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The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation,
thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations
resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral
quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced
increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles;
increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles
decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both
destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing
selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these
errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with
similar results in the literature and was found to be in excellent agreement.

1. Introduction

The boundary layer flow on heat and mass transfer has been
overmoving, and stretching surfaces have been studied and
remained an active area in the past decade. This is because
it has numerous applications in areas such as hot rolling,
processes of polymer extrusions, wire drawing, extrusions
in aerodynamic plastic sheets, process of condensation in
metallic plates during cooling, and many other applications.
According to Poply et al. [1], the study of flows in cylinders
is considered two-dimensional when the cylinder radius is
much larger than the boundary layer thickness. For lean
and thin cylinders, the two dimensions may be of the same
order; in this case, the flow is referred to as axisymmetric
rather than two-dimensional. These dimensions affect veloc-
ity, temperature, and concentration profiles which in turn
affect the skin friction coefficient.

In light of the importance of laminar boundary layer
fluid flow, many researchers have considered several flow
geometries with different boundary conditions, using many
different techniques to solve similar models. These include
the research carried out by Shateyi and Marewo [2] who
used the successive linearization method (SRM) to solve a
problem on laminar boundary layer flow and heat transfer
in nonlinear differential equations; they also considered
stretching cylinder, porous media, and thermal conductivity.
In their investigation, they observed that the curvature sig-
nificantly affects temperature and velocity fields. Also, both
the skin friction coefficient and local Nusselt number
increase as the curvature increases. Rangi and Naseem [3]
used the Keller-box technique to solve the equations describ-
ing boundary layer flow of heat transfer with nonconstant
thermal conductivity along with a stretching cylinder. Their
results also showed that the cylinder curvature affects
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temperature, velocity, and skin friction fields. In the
results, thermal conductivity and curvature aid heat trans-
fer and reduction in fluid viscosity aids the convectional
heat transfer rate. Numerical solutions concerning bound-
ary layer flow, heat transfer along a stretching cylinder in
porous media were obtained by Mukhopadhyay [4] using
the shooting method. The results of this study found that
increasing permeability parameter results in a decrease in
velocity profiles. The skin friction and rate of heat trans-
fer are much less on the flat plate than on the cylinder
surface. Some other laminar boundary layer fluid models
by different researchers including Elbashbeshy et al. [5],
Lin and Shih [6], and Ali and Alabdulkarem [7] among
others investigated the Casson fluid flow on a stretching
surface based on an exponential model; they also applied
theoretical analysis using lie groups in MHD fluid flow.
In these works, a fourth-order Runge-Kutta method was
used.

The study of the fluid flow and the physical properties
of nanofluids has been widely studied in the past few years
due to the wide applications of these fluids in cancer ther-
apy, fuel cells, electronics, and pharmaceutical processes,
just to mention a few. The concept of nanofluids was
introduced by Choi [8], where the introduction for the
proposal of nanoparticles suspended in base fluids such
as ethylene glycol, oil, and water. A nonhomogeneous
equation with two components for nanofluids was intro-
duced by Buongiorno [9], where the seven slip mecha-
nisms were proposed. The results explained effects in
thermophoresis Brownian motion in nanofluids. Alamri
et al. [10] used the homotopy analysis method to investi-
gate fluid flow in nanofluids in the presence of second-
order slip and Stefan blowing effects in a tube (Poiseuille).
In this investigation, the results show that the retarding
effects of Stefan blowing is observed for temperature and
velocity profiles, the opposite effect was noticed for the
case of particle concentrations. A more enhanced response
in the field of velocity was observed in the slip of the sec-
ond order than in the slip of the first order. Nadeem et al.
[11] used the homotopy analysis method in the solutions
for nonlinear differential equations in which the oblique
stagnation point flow was considered for a Casson nano-
fluid flow with stretching surface and heat transfer. The
Runge-Kutta method of the fourth order together with
the shooting technique was used by Khan et al. [12] to
find a numerical solution of the Maxwell nanofluid stagna-
tion point fluid flow over a stretching sheet with slip con-
ditions and chemical reaction effects. Their results showed
that the skin friction coefficient is inversely proportional to
slip parameter but an opposite is noticed in the case of
fluid relaxation parameter.

Dhanai et al. [13] investigated MHD boundary layer
fluid flow on multiple solutions of and heat transfer
power-law nanofluids, viscous dissipation, and permeable
shrinking/stretching effects in which the shooting method
was used. In this study, viscous dissipation was significant
and the Brownian motion was neglected in the case of heat
transfer. The results of the analysis of the mass and heat
transfer in nanofluid flow in Casson fluid flow between par-

allel plates with Hall current effects were obtained by Shah
et al. [14] using an optimal and numerical method. The
results showed that Hall currents decrease conductivity,
which then increase the velocity and temperature of the
fluid. Nadeem and Khan [15] obtained dual solutions of
inclined stagnation point nanofluid flow with MHD over
an oscillatory shrinking/stretching sheet using the fourth-
order Runge-Kutta method. The results obtained indicated
that dual solutions occur in both cases that is the shrink-
ing and stretching cases. Furthermore, the obtained lower
solution branch shows the same behaviour for the coeffi-
cient of skin friction in the shrinking case. On the con-
trary, the solution in the upper branch has perfect
behaviour in both the shrinking and stretching cases.
More recent studies of nanofluid flow include among
others Kamal et al. [16], Besthapu et al. [17], Sadiq et al.
[18], Nayak et al. [19], Yousif et al. [20], Salawu and
Ogunseye [21], Kumar and Srinivas [22], Sreedevi and
Reddy [23, 24], Gireesha et al. [25, 26], Archana et al.
[27], and Awais et al. [28].

To the best of the authors’ knowledge, the study of
laminar boundary layer nanofluid flow along a fixed or
moving cylinder with heat generation, radiation parameter,
and slip parameter has not been widely studied. This work
is aimed at studying the effects of thermal radiation, heat
generation, slip effects, and other important parameters
discussed in Section 4. The model of Lin and Shih [6] is
modified into a laminar boundary layer nanofluid model.
The fluid flow includes the effects of thermophoretic
forces, thermal radiation, heat generation, magnetic field,
and Brownian motion. We will focus more on the nano-
particle slip boundary condition, thermophoretic force,
and Brownian motion.

The solution of the partial differential equations is
obtained by the multidomain bivariate spectral quasilineari-
zation method (MD-BSQLM). This method uses more than
one domain in its collocation process; it uses the quasilinear-
ization method based on the Newton–Raphson technique
previously used by Bellman and Kalaba [29]. The obtained
system of equations is used together into multiple subinter-
vals using the spectral method based on the Chebyshev
and Lagrange interpolation polynomials. These are used on
the linearized nonlinear equations of PDEs independently
in both directions of time and space. This approach of the
MD-BSQLM gives very accurate solutions. The method
yields more accurate solutions when compared to other
methods such as bivariate spectral quasilinearization [30],
bivariate spectral homotopy analysis method [31], and
bivariate spectral relaxation method (BSRM) [32], among
others.

This paper mostly focuses on the robustness and accu-
racy of the MD-BSQLM and in finding solutions of prob-
lems of high complexity. The robustness and accuracy of
the numerical method are obtained by analysis and com-
putations of solutions of the momentum, heat, and mass
transfer systems of equations. Obtained solutions are com-
pared to those found in the literature, and an acceptable
agreement is observed. The effect of different physical
parameters on the temperature, velocity, and concentration
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fields is discussed in tabular and graphical forms in Sec-
tion 4. The results show the different behaviours that
occur when these parameters are changed. The paper will
be arranged as follows: the mathematical formulation is
in Section 2, the method of solution is in Section 3, and
the results will be discussed in Section 4 and conclusions
in Section 5.

2. Mathematical Formulation of the Problem

An axisymmetric, steady boundary layer flow of an incom-
pressible viscous fluid along with a cylinder in motion as
shown in Figure 1 is considered. The cylinder is moving
with a constant Uw in a U∞. The Tw, T∞, Cw, and C∞
are considered. The model will consider the motion of
the cylinder in both directions. The mathematical model
is presented as
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subject to the boundary conditions

u =Uw xð Þ + B1ν
∂u
∂r

, v = 0, T = Tw xð Þ, C = Cw xð Þ, at r = R,

ð5Þ

u⟶U∞, T ⟶ T∞, C⟶ C∞ as r⟶∞, ð6Þ

To solve this problem, we introduce the following non-
dimensional groups and variables:
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where ψ is the stream function which is defined as
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which satisfies the continuity equation (1). Substituting
equation (9) in equations (2)–(5) gives
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subject to the boundary conditions:

f ′ 0ð Þ = 2 + δf ′′ 0ð Þ, f 0ð Þ = 0, f ′ ∞ð Þ = 0, ð16Þ

θ 0ð Þ = 1, θ ∞ð Þ = 0, ð17Þ

ϕ 0ð Þ = 1, ϕ ∞ð Þ = 0, ð18Þ

where prime defines derivatives with respect to η, mag-
netic parameter is M = ðσB2

0xÞ/ðρuÞ, Prandtl number is
Pr = ðρcpÞ/ðkÞ, thermal radiation parameter is Nr = ð16T3

∞
σ∗Þ/ð3k∗kÞ, Eckert number is Ec = ðU2Þ/ð4cpAxmÞ, Ec = ð
U2Þ/ð4cpðTw − T∞ÞÞ, nondimensional heat generation
parameter is He = ð4Q0xÞ/ðρcpUÞ, Brownian motion
parameter is Nb = ðτDBðCw − C∞ÞÞ/ðνÞ, thermophoresis
parameter is Nt = ðτDTðTw − T∞ÞÞ/ðνT∞Þ, Schmidt num-
ber is Sc = ðνÞ/ðDBÞ, and nondimensional velocity slip
parameter is δ = ðβ1/2Þðνu/xÞ1/2.
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3. Multidomain Bivariate Spectral
Quasilinearization Method

In this section, we describe how to apply the multidomain
bivariate spectral quasilinearization method (MD-BSQLM)
for solving the system of coupled PDEs that are highly
coupled as shown in equations (13)–(15). The solution is
decomposed into a large interval with small subdivisions.
The solution is evaluated at each time step at the end of each
subinterval. The multidomain approach is applied in the ξ
direction. The system of equations is first linearized using
the quasilinearization (QLM) as indicated in [29, 33]. The
QLM approach makes use of the Taylor series approxima-
tion to linearize the system of equations. In this method,
we assume that the value of the function on the current
and previous iterations is small. Applying the QLM on
(13)–(15) gives the following:
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Now, let ξ ∈Ω, where Ω ∈ ½0, T� and the domain Ω is
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The PDEs are solved separately at each of the subinter-
vals p. Solutions of the mth interval are obtained by using
solutions from the m − 1th interval. This process is imple-
mented as follows:

a mð Þ
0,s f ′′′

mð Þ
s+1 + a mð Þ

1,s f s+1′
′ mð Þ

+ a mð Þ
2,s f r+1′

mð Þ + a mð Þ
3,s f

mð Þ
s+1

+ a mð Þ
4,s

∂f ′ mð Þ
s+1

∂ξ
+ a mð Þ

5,s
∂f mð Þ

s+1
∂ξ

= R mð Þ
1,s ,

ð22Þ

4 Abstract and Applied Analysis



b mð Þ
0,s θs+1′

′ mð Þ
+ b mð Þ

1,s θs+1′
mð Þ + b mð Þ

2,s θ
mð Þ
s+1 + b mð Þ

3,r
∂θ mð Þ

s+1
∂ξ

+ b mð Þ
4,s f s+1′

′ mð Þ
+ b mð Þ

5,s f s+1′
mð Þ + b mð Þ

6,s f
mð Þ
s+1 + b mð Þ

7,s
∂f mð Þ

s+1
∂ξ

+ b mð Þ
8,s ϕs+1′

mð Þ = R mð Þ
2,s ,

ð23Þ

c mð Þ
0,s ϕs+1′

′ mð Þ
+ c mð Þ

1,s ϕs+1′
mð Þ + c mð Þ

2,s ϕ
mð Þ
s+1 + c mð Þ

3,s
∂ϕ mð Þ

s+1
∂ξ

+ c mð Þ
4,s f s+1′

mð Þ + c mð Þ
5,r f

mð Þ
r+1 + c mð Þ

6,s
∂f mð Þ

s+1
∂ξ

+ c mð Þ
7,s θs+1′

′ mð Þ

+ c mð Þ
7,s θs+1′

mð Þ = R mð Þ
3,s ,

ð24Þ

the boundary conditions are imposed
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An appropriate initial guess is imposed to start the mul-
tidomain iteration. This gives the solution in the first inter-
val and satisfies the boundary condition (16). The initial
conditions at the next interval are prescribed by the condi-
tions that ensure continuity as follows:

f mð Þ η, ξm−1ð Þ = f m−1ð Þ η, ξm−1ð Þ,
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The domains in the η and ξ directions have transformed
the domain ðx, tÞ ∈ ½−1, 1� × ½−1, 1� for computation, at each
subinterval using the linear transformation
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where Lx is a number that approximates infinity in η.
The Chebyshev-Gauss-Lobatto nodes defined in [34, 35]

2

Velocity B. C
B0

Uw
2R

x

r

Tw (x)

Concentration B .C

v

u C∞
T∞ Temperature B. C

Figure 1: The flow coordinate system and the flow configuration.

Table 1: Comparison of the MD-BSQLM approximate solutions of
f ′′ð0, ξÞ, against those of Ref. [36] for different values of λ and ξ
when M = 0, Pr = 0:72, and Nr = δ =He =m = r = 0 and in the
absence of Nt , Nb, and Sc.

ξ f ′′ 0, ξð Þ [36] f ′′ 0, ξð Þ (present)
λ = 0 λ = 1 λ = 0 λ = 1

0 1.328229 -1.774973 1.328230 -1.774993

0.0001 1.328286 -1.775009 1.328287 -1.775024

0.0005 1.328515 -1.775139 1.328515 -1.775149

0.001 1.328801 -1.775292 1.328801 -1.775305

0.005 1.331084 -1.776544 1.331084 -1.776554

0.01 1.333934 -1.778103 1.333935 -1.778115

0.05 1.356475 -1.790768 1.356575 -1.790609

0.1 1.384492 -1.806219 1.384491 -1.806235

0.5 1.594957 -1.931348 1.595055 -1.931760

1 1.834846 -2.103250 1.834850 -2.090697

1.5 2.056828 -2.243225 2.056913 -2.250873

2 2.266093 -2.412581 2.266166 -2.411156
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are used for collocation as follows:

xi = cos πi
Nx
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, t j = cos πj
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, i = 0, 1,⋯,Nx , j = 0, 1,⋯,Nt , x ∈ −1, 1½ �, t ∈ −1, 1½ �,

ð29Þ

where ðNx + 1Þ and ðNt + 1Þ are all the points in η- and ξ
-directions used for collocation, respectively.

If the solutions f , θ, and ϕ are approximated at each sub-
interval by using the bivariate Lagrange interpolation poly-
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Figure 2: Velocity profile for different values of δ when λ = 0:1,N = 0:5, n = 0:5, f w = 0:8, ξ = 1,Nb =Nt =Df = Bi = Sr = 0:5, He = δ =NR
= 0:2, Sc = 0:6, and Pr = 1:
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Figure 3: Temperature profile for different values of λ when De = 0:1,N = 0:5, n = 0:5, f w = 0:8, ξ = 1,Nb =Nt =Df = Sr = Bi = 0:5, He = δ
=NR = 0:2, Sc = 0:6, and Pr = 1:
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ϕ mð Þ η, ξð Þ ≈Φ mð Þ x, tð Þ = 〠
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where the Lagrange cardinal polynomial functions LpðxÞ and
LqðtÞ are defined as
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with

Lp xkð Þ = δik =
0 if i ≠ k,
1 if i = k,

(

Lq tkð Þ = δjk =
0 if j ≠ k,
1 if j = k:

( ð32Þ

At the Chebyshev-Gauss-Lobatto points ðxi, t jÞ for i = 0

, 1, 2,⋯,Nx, the derivative of f , θ, and ϕ with respect to η
is evaluated as

∂f mð Þ

∂η
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
F mð Þ xp, tq

� 	 dLp xið Þ
dx

Lp t j
� 	

= 〠
Nx

p=0
F mð Þ xp, t j

� 	 dLp xið Þ
dx

= 〠
Nx

p=0

2
Lx

� �
D̂i,pF

mð Þ xp, t j
� 	

= 2
Lx

� �
D̂F mð Þ

j =DF mð Þ
j ,

ð33Þ
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∂θ mð Þ

∂η
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Θ mð Þ xp, tq

� 	 dLp xið Þ
dx

Lp t j
� 	

= 〠
Nx

p=0
Θ mð Þ xp, t j

� 	 dLp xið Þ
dx

= 〠
Nx

p=0

2
Lx

� �
D̂i,pΘ

mð Þ xp, t j
� 	

= 2
Lx

� �
D̂Θ mð Þ

j =DΘ mð Þ
j ,

ð34Þ

∂ϕ mð Þ

∂η
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Φ mð Þ xp, tq

� 	 dLp xið Þ
dx

Lp t j
� 	

= 〠
Nx

p=0
Φ mð Þ xp, t j

� 	 dLp xið Þ
dx

= 〠
Nx

p=0

2
Lx

� �
D̂i,pΦ

mð Þ xp, t j
� 	

= 2
Lx

� �
D̂Φ mð Þ

j =DΦ mð Þ
j ,

ð35Þ
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where D̂ = LxD/2 is the differentiation matrix of size ð
Nx + 1Þ × ðNx + 1Þ as indicated in Trefethen [34]. The matri-

ces FðmÞ
j , ΘðmÞ

j , and ΦðmÞ
j are defined as

F mð Þ
j = F η0, ξj

� 	
, F η1, ξj

� 	
· F ηNx

, ξj
� �h iT

,

Θ mð Þ
j = Θ η0, ξj

� 	
,Θ η1, ξj

� 	
·Θ ηNx

, ξj
� �h iT

,

Φ mð Þ
j = Φ η0, ξj

� 	
,Φ η1, ξj

� 	
·Φ ηNx

, ξj
� �h iT

,

ð36Þ

where T denotes transpose of the matrix.
The derivative of order n for f , θ, and ϕ w.r.t η are

approximated as follows:

∂nF mð Þ

∂ηn
xi, t j
� 	

=D nð ÞF mð Þ
j ,

∂nF mð Þ

∂ηn
xi, t j
� 	

=D nð ÞΘ mð Þ
j ,

∂nΦ mð Þ

∂ηn
xi, t j
� 	

=D nð ÞΦ mð Þ
j :

ð37Þ

The derivatives of f , θ, and ϕ are evaluated at each point
ðxi, t jÞ for j = 0, 1, 2,⋯,Nt as

∂F mð Þ

∂ξ
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
F mð Þ xp, tq

� 	
Lp xið Þ dLq t j

� 	
dt

= 〠
Nt

q=0
F mð Þ xi, tq

� 	 dLq t j
� 	
dt

,
ð38Þ

〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qF

mð Þ xi, tq
� 	

= 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qF

mð Þ
q

= 〠
Nt

q=0
dj,qF

mð Þ
q ,

∂Θ mð Þ

∂ξ
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Θ mð Þ xp, tq

� 	
Lp xið Þ dLq t j

� 	
dt

= 〠
Nt

q=0
Θ mð Þ xi, tq

� 	 dLq t j
� 	
dt

,
ð39Þ

〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΘ

mð Þ xi, tq
� 	

= 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΘ

mð Þ
q

= 〠
Nt

q=0
dj,qΘ

mð Þ
q ,

ð40Þ

∂Φ mð Þ

∂ξ
xi, t j
� 	

= 〠
Nx

p=0
〠
Nt

q=0
Φ mð Þ xp, tq

� 	
Lp xið Þ dLq t j

� 	
dt

= 〠
Nt

q=0
Φ mð Þ xi, tq

� 	 dLq t j
� 	
dt

,
ð41Þ

〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΦ

mð Þ xi, tq
� 	

= 〠
Nt

q=0

2
ξm − ξm−1

� �
d̂ j,qΦ

mð Þ
q

= 〠
Nt

q=0
dj,qΦ

mð Þ
q ,

ð42Þ
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where d̂ j,q = ððξm − ξm−1Þ/2Þdj,q, j, q = 0, 1, 2,Nt are the
entries of the differentiation matrix in the mth subinterval.
Substituting equations (32)–(37) into equations (22)–(24),
we have

a mð Þ
0,s D3 + a mð Þ

1,s D2 + a mð Þ
2,s D + a mð Þ

3,s
h i

F mð Þ
j,s+1 + a mð Þ

4,s 〠
Nt

q=0
dj,qDF mð Þ

q,s+1 + a mð Þ
5,s 〠

Nt

q=0
dj,qF

mð Þ
q,s+1+ = R mð Þ

1,j,s,

ð43Þ

b mð Þ
0,s D2 + b mð Þ

1,s D + b mð Þ
2,s

h i
Θ mð Þ

j,s+1 + b mð Þ
3,s 〠

Nt

q=0
dj,qΘ

mð Þ
q,s+1

+ b mð Þ
4,s D2 + b mð Þ

5,s D + b mð Þ
6,s

h i
F mð Þ
j,s+1 + b mð Þ

7,s 〠
Nt

q=0
dj,qF

mð Þ
q,s+1

+ b mð Þ
8,s D

h i
Φ mð Þ

j,s+1 = R mð Þ
2,j,s,

ð44Þ
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c mð Þ
0,s D2 + c mð Þ

1,s D + c mð Þ
2,s

h i
Φ mð Þ

j,s+1 + c mð Þ
3,s 〠

Nt

q=0
dj,qΦ

mð Þ
q,s+1

+ c mð Þ
4,r D + c mð Þ

5,s
h i

F mð Þ
j,r+1 + c mð Þ

6,s 〠
Nt

q=0
dj,qF

mð Þ
q,s+1

+ c mð Þ
7,s D2 + c mð Þ

8,s D
h i

Θ mð Þ
j,s+1 = R mð Þ

3,j,s:

ð45Þ

The solution at j =Nt of each subinterval is obtained
from the solution at the previous level, redenoting i and j

indices; equations (42)–(44) can be written as

a mð Þ
0,s D3 + a mð Þ

1,s D2 + a mð Þ
2,s D + a mð Þ

3,s
h i

F mð Þ
i,s+1 + a mð Þ

4,s 〠
Nt−1

j=0
di,jDF mð Þ

j,s+1

+ a mð Þ
5,s 〠

Nt−1

j=0
di,jF

mð Þ
j,s+1 = R mð Þ

1,i,s − a mð Þ
4,s di,Nt

DF mð Þ
Nt ,s+1

− a mð Þ
5,s di,Nt

F mð Þ
Nt ,s+1,

ð46Þ
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Figure 14: Concentration profile for different values of Pr when De = 0:1,N = 0:5, n = 0:5, f w = 0:8, ξ = 1,Nb =Nt =Df = Sr = Bi = 0:5, He
= δ =NR = 0:2, Sc = 0:6, and Pr = 1:
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b mð Þ
0,s D2 + b mð Þ

1,s D + b mð Þ
2,s

h i
Θ mð Þ

i,s+1 + b mð Þ
3,s 〠

Nt−1

j=0
di,jΘ

mð Þ
j,s+1

+ b mð Þ
4,s D2 + b mð Þ

5,s D + b mð Þ
6,s

h i
F mð Þ
i,s+1 + b mð Þ

7,s 〠
Nt−1

j=0
di,jF

mð Þ
j,s+1

+ b mð Þ
8,s

h i
Φ mð Þ

i,s+1 = R mð Þ
2,i,s − b mð Þ

3,s di,Nt
Θ mð Þ

Nt ,s+1 − b mð Þ
7,s di,Nt

F mð Þ
Nt ,s+1,

ð47Þ

c mð Þ
0,s D2 + c mð Þ

1,s D + c mð Þ
2,s

h i
Φ mð Þ

i,s+1 + c mð Þ
3,s 〠

Nt−1

j=0
di,jΦ

mð Þ
j,s+1

+ c mð Þ
4,s D + c mð Þ

5,s
h i

F mð Þ
i,s+1 + c mð Þ

6,s 〠
Nt−1

j=0
di,jF

mð Þ
q,s+1

+ c mð Þ
7,s D2 + c mð Þ

8,s D
h i

Θ mð Þ
i,s+1

= R mð Þ
3,i,s − c mð Þ

3,s di,Nt
Φ mð Þ

Nt ,s+1 − c mð Þ
6,s di,Nt

F mð Þ
Nt ,s+1:

ð48Þ
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Figure 16: Concentration profile for different values of Pr when De = 0:1,N = 0:5, n = 0:5, f w = 0:8, ξ = 1,Nb =Nt =Df = Sr = Bi = 0:5, He
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For brevity, equations (45)–(47) can be written as

A ið Þ
1,1F

mð Þ
i,s+1 + a mð Þ

4,s 〠
Nt−1

j=0
di,jDF mð Þ

j,s+1 + a mð Þ
5,s 〠

Nt−1

j=0
di,jF

mð Þ
j,s+1 +A ið Þ

1,2Θ
mð Þ
i,s+1

+A ið Þ
1,3Φ

mð Þ
i,s+1 = β

mð Þ
1,i,s ,

A ið Þ
2,1F

mð Þ
i,s+1 + b mð Þ

7,s 〠
Nt−1

j=0
di,jF

mð Þ
j,s+1 +A ið Þ

2,2Θ
mð Þ
i,s+1 + b mð Þ

3,s 〠
Nt−1

j=0
di,jΘ

mð Þ
j,s+1

+A ið Þ
2,3Φ

mð Þ
i,s+1 = β

mð Þ
2,i,s ,

A ið Þ
3,1F

mð Þ
i,s+1 + c mð Þ

6,s 〠
Nt−1

j=0
di,jF

mð Þ
j,s+1 +A ið Þ

3,2Θ
mð Þ
i,s+1 +A ið Þ

3,3Φ
mð Þ
i,s+1

+ c mð Þ
3,s 〠

Nt−1

j=0
di,jΦ

mð Þ
j,s+1 = β

mð Þ
3,i,s ,

ð49Þ

where

A ið Þ
1,1 = a mð Þ

0,s D3 + a mð Þ
1,s D2 + a mð Þ

2,s D + a mð Þ
3,s ,

A ið Þ
1,2 = 0,

A ið Þ
1,3 = 0,

A ið Þ
2,1 = b mð Þ

4,s D2 + b mð Þ
5,s D + b mð Þ

6,s ,

A ið Þ
2,2 = b mð Þ

0,s D2 + b mð Þ
1,s D,+b mð Þ

2,s ,

A ið Þ
2,3 = b mð Þ

8,s

A ið Þ
3,1 = c mð Þ

4,s D + c mð Þ
5,s ,

A ið Þ
3,2 = c mð Þ

7,s D2 + c mð Þ
8,s D,

A ið Þ
3,3 = c mð Þ

0,s D2 + c mð Þ
1,s D,+c mð Þ

2,s

β
mð Þ
1,i,s = R mð Þ

1,i,s − a mð Þ
4,s di,Nt

DF mð Þ
Nt ,ss+1 − a mð Þ

5,s di,Nt
F mð Þ
Nt ,s+1,

β
mð Þ
2,i,s = R mð Þ

2,i,s − b mð Þ
3,s di,Nt

Θ mð Þ
Nt ,s+1 − b mð Þ

7,s di,Nt
F mð Þ
Nt ,s+1,

β
mð Þ
3,i,s = R mð Þ

3,i,s − c mð Þ
3,s di,Nt

Φ mð Þ
Nt ,s+1 − c mð Þ

6,s di,Nt
F mð Þ
Nt ,s+1: ð50Þ

4. Results and Discussion

A numerical solution for the boundary layer nanofluid flow
along a moving cylinder with thermal radiation, heat gener-
ation, and slip effects is studied. The solutions for the system
of partial differential equations are presented. The bivariate
spectral quasilinearization method (MD-BSQLM) is used
to solve the coupled system. To validate the numerical
method, a comparison with results in [36] was made, and
the results are in acceptable agreement. The finite
difference-based method used in [36] shows a slightly more
rigorous approach than the one applied in this study.

We present important and interesting results only. The
results obtained are presented in Table 1 and Figures 2–18.
The discussion of the effect of the Prandtl number and the
magnetic parameter is solved for the purpose of validating
results obtained in the literature as they have been widely
reported. The most interesting and important results include
the effect of the Brownian motion Nb, the thermophoresis
parameter Nt , heat generation He, velocity slip parameter
δ, the temperature exponent m, and the radial coordinate r
. The values M = 0, Nr =m = Ec =Nb =Nt =He = r = δ = 0,
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Figure 17: Concentration profile for different values of Sc when λ = 0:1,N = 0:5, n = 0:5, f w = 0:8, ξ = 1,Nb =Nt =Df = Bi = Sr = 0:5, He
= δ =NR = 0:2, Sc = 0:6, and Pr = 1:
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and ∂f /∂ξ = ∂f ′/∂ξ = 0 give the set of equations (13)–(15) to
those of [36].

Figures 2 and 3 show the effect of varying the velocity
slip parameter δ on the velocity and temperature profiles.
Increasing δ result in increasing both the velocity and tem-
perature profiles. Increasing the velocity slip parameter
causes the fluid layer in contact with the cylinder surface
to slip thereby causing the velocity at the surface to increase.
The velocity decrease with increasing boundary layer. When
fluid particles move faster on the cylinder surface, this causes
more fluid particle interaction causing the temperature to
increase with increasing δ.

Figures 4 and 5 depict the effect of changing the mag-
netic parameterM on velocity profiles and changing the heat
generation parameter on the temperature profiles. Increas-
ing the magnetic parameter result in the decrease in velocity
profiles, this result agrees with many other results displayed
in the literature in [20, 37] and [21]. If the heat generation
parameter is increased, this then results in the increase in
the temperature profiles; this result has been shown in many
other different studies. This shows a strong agreement in the
results when the MD-BSQLM is used.

Figure 6 shows the effect of increasing the radiation
parameter Nr on the temperature profiles. If the radiation
parameter is increased, this has an effect of increasing tem-
perature profiles. A point of “inflexion” is noticed close to
the surface of the cylinder. When radiation is applied, it
causes a rise in temperature causing the mass particles close
to the surface with lower temperature to rise. They then
become heated as they move further from the surface caus-
ing the temperature to increase further away from this point.

Figures 7 and 8 show the effect of varying the Eckert
number Ec and the radial coordinate r. Increasing the Eckert
number results in the increase in temperature profiles. The
trends in the increase in temperature fields are more pro-

nounced at close to the cylinder surface. This is caused by
the presence of velocity slip and radiation which increase
temperature at the surface. The gradient of the velocity pro-
file at the surface −θ′ð0Þ (heat transfer coefficient) can be
seen increasing from negative to positive. Increasing the
radial coordinate shows a decrease in the concentration pro-
files. This shows that as we move outward from the cylinder
surface, the mass particle concentration decreases. This is
consistent with the general settling of mass particles to the
cylinder surface due to gravity. The settling is less enhanced
due to the fluid flow which tends to carry the particles along
with the flow regime.

Figures 9 and 10 show the effect of varying the thermo-
phoresis parameter Nt and the the Brownian motion param-
eter Nb and on the concentration profiles. If the Brownian
motion parameter is increased, this results in decreasing
the concentration profile at close to the surface. A reverse
effect is noticed further away from the cylinder surface.
Increasing the Brownian motion parameter causes the mass
particles to move more rapidly in random motion this desta-
bilizes the particle motion. A more enhanced point of inflex-
ion is noticed. Increasing the thermophoresis parameter Nt
results in decreasing the concentration profiles at close to
the cylinder surface.

In Figure 11, it is shown that if the Schmidt number Sc is
increased, this result in the decrease in the concentration
profiles. The result is consistent with those in the literature.

The effect of changing parameters of the coupled partial
differential equations affects the stability of the numerical
solution. Sometimes when parameters exceed certain ranges,
the numerical method fails. In this section, we study the
effect of changing various parameters on the stability of the
numerical solution. This is shown in the graphs from
Figures 12–18. The effect of varying the velocity slip δ on
the residual error of the solution of f , the Brownian motion
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15 20
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Nr = 0.8
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Figure 18: Concentration profile for different values of Pr when De = 0:1,N = 0:5, n = 0:5, f w = 0:8, ξ = 1,Nb =Nt =Df = Sr = Bi = 0:5, He
= δ =NR = 0:2, Sc = 0:6, and Pr = 1:
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Nb on the residual error of f , θ, and ϕ, and Nr on f , θ, and ϕ.
Figure 12 shows the effect of increasing the velocity slip δ on
the residual error of the solution of f ; the error does not
deteriorate with increasing iterations. The sudden drop in
residual error in less than five iterations shows the accuracy
of the MD BSQLM. Figure 13 shows the effect of increasing
the Brownian motion parameter Nb on the residual error of
f ; the residual error becomes very small with larger values of
the Brownian motion parameter. The error becomes more
stable with increasing iterations. In Figures 14 and 15, the
errors Eϕ and Eθ improve with increasing Brownian motion
parameter. At low values of the parameter convergence is
delayed, happens after five iterations. In both cases, the error
does not deteriorate with increasing iterations.

In Figures 16–18, it is shown that increasing the radia-
tion parameter does not make the errors Ef , Eϕ, and Eθ dete-
riorate with increasing iterations. Increasing the radiation
parameter Nr result in improving the stability of the errors
of the MD-BSQLM.

5. Conclusion

In this paper, we have studied the numerical solution of lam-
inar boundary layer flow along with a moving cylinder with
thermal radiation, heat generation, and surface slip effect.
The coupled partial differential equations of the mass and
heat transfer along with a cylinder in motion are solved by
the multidomain bivariate spectral quasilinearization
method (MD BSQLM). The most important results show
that increasing the velocity slip factor results in an enhanced
increase in velocity and temperature profiles. Increasing the
heat generation parameter increases temperature profiles; if
the radiation parameter and the Eckert number are both
increased, this would then result in the increase temperature
trends. The concentration fields decrease with increasing
radial coordinate. Increasing the thermophoresis parameter
and Brownian motion both destabilizes the concentration
profiles. Increasing the Schmidt number reduce temperature
fields. The effect of increasing selected parameters: the veloc-
ity slip, Brownian motion, and radiation parameter on all
residual errors show that these errors do not deteriorate.
This shows that the multidomain bivariate quasilineariza-
tion method (MD BSQLM) is very accurate and robust.
The method is also easier to implement than the traditional
finite difference methods as shown in Section 3. The method
also shows very low residual errors only after five iterations.
The method adds value to the way in which differential
equations arising from fluid dynamics are solved.

Nomenclature

u: Velocity component in x direction (ms−1)
v: Velocity component in y direction (ms−1)
C∞: Solute ambient concentration (kgm3)
Cw: Surface solute concentration (kgm3)
T∞: Fluid ambient temperature (°C)
Tw: Fluid temperature at cylinder surface (°C)
r: Radial coordinate

ν: Kinematic viscosity (m2s−1)
σ: Electrical conductivity (Sm−1)
ρ: Fluid density (kgm−3)
B0: Magnetic field (T)
Cp: Specific heat capacity (J/kg°C
σ∗: Boltzmann constant (JK−1)
k∗: Mean absorption coefficient (m2mol−1)
k: Thermal diffusivity (m2s−1)
μ: Dynamic viscosity (Pas)
τ: Nondimensional ratio of specific heat capacities
DB: Brownian diffusion coefficient
DT : Thermophoretic diffusion coefficient (m2mol−1)
Q0: Heat generation constant (ms−1)
R: Radius of cylinder (m)
B1: Velocity slip factor (ms−1)
U∞: Free stream velocity (ms−1)
Uw: Surface velocity (ms−1)
M: Magnetic parameter (ms−1)
Nr : Thermal radiation parameter (ms−1)
Pr: Prandtl number
m: Temperature exponent
Ec: Eckert number
Nb: Brownian motion parameter
Nt : Thermophoresis parameter
He: Nondimensinal heat generation parameter
Sc: Schmidt number
δ: Nondimensional velocity slip parameter

Data Availability

No data was used in this study; calculations were performed
from code simulations in Matlab.
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