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In this paper, weighted norm inequalities for multilinear Fourier multipliers satisfying Sobolev regularity with mixed norm are
discussed. Our result can be understood as a generalization of the result by Fujita and Tomita by using the Lr-based Sobolev
space, 1 < r ≤ 2 with mixed norm.

1. Introduction

For m ∈ L∞ðℝNnÞ, the N-linear Fourier multiplier operator
Tm is defined by

Tm f1,⋯, f Nð Þ xð Þ
= 1

2πð ÞNn

ð
ℝnð ÞN

eix· ξ1+⋯+ξNð Þm ξð Þ bf1 ξ1ð Þ⋯ cf N ξNð Þdξ,

ð1Þ

for f 1,⋯, f N ∈ SðℝnÞ, where x ∈ℝn, ξ = ðξ1,⋯, ξNÞ ∈ ðℝnÞN
and dξ = dξ1 ⋯ dξN . Let Ψ ∈ SðℝdÞ be such that

supp Ψ ⊂ ξ ∈ℝd :
1
2 ≤ ξj j ≤ 2

� �
,

 〠
k∈ℤ

Ψ ξ/2k
� �

= 1, ξ ∈ℝd \ 0f g,
ð2Þ

and set

mj ξ1,⋯, ξNð Þ =m 2jξ1,⋯, 2jξN
� �

Ψ ξ1,⋯, ξNð Þ, j ∈ℤ,
ð3Þ

where Ψ is as in (2) with d =Nn. We denote by
kTmkLp1 ðw1Þ×⋯×LpN ðwN Þ⟶LpðwÞ the smallest constant C satis-
fying

Tm f1,⋯, f Nð Þk kLp wð Þ ≤ C
YN
i=1

f ik kLpi wið Þ, f1,⋯, f N ∈ S ℝnð Þ:

ð4Þ

See Section 2 for the definition of function spaces.
In the unweighted case, Tomita [1] proved a

Hörmander-type multiplier theorem for multilinear opera-
tors, namely, if s >Nn/2 then

Tmk kLp1 ℝnð Þ×⋯×LpN ℝnð Þ⟶Lp ℝnð Þ ≲ sup
j∈ℤ

mj

�� ��
H2

s ℝNnð Þ, ð5Þ

for 1 < p1,⋯, pN , p<∞ satisfying 1/p1+⋯+1/pN = 1/p, where
H2

s ðℝNnÞ is the L2-based Sobolev space of usual type. Grafa-
kos and Si [2] extended this result to the case p ≤ 1 by using
the Lr-based Sobolev space, 1 < r ≤ 2. For further results in
this direction, see [3–7]. Let 1 < p1,⋯, pN<∞ and 1/p1+⋯
+1/pN = 1/p. In the weighted case, Fujita and Tomita [8]
proved that if n/2 < si ≤ n, pi > n/si, and wi ∈ Apisi/n for all
i = 1,⋯,N , then
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Tmk kLp1 w1ð Þ×⋯×LpN wNð Þ⟶Lp wð Þ ≲ sup
j∈ℤ

mj

�� ��
H2

s! ℝNnð Þ, ð6Þ

where w =wp/p1
1 ⋯wp/pN

N and H2
s!
ðℝNnÞ is the L2-based

Sobolev space of product type. This result can also be
obtained from another approach of [9]. See [10, 11] for
the endpoint cases.

The following is our main result which can be under-
stood as a generalization of the result by Fujita and Tomita
[8]. Taking ri = 2 for all i = 1,⋯,N in (8), we have (6). Si
[12] obtained some weighted estimates for multilinear
Fourier multipliers with the Lr-based Sobolev regularity, 1
< r ≤ 2.

Theorem 1. Let 1 < p1,⋯, pN <∞, 1/p1 +⋯ + 1/pN = 1/p,
r! = ðr1,⋯, rNÞ ∈ ð1, 2�N , rN ≤ rN−1 ≤⋯≤ r2 ≤ r1, s! = ðs1,⋯
, sNÞ ∈ℝN , and n/ri < si ≤ n for all i = 1,⋯,N . Assume

pi >
n
si
, wi ∈ Apisi/n for all i = 1,⋯,N: ð7Þ

Then,

Tmk kLp1 w1ð Þ×⋯×LpN wNð Þ⟶Lp wð Þ ≲ sup
j∈ℤ

mj

�� ��
H r!
s! ℝnð ÞNð Þ

, ð8Þ

where w =wp/p1
1 ⋯wp/pN

N and H r!

s!
ððℝnÞNÞ is the Sobolev space

of product type with mixed norm.

2. Preliminaries

2.1. Notations. Let n ∈ℕ be the fixed dimension of the
Euclidean space, and ℤn

+ is defined by f0, 1, 2,⋯gn. The
Lebesgue measure on ℝn is denoted by dx (see, for example,
Chapters 1 and 2 of [13]). Let N be a natural number, N ≥ 2.
An operator T acting on N-tuples of functions defined on
ℝn is called the N-linear operator. For two nonnegative
quantities A and B, the notation A ≲ B means that A ≤ CB
for some unspecified constant C > 0 independent of A and
B, and the notation A ≈ B means that A ≲ B and B ≲ A. If x

∈ℝd , we denote ð1 + jxj2Þ1/2 by hxi. Let SðℝnÞ and S ′ðℝn

Þ be the Schwartz class of all rapidly decreasing smooth func-
tions and tempered distributions, respectively. We define the
Fourier transform F f and the inverse Fourier transform
F−1 f of f ∈ SðℝnÞ by

F f ξð Þ = f̂ ξð Þ =
ð
ℝn
e−ix·ξ f xð Þdx, F−1 f xð Þ

= 1
2πð Þn

ð
ℝn
eix·ξ f ξð Þdξ:

ð9Þ

See, for example, Chapter 1 of [14]. To distinguish linear
and multilinear operators, for m ∈ L∞ðℝnÞ, we denote the
linear Fourier multiplier operator by mðDÞ defined by

m Dð Þf xð Þ =F−1 m ξð Þ f̂ ξð Þ
h i

xð Þ = 1
2πð Þn

ð
ℝn
eix·ξm ξð Þ f̂ ξð Þdξ,

ð10Þ

for f ∈ SðℝnÞ, where x, ξ ∈ℝn. Let 0 < p <∞ and w ≥ 0. The
weighted Lebesgue space LpðwÞ consists of all measurable
functions f on ℝn such that

fk kLp wð Þ = fk kLp ℝn ,w xð Þ dxð Þ =
ð
ℝn

f xð Þj jpw xð Þ dx
	 
1/p

<∞:

ð11Þ

Let 1 < p <∞. We say that a weight w belongs to the
Muckenhoupt class Ap if

sup
B

1
Bj j
ð
B
w xð Þdx

	 
 1
Bj j
ð
B
w xð Þ1−p′dx

	 
p−1
<∞, ð12Þ

where the supremum is taken over all balls B in ℝn, jBj is
the Lebesgue measure of B, and p′ is the conjugate expo-
nent of p, that is, 1/p + 1/p′ = 1. It is well known that the
Hardy-Littlewood maximal operator M is bounded on Lp

ðwÞ if and only if w ∈ Ap (see Theorem 7.3 of [14]).

2.2. Function Spaces. To distinguish spaces of usual type and
mixed type concerning integrable indices, we use ℝNn and
ðℝnÞN , respectively.

We recall the definition of Lp-spaces with mixed norm

[15]. Let p
! = ðp1,⋯, pNÞ ∈ ð0,∞ÞN . The Lebesgue spaces

with mixed norm Lp
!ððℝnÞNÞ consists of all measurable

functions F on ℝNn such that

Fk k
L p
!

ℝnð ÞNð Þ
= F x1,⋯, xNð Þk kLp1 ℝn ,dx1ð Þ ⋯
��� ���

LpN ℝn ,dxNð Þ
<∞,

ð13Þ

where ðx1,⋯,xNÞ ∈ ðℝnÞN and dxi is the Lebesgue measure
with respect to the variable xi for all i = 1,⋯,N . In particu-
lar, if each pi is equal to p ∈ ð0,∞Þ, then we have

kFk
L p
!

ððℝnÞN Þ
= kFkLpðℝNnÞ. For r! = ðr1,⋯, rNÞ ∈ ð1,∞ÞN

and s! = ðs1,⋯, sNÞ ∈ℝN , the norm of the Sobolev space of

product type with mixed norm H r!

s!
ððℝnÞNÞ for F ∈ S ′ðℝNnÞ

is defined by

Fk k
H r!
s! ℝnð ÞNð Þ

= F−1 ξ1h is1 ⋯ ξNh isN F̂ ξ1,⋯, ξNð Þ� ��� ��
L r
!

ℝnð ÞNð Þ
,
ð14Þ

where hξii = ð1 + jξij2Þ
1/2

for i = 1,⋯,N andF−1 is the inverse
Fourier transform of ℝNn. Taking ri = 2 for all i = 1,⋯,N, we
obtain the L2-based Sobolev space of product type H2

s!
ðℝNnÞ,
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namely, kFkH2

s!ðℝNnÞ = khξ1is1 ⋯ hξNisN F̂ðξ1,⋯, ξNÞkL2ðℝNnÞ.

It should be remarked that if si = s/N , s ≥ 0 for all i = 1,⋯,N,

H2
s ℝNn� �

↪H2
s! ℝNn� �

, ð15Þ

where H2
s ðℝNnÞ is the L2-based Sobolev space of usual type,

that is to say, kFkH2
s ðℝNnÞ = khξis F̂kL2ðℝNnÞ, where ξ ∈ℝ

Nn.

For p
! = ðp1,⋯, pNÞ ∈ ½1,∞ÞN and s! = ðs1,⋯, sNÞ ∈ℝN ,

the norm of the weighted Lebesgue space with mixed norm

Lp
!

s!
ððℝnÞNÞ for F ∈ S ′ðℝNnÞ is also defined by

Fk k
L
p!
s! ℝnð ÞNð Þ

= F x1,⋯, xNð Þk kLp1 ℝn , x1h is1dx1ð Þ ⋯
��� ���

LpN ℝn , xNh isN dxNð Þ
,

ð16Þ

where ðx1,⋯, xNÞ ∈ ðℝnÞN and hxiisi = ð1 + jxij2Þ
si/2 for all

i = 1,⋯,N . For accuracy, we will frequently write

Lðp1,⋯,pN Þ
ðs1,⋯,sN Þ ððℝ

nÞNÞ instead of Lp
!

s!
ððℝnÞNÞ in the proof.

For p
! = ðp1,⋯, pNÞ, q! = ðq1,⋯, qNÞ ∈ ð0,∞ÞN , we shall

agree that if a ~ b is a relation between numbers a and b,

then p
! ~ q! means that pi ~ qi holds for each i.

2.3. Cut-Off Functions. We collect cut-off functions which
will be used later on [8]. Let ϕ0 be a C

∞-function on ½0,∞Þ
satisfying

ϕ0 tð Þ = 1 on 0, 1
4Nð Þ


 �
, supp ϕ0 ⊂ 0, 1

2Nð Þ

 �

: ð17Þ

We set ϕ1ðtÞ = 1 − ϕ0ðtÞ. For ði1,⋯,iNÞ ∈ f0, 1gN , we
define the function Φði1,⋯,iN Þ on ℝNn \ f0g by

Φ i1,⋯,iNð Þ ξð Þ = ϕi1
ξ1j j
ξj j

	 

⋯ ϕiN

ξNj j
ξj j

	 

, ð18Þ

where ξ = ðξ1,⋯, ξNÞ ∈ ðℝnÞN and jξj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξ1j2+⋯+jξN j2

q
.

Note that

Φ 0,⋯,0ð Þ ξð Þ = 0: ð19Þ

According to the notation of [5] or [6], we also setA0,A1:
A0 denotes the set of φ ∈ SðℝnÞ for which supp φ is compact
and φ = 1 on some neighborhood of the origin;A1 denotes the
set of ~ψ ∈ SðℝnÞ for which supp ~ψ is a compact subset of
ℝn \ f0g.
2.4. Lemmas. The following lemmas will be used in the proof
of Theorem 1.

Lemma 2 (see Lemma 3.1 of [8]). Let Φðii ,⋯,iN Þ be the same as
in (18). Then, the following are true:

(1) For ðξ1,⋯, ξNÞ ∈ℝn ×⋯×ℝn \ fð0,⋯, 0Þg,

〠
i1 ,⋯,iNð Þ∈ 0,1f gN ,
i1 ,⋯,iNð Þ≠ 0,⋯,0ð Þ

Φ i1 ,⋯,iNð Þ ξ1,⋯, ξNð Þ = 1:

ð20Þ

(2) For ði1,⋯, iNÞ ∈ f0, 1gN and ðα1,⋯, αNÞ ∈ℤn
+ ×⋯

×ℤn
+, then there exists a constant Cðα1 ,⋯,αN Þ

ði1 ,⋯,iN Þ > 0 such

that

∂α1ξ1 ⋯ ∂αNξN Φ i1 ,⋯,iNð Þ ξð Þ
��� ��� ≤ C α1 ,⋯,αNð Þ

i1 ,⋯,iNð Þ ξ1j j+⋯+ ξNj jð Þ− α1j j+⋯+ αNj jð Þ,

ð21Þ

for all ξ = ðξ1,⋯, ξNÞ ∈ℝn ×⋯×ℝn \ fð0,⋯, 0Þg.
(3) If ij = 1 for some j = 1,⋯,N and ik = 0 for all k = 1,

⋯,N with j ≠ k, then suppΦði1 ,⋯,iN Þ ⊂ fðξ1,⋯, ξNÞ:
jξkj ≤ ðjξjj/NÞ for k ≠ jg. If ij = ij′ = 1 for some j, j′
= 1,⋯,N with j ≠ j′, then suppΦði1 ,⋯,iN Þ ⊂ fðξ1,
⋯, ξNÞ:jξjj/ð4NÞ ≤ jξj′ j ≤ 4Njξjj, jξkj ≤ 4Njξjj for k ≠
j, j′g.

Lemma 3 (see Chapter 7 of [14]). Let 1 < p <∞ and w ∈ Ap.
Then, there exists ε > 0 such that w ∈ Ap−ε.

Lemma 4 (see [16]). Let ψ ∈ SðℝnÞ be such that supp ψ ⊂
fη ∈ℝn : 1/r ≤ jηj ≤ rg for some r > 1. If 1 < p <∞ and w ∈
Ap, then

〠
j∈ℤ

ψ
D

2j

	 

f

���� ����2
( )1/2�����

�����
Lp wð Þ

fk kLp wð Þ, ð22Þ

where ψðD/2jÞf =F−1½ψð·/2jÞ f̂ �.

Lemma 5 (see [17]). Let 1 < p, q <∞ and w ∈ Ap. Then,

〠
k∈Z

Mf kð Þq
( )1/q�����

�����
Lp wð Þ

≲ 〠
k∈ℤ

f kj jq
( )1/q�����

�����
Lp wð Þ

: ð23Þ

Lemma 6 (see Proposition 2.7 of [14]). Let ϕ be a function
which is positive, radial, decreasing (as a function on ð0,∞Þ),
and integrable. Set ϕtðxÞ = 1/tnϕðx/tÞ for t > 0. Then,

sup
t>0

ϕt ∗ f xð Þj j ≲Mf xð Þ, ð24Þ

for x ∈ℝn.
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Lemma 7 (see Theorem 1 of Section 10 of [15]). Let p
! =

ðp1,⋯,pNÞ ∈ ½1,∞�N , then

F ∗Gk k
L p
!

ℝnð ÞNð Þ
≤ Fk k

L p
!

ℝnð ÞNð Þ
Gk kL1 ℝNnð Þ: ð25Þ

Lemma 8 (see Theorem 1 of Section 12 of [15]). Let p
! = ð

p1,⋯,pNÞ ∈ ½1, 2�N and pN ≤ pN−1 ≤⋯≤ p1, then

F̂
�� ��

L

⟶
p′ð Þ

ℝnð ÞNð Þ
≤ Fk k

L p
!

ℝnð ÞNð Þ
, ð26Þ

where ⟶
ðp′Þ

= ðp1′ ,⋯, pN ′Þ and p′i is the conjugate exponent

of pi for i = 1,⋯,N .

3. Lemmas

In this section, we prove lemmas which play important roles
in the proof of Theorem 1. The proof of the following lemma
is based on the argument of Proposition 1.3.2 of [18] or
Lemma 3.3 of [1].

Lemma 9. Let r > 0, p
! = ðp1,⋯,pNÞ, q! = ðq1,⋯,qNÞ ∈ ½1,∞ÞN

, s! = ðs1,⋯,sNÞ ∈ ðℝ≥0ÞN , and p
! ≤ q!. Then, the estimate

ξ1h is1 ⋯ ξNh isN F̂ ξ1,⋯, ξNð Þ�� ��
L q
!

ℝnð ÞNð Þ
≲ ξ1h is1 ⋯ ξNh isN F̂ ξ1,⋯, ξNð Þ�� ��

L p
!

ℝnð ÞNð Þ
,

ð27Þ

holds, where supp F ⊂ fξ = ðξ1,⋯, ξNÞ ∈ ðℝnÞN : jξj ≤ rg.

Proof. We consider only the case N = 2. Let ϕ ∈ SðℝnÞ be
such that

ϕ yð Þ = 1 on y ∈ℝn : yj j ≤ rf g, supp ϕ ⊂ y ∈ℝn : yj j ≤ 2rf g:
ð28Þ

Since supp F ⊂ fx = ðx1, x2Þ ∈ ðℝnÞ2 : jxij ≤ r, i = 1, 2g,
we see that Fðx1, x2Þ = ϕðx1Þϕðx2ÞFðx1, x2Þ. Then, it is easy
to see that

F̂ ξ1, ξ2ð Þ =
ð

ℝnð Þ2
bϕ ξ1 − η1ð Þbϕ ξ2 − η2ð ÞF̂ η1, η2ð Þdη1dη2:

ð29Þ

For fixed ξ2 ∈ℝn, by Minkowski’s inequality for inte-
grals, it follows that

ξ1h is1 F̂ ξ1, ξ2ð Þ�� ��
Lq1 ℝn

ξ1

� �
≤
ð
ℝn

η2

bϕ ξ2 − η2ð Þ
��� ��� ξ1h is1

ð
ℝn

η1

bϕ ξ1 − η1ð Þ
��� ��������

� F̂ η1, η2ð Þ�� ��dη1
�����
Lq1 ℝn

ξ1

� �dη2:
ð30Þ

Since hξ1is1 ≲ hξ1 − η1is1hη1is1 , for fixed η2 ∈ℝ, we obtain

ξ1h is1
ð
ℝn

η1

bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

�����
�����
q1

Lq1 ℝn
ξ1

� �
=
ð
ℝn

ξ1

ð
ℝn

η1

ξ1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

 !q1

dξ1

≲
ð
ℝn

ξ1

ð
ℝn

η1

ξ1 − η1h is1 η1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

 !q1

dξ1

≤ sup
ξ1∈ℝn

ð
ℝn

η1

ξ1 − η1h is1 η1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

 !q1−p1

×
ð
ℝn

ξ1

ð
ℝn

η1

ξ1 − η1h is1 η1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

 !p1

dξ1,

ð31Þ

where we have used the fact p1 ≤ q1.
For the first term on the right-hand side of (31), by

Hölder’s inequality and a change of variables, we have

ð
ℝn

η1

ξ1 − η1h is1 η1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

≤ ·h is1 bϕ��� ���
Lp1′ ℝn

η1ð Þ ·h is1 F̂ ·, η2ð Þ�� ��
Lp1 ℝn

η1ð Þ,
ð32Þ

where ξ1 ∈ℝn. Thus, we see that

sup
ξ1∈ℝn

ð
ℝn

η1

ξ1 − η1h is1 η1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

 !q1−p1

≤ ·h is1 bϕ��� ���q1−p1
Lp1′ ℝn

η1ð Þ ·h is1 F̂ ·, η2ð Þ�� ��q1−p1
Lp1 ℝn

η1ð Þ:

ð33Þ

For the second term on the right-hand side of (31), by
Young’s inequality, we obtain

ð
ℝn

ξ1

ð
ℝn

η1

ξ1 − η1h is1 η1h is1 bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

 !p1

dξ1

≤ ·h is1 bϕ��� ���p1
L1 ℝn

ξ1

� � ·h is1 F̂ ·, η2ð Þ�� ��p1
Lp1 ℝn

ξ1

� �:
ð34Þ
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By (33) and (34), it follows that

ξ1h is1
ð
ℝn

η1

bϕ ξ1 − η1ð Þ
��� ��� F̂ η1, η2ð Þ�� ��dη1

�����
�����
Lq1 ℝn

ξ1

� � ≲ ·h is1 F̂ ·, η2ð Þ�� ��
Lp1 ℝn

η1ð Þ,

ð35Þ

where we have used the fact that kh·is1 bϕkLp1′ , kh·is1 bϕkL1 <∞:
By the same way for ξ2 ∈ℝn, we have the desired estimate
with N = 2.☐

The following is a key lemma in the proof of Theorem 1.
Fujita and Tomita (Proposition A.2 of [6]) proved (6) using

the fact that H s!
2 ðℝNnÞ is a multiplication algebra when si

> n/2 for all i = 1,⋯,N . Instead of this, we shall use the
following lemma.

Lemma 10. Let N0 ∈ℕ, r! = ðr1,⋯, rNÞ ∈ ð1, 2�N , rN ≤ rN−1
≤⋯ ≤ r2 ≤ r1, s

! = ðs1,⋯, sNÞ ∈ℝN , n/ri < si ≤ n, and n/si <
qi < ri for all i = 1,⋯,N . Then, the estimate

F m 2j ·
� �

Ψ ·/2k
� �h i��� ���

L
q
1
′ ,⋯,q

N
′ð Þ

s1q1
′ ,⋯,sN q

N
′ð Þ ℝnð ÞNð Þ

≲ sup
j∈ℤ

mj

�� ��
H r!
s! ℝnð ÞNð Þ

,
ð36Þ

holds for all j ∈ℤ, −N0 ≤ k ≤N0, and m ∈H r!

s!
ððℝnÞNÞ.

Proof. We consider only the case N = 2. By the change of
variables and k satisfies −N0 ≤ k ≤N0, we see that

F m 2j ·
� �

Ψ
·
2k
	 

 ����� ����

L
q1′ ,q2′ð Þ
s1q1 ′,s2q2 ′ð Þ ℝnð Þ2ð Þ

≲ dmj+k
�� ��

L
q1′ ,q2′ð Þ
s1q1 ′,s2q2 ′ð Þ ℝnð Þ2ð Þ,

ð37Þ

where mj is defined by (3). By Lemma 9 and Hausdorff-
Young’s inequality with mixed type (Lemma 8), it follows
that

ξ1h is1 ξ2h is2 dmj+k ξ1, ξ2ð Þ�� ��
L

⟶
q′ð Þ

ℝnð Þ2ð Þ
≲ ξ1h is1 ξ2h is2 dmj+k ξ1, ξ2ð Þ�� ��

L

⟶
r ′ð Þ

ℝnð Þ2ð Þ
≤ F−1 ξ1h is1 ξ2h is2 dmj+k ξ1, ξ2ð Þ� ��� ��

L r
!

ℝnð Þ2ð Þ
,

ð38Þ

where we have used the fact q! ≤ r!. This completes the proof
with N = 2.☐

The following lemma is known, but we shall give a proof
for the reader’s convenience.

Lemma 11. Let r > 0, 1 < qi <∞, and n/qi < si <∞ for all i
= 1,⋯,N. Then, the estimate

Tm ·/2jð Þ f1,⋯, f Nð Þ xð Þ
��� ���

≲ ∥m̂∥
L

q
1
′ ,⋯,q

N
′ð Þ

s1q1
′ ,⋯,sN q

N
′ð Þ ℝnð ÞNð Þ

YN
i=1

M f ij jqið Þ xð Þ1/qi ,
ð39Þ

holds for all x ∈ℝn, j ∈ℤ, m ∈H r!

s!
ððℝnÞNÞ with supp m ⊂

fξ = ðξ1,⋯, ξNÞ ∈ ðℝnÞN : ∣ξ∣ ≤ rg and f1,⋯, f N ∈ SðℝnÞ.

Proof. We consider only the case N = 2. For all x ∈ℝn and
j ∈ℤ, by Fubini’s theorem and the change of variables, we
see that

Tm ·/2 jð Þ f1, f2ð Þ xð Þ = 2jn
� �2ð

ℝnð Þ2
F−1 m½ � 2j x − y1ð Þ, 2j x − y2ð Þ� �

� f1 y1ð Þf2 y2ð Þ dy1dy2,
ð40Þ

where F−1 is the inverse Fourier transform of ðℝnÞ2. For
fixed y2 ∈ℝ

n, by Hölder’s inequality and Lemma 6 with ϕð
xÞ = ð1+∣x ∣ Þ−s1q1 , it follows that

ð
ℝn

y1

1 + 2j ∣ x − y1 ∣
� �s1F−1 m½ � 2j x − y1ð Þ, 2j x − y2ð Þ� ������

� 1 + 2j ∣ x − y1 ∣
� �−s1 f1 y1ð Þ 2jn dy1

�����
≤

(ð
ℝn

y1

1 + 2j ∣ x − y1 ∣
� �s1q1′

� F−1 m½ � 2j x − y1ð Þ, 2j x − y2ð Þ� ��� ��q1′2jn dy1
)1/q1′

 

×
ð
ℝn

y1

f1 y1ð Þj jq1
1 + 2j ∣ x − y1 ∣
� �s1q1 2jn dy1

( )1/q1

≲

(ð
ℝn

y1

1 + 2j x − y1j j� �s1q1′
� F−1 m½ � 2j x − y1ð Þ�

, 2j x − y2ð Þ�� ��q1′2jn dy1
)1/q1′

�M f1j jq1ð Þ xð Þ1/q1 ,
ð41Þ

where we have used the fact that s1q1 > n. By the same way
for y2 and the change of variables, we have the desired esti-
mate with N = 2.☐
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4. Proof of Theorem 1

In this section, we prove Theorem 1. Let 1 < p1,⋯, pN <∞,
1/p1 +⋯ + 1/pN = 1/p, r! = ðr1,⋯, rNÞ ∈ ð1, 2�N , rN ≤ rN−1 ≤
⋯≤ r2 ≤ r1, s! = ðs1,⋯, sNÞ ∈ℝN , and n/ri < si ≤ n for all
i = 1,⋯,N . Assume pi > n/si and wi ∈ Apisi/n for all i = 1,
⋯,N and set w =wp/p1

1 ⋯wp/pN
N . We also assume that m ∈

L∞ðℝNnÞ satisfies

sup
j∈ℤ

∥mj∥
H r!
s! ℝnð ÞNð Þ

<∞: ð42Þ

Since n/si <min fri, pig and wi ∈ Api/ðn/siÞ for all i = 1,⋯
,N , by Lemma 3, we can take n/si < qi <min fri, pig satisfy-
ing wi ∈ Api/qi for all i = 1,⋯,N . By Lemma 2 (1), we decom-
pose m as follows:

m ξð Þ = 〠
i1,⋯,iNð Þ∈ 0,1f gN ,
i1,⋯,iNð Þ≠ 0,⋯,0ð Þ

Φ i1,⋯,iNð Þ ξð Þm ξð Þ

= 〠
i1,⋯,iNð Þ∈ 0,1f gN ,
i1,⋯,iNð Þ≠ 0,⋯,0ð Þ

m i1,⋯,iNð Þ ξð Þ:
ð43Þ

4.1. Estimate for mð1,0,⋯,0Þ Type. We first consider the case
where ði1,⋯, iNÞ satisfies #fj : ij = 1g = 1. Without loss of
generality, we may assume that i1 = 1. We simply write m
instead of mð1,0,⋯,0Þ. Note that by Lemma 2 (3),

supp m ⊂ ξ = ξ1,⋯, ξNð Þ ∈ ℝnð ÞN : ∣ξi∣≤∣ξ1∣/N , i = 2,⋯,N
n o

:

ð44Þ

It is easy to see that if ξ = ðξ1,⋯, ξNÞ ∈ supp m, then ∣ξ1
+⋯ + ξN ∣ ≈ ∣ξ1∣.

Let ψ be as in (2) with d = n. Since w ∈ ANp ⊂ A∞ (see p.
1232 of [19]), we can use the results of Grafakos and Si (see
Lemma 2.4 of [9]) and Fujita and Tomita (see Remark 2.6 of
[6]); hence,

Tm f1,⋯, f Nð Þk kLp wð Þ ≲ 〠
j∈ℤ

ΔjTm f1,⋯, f Nð Þ�� ��2( )1/2�����
�����
Lp wð Þ

,

ð45Þ

where Δjg = ψðD/2jÞg.
By Fubini’s theorem and the Fourier inversion formula,

it is easy to see that

ΔjTm f1,⋯, f Nð Þ xð Þ
= 1

2πð ÞNn

ð
ℝnð ÞN

eix· ξ1+⋯+ξNð Þm ξð Þψ

� ξ1+⋯+ξNð Þ/2j� � bf1 ξ1ð Þ⋯ cf N ξNð Þ dξ:

ð46Þ

We shall prove that we can find functions φ ∈A0 and
~ψ ∈A1 independent of j such that

m ξð Þψ ξ1+⋯+ξN
2j

	 

=m ξð Þψ ξ1+⋯+ξN

2j
	 


~ψ ξ1/2j
� �2

φ ξ2/2 j
� �

⋯ φ ξN /2j
� �

:

ð47Þ

Once this is proven, setting

m jð Þ ξð Þ =m 2jξ
� �

ψ ξ1+⋯+ξNð Þ~ψ ξ1ð Þφ ξ2ð Þ⋯ φ ξNð Þ, ð48Þ

we have

ΔjTm f1,⋯, f Nð Þ xð Þ = Tm jð Þ ·/2 jð Þ ~Δj f1, f2,⋯, f N
� �

xð Þ, ð49Þ

where ~Δj f1 = ~ψðD/2jÞf1. Let ξ = ðξ1,⋯, ξNÞ ∈ supp m satis-

fying 2j−1 ≤ ∣ξ1 +⋯+ξN ∣ ≤ 2j+1. We take functions ~ψ ∈A1
such that ~ψðηÞ = 1 on fη ∈ℝn : N/2ð2N − 1Þ≤∣η∣≤2Ng and
φ ∈A0 such that φðηÞ = 1 on fη ∈ℝn : ∣η∣≤2g. Hence, we
obtain (47).

Since supp Ψð·/2ℓÞ ⊂ fξ ∈ ðℝnÞN : 2ℓ−1 ≤ ∣ξ∣ ≤ 2ℓ+1g and

supp ~ψ ξ1ð Þφ ξ2ð Þ⋯ φ ξNð Þ
⊂ ξ = ξ1,⋯, ξNð Þ ∈ ℝnð ÞN : 2−j0 ≤ ξj j ≤ 2 j0
n o

,
ð50Þ

for some j0 ∈ℕ, we have

Tm jð Þ ·/2 jð Þ ~Δj f1, f2,⋯, f N
� �

xð Þ

= 〠
N0

k=−N0

Tm j,kð Þ ·/2 jð Þ ~Δj f1, f2,⋯, f N
� �

xð Þ,
ð51Þ

for some N0 ∈ℕ, where mðj,kÞðξÞ =mðjÞðξÞΨðξ/2kÞ. By
Lemma 11, we see that

Tm j,kð Þ ·/2 jð Þ ~Δj f1, f2,⋯, f N
� �

xð Þ
��� ���

≲ ∥ dm j,kð Þ ∥
L

q1
′ ,⋯,q

N
′ð Þ

s1q1
′ ,⋯,sN q

N
′ð Þ ℝnð ÞNð Þ

M ~Δj f1
��� ���q1� �

� xð Þ1/q1
YN
i=2

M f ij jqið Þ xð Þ1/qi :

ð52Þ

We shall prove that the estimate

∥ dm j,kð Þ∥
L

q1 ′ ,⋯,q
N ′ð Þ

s1q1 ′ ,⋯,sN qN ′ð Þ ℝnð ÞNð Þ
≲ sup

j∈ℤ
∥mj∥

H r!
s! ℝnð ÞNð Þ

, ð53Þ
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holds. Once this is proved, combining (51), (52), and (53),
we have

Tm jð Þ ·/2 jð Þ ~Δj f1, f2,⋯, f N
� �

xð Þ
��� ���

≲ sup
j∈ℤ

∥mj∥
H r!
s! ℝnð ÞNð Þ

0@ 1AM ~Δj f1
��� ���q1� �

� xð Þ1/q1
YN
i=2

M f ij jqið Þ xð Þ1/qi :

ð54Þ

Since mðjÞðξÞ is defined by (48) and we have used m
instead of mð1,0,⋯,0Þ, by Young’s inequality with mixed type
(Lemma 7), we see that

F m jð Þ ·ð ÞΨ ·/2k
� �h i��� ���

L
q1
′ ,⋯,q

N
′ð Þ

s1q1
′ ,⋯,sN q

N
′ð Þ ℝnð ÞNð Þ

≤ F m 2j ·
� �

Ψ ·/2k
� �h i��� ���

L
q1′ ,⋯,qN′ð Þ
s1q1 ′,⋯,sN qN ′ð Þ ℝnð ÞNð Þ

× ξ1h is1 ⋯ ξNh isNcBj

��� ���
L1 ℝNnð Þ,

ð55Þ

where Bjðξ1,⋯, ξNÞ =Φð1,0,⋯,0Þð2jξÞψðξ1+⋯+ξNÞ~ψðξ1Þφðξ2
Þ⋯ φðξNÞ. By Lemma 10, we obtain (53), where we have
used the fact that

ξ1h is1 ⋯ ξNh isNcBj

��� ���
L1 ℝNnð Þ <∞: ð56Þ

By Hölder’s inequality, we have

〠
j∈ℤ

Tm jð Þ ·/2 jð Þ ~Δj f1, f2,⋯, f N
� ���� ���2( )1/2�����

�����
Lp wð Þ

≲ sup
j∈ℤ

∥mj∥
H r!
s! ℝnð ÞNð Þ

0@ 1A
× 〠

j∈ℤ
M ~Δj f1
��� ���q1� �2/q1( )1/2�����

�����
Lp1 w1ð Þ

�
YN
i=2

M f ij jqið Þ1/qi
��� ���

Lpi wið Þ
:

ð57Þ

For the second term on the right-hand side of (57), since
1 < 2/q1, p1/q1, and w1 ∈ Ap1/q1 , it follows from Lemmas 5
and 4 that

〠
j∈ℤ

M ~Δj f1
��� ���q1� �2/q1( )1/2�����

�����
Lp1 w1ð Þ

= 〠
j∈ℤ

M ~Δj f1
��� ���q1� �2/q1( )q1/2�����

�����
1/q1

Lp1/q1 w1ð Þ

≲ 〠
j∈ℤ

~Δj f1
��� ���2 !q1/2�����

�����
1/q1

Lp1/q1 w1ð Þ

= 〠
j∈ℤ

~Δj f1
��� ���2 !1/2�����

�����
Lp1 w1ð Þ

≲ ∥f ∥Lp1 w1ð Þ:

ð58Þ

For the third term on the right-hand side of (57), since
pi > qi and wi ∈ Api/qi for all i = 2,⋯,N , we see that

YN
i=2

M f ij jqið Þ1/qi
��� ���

Lpi wið Þ
=
YN
i=2

M f ij jqið Þk k1/qiLpi/qi wið Þ

≲
YN
i=2

f ij jqik k1/qiLpi /qi wið Þ

=
YN
i=2

f ik kLpi wið Þ,

ð59Þ

where we have used the boundedness of M on Lpi/qiðwiÞ for
all i = 2,⋯,N . By (45), (49), (54), (57), (58), and (59), we
obtain the desired estimate.

4.2. Estimate for mð1,1,i3 ,⋯,iN Þ Type. Next, we consider the case
where ði1,⋯, iNÞ satisfies #fj : ij = 1g ≥ 2. Without loss of
generality, we may assume that i1 = i2 = 1. We simply write
m instead of mð1,1,i3,⋯,iN Þ, where i3,⋯, iN ∈ f0, 1g. Note that
by Lemma 2 (3),

supp m ⊂
n
ξ ∈ ℝnð ÞN : ξ1j j/ 4Nð Þ ≤ ξ2j j

≤ 4N ξ1j j, ξij j ≤ 4N ξ1j j, i = 3,⋯,N
o
,

ð60Þ

where ξ = ðξ1,⋯, ξNÞ ∈ ðℝnÞN .
Since ψ is in (2) with d = n, we see that

Tm f1,⋯, f Nð Þ xð Þ = 〠
j∈ℤ

1
2πð ÞNn

ð
ℝnð ÞN

eix· ξ1+⋯+ξNð Þm ξð Þ

� ψ ξ1
2j
	 
bf1 ξ1ð Þ⋯ cf N ξNð Þ dξ:

ð61Þ

We shall prove that we can find functions φ ∈A0 and
~ψ ∈A1 independent of j such that
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m ξð Þψ ξ1
2j
	 


=m ξð Þψ ξ1
2j
	 


~ψ
ξ1
2j
	 


~ψ
ξ2
2j
	 
2

� φ ξ3
2j
	 


⋯ φ
ξN
2j

	 

:

ð62Þ

Once this is proved, setting

m jð Þ ξð Þ =m 2 jξ
� �

ψ ξ1ð Þ~ψ ξ2ð Þφ ξ3ð Þ⋯ φ ξNð Þ, ð63Þ

we have

Tm f1,⋯, f Nð Þ xð Þ = 〠
j∈ℤ

Tm jð Þ ·/2 jð Þ ~Δj f1, ~Δj f2, f3,⋯, f N
� �

xð Þ,

ð64Þ

where ~Δj f i = ~ψðD/2jÞf i for i = 1, 2. Let ξ = ðξ1,⋯, ξNÞ ∈
supp m and ξ1 ∈ supp ψð·/2jÞ. We take functions ~ψ ∈A1
such that ~ψðηÞ = 1 on fη ∈ℝn : 1/ð8NÞ≤∣η∣≤8Ng and φ ∈
A0 such that φðηÞ = 1 on fη ∈ℝn : ∣η∣≤8Ng. Hence, we
obtain (62).

As in Section 4.1, by Lemmas 11 and 10, and Schwarz’s
inequality, we have

〠
j∈ℤ

Tm jð Þ ·/2 jð Þ ~Δj f1, ~Δj f2, f3,⋯, f N
� �

xð Þ
��� ���
≲ sup

j∈ℤ
∥mj∥

H r!
s! ℝnð ÞNð Þ

0@ 1A 〠
j∈ℤ

M ~Δjf 1
��� ���q1� �

xð Þ2/q1
( )1/2

� 〠
j∈ℤ

M ~Δj f2
��� ���q2� �

xð Þ2/q2
( )1/2

×
YN
i=3

M f ij jqið Þ xð Þ1/qi :

ð65Þ

The rest of the proof is similar to that of mð1,0,⋯,0Þ, and
we omit it.
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