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In this paper, weighted norm inequalities for multilinear Fourier multipliers satisfying Sobolev regularity with mixed norm are
discussed. Our result can be understood as a generalization of the result by Fujita and Tomita by using the L"-based Sobolev

space, 1 < r <2 with mixed norm.

1. Introduction

For m € L°(RN"), the N-linear Fourier multiplier operator
T,, is defined by

Ton(fi> 0 ) (%)

_ 1 oGt N e f (Ex)dE
B MO ) T
o

forfi,--, fy € S(R"), wherex e R", &= (&, --+,&y) € (]R”)N
and d€ = d&, --- d&y,. Let ¥ € S(R?) be such that
supp ‘I’c{fe]Rd |§|<2}
2 @)

Zw(f/zk) =1,EeR?\ {0},
kezZ

and set

mj(gl, k)= m(gigl, ZJEN)‘P(ED &y, J€Z,

(3)

where ¥ is as in (2) with d=Nn. We denote by

T ll 4 (10, - x22% (1) —17 (1) the smallest constant C satis-

fying

1T (i )l ) H”fi”l}’i(wi)’ fioofy e S(RY).

(4)

See Section 2 for the definition of function spaces.

In the unweighted case, Tomita [1] proved a
Hormander-type multiplier theorem for multilinear opera-
tors, namely, if s > Nn/2 then

Tl e xton Ry — 1y S i:‘g ||ijH§(]RNn)’ (5)
for 1 <py, -+, py» p<oo satisfying 1/p,+---+1/py = 1/p, where

HZ?(RM") is the L*-based Sobolev space of usual type. Grafa-
kos and Si [2] extended this result to the case p <1 by using
the L"-based Sobolev space, 1 < r <2. For further results in
this direction, see [3-7]. Let 1 <p,, -+, py<oo and 1/p;+--
+1/py = 1/p. In the weighted case, Fujita and Tomita [8]
proved that if n/2 <s;<n, p,>n/s;, and w; €A for all

p;siln
i=1,---,N, then
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”TmHLPl(w1)><~-~><L1’N(wN)—»LP(w)Sigg||mj‘|HL>(RNn)> (6)

where w=uw!"" .. WP and H%(]RN") is the L*-based
Sobolev space of product type. This result can also be
obtained from another approach of [9]. See [10, 11] for
the endpoint cases.

The following is our main result which can be under-
stood as a generalization of the result by Fujita and Tomita
[8]. Taking ;=2 for all i=1,:--,N in (8), we have (6). Si
[12] obtained some weighted estimates for multilinear
Fourier multipliers with the L"-based Sobolev regularity, 1
<r<2.

Theorem 1. Let 1<p,,---,py <00, 1/p,+---+1/py=1/p,
T=(rpry) €(L2N, ry<ry < <r<r, s =(5p
,sy) €RN, and nir;<s;<nforalli=1,--,N. Assume

n
pbi> < w; € Apis,-/n

forall i=1,---,N. (7)

1

Then,

» (8)

Tm w;)X---X wy ) — L (w Ssup m; 7
1Tl a0 < 598 J||H%<(W)N)

where w =" ... w%pN and Hg((lR")N) is the Sobolev space
of product type with mixed norm.

2. Preliminaries

2.1. Notations. Let n€IN be the fixed dimension of the
Euclidean space, and Z! is defined by {0,1,2,---}". The
Lebesgue measure on R” is denoted by dx (see, for example,
Chapters 1 and 2 of [13]). Let N be a natural number, N > 2.
An operator T acting on N-tuples of functions defined on
R" is called the N-linear operator. For two nonnegative
quantities A and B, the notation A < B means that A <CB
for some unspecified constant C > 0 independent of A and
B, and the notation A =~ B means that A<B and B<A. If x
€ RY, we denote (1 + |x\2)1/2 by (x). Let S(R") and &' (R"
) be the Schwartz class of all rapidly decreasing smooth func-
tions and tempered distributions, respectively. We define the
Fourier transform &f and the inverse Fourier transform
F'f of f € S(R") by

HE)=FE)=| b 7

1

)
o

See, for example, Chapter 1 of [14]. To distinguish linear
and multilinear operators, for m € L°(R"), we denote the
linear Fourier multiplier operator by m(D) defined by
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O] )= e | mET O

(10)
for f € §(R"), where x,& €e R”. Let 0 < p < co and w > 0. The

weighted Lebesgue space LP(w) consists of all measurable
functions f on R” such that

1p
)= W hieainan = (|, IF P00 ) <o
i

Let 1 <p <oco. We say that a weight w belongs to the
Muckenhoupt class A, if

o) (s o) o

where the supremum is taken over all balls B in R", |B| is
the Lebesgue measure of B, and p' is the conjugate expo-
nent of p, that is, 1/p+1/p' = 1. It is well known that the
Hardy-Littlewood maximal operator M is bounded on L?
(w) if and only if w €A, (see Theorem 7.3 of [14]).

2.2. Function Spaces. To distinguish spaces of usual type and
mixed type concerning integrable indices, we use RM" and
(R™)N, respectively.

We recall the definition of Lf-spaces with mixed norm
[15]. Let p =(p,, - py) € (0,00)". The Lebesgue spaces
with mixed norm LE((IR”)N) consists of all measurable
functions F on RN" such that

< 00,
PN (R" dxy)

(13)

1B 5 =BG ) o e

(&)%)

where (x,,--xy) € (R")Y and dx; is the Lebesgue measure
with respect to the variable x; for all i=1, ---, N. In particu-
lar, if each p;, is equal to pe(0,00), then we have
- N
IFIl 5 = [|Fllpmony- For 7 =(ry, - ry) € (1,00)
P (e
and 5 = (s}, -+, sy) € RN, the norm of the Sobolev space of
product type with mixed norm H?((IR”)N) for Fe S'(RN")

is defined by

17,7 gy
< R (14)
_ Hg;—l [<£1>51 <€N>SNF(£1’ )EN)] ||L?>((]R”)N)’

where (&) = (1 + |Ei|2)”2 fori=1,---,Nand ' is the inverse
Fourier transform of RM". Taking r; =2 forall i=1, -+, N, we
obtain the L?-based Sobolev space of product type HZ?(IRN ",
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namely, |||l g = [161)" - (En)™ F(§1> -+ E3) 2 o)
s
It should be remarked that if s, =s/N,s >0 foralli=1,---,N,

H (RM)—H% (RY"), (15)
where H2(RM") is the L?-based Sobolev space of usual type,
that is to say, || F|| gy = ||<E>SF||L2(]RM), where & € RN,
For p = (p,, -~ py) €[1,00)" and 5 = (s}, -+, sy) € RY,
the norm of the weighted Lebesgue space with mixed norm

Lij((]R”)N) for Fe &'(RV") is also defined by

I1F] 5
B ()

>

IPN (R (xy)N dxy)

(16)

= HHF(’CP 5 X)) [ (R (x, )V dx,)

where (x, -, xy) € (R")" and (x,)% = (1+ |xi\2)5"/2 for all
i=1,--,N. For accuracy, we will frequently write

L(Pp"'>PN))((Rn)N) instead of L?((]R”)N) in the proof.

(15758

For p = (i bn) 4= (@0 dy) € (0,00)", we shall
agree that if a~b is a relation between numbers a and b,

then p ~ g means that p; ~ g, holds for each i.

2.3. Cut-Off Functions. We collect cut-off functions which
will be used later on [8]. Let ¢, be a C*-function on [0, c0)
satisfying

6,(t) =1 on {o, M}\O}supp 6, C {o, (2;)] (17)

We set ¢,(t)=1-@y(t). For (i,-iy)€{0,1}", we
define the function @ on RN"\ {0} by

il’”"iN>

i) €)= 9 (%') " (%)

where &= (&, &y) € (]Rn)N and [§]= \/ |£1|2+"'+‘EN|2'

Note that

(18)

Dy,...0)(§) =0. (19)

According to the notation of [5] or [6], we also set &/, &/:
4, denotes the set of ¢ € S(IR") for which supp ¢ is compact
and ¢ = 1 on some neighborhood of the origin; &/, denotes the
set of ¥ € §(R") for which supp v is a compact subset of
R™\ {0}.

2.4. Lemmas. The following lemmas will be used in the proof
of Theorem 1.

Lemma 2 (see Lemma 3.1 of [8]). Let of
in (18). Then, the following are true:

i) be the same as

iy

3
(1) For (§;, -+ &y) € R" x---x R"\ {(0, -+, 0)},
Y gty =1
RN o1\
((zll f;f))i({o }0)
(20)

(2) For (iy, - iy) € {0, 1}" and (a,, - ay) € Z" x ---
x 7, then there exists a constant CEZ’I‘:)V> > 0 such
that

0+ 0y @y i (8) < CL (e 00,
(1)

forall&= (&, &) eR" x ---x R"\ {(0,---,0) }.
(3) If i;=1 for some j=1,--+,N and i, =0 for all k=1,
< N with j#k then supp®@; ..; yC{(§; - 8y):
&kl < (IE;I/N) for k # j}. If ijzz'j’=1 for some j,j'
=1,--,N with j#j', then supp@; ..i ) <{(&p
o SN/ (AN) < (80| < ANIE|, (84 < 4NIE,| for k #
.
bJ}

Lemma 3 (see Chapter 7 of [14]). Let I<p< oo and w € A,
Then, there exists € > 0 such that w € A,,_,.

Lemma 4 (see [16]). Let v € S(R") be such that supp y C
{neR": 1/r<|y| <r} for somer>1. If 1<p<ooand we

Ap, then
12
D\ P
w(—)f

where w(D/2))f = F [y (-12))f].

(22)

[T
)

L (w

Lemma 5 (see [17]). Let 1 < p,q< 0o and w € Ay Then,

1/q 1/q
|z} {3y}
keZ keZ

Lemma 6 (see Proposition 2.7 of [14]). Let ¢ be a function
which is positive, radial, decreasing (as a function on (0, 00)),
and integrable. Set ¢,(x) = 1/t"¢(x/t) for t > 0. Then,

< (23)

I (w) P (w)

sg(};l% * f(x)] < Mf (x), (24)

for x e R".



Lemma 7 (see Theorem 1 of Section 10 of [15]). Let TJ =
(=P € [1,00]", then

FxG <||F Gl| ;1 fanny - 25
17515 S5 g Iy 29)

Lemma 8 (see Theorem 1 of Section 12 of [15]). Let 17 =

piopy) €112 and py <py_, <+ <p,, then
= sy 09
L(‘D ) ((]Rn>N) (( )

where — = (p,/, -+ py') and p'; is the conjugate exponent

of p; fori=1,---,N.
3. Lemmas

In this section, we prove lemmas which play important roles
in the proof of Theorem 1. The proof of the following lemma
is based on the argument of Proposition 1.3.2 of [18] or
Lemma 3.3 of [1].

Lemma 9. Let r > 0, P=(pp ’PN)’ =(qpqy) € [1, o0)"

, S =(spensy) € (Ry,)", and p < q. Then, the estimate
HE = G P& 8 7 @)
< El S E SNF 51)"”5 - >
I & el
holds, where supp Fc {E=(E,, -, &) e RN : [E| <r}.

Proof. We consider only the case N =2. Let ¢ € S(R") be
such that

¢(y)=lon{yeR": |y[<r},supp ¢ c{yeR": |y[<2r}.

(28)

Since supp Fc {x=(x,,x,) € (R"): |x;|<ri=1,2},

we see that F(x,x,) = ¢(x;)¢(x,)F(xy, x,). Then, it is easy
to see that

F(Epgz) = J(]Rn)ﬁ(ﬁl _771);5(62 _’72)?(’71>’72)d’71d’72'

(29)

For fixed &, € R", by Minkowski’s inequality for inte-
grals, it follows that
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6 B ) o

&

dn,.

1 (wy,)

5(52 —1,)

5(51_’71)‘ (30)

- [E(ny,m,)|dn,

Since (¢,)" < (&,

H@lfljw
Ll
I

-1, (n,)™, for fixed , € R, we obtain

Lo

$ 1~ M “F MMy |d’71

(=)

q
-1 “F Hi My |d’71> dg,

¢(El_}71)

q
’P(’h’ 1) |d’71) d&,

@(51 -ny)

q,=P1
|F(’71)’12)|d’71>

pl
’71> <’71>l 5(’31 _’71)“F(’71>’72)|d’71) g,

(31)

wa (JR, g

where we have used the fact p, <gq;.
For the first term on the right-hand side of (31), b
Holder’s inequality and a change of variables, we have

J (G =) ) [ (& )| | Fon )|,
Ry, - (32)
<|¢)

<> F ’72 HLm ]R")

e u)|

where &, € R”. Thus, we see that

91=Py
sup (J E=m) ()" o€ —my) !F(m»nz)!dm)
£ eR” R”
4P P
o [Car WA [CALCE AT Fey

(33)

For the second term on the right-hand side of (31), by
Young’s inequality, we obtain

| (jR (& - ) ()

31
<[ B[l 10

P& -

2
) |F(’71”72)|d’71> dE,

SF(-

(1, Hm( )
(34)
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where we have used the fact that ||(-)*' ¢ | ;5,.» [| () ]| ;1 < 0.
By the same way for £, € R", we have the desired estimate
with N =2.00 O

By (33) and (34), it follows that

& | [o-n)

m

|F(ny, 1) |dny

o ()
(35)

The following is a key lemma in the proof of Theorem 1.
Fujita and Tomita (Proposition A.2 of [6]) proved (6) using

the fact that H; (RN") is a multiplication algebra when s
>n/2 for all i=1,:--,N. Instead of this, we shall use the
following lemma.

Lemma 10. Let Nye N, 7 = (r), -~ ry) € (1, 2]", ry <7y
sy) €RYN, n/r, <s;<n, and nls; <
N. Then, the estimate

.
<<y, s =8,
g;<riforalli=1,--,

I (i)
(51'11 SNqN) (36)
< sup||m;

iz ]HH;)((W)N)’

holds for all je Z, -Ny <k <N,, and m € Hg((]R”)N).

Proof. We consider only the case N =2. By the change of
variables and k satisfies —N, <k < N, we see that

e ()

~ H m]+k || (:111;232‘12’)((]Rn)2)

quwz,) ) ((]Rn)z)

S1491 292

(37)

>

where m; is defined by (3). By Lemma 9 and Hausdorff-

Young’s inequality with mixed type (Lemma 8), it follows
that

[[(1)™ (&)™ e

]+k 51)52 H —

L(q ) ((R")?)
< [[(81)" (&)= myy

(G0 8)| — (38)
f L) ()

0" (&) M o &) | 7

|7 ’
(@)

where we have used the fac
with N=2.0

. This completes the proof

The following lemma is known, but we shall give a proof
for the reader’s convenience.

H<> F ”2 HLPI IR”)

Lemma 11. Let r> 0, 1< g; < co, and nlq; <s; < oo for all i
=1,---,N. Then, the estimate

m(./zf)( B ’fN)(x)’

< [l (4, HM (If %) (x) "4, (39)

qu qN ]RnN i

(o) ()

holds for all xe R", jeZ, me H?((IR")N) with supp m C
{E= (80 € RV Bl <1} and f, - fy € S(R).
Proof. We consider only the case N =2. For all x € R" and

j€Z, by Fubini’s theorem and the change of variables, we
see that

T U= ()] 5 2.2

H)ALY,) dyidy,s

(x )’2))

(40)

where ! is the inverse Fourier transform of (R")”. For
fixed y, € R", by Holder’s inequality and Lemma 6 with ¢(
x) = (1+]x | )™, it follows that

[ 2 ey 1) ) @), 2 )

‘ <1+2j|x_J’1 | )751f1()’1)2jndy1

< {J (1+2j [x -y, |)Slq1'
R},

1/q,
JF ) (2= y0), 2 (x - 3,)) |2 dyl}

/100l

a0 ' 1/q,
X . 2" dy
J]R;l (1+2 [x—y | )" !
< {J (1+2|x -y, |)""
R
B4

/g,
|F M) (2 (x = yy), 2 (x - , {q‘?”dyl}

M([f,|) ()",

(41)

where we have used the fact that s,q, > n. By the same way
for y, and the change of variables, we have the desired esti-
mate with N =2.0 O



4. Proof of Theorem 1

In this section, we prove Theorem 1. Let 1 < Dy Py < 00,
Up, + -+ 1py=1/p, T =(r;, -, 1y) € (1,2]N, ry <Tyo <
w<ry<r), s =(s, o sy) €ERY, and n/r;<s;<n for all
i=1,---,N. Assume p,>n/s; and w; €A for all i=1,

pisiln
-, N and set w:wzl)/p‘ wﬁ?’"’. We also assume that m €
L®(RN") satisfies
supllm I - . <00 (42)
jeZ H?((]R ) )

Since n/s; <min {r;, p;} and w; € A, )5 forall i=1, -
, N, by Lemma 3, we can take n/s; < q; < min {r;, p;} satlsfy

ingw; €A, , foralli=1,-, N. By Lemma 2 (1), we decom-

pose m as follows:

2

i) €{0.1FN,
(i1 ~in)#(0:+-0)

)

(43)

m

i) €{01}",
(il’ lN):'E(O ~0)

4.1. Estimate for m,...q Type. We first consider the case
where (i}, -, iy) satisfies #{j:i;=1} =1. Without loss of

generality, we may assume that i; = 1. We simply write m
instead of m ... ;). Note that by Lemma 2 (3),

supp m ¢ {E= (&, -+ &) € (R")" ¢ [§I<IE N, i=2, N .
(44)

It is easy to see that if & = (&, -

+o Syl =1 .
Let y be as in (2) with d = n. Since w € Ay, C A, (see p.

1232 of [19]), we can use the results of Grafakos and Si (see
Lemma 2.4 of [9]) and Fujita and Tomita (see Remark 2.6 of

[6]); hence,
12
m fl’ ’ )| }
where A;g = y(D/2/)g.

By Fubini’s theorem and the Fourier inversion formula,
it is easy to see that

-, &y) € supp m, then |,

HTm( o fN ||LP

(w)
(45)

{3

Aij( b ) (%)
U ey,
(2m)N" J(]R")N ©v (46)

((Ey )2V F (8) - Fy (Ey) dE
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We shall prove that we can find functions ¢ € &/, and
y € of, independent of j such that

m(E)w<M>

2
= m(E)w(W)w(il/zf)zso(ﬁz/zf) - p(Exl?).
(47)

Once this is proven, setting

’”(j)(f) = m(sz)V/(Eﬁ'"+5N)‘7/(£1)‘P(‘52) o(Ey), (48)

we have

ATy (frr oS3 = T (1) (B fr oS ) (), (49)
where A.f, = ¢(D/2))f,. Let &= (&, -+, &y) € supp m satis-
fying 271 < & + ---+&y| < 27", We take functions v € &,
such that (1) =1 on {n€R" : N/2(2N - 1)<||<2N} and
@ € g, such that ¢(n) =1 on {5 €R": |y|<2}. Hence, we
obtain (47).

Since supp ¥(-/2%) c {£ e (R")N : 241 < €| <2%1} and

supp ¥(§1)9(§,) -+ o(&y)

c{E= (&, b e R 2 < g <2h ], 0)
for some j, € N, we have
m)(127) ( 1S "fN) (%)
N, _ (51)
- k; T () (Bifo S+ Fy ) (),

for some N,eN, where mUh(&)=m0) (&) (&/2F). By
Lemma 11, we see that

Tty (Bif o fr ) ()]
m(jas]

< [mGh L
<llm ||L(q1,_’..,qN) |
1SNy

0 T

) (52)

We shall prove that the estimate

—

ik
1091 ()

(Slqlr,"',SNqu )

Ssuplm;ll — ,  (53)
(YY) jez H%((IR”)N)
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holds. Once this is proved, combining (51), (52), and (53),
we have

’Tm@(./zf) (Ajfl’fZ’ "'>fN> (x)‘
= T ey MBAM) s
YOI | IR

Since m (&) is defined by (48) and we have used m
instead of m,_..¢), by Young’s inequality with mixed type
(Lemma 7), we see that

=m0 (2 i

aiteosay) (B
<|F[m. W(-zkm o 55
H {m( ) / ) (RN (55)
S191 > SNAN
s SN
<t 6B D (R

where Bj(fl’ < 8y) = ®(1,0,»-»,0)(2jf)11’/<£1+‘"+§N)17/<£1)‘P<£2
) - @(&y). By Lemma 10, we obtain (53), where we have

used the fact that

[€ & B, <o (56)

L (IRNn)

By Holder’s inequality, we have

12
{jEZZ: Tmm(‘/zf) (Ajfpr’ ""fN) ‘ }

LP (w)
< supIIm | — )
Hi’ RN
(]EZ < () (57)
2y 12

~ 9 1
(oo}
jeZ LP1 (w))

N
I maram™
=2

i (w;)

For the second term on the right-hand side of (57), since
1<2/q,,p,/q9,> and w, €A, , , it follows from Lemmas 5

P14,
and 4 that

7
e 12
~ 9, 9
(]
j€Z LP1 (w))
/9,
2, q,/21 14
=|l Zm(an]”)
jez 20 (w,)
) q,/2)1 Y4 (58)
< <Z AJI’ )
JjezZ L2V (1)
12
-2
= (Z Af, ) < lipr (-
jeZ 11 w))

For the third term on the right-hand side of (57), since

pi>qandw; €A, foralli=2,---,N, we see that

LPi (w;) >

1/gq;
ML) o

=

QHM(ILI‘“)”%

i=2
N 1/
< TTINAI it (59)
i=2
N
= H 1fill i,

T
()

where we have used the boundedness of M on L% (w,) for
all i=2,---,N. By (45), (49), (54), (57), (58), and (59), we
obtain the desired estimate.

4.2. Estimate for m; ;; ..; ) Type. Next, we consider the case
where (i}, -+, iy) satlsﬁes #{] i;= 1}>2 Without loss of

generality, we may assume that 11 =i, = 1. We simply write
m instead of m;y; ..; ), where iy, -+, iy € {0, 1}. Note that
by Lemma 2 (3),

supp m ¢ {€ € (R")" : [&,]/(4N) < [&,|

<ANJE | 1E] <ANIE | =3, N,

where &= (&}, -, &y) € (RN,

Since y is in (2) with d = n, we see that

1 ,
Tm FREES x) = - ezx.(§1+...+EN)m E
Gorad 0= 3 ] @

()7

We shall prove that we can find functions ¢ € &/, and
v € of, independent of j such that

o f(Ey) dE
(61)



8
51 _ El ~ E ~ Ez
weo§)rn S,
() +()
Once this is proved, setting
m (&) = m(PE)y(§)¥(E)e(Es) -+ 9(Ex), (63)
we have
T(firfn ZT 0 (127 <~jf1’Ajf2’f3"”’fN)(x)’
jez
(64)
where Af,=9(D/2))f; for i=1,2. Let &= (&, &) ¢€

supp m and &, € supp y(-/2/). We take functions ¥ € &,
such that () =1 on {n€R":1/(8N)<|#|<8N} and ¢ €
o, such that @(1)=1 on {neR":|y|<8N}. Hence, we
obtain (62).

As in Section 4.1, by Lemmas 11 and 10, and Schwarz’s
inequality, we have

2

T (1) (Bif 0 Bifor oo fr) ()

JjEZ
12
< [ supllm| - M( ) X)X
jez ! HL ]EZZ
s
N
) 1/g,
{ZM(‘AJZ ) /qz} XHM (If;]%)(x /fil.
j€Z i=3
(65)
The rest of the proof is similar to that of m_..q), and

we omit it.
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