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We prove lower semicontinuity in L1ðΩÞ for a class of functionals G : BVðΩÞ⟶ℝ of the form GðuÞ = Ð
Ω
gðx,∇uÞdx + Ð

Ω
ψðx

ÞdjDsuj where g : Ω ×ℝN ⟶ℝ, Ω ⊂ℝN is open and bounded, gð·, pÞ ∈ L1ðΩÞ for each p, satisfies the linear growth condition
lim

jpj⟶∞
gðx, pÞ/jpj = ψðxÞ ∈ CðΩÞ ∩ L∞ðΩÞ, and is convex in p depending only on jpj for a.e. x: Here, we recall for u ∈ BVðΩÞ;

the gradient measure Du = ∇u dx + dðDsuÞðxÞ is decomposed into mutually singular measures ∇u dx and dðDsuÞðxÞ. As an

example, we use this to prove that
Ð
Ω
ψðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðxÞ + j∇uj2

q
dx +

Ð
Ω
ψðxÞdjDsuj is lower semicontinuous in L1ðΩÞ for any

bounded continuous ψ and any α ∈ L1ðΩÞ: Under minor addtional assumptions on g, we then have the existence of
minimizers of functionals to variational problems of the form GðuÞ + ku − u0kL1 for the given u0 ∈ L1ðΩÞ, due to the
compactness of BVðΩÞ in L1ðΩÞ:

1. Introduction

We prove an L1 lower semicontinuity result for convex lin-
ear growth functionals

Ð
Ω
gðx,DuÞ, defined on BV , whose

integrands g : Ω ×ℝN ⟶ℝ are radially symmetric in p
for a.e. x ∈Ω, that is, gðx, pÞ depends on ðx,∣p ∣ Þ,
gð·, pÞ ∈ L1ðΩÞ for each p, and satisfies a fairly general struc-
ture condition. Our results expand the class of integrands
from those of the form

φ x, pð Þ =
g x, pð Þ, if pj j ≤ β,
ψ xð Þ pj j + k xð Þ, if pj j > β,

(
ð1Þ

as presented in [1], for which lower semicontinuity in L1

holds.
We use the conjugate function g∗ of g to prove our main

result, Theorem 1 in Section 3. The conjugate function is
used, for example, in [2] to approximate

Ð
Ω
gðx,DuÞ for

the given u ∈ BVðΩÞ by a sequence
Ð
Ω
gðx,∇unÞ for un ∈

W1,1ðΩÞ to prove the existence of the corresponding gradi-

ent time flow, although g is assumed to be continuous in x
in these cases. Thus, one advantage of Theorem 1 in this
paper is that we can also obtain the existence results for time
flow by deriving a similar convergence result for our case,
but with no continuity assumption in the x variable. In fact
for the results presented here, g may contain singularities
in x, as in Example 3. In addition, the corresponding conver-
gence results in [3] assume another continuity condition on
g in x, similar to (3) which is not covered by our assump-
tions on g.

We note that the integrands considered in this paper (of
the form (1)) have been used in models in applications of
image processing [2]. However, as mentioned above, the
main result of this paper covers a larger class of integrands.

We assume throughout, unless otherwise stated, that Ω
⊂ℝN is bounded and open and g is radially symmetric in
p for a.e. x ∈Ω and g is convex in p for a.e. x ∈Ω so
thatgðx, λ1p1 + λ2p2Þ ≤ λ1gðx, p1Þ + λ2gðx, p2Þ for each p1,
p2 ∈ℝ

N ,0 ≤ λ1, λ2 ≤ 1,λ1 + λ2 = 1, and g ∈ L1ðΩÞ for each p
∈ℝN : Since for a.e. x,g is convex and real valued in p, it is
well known that g must be continuous in p for a.e. x; hence,
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g is a Carathéodory function. Furthermore, we assume the
linear growth of g so that

lim
pj j⟶∞

g x, pð Þ
pj j = ψ xð Þ, for a:e:x ∈Ω, ð2Þ

where ψ ∈ CðΩÞ ∩ L∞ðΩÞ,ψ ≥ 0:
As stated above, we make no continuity assumption for

the x variable for g: Additionally, in contrast to the works
of [3–8] and [9] we do not assume g to be lower semicontin-
uous in ðx, pÞ: Also, our assumptions on g are not covered
by the class of integrands EðΩ ;ℝNÞ and RðΩ ;ℝNÞ in [10,
11]. The integrand class E in [10] requires joint continuity
of g in x and p, and R and the integrands in [11] require g
for our case be defined on �Ω ×ℝN with

lim
t⟶∞,x ′⟶x

g x′, tp
� �

t
= ψ xð Þ, for each x ∈ �Ω, p ∈ℝN , ð3Þ

which may not hold if it is only assumed g ∈ L1ðΩÞ for each
p, as g may contain singularities.

2. Mathematical Preliminaries

We recall by definition that u ∈ BVðΩÞ if and only if u ∈ L1
ðΩÞ and
ð
Ω

Duj j≔ sup
ϕ∈ C∞

0 Ω,ℝNð Þ, ϕ xð Þj j≤1 all x∈Ωf g
−
ð
Ω

u div ϕ dx
� �

<∞,

ð4Þ

in which case the total variation measure Du is decomposed
in to Du = ∇u dx + dðDsuÞðxÞ where ∇u dx < <LN and Dsu
⊥LN using the Lebesgue decomposition theorem [12].
Functionals defined for u ∈ BVðΩÞ with Carathéodory inte-
grands gðx, pÞ of linear growth (2) and the convex in the p
variable are defined [4, 5, 13, 14] by

ð
Ω

g x,Duð Þ =
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j xð Þ: ð5Þ

However, it is not immediate that functionals
Ð
Ω
gðx,D

uÞ defined by (5) are lower semicontinuous in L1ðΩÞ: As
noted above, lower semicontinuity was was proven for cer-
tain integrands g, but to the best of our knowledge, there
is no general L1 lower semicontinuity result for convex Car-
athéodory functions g where for each p, gð·, pÞ ∈ L1ðΩÞ:

We will also use the conjugate function g∗ of g where
g∗ðx, qÞ≔ supp∈ℝNfq · p − gðx, pÞg [8]. We note that as g is
convex in p and g∗ is convex in q:

In [1], L1 lower semicontinuity of
Ð
Ω
φðx,DuÞ for inte-

grands of the form (1) is proved for φ : Ω ×ℝN ⟶ℝ con-
vex in p,φðx, pÞ radially symmetric in p for a.e. x ∈Ω,
φð·, pÞ ∈ L1ðΩÞ and a fairly general structure condition on
φ which does not assume continuity in x: The proof is based

on proving that

ð
Ω

φ x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j = sup
ϕ∈C1

0 Ω,ℝNð Þ: ϕ xð Þj j≤ψ xð Þ for all x∈Ωf g
�

ð
Ω

∇u · ϕ xð Þ − φ∗ x, ϕ xð Þð Þ dx
� �

= sup
ϕ∈C1

0 Ω,ℝNð Þ: ϕ xð Þj j≤ψ xð Þ for all x∈Ωf g
� −

ð
Ω

udivϕ xð Þ + φ∗ x, ϕ xð Þð Þ dx
� �

,

ð6Þ

where φ∗ is the conjugate function of φ and the last equality
follows from integration by parts for u ∈ BVðΩÞ [12]. Lower
semicontinuity in L1ðΩÞ immediately follows as the final
equality is the supremum of functionals, each L1 continuous
in u: In the next section, we use the method above to prove
our main result, Theorem 1.

3. Main Results

We first define

V = ϕ ∈ C1
0 Ω,ℝN� �

: ϕ xð Þj j ≤ ψ xð Þ, for all x ∈Ω
	 


: ð7Þ

Theorem 1. Assume g : Ω ×ℝN ⟶ℝ with

= ψ xð Þ ∈ C Ωð Þ ∩ L∞ Ωð Þ: ð8Þ

gðx, pÞ are both radially symmetric and convex in p for
a.e. x, and if for each M > 0,

φM x, pð Þ≔
g x, pð Þ, if pj j ≤M,
ψ xð Þ pj j + g x,Mð Þ − ψ xð ÞM, if pj j >M,

(

ð9Þ

is convex in p and there exists f M ∈ L1ðΩÞ such that jgðx, p
Þ − φMðx, pÞj ≤ f MðxÞ a.e. x, for all jpj ≥M, where Ð

Ω
f MðxÞ

dx⟶ 0 as M⟶∞: Additionally, assume the following
structure condition on g : that is, for some G, we have gðx
, pÞ = Gðr1ðxÞ,⋯, rkðxÞ, pÞ for all p where Gðz1,⋯, zK , pÞ =
gðz1,⋯, zk, pÞ and where g is C1 in the variable z = ðz1 ⋯
, zKÞ ∈U ⊂ℝK ,U open,ri ∈ L1ðΩÞ each i,
ðr1ðxÞ,⋯, rKðxÞÞ ∈U a.e. x, and jð∇zgÞðz, pÞj ≤ C,C inde-
pendent of ðz, pÞ, jpj ≤M for each M. Then, for

Ð
Ω
gðx,Du

Þ defined by

ð
Ω

g x,Duð Þ≔ sup
V

ð
Ω

∇u · ϕ xð Þ − g∗ x, ϕ xð Þð Þdx
� �

, ð10Þ

we have in fact

ð
Ω

g x,Duð Þ =
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j: ð11Þ
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Thus, the functional

G uð Þ =
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j, ð12Þ

defined on BVðΩÞ, is lower semicontinuous in L1ðΩÞ, that
is, if un ⟶ u in L1ðΩÞ, then, GðuÞ ≤ lim infn⟶∞GðunÞ:
Moreover, if ∂Ω is Lipschitz, then, for the given h ∈ L1ð∂ΩÞ,
ð
Ω

g x,∇uð Þ +
ð
Ω

ψ xð Þd Dsuj j xð Þ +
ð
∂Ω
ψ xð Þ u − hj jdHN−1

= sup
ϕ∈C1 �Ω,ℝN

� �
: ∣ϕ∣≤ψ xð Þ

	 
 −
ð
Ω

udivϕ + g∗ x, ϕ xð Þð Þ dx +
ð
∂Ω
ϕ · n̂hdHN−1

� �
,

ð13Þ

and hence, the functional

Gh uð Þ =
ð
Ω

g x,∇uð Þ +
ð
Ω

ψ xð Þd Dsuj j xð Þ +
ð
∂Ω
ψ xð Þ u − hj jdHN−1,

ð14Þ

defined on BVðΩÞ, is lower semicontinuous in L1ðΩÞ: Here,
u is defined on ∂Ω in the sense of trace [12].

Proof. From the above assumptions on g, we have

g∗ x, qð Þ = sup
p∈ℝN

p · q − g x, pð Þf g ≤ sup
p∈ℝN

p · q − φM x, pð Þf g

+ sup
p∈ℝN

φM x, pð Þ − g x, pð Þj jf g

= sup
p∈ℝN

p · q − φM x, pð Þf g + sup
pj j≥M

φM x, pð Þ − g x, pð Þj jf g

≤ φ∗
M x, qð Þ + f M xð Þ:

ð15Þ

Similarly, we have φ∗
Mðx, qÞ ≤ g∗ðx, qÞ + f MðxÞ

giving jg∗ðx, qÞ − φ∗
Mðx, qÞj ≤ f MðxÞ for all jqj ≤ ψðxÞ:

From the above estimate for jg∗ − φ∗j, we have g∗ðx, qÞ
=∞ if and only if φ∗

Mðx, qÞ =∞ if and only if jq ≤ ψðxÞ,
and hence,

g x, pð Þ = sup
qj j≤ψ xð Þ

p · q − g∗ x, qð Þf g: ð16Þ

☐

Now,

ð
Ω

g x,Duð Þ = sup
V

ð
Ω

∇u · ϕ xð Þ − g∗ x, ϕ xð Þð Þ dx
� �

= sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þ dx

� �

+ sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þ + ε1 x, ϕ xð Þð Þdx

� �

− sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þdx

� �

=
ð
Ω

φM x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j + ε2,

ð17Þ

with ε1ðx, ϕðxÞÞ≔ φ∗
Mðx, ϕðxÞÞ − g∗ðx, ϕðxÞÞ and jε1ðx, ϕðxÞ

Þj ≤ f MðxÞ from the above and ε2 is defined by

ε2 ≔ sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þ + ε1 x, ϕ xð Þð Þdx

� �

− sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þdx

� �
:

ð18Þ

We now show ε2 ⟶ 0 as M⟶∞. In fact,

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þ + ε1 x, ϕ xð Þð Þdx

≤
ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þdx +

ð
Ω

f M xð Þdx,
ð19Þ

from jε1ðx, ϕðxÞÞj ≤ f MðxÞ: Taking supremum over both
sides gives

ε2 = sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þ + ε1 x, ϕ xð Þð Þdx

− sup
V

ð
Ω

∇u · ϕ xð Þ − φ∗
M x, ϕ xð Þð Þdx ≤

ð
Ω

f M xð Þdx:

ð20Þ

Similarly, we have −ε2 ≤
Ð
Mf MðxÞdx giving

ε2j j ≤
ð
Ω

f M xð Þdx⟶ 0 asM⟶∞: ð21Þ

Now, let M⟶∞ in (17) to get

ð
Ω

g x,Duð Þ =
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j: ð22Þ

For the second claim in the theorem, as ∂Ω is Lipschitz,
the continuous trace operator
[12])T : BVðΩÞ⟶ L1ð∂Ω,HN−1Þ exists and (13) follows
as in the proof above. Finally, lower semicontinuity of Gh
follows from Theorem 5 in [1].

Remark 2. We note that the condition jð∇zgÞðz, pÞj ≤ C may
be modified if in the expression gðz1,⋯, zK , pÞ, one of the zi′s
corresponds to ψðxÞ: That is, if, e.g., zK = ψðxÞ, we may only
require that jð∇ðz1,⋯,zK−1ÞgÞðz, pÞj ≤ C as each x ∈Ω is a
Lebesgue point of ψ by continuity: In fact, we have, noting
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that g∗ðx, qÞ = g∗ðr1ðxÞ,⋯, rK−1ðxÞ, ψðxÞ, qÞ,

1
Bρ

�� ��
ð
Bρ xð Þ

g∗ r1 xð Þ,⋯, rK−1 xð Þ, ψ xð Þ, pð Þj

− g∗ r1 yð Þ,⋯, rK−1 yð Þ, ψ yð Þ, pð Þjdy
≤

1
Bρ

�� ��
ð
Bρ xð Þ

g∗ r1 xð Þ,⋯, rK−1 xð Þ, ψ xð Þ, pð Þj

− g∗ r1 xð Þ,⋯, rK−1 xð Þ, ψ yð Þ, pð Þjdy
+ 1

Bρ

�� ��
ð
Bρ xð Þ

g∗ r1 xð Þ,⋯, rK−1 xð Þ, ψ yð Þ, pð Þj

− g∗ r1 yð Þ,⋯, rK−1 yð Þ, ψ yð Þ, pð Þjdy
≤

1
Bρ

�� ��
ð
Bρ xð Þ

g∗ r1 xð Þ,⋯, rK−1 xð Þ, ψ xð Þ, pð Þj

− g∗ r1 xð Þ,⋯, rK−1 xð Þ, ψ yð Þ, pð Þjdy
+ 1

Bρ

�� ��
ð
Bρ xð Þ

sup
z,pð Þ

∇ z1,⋯,zK−1ð Þg
∗ z, pð Þ

��� ��� · r1 xð Þ,⋯, rK−1 xð Þð Þj

− r1 yð Þ,⋯, rK−1 yð Þð Þjdy:
ð23Þ

The last term is bounded by ðð1/∣Bρ ∣ Þ1/∣Bρ ∣ Þ
Ð
BρðxÞCjð

r1ðxÞ,⋯, rK−1ðxÞÞ − ðr1ðyÞ,⋯, rK−1ðyÞÞjdx which
approaches 0 as ρ⟶ 0 on the common Lebesgue set of r1
,⋯, rk−1: The next to last term approaches 0 a.e. x as ρ
⟶ 0 since g∗ðr1ðxÞ,⋯, rK−1ðxÞ, ψðyÞ, pÞ is continuous in
y wherever r1ðxÞ,⋯, rK−1ðxÞ are defined. The Lebesgue set
of g∗ thus contains the Lebesgue set of r1,⋯, rk independent
of p: The rest follows exactly as in the proof of Theorem 4 in
[15], but with ∇ðz1,⋯,zK−1ÞGεðz, pÞ and ∇ðz1,⋯,zK−1ÞG

∗
ε ðz, pÞ

replacing ∇zGεðz, pÞ and ∇zG
∗
ε ðz, pÞ and Remark 2 in [1].

Example 3. For α ∈ L1ðΩÞ, u ∈ BVðΩÞ,ψ ∈ CðΩÞ ∩ L∞ðΩÞ,
the functional,

F uð Þ =
ð
Ω

ψ xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þ + ∇uj j2

q
dx +

ð
Ω

ψ xð Þd Dsuj j, ð24Þ

is lower semicontinuous on L1ðΩÞ:

Proof. Letting gδðx, pÞ = ψðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðxÞ + δ + jpj2

q
, α ∈ L1ðΩÞ,

δ > 0 we have

φM x, pð Þ = ψ xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þ + δ + pj j2, if pj j ≤M,

q

ψ xð Þ pj j + kM xð Þ, if pj j >M,

8<
: ð25Þ

where

kM xð Þ = ψ xð Þ α xð Þ + δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þ + δ +M2p

+M
: ð26Þ

Letting αδ = α + δ, we have for jpj ≥M

gδ x, pð Þ − φM x, pð Þj j = ψ xð Þ α xð Þδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þδ + pj j2

q
+ pj j

−
α xð Þδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 xð Þδ +M2p
+M

�������

�������
≤ 2ψ xð Þ α xð Þδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 xð Þδ +M2p
+M

≔ f M xð Þ⟶ 0 asM⟶∞,

ð27Þ

and hence,
Ð
Ω
f M dx⟶ 0 as M⟶∞ by Lebesgue’s dom-

inated convergence theorem, as f MðxÞ ≤ 2ψðxÞ a.e. Note that
φM is convex in t since by defining ~φM : Ω × 0,∞Þ⟶ℝ

~φM x, tð Þ = ψ xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þ + δ + t2, if 0 ≤ t ≤M,

p
ψ xð Þt + kM xð Þ, if t >M:

(
ð28Þ

We see the left derivative ð∂/∂tÞ~φMðx, tÞ at t =M is

~φM
′ x,M −ð Þ = ψ xð Þ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2δ xð Þ + t2
p , ð29Þ

while the right derivative at t =M is ~φM′ ðx,M + Þ = ψðxÞ ≥
ψðxÞðt/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2δðxÞ + t2
p Þ = ~φM′ ðx,M − Þ: Thus, ~φM is convex in

t: As ~φM is also increasing in t, we have that φMðx, pÞ = ~φM
ðx, jpjÞ is convex in p:☐

The conditions for Theorem 1 are thus satisfied for gδ
and φM with

G z1, z2, pð Þ = gδ z1, z2, pð Þ = z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 + δ + pj j2

q
,

U =ℝ2,

∂gδ
∂z1

z1, z2, pð Þ
����

���� = z2
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21 + δ + pj j2
p

�����
����� ≤ z2j j

≤ ψk k, for all z1, z2, pð Þ ∈ℝ2 ×ℝN ,
ð30Þ

noting Remark 2. Hence,

ð
Ω

gδ x,Duð Þ =
ð
Ω

gδ x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j: ð31Þ

For the case gðx, pÞ = ψðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðxÞ + jpj2

q
, α ∈ L1ðΩÞ, we

note that

gδ x, pð Þ − g x, pð Þj j ≤ ψ xð Þ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þ + δ + pj j2

q
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 xð Þ + pj j2

q ≤
ffiffiffi
δ

p
,

ð32Þ

for a.e. x ∈Ω and for each p ∈ℝN : As in the proof of Lemma
2 in [16] and Theorem 1 above, we have for a.e x, all q ∈ℝN ,

g∗ x, qð Þ − g∗δ x, qð Þj j ≤ gδ x, pð Þ − g x, pð Þj j ≤
ffiffiffiffi
δ,

p
ð33Þ
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and similar to the above estimates (17), for each δ > 0, we
have

ð
Ω

g x,Duð Þ −
ð
Ω

gδ x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j
� ����

���� ≤
ð
Ω

ffiffiffi
δ

p
dx:

ð34Þ

Letting δ⟶ 0 gives

ð
Ω

g x,Duð Þ≔ sup
V

ð
Ω

∇u · ϕ xð Þ − g∗ x, ϕ xð Þð Þdx
� �

=
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j:
ð35Þ

Lower semicontinuity of F immediately follows.
We finally note that a version of Theorem 1, along with

Remark 2, holds for nonradially symmetric integrands g, but
with the additional smoothness assumption that for a.e. x
∈Ω,gðx, ·Þ ∈ C2ðℝNÞ:

Theorem 4. Assume that g : Ω ×ℝN ⟶ℝ with

lim
pj j⟶∞

g x, pð Þ
pj j = ψ xð Þ ∈ C Ωð Þ ∩ L∞ Ωð Þ, ð36Þ

where gðx, pÞ is convex and C2 in p for a.e. x, and if for
each M > 0,

φM x, pð Þ≔
g x, pð Þ, if pj j ≤M,
ψ xð Þ pj j + g x,Mð Þ − ψ xð ÞM, if pj j >M,

(

ð37Þ

is both convex and C1 in p and there exists f M ∈ L1ðΩÞ such
that jgðx, pÞ − φMðx, pÞj ≤ f MðxÞ a.e. x, for all jpj ≥M, whereÐ
Ω
f MðxÞ dx⟶ 0 asM⟶∞: Additionally assume the fol-

lowing structure condition on g : that is, for some G we have
gðx, pÞ = Gðr1ðxÞ,⋯, rkðxÞ, pÞ for all p
whereGðz1,⋯, zK , pÞ = gðz1,⋯, zk, pÞ and where g is C1 in
the variable z = ðz1 ⋯ , zKÞ ∈U ⊂ℝK ,U open,ri ∈ L1ðΩÞ
each i,ðr1ðxÞ,⋯, rKðxÞÞ ∈U a.e. x, and ∣ð∇zgÞðz, pÞ ∣ ≤C,C
independent of ðz, pÞ, ∣p ∣ ≤M for each M. Then

ð
Ω

g x,Duð Þ≔ sup
V

ð
Ω

∇u · ϕ xð Þ − g∗ x, ϕ xð Þð Þdx
� �

=
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j:
ð38Þ

Thus, the functional

G uð Þ =
ð
Ω

g x,∇uð Þdx +
ð
Ω

ψ xð Þd Dsuj j, ð39Þ

defined on BVðΩÞ, is lower semicontinuous in L1ðΩÞ:More-

over, if ∂Ω is Lipschitz, then, for the given h ∈ L1ð∂ΩÞ,
ð
Ω

g x,∇uð Þ +
ð
Ω

ψ xð Þd Dsuj j xð Þ +
ð
∂Ω
ψ xð Þ u − hj jdHN−1

= sup
ϕ∈C1 �Ω,ℝN

� �
: ∣ϕ∣≤ψ xð Þ

	 
 −
ð
Ω

udivϕ + g∗ x, ϕ xð Þð Þ dx
�

+
ð
∂Ω
ϕ · n̂hdHN−1

�
,

ð40Þ

and hence, the functional

Gh uð Þ =
ð
Ω

g x,∇uð Þ +
ð
Ω

ψ xð Þd Dsuj j xð Þ +
ð
∂Ω
ψ xð Þ u − hj jdHN−1,

ð41Þ

defined on BVðΩÞ, is lower semicontinuous in L1ðΩÞ:

Proof. The proof is the same as the proof of Theorem 1, not-
ing Theorem 4 in [15] and Remark 2 in [1].☐

We immediately have from standard theory the follow-
ing existence result:

inf
Ω
ψ xð Þ = c1 > 0, ð42Þ

g x, pð Þ ≥ c2 pj j, for some c2 > 0: ð43Þ
Corollary 5. Let g satisfy the assumptions of Theorems 1 and
4 or Remark 2. If in addition we have

Then, for the given u0 ∈ L1ðΩÞ, the functionals

Φ uð Þ =
ð
Ω

g x,Duð Þ + u − u0k kL1 Ωð Þ,

Φh uð Þ =
ð
Ω

g x,Duð Þ +
ð
∂Ω
ψ xð Þ u − hj jdHN−1 + u − u0k kL1 Ωð Þ,

ð44Þ

have a minimizer in BVðΩÞ: Furthermore, the minimizer is
unique if g is strictly convex in p:

Proof. For Φ, this follows from lower semicontinuity of Φ in
L1 and standard compactness results for BV , noting that
assumptions (42) and (43) imply using (5) that

ð
Ω

Duj j ≤min c1, c2ð Þ
ð
Ω

g x,Duð Þ: ð45Þ

Thus, minimizing sequences fung of Φ are bounded in
the BV norm kukBVðΩÞ ≔

Ð
Ω
jDuj + kukL1ðΩÞ so that there is

u ∈ L1ðΩÞ with un ⟶ u in L1ðΩÞ [12], and hence,

Φ uð Þ ≤ lim inf
n⟶∞

Φ unð Þ = min
v∈L1 Ωð Þ

Φ vð Þ: ð46Þ
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The proof is essentially the same for Φh using (13).
Finally, if g is strictly convex, then, so is Φ and Φh: Thus,
if there are minimizers u1 ≠ u2, then, we have

Φ
u1 + u2ð Þ

2

� 
< min

v∈L1 Ωð Þ
Φ vð Þ,

Φh
u1 + u2ð Þ

2

� 
< min

v∈L1 Ωð Þ
Φh vð Þ,

ð47Þ

a contradiction.☐

We finally remark, as noted in [1], that Theorems 1 and
4 of this paper may be extended to vector-valued functions
uðxÞ = ðu1ðxÞ,⋯, uMðxÞÞ where Du is anM ×N matrix with
Dui ∈ BVðΩÞ for each i and

Ð
Ω
gðx,DuÞ is defined by writing

Du as a vector of length NM with g : Ω ×ℝNM ⟶ℝ and g
depending on ðx, jDujÞ for the case of Theorem 1. We may
also consider integrands

Ð
Ω
gðx, u,DuÞ with appropriate

assumptions on gðx, z, pÞ, such as Lipschitz continuity in z,
using similar methods as presented here and in [1, 15, 16].

4. Conclusion

In this paper, we have expanded the class of functionals
Ð
Ω

gðx,DuÞ defined on the BV space which are L1ðΩÞ lower
semicontinuous to include certain integrands gðx, pÞ which,
for each p ∈ℝN , are only assumed to be in L1ðΩÞ: The struc-
ture condition for which lower semicontinuity holds is fairly
general and is for many cases not difficult to verify. Further-
more, as mentioned above, using the method presented here,
we may expand the main theorem of this paper to include
functionals of the form

Ð
Ω
gðx, u,DuÞ for vector-valued

functions u : Ω⟶ℝM: Finally, as noted above, lower
semicontinuity is essential to proving the existence of mini-
mizers of functionals of the form ΦðuÞ = Ð

Ω
gðx,DuÞ +

ku − u0kL1ðΩÞ over BVðΩÞ:
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