|x - z|^{-n}, \quad \int_{\mathbb{R}^{n-1}} |x - z|^{-n} d\bar{z} = C|x_n - z_n|^{-1}.
\]

Then, we have
\[
\int_{\mathbb{R}^{n-1}} dy \leq C \left(\int_0^{x_n/2} \frac{1}{x_n - z_n} dz_n \right) \left(\sup_{z \in \mathbb{R}^{n-1}} |f(z, y)| dy \right)
\]
\[
\leq C \sup_{z \in \mathbb{R}^{n-1}} \int_{\mathbb{R}^{n-1}} |f(z, y)| dy.
\]
Since, for \(0 < \alpha < 1\)
\[
|\partial_{x_n}^2 N(x - z)[f(z, y) - f(\bar{x}, z_n, y)]| \leq C|x - z|^\alpha |x - z|^{-n} |f(\bar{x}, z_n, y) - f(\bar{x}, z_n, y)|
\]
\[
\leq C|x_n - z_n|^\alpha |x - z|^{-n} |f(\bar{x}, z_n, y) - f(\bar{x}, z_n, y)|
\]
we have
\[
\int_{\mathbb{R}^{n-1}} (II) dy \leq C \int_{x_n/2}^x \sup_{z \in \mathbb{R}^{n-1}} \left[|f(\bar{x}, z_n, y) - f(\bar{x}, z_n, y)| dy \right] |x - z|^{-n}
\]
\[
\leq C \left(\sup_{z \in \mathbb{R}^{n-1}} \left[|f(\bar{x}, z_n, y) - f(\bar{x}, z_n, y)| dy \right] \right). \tag{C.6}
\]

Next, we want to show \((III) = 0\). For that, notice
\[
\text{PV} \int_{\mathbb{R}^{n-1}} \partial_{\gamma y}^2 N(x - y) dy = \lim_{\epsilon \to 0, R} \int_{|x - y| \leq R} \partial_{\gamma y}^2 N(x - y) dy,
\]
and
\[
\int_{R^+} \partial_{\gamma y}^2 N(x - y) dy = \int_{S(x)} \partial_{\gamma y} N(x - y) n_j dS_j - \int_{S(x)} \partial_{\gamma y} N(x - y) n_j dS_j.
\]
Here, \(S(x) = \{ y \in \mathbb{R}^{n-1} : |x - y| = 1 \}, \) and \(n_j = y_j - \bar{x}_j/|\bar{y}| = \) the \(j\)th component of the unit outer normal vector. If \(i = 1, \ldots, n - 1,\) then
\[
\int_{S_n(x)} \partial_{\gamma y} N(x - y) n_j dS_j \leq C \int_{\mathbb{R}^{n-1}} \frac{w_i w_j}{n w_n (R^2 + (x_n - y_n)^2)^{1/2}} dS_n
\]
\[
\leq C \frac{R}{R \to 0} \quad \text{as} \quad R \to \infty.
\]
(9)
where \(S_{n-2} \) is the unit sphere in \(\mathbb{R}^{n-1} \), \(w_i = y_i/|y| \) is the outward unit normal vector to \(S_{n-2} \), and

\[
\left| \int_{S_{n-2}} \partial_{y_j} N(x-y)n_jdS_n \right| = \int_{S_{n-2}} \frac{w_iw_j}{n\omega_n (\varepsilon^2 + (x_n - y_n)^2)^{n/2}} e^{n-1} dS_w \leq C \frac{e^{n-1}}{|x_n - y_n|^n} \rightarrow 0 \quad \text{as} \quad \varepsilon \rightarrow 0.
\]

(C.10)

If \(i = n \), then

\[
\int_{S_{n-2}} \partial_{y_j} N(x-y)n_jdS_n = 0,
\]

(C.11)

since

\[
\int_{S_{n-2}} \partial_{y_j} N(x-y)n_jdS_n = \int_{S_{n-2}} \frac{(x_n - y_n)w_j}{n\omega_n (\varepsilon^2 + (x_n - y_n)^2)^{n/2}} R^{n-2} dS_w = \frac{(x_n - y_n)R^{n-2}}{n\omega_n (\varepsilon^2 + (x_n - y_n)^2)^{n/2}} \int_{S_{n-2}} w_i dS_w = 0.
\]

(C.12)

Similarly

\[
\int_{S_{n-2}} \partial_{y_j} N(x-y)d\tilde{y} = 0.
\]

(C.13)

This implies that

\[
\int_{\mathbb{R}^{n-1}} \partial^2_{y_jy_j} N(x-y)d\tilde{y} = 0.
\]

(C.14)

Hence, we finally show that (III) = 0.

Data Availability

I have provided all the essential references that I have used in this research article in the reference section.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

