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In this work, we consider the Darboux frame (T, V,U) of a curve lying on an arbitrary regular surface and we construct
ruled surfaces having a base curve which is a V-direction curve. Subsequently, a detailed study of these surfaces is made
in the case where the directing vector of their generatrices is a vector of the Darboux frame, a Darboux vector field.
Finally, we give some examples for special curves such as the asymptotic line, geodesic curve, and principal line, with

illustrations of the different cases studied.

1. Introduction

Ruled surfaces are well known as one of the most important
surface families in the differential geometry of the surfaces.
An important fact about these types of surfaces is that any
ruled surface can always result from a continuous movement
of a straight line along a curve.

Among the associative curves are the direction curves
introduced by Choi and Kim [1] as integral curves of some
vector fields generated by Frenet vectors of a given curve.
This type of curves is included in several works. In terms
of the Frenet frame, the direction curves are studied in [I,
2]; this study has been extended to the alternative frame
[3], Darboux frame [4], and Bishop frame [5].

Examen the ruled surfaces constructed by means of
direction curves has recently attracted the attention of many
differential geometers. In terms of the Frenet frame, Giiven
[6] defined two ruled surfaces such as normal and binormal
surfaces by considering their base curves as the W-direction
curve. He get some results about the developability and
minimality of these surfaces and the conditions for which
their base curve is an asymptotic line, a geodesic curve, or
a principal line. In the same way, this two ruled surfaces
were also defined with a base curve and adjoint of the base
curve in [7]. Moreover, in [8], the authors improve the the-

ory of the ruled surfaces in terms of principal-direction
curves of a given curve; they obtained a new representation
of these ruled surfaces by slant helices and principal ele-
ments of the ruled surface such as the pitch and angle of
pitch. After that, in [9] and in terms of the Darboux frame,
the authors used the direction curve to define a new ruled
surface called the relatively osculating developable surface.
Then, they have obtained some results about the existence,
uniqueness, and singularity of such surface.

In this work, we consider the Darboux frame (T, V, U)
of a curve lying on an arbitrary regular surface and we con-
struct ruled surfaces whose base curve is a V-direction curve.
We give some results about the developability, minimality,
and condition for which the striction curve is the base curve
for the particular cases where the directing vector of the
ruled surface is a vector of the Darboux frame, a Darboux
vector field. Finally, we give some examples for special
curves such as the asymptotic line, geodesic curve, and prin-
cipal line, with illustrations of the different cases studied.

2. Preliminaries

In this section, we recall some basic concepts and properties
on classical differential geometry of curves lying on a regular
surface and of ruled surfaces, in the Euclidean 3-space.
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(i) We denote by E® the Euclidean 3-space, with the
usual metric

(%, 9) = X1y + X2); + X3)3 (1)
where x =
E°.

Let M be a regular surface and a = ae(s): I CR — M be
a unit speed curve on the surface M. The Darboux frame
along the curve « is an orthonormal frame (T(s), V(s), U(s
)), where T is the unit tangent, U is the unit normal on
the surface M, and V = U A T. Then, the Darboux equations
are given by the following relations:

(%1, %5, x3) and y = (y,,¥,,y;) are two vectors of

. T(s) 0 k() k(][ T(s)
S| VO = ks) 0 1) | V)], ()
U(s) —ku(s) —T4(s) O [ LU(s)
T
75 = Da($) AT(s),
dv
— =D AV(s), (3)
du
75 = Do(s) A U(s)

where D,,(s),D,(s), and D,(s) are the normal Darboux vec-
tors field, the rectifying Darboux vector field, and the oscu-
lator Darboux vectors field, respectively, and are defined by

Dyy(s) = ~ka(s)V(s) + ko (s)U(s),
Dy (s) = 74(s)T(s) + ky(s)U(s), (4)
Dy(s) = 74(s)T(s) = k() V(5),

where k,k,, and 7, are the geodesic curvature, the normal

curvature, and the geodesic torsion of the curve a,
respectively.

(i) A ruled surface [10] is generated by a one-parameter
family of straight lines and has a parametric
representation:

(s, v)=B(s) +vX(s),veR, (5)

where 3= f(s) is called the base curve of the ruled surface
and X(s) the unit vectors representing the direction of
straight lines. If X is constant, then, the ruled surface is
cylindrical; otherwise, the surface is said to be
noncylindrical.

Definition 1 [10]. For a curve a = a(s) lying on a regular sur-
face, the following are well known:
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(1) a(s) is an asymptotic line if and only if the normal
curvature k, vanishes

(2) a(s) is a geodesic curve if and only if the geodesic
curvature k, vanishes

(3) a(s) is a principal line if and only if the geodesic tor-

sion T g vanishes

Definition 2 [4]. Let a=a(s): I C R — E° be a unit speed
curve on the regular surface and (T(s), V(s), U(s)) the Dar-
boux frame along the curve a. The integral curve y of the
vector field V is called V -direction curve of a, in other
words y' =V

We have

%—‘i](s, V)A %—f(s, V) =/3'(s) AX(s)+ vX'(s) AX(s). (6)

Then, the point ¥(sy, v,) is said to be singular if B'(s,)
AX(sp) +vX'(50) AX(55) =0

If there exists a common perpendicular to two construc-
tive rulings in the ruled surface, then, the foot of the com-
mon perpendicular on the main rulings is called a central
point. The locus of the central point is called a striction
curve [10].

The parametrization of the striction curve on the ruled
surface is given by

</3’<s>,x’<2s>>x
X" )l

Definition 3. A ruled surface ¥ is called developable if det (

B.X,X')=o0.

Letting I and II be the first and the second fundamental
forms from the ruled surface ¥, respectively, we have

[ = Eds® + 2Fdsdv + Gdv?,
II = Lds* + 2Mdsdv + Ndv?,

where

E= <‘Ps’ lPS>’
F=(¥,¥,) (9)
G=(¥,¥,)=1,
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L det (P, 7, ¥,)
VEG - F*
vy et (P )
VEG - F*
N et (P, ¥,
VEG-F*

The mean curvature H of a ruled surface is given as fol-
lows

=0.

_ —2FM+L a1
S 2(E-F)

Definition 4. A ruled surface is said to be minimal if its mean
curvature vanishes identically.

3. Ruled Surfaces Defined by V-
Direction Curves

Letting a = a(s): I ¢ R — E? be a unit speed curve lying on
a regular surface ,(T(s), V(s), U(s)), the Darboux frames of
aky.k,,T, are the geodesic curvature, the normal curvature,
the geodesic torsion of a, and = f3(s) a V-direction curve,
respectively.

We consider the following ruled surface

(s, v)=B(s) +vX(s), Ve R, (12)

where 8= f(s) is the base curve and X(s) the unit director
vector of the straight line.

3.1. General Study. In this section, we propose to give some
properties of the ruled surface ¥.
Differentiating (12) with respect to s and v, we get
Y. =V+vX',
¥, =X.

(13)

Then, by using (10), we obtain the components of the
first fundamental form E and F as follows:

2
>

E=1 +2v<v,x’> w2’
(14)
F=(V,X).

Consequently, the condition of regularity of the ruled
surface (12) is

E-F=1-(V,X)%+ 2V<V,X’> +2|x'|[P£0.  (15)
Differentiating (13) with respect to s and v, we get

v =V +vX",
v, =X, (16)
vav = O’

which allows, using formula (10), calculating the two com-
ponents of the second fundamental form M and L, respec-
tively, and we obtain

det (V, X,X')

\/1 —(V,X)? +2V<V,X’> v |x'|

M=

>

L det (V,X, v’) +v[det (v,x,x") + det (X’,X, v')] +12 det (X’,X,x”) |
\/1— (v x)? +20(V. X" ) + 02 ||
(17)

Therefore, by using (11), the mean curvature of the ruled
surface (12) is given as follows

Lt (V, X, V’) —2 det (V, X,X’) (V,X) + v[det (V, X,X") + det (X’,X, V’)} + 92 det (X',X,X”)

2(1-(v.x) +20(V.x") 2 X|)

On the other hand, the striction curve of the surface (12)
is

. <V’X;>X. (19)
X

7 . (18)

3.2. Case Where X =T (Resp. V,U). Let us consider the
ruled surfaces defined by



By using (2), we have
(V,T) =0,
<V, T’> =k, (21)
[T} =K+ K.
If we substitute (21) in (15), we find
E, —F§=1+2vkg+v2(k§+ki). (22)
Likewise, we have
(V,V)y=1,
<V,V’> =0, (23)
V' =k 75

If we substitute (23) in (15), we find

E,- F2=+? (k; + r;) (24)
On the other hand,
(V,U) =0,
(v.v') =7 (25)

m2 _q2 2
(Al =k, + 1.
If we substitute (25) in (15), we find

E-F=1 —2vrg+v2(ki+1§). (26)

Corollary 5. The ruled surfaces ¥, and V5 are regulars along
the curve 3, while ¥, is singular along .

We denote by ¢; (resp. ¢,,¢;) the striction curve of ¥,
(resp.¥,, ¥;), and from (19), we have

k

Clzﬁ_ig’r)
K+ i
g n
szﬁ, (27)
T
o=f+52-U.
kn+1§

The result follows.
Corollary 6.

(1) 3 is the striction curve of the surface ¥, if and only if
« is a geodesic curve
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(2) 3 is the striction curve of the surface ¥,

(3) BB is the striction curve of the surface V5 if and only if
« is a principal line

On the other hand, by using (2), we have

det (V, T, T’) = det (v, U, U’) -k

) (28)
det (V, v, V’) -0.

Corollary 7.

(1) The ruled surface ¥, (resp. V) is developable if and
only if a is an asymptotic line

(2) The ruled surface ¥, is developable

Differentiating (2), we obtain

(29)
By using (2) and (29), we have
det (V, T, V’) ~2 det (V, T, T’) (V.T)=-1,,
det (V. 1,7"") +det (T, T, V") ==k, - 2k,7,,
det (T',1,T"") = ki, = koo =, (K + 7).
(30)

If we substitute (30) in (18), we find

“tg= (K 2Ky, )ve [kk, = koo =7y (K + ) [ 2

e 2(1—2vkg+v2(k§+kﬁ))3/2
(31)
Likewise, we have
det (v, U, V’) — 2 det (V, U, U') (V. U) =k,
det (V, U, U") + det (U’, U, V’) =2k,7, K,
det (U',U,U"") = (7k, = k,y) =k (K 473 ).
(32)
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If we substitute (32) in (18), we find

~k, + (2kgrg - k;) v+ [(Tgk; - knT;) ~k, (kf, + T;)} v?

5 5 2 (12 4 2 312
(1— v1g+v(n+rg))

H, =

(33)

Corollary 8. The ruled surface ¥V, (resp.V;) is minimal along
its base curve if and only if a is a principal line (resp. a geo-
desic curve).

3.3. Case Where X Is a Darboux Vector Field

3.3.1. Case Where X = X,. The ruled surface becomes
W,(5,v) = Bs) + VX, (5), (34)

where X, =D,/||D,| with D,=7,T +k,U and (7, k,) # (0

,0).
Using (2), we get

o [T R I=kg[<rqug—k;rg)—kn(r;+kz)} .

312
/22 2 2 2
Tg + kg (Tg + kg)

T [(T;kg - k;‘rg) -k, (Tfa + k;)] .

372
2 2
(Tg + kg>
(35)
Hence,
!
X,=ky0,T-7,0,U, (36)
where
i ! 2 2
(rikg—kiry) k(720 K7 N
0,= S 2\~ ) (37)
<Tg + kg)
We obtain
<V’ Xr> = 0’
(v-x) =0 39)
m2_ 2(;2 2
X! =02 (kg + Tg).
If we substitute (38) in (15), we find
E, - F* =1+ (ké + r;). (39)

The following corollaries follow:

Corollary 9. The ruled surface V¥, is regular.

Corollary 10. In the noncylindrical case (ie., o,#0), the
curve P is the striction curve of the surface ,.

On the other hand, we have det(B8',X,, X)) =0,
2
kg + T

Corollary 11. The ruled surface ¥, is developable if and only
if it is cylindrical.

According to (36), we have

X'=-0,V' (40)

r

Therefore, by using (2) and (29), we obtain

X! = [kgo—:+ (kn1g+k;)0,}T+0r<k;+T;>V (41)

+ [—TgO':+ (kgkn - T;) G,} U.

Then,

det (V,Xr, V’) ~2 det (V,XT,X:) =_\/g+‘1‘2,
det (V,XT,XD + det (X:,X,, V’) =- {gr /ké +T§] "

312
det (X;,X X') =—<k;+‘rz) o’

r g r

(42)

If we substitute (42) in (18), we find

3/2
- {, [k + 7%+ (ar k; + 1523) v+ (k; + Tf]) afvz}

H,= sl 2\ )2
2(1 +v20? (kg +Tg))
(43)
Hence, we have the following corollary:
Corollary 12. The ruled surface ¥, is not minimal.
3.3.2. Case Where X = X,. The ruled surface becomes
Fo(s:v) = B(s) +vX(s), (44)

where X, = (D,/||D,||) with D,=7,T -k,V and (7,,k,) #
(0,0).



Differentiating X, we obtain

. (r,T-kv ,zkn[(rgkn—k,grg)+kg(rg+ki)]T
NS K (T; + kfl)al2

T, [(T;kn - k,’;rg) +k, (T; + ki)}

+ 5 NP V.
(Tg + kn)
(45)
Thus,
X,=k,0,T+7,0,V, (46)
where
! ! 2 2
(ks kg + Ky (734 K2
0,= R 5\ 372 : (47)
(Tg + kn>
We obtain
-k
(V,X,)) = ——1,
2
k, + Té
(48)
<V, X;> =Ty0
m2_ 2(;2 2
x| = o (kn + Tg).
If we substitute (48) in (15), we get
(e k)e)]
T +v(T o
B-p o LT 007 )% (49)
? 72 4 K
g n
On the other hand, the striction curve of ¥ is
T
g
[ Xo' (50)

0= ﬁ - 2
(T; + kn) g,
Hence, we have the following corollary:

Corollary 13. In the noncylindrical case (i.e., o, # 0), we have
the following:

(1) ¥, is singular along its striction curve

(2) 3 is the striction curve of the surface ¥, if and only if
« is a principal line

We have det (8',X,,X)=0. Hence, the result is as
follows.

Corollary 14. The ruled surface ¥, is developable.
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From (46), we have

X =-0,U". (51)

o

Then, by using (2) and (29), we obtain

X! = [kno'é— (kgrg - kll)ao} T

+ [Tga; + (kgkn + T;) ao} V+o, (kfl + T;) U.

(52)

Hence,

2

T
det (V, X,, V’) ~2 det (V, XO,X[,) (V.Xp) = ——=L—
VT

! ! ! 2
det (V, XU,XO) + det (XO,XO, 14 ) = 21,0, /K2 + 12,

3/2
det (x;, X,, X;) =- (kﬁ + TZ) o2

g 0
(53)
If we substitute (53) in (18), we obtain
2+ kK
H,=- g : . (54)
2 (Tg +vo, (kn + Té))
Corollary 15. The surface ¥, is not minimal.
3.3.3. Case Where X = X,,. The ruled surface becomes
¥, (s v) = B(s) + vX,(s), (55)

where X, =D, /||D,|| with D, = -k, V +k,U and (k,, k,
)#(0,0).
By using (2), we get

o [Rvrku), k [(k;kn - kgk;) -1, (kj + k;)} ,
n kfl+k; - (ki+k;)3/2
Ky [ (ki = kgky) =74 (k4 12 )| .
(k3 + k;)m
(56)
Thus,
X,=k,0,V+k,0,U, (57)
where
(k;kn - kgk;) -1, (kﬁ + k;)
0, = . (58)

(2 +K) a
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It follows that

(V. X,) = ﬁ
<V, X;> =k, 0,
1)) = a2 (k2 42
If we substitute (59) in (15), we obtain

bor- o ,Ek;kgM | (60)
nThg

On the other hand, the striction curve of ¥, is

=B~ kian' (61)
(kﬁ +k;)an

Hence, we have the following corollary:

Corollary 16. In the noncylindrical case (i.e., o, # 0), we have
the following:

(1) ¥, is singular along its striction curve

(2) B is the striction curve of the surface ¥, if and only if
a is a geodesic curve

We have det (B, X,,, X|) = 0. Hence, we have the follow-
ing result.
Corollary 17. The ruled surface ¥, is developable.

From (57), we have

X =o' ()

Then, by using (2) and (29), we obtain
p— (k; + ki) T+ [kgo; - (knrg - k;) on] 14 o)

+ [kno','1 + (kgrg + k;) an} U.

Then,

k2
det (v,xn, V’) 2 det (V,X,,,X;) (V,X,)=———%
Ve + ki
det (V, Xn,X;) + det (X;,Xn, V’) = —2k,0,\ /K2 + K2,

3/2
det (x,;,xn,x;) = _(k; + ki) o

ne

(64)

7
FIGURE 1: ' M.
If we substitute (64) in (18), we obtain
K+ K
H,=- g (65)

T 2(kyrvo,(B4R))

Corollary 18. The ruled surface ¥, is not minimal.

4. Examples

In this section, we reinforce the previous study by the given
four examples. The first one corresponds to the general case,
and the three others represent the particular cases where the
initial curve is an asymptotic line, a geodesic curve, and a
line of curvature.

In the examples which follow, the same notations as in
the preceding paragraphs are retained. We denote by « the
initial curve lying on a surface M defined by ¢,(T, V, U)
the Darboux frame of a.k, .k ,7,, the normal curvature, the
geodesic curvature, and the geodesic torsion of the curve a,
respectively; by § the V-direction curve; and by X, (resp.,
X,,X,) the unit rectifying (resp., osculator, normal) vector
field. We give for each example the illustrations of the ruled
surfaces denoted by ¥,,¥,, ¥;,¥,,¥,.¥,,.

Example 1. Let 'a(s) = ((s/2) cos (v/21n (s/2)), (s/2) sin (
V21n (s/2)), (s/2)) be a curve lying on the surface ! M given
by the following parametrization:

'o(u, v) = (u cos v, u sin v, u), (66)

which can be seen in Figure 1. The Darboux frame of '« is

5 .
Ir= —sln(ﬂlng)+%cos<ﬁln%> >



Then,

(\/51 ;)—\}icos<\/§ln )
(\/Eln—) %sin(x/ﬁln )
1
2
—%cos(\/_ %)
—Lz sin (\/51 %)
1
2
PN
n \/ZS,
=L,
L 1
Tg—ﬁ
(\/Eln %) — — sin (\/Eln
(\/iln %) + — cos (\/Eln
V3
2
%cos(\/i E)
%Sin(\/i —) R
1
ﬁ
(\/Eln %) + — sin (\/Eln
(\/iln%)——cos (\/Eln
V3
2
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>

FIGURE 2: 1‘1’1.

(67) _— o
The V-direction curve is given by

—@ sin (\/Eln %) +2cos (\/Eln §)+a1
‘= @cos(ﬂln%)+%sin(\/ilng)+a2 >

N
-~ +a
2 3

(70)

(68) where a,,a,, a; are integration constants. Consequently,
the surfaces '¥,, '¥,, '¥,, '¥,, '¥,, ¥, are given as illus-
trate in Figures 2-7.

Example 2. Let 2a(s) = (cos (s/v/2),sin (s/v/2), (s/v/2)) be
the curve lying on the surface *M given by the following
parametrization:

(s, v) = (cos 7 - 7 sin ﬁ,sin 7 + 7 cos VRV + ﬁ>,
(71)

2) ’ which can be seen in Figure 8. The Darboux frame of *a

(e )
2y/(s) = <cos % sin \/ii,o), (72)

- (o o )

Then, ’k, =0,’k, = —(1/2), and *z, =1/2 and

1

(GG o
@ (G mse )
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AL k!
x\\\\\,,“‘\\\
LY

=

FIGURE 6: 'V .

Let 28(s) = (v/2 sin (s/v/2) + by,—\/2 cos (s/\/2) + by, by)
, where b,,b,,b, are integration costants. Consequently, the
surfaces 2V, 2¥,, 2¥,, 2¥,, ¥, 2, are given as illustrated
in Figures 9-13.

2100 2

-2 4 -3 -2
FiGURE 7: 1‘I’n.

PR = O = W GO

)i

F1GURE 9: *¥, and *¥,.

FiGure 10: 2¥,.

Example 3. We consider the curve a(s) = ((1/v/2) cos s, (1
/V/2) sin s, (s/1/2)), lying on the surface >M defined by

1 1
} —— COS S, sins, —— —2v ), (74)

P =\ T
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-4 4

FiGUre 11: 2‘113.

-4~ -4

FiGure 13: ZlI’n.

which can be seen in Figure 14. The Darboux frame of >« is

3T(s) — (_% sin s, % cos s, %),

1 . 1 1 (75)
3Vi(s) = (—— sin s, — cos s,——),
NI V- RV
3U(s) = (~cos s,~ sin s,0).
Then, °k, = 1/V?2, 3kg =0,, and 3Tg =1/+/2 and
3X—(—lsins 1coss 1)
r \/E b \/E b \/E b
X, =(0,0,1), (76)

1 1 1
3 .
X =(— sin s,—— cos 5, — |.
! (ﬁ V2 ﬂ)

Abstract and Applied Analysis

|
[ 38}
/
|
I

L
|

-1 -05 O

FIGURE 14: 3 M.

FIGURE 16: 3‘[’2.

Let 3B(s) = ((1/v/2) cos s + c;, (1/+/2) sin s + ¢5,—(s/v/2)
+¢3), where ¢;,¢,,c; are integration costants. Consequently,
the surfaces ¥, *¥,, *¥5, *¥,, , >V, are given as illustrated
in Figures 15-19.

Example 4. We consider the curve *a(s) = (cos s,sin s,0)
lying on the surface *M given by the following parametrization:

4 % . v v
S, V)= | coss— — cos s, sin s — — sin s, , (77
ols0) = (cons= 7 ). o7

V2 V2
which can be seen in Figure 20. The Darboux frame of *a is

*T(s) = (~sin s, cos s,0),

*U(s) = (% cos s, \/LZ sin s, \%)
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2 -2

-1

),

FiGure 21

W,

FIGUure 17

. T T
W

o

2

24w and YV .

FIGURE 22

3
‘Po

FiGURE 18

LAEANANY

NAYAANY

LA

SRR

N
ALY
SRR

& ,,wmnooa

FIGURE 23

W,

F1GURE 19

L7 AN TR

G AT
s\\\\\ﬁh\vﬂ”ﬂﬂﬂﬂ%ﬂ
LTV
AW
HTHTITIIT N
LT
A
TN
LTI -—- AT

“y

FIGURE 24

iM.

FiGure 20
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Then, *k, =-1//2, 4kg =1/v/2, and 4Tg =0and

. 1 1
X,=|—= cos s, —= sin s,

V2 V2 \/ii)

4 I
X = ——= cos s,——— sin s,

°\-V2 V2 %)

X, =(0,0,1).

(79)

Let *B(s) = (—(1/+/2) sin s +d, (1/3/2) cos s+ d,, (s//2

) + d,), where d,.d,.d; are integration costants. Consequently,

the

surfaces ¥, 4¥,, ¥,, ‘¥, YV, *¥, are given as illus-

trated in Figures 21-24.
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