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In this work, the existence of at least one solution for the following third—order integral and m- point boundary value problem on the

half-line at resonance (p(t)u’(£))" = w(t, u(t), u’'(t),u" (t)), t € [0, c0), u

Sy u(t)de, ' (0) =0, lim (p(0)u’ () =0,

will be investigated. The Mawhin’s coincidence degree theory will be used to obtain existence results while an example will be

used to validate the result obatined.

1. Introduction

This work studies the existence of solution for a resonant
third-order boundary value problem with integral and m
-point boundary conditions on the half-line

i zxj £)dt, u' (0) =0, tlilloo(p(t)u'(t)>'=0, (2)

j=1

where w : [0,00) x R®> — R is an S-Carathéodory function,
g €R, i=1,2,-,m 0<n <<y, <1, peCl0,00)NC
(0,00), p(t) >0 for t € [0,00), 1/p € L'[0, 00) and the reso-
nance condition is Z;il ain; =1

Boundary value problems on the half-line arise in the
modeling of various physical processes like the flow of fluid
over semi-infinite porous media and wet surfaces [1].

Boundary value problem (1)-(2) is said to be at resonance
since the corresponding homogeneous problem

(p(t)u’(t))” =0, te[0,00),

=iocj t)dt, u' (0) =0, @m(p(t)u’(r))éo,

j=1

(3)

has a nontrivial solution u(t)=C, where C is a constant.
Boundary value problems at resonance can be expressed in
the abstract form as Lu = Nu, where L is a linear differential
operator that is not invertible. Mawhin's coincidence degree
theory [2] is an excellent tool for studying resonant problems
of this type.

The problem of existence of solutions for resonant
boundary value problems has received the attention of many
authors recently, both in the bounded domain and on the
half-line. For instance, the authors in [3] studied the third-
order problem
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. -2 =
under the resonance conditions: f=1,Y""a; =1, Y| " o,

E=1and B=1/2 Y0 0= 1, Y72 a&’ = 1. They applied
the coincidence degree arguments to obtain existence results
in a bounded domain. For other works on a bounded
domain, see [4-7].

In [8], the authors considered the multipoint boundary
value problem on the half-line

u" (1) :f(t, u(t), u'(t)), t € [0, 00),

u(0)=0,u'(00) = ) au' (&),

where o, >0 and 0=§, <---<&, | <oco. They applied a
perturbation technique in obtaining existence results under
the resonant condition Y7 " a; = 1.

Iyase [9] used coincidence degree arguments to study
existence of solutions for the multipoint boundary value
problem at resonance on the half-line

(9" )" = g (b u(u' 1) (1)). (000,

under the resonant condition Y7;" a; = 2 which is different

from ours. For other literature on resonant multipoint
boundary value problems on the half-line, see [10-14]. Moti-
vated by the results mentioned above, we study the existence
of solutions for the resonant third-order boundary value
problem with integral and m-point boundary conditions on
the half-line. In Section 2 of this work, necessary lemmas,
theorems, and definitions will be given; Section 3 will be ded-
icated to stating and proving the condition for existence of
solutions. An example will be given in Section 4 to corrobo-
rate the result obtained.

2. Preliminaries

In this section, we will give definitions, theorems, and
lemmas that are required for this work.

Definition 1 (see [6]). Let U and Z be Banach spaces. A linear
operator L : dom L ¢ U — Z is called a Fredholm mapping
of index zero if ker L and Z/Im L are finite dimensional.

Take U, Z to be normed spaces, L: dom LcU—Za
Fredholm mapping of zero index and P: U— U, Q:Z
— Z projectors that are continuous such that Im P = ker
L ker Q=Im L, Im Q=ker L and U=ker Loker P, Z=
Im LeIm Q, then Ly jker p: dom LNker P—Im L
is invertible. The inverse of the mapping L will be denoted
by K,:Im L— dom LNker P while the generalized
inverse, Kp o : Z — dom LNker P is defined as Kp, =K,

I-Q).
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Definition 2 (see [13]). A map w : [0, +00) X R* — R is §
-Carathéodory, if the following conditions are satisfied:

(i) For each (d, e, f) € R?, the mapping t — q(t, d, e,
f) is Lebesgue measurable

(ii) For a.e. t € [0, 00), the mapping (d, e, f) — w(t, d,
e, f) is continuous on R?

(iii) For each k> 0, there exists ¢, (t), with t, (t) € L, [0,
+00) such that, for a.e. t€[0,00) and every d,e, f
€ [-k, k], we have

lw(t, d, e, f)l < g (1)- (7)

Definition 3. Let L : dom L c U — Z be a Fredholm map-
ping, E a metric space, and N : E — Z a nonlinear mapping.
N is said to be L-compact on E if QN : E— Z and K N
: E— U are compact on E. Also, N is L-completely contin-
uous if it is L-compact on every bounded E c U.

Theorem 4 (see [9]). Let U be the space of all bounded contin-
uous vector-valued functions on [0, 00) and M c U. Then, M
is relatively compact on U if the following conditions hold:

(i) M is a bounded subset of U

(ii) The functions in M are equicontinuous on any com-
pact interval of [0, 00)

(iii) The functions from M are equiconvergent; that is, if
given & > 0, there exists T =T(g) > 0 such that |f(¢)
—f(c0) | <e, forallt>T and f e M

Theorem 5 (see [2]). Let L : dom L c U — Z be a Fredholm
map of index zero and let N : U — Z be L-compact on Q.
Assume that the following conditions are satisfied:

(i) Lu# ANu for every (u,A) € [(dom L\ker L) N oQ]
x (0,1)
(ii)) Nu ¢ Im L for every u e ker LN 0Q

(iii) deg (QN|, 1> Q2 Nker L,0) 0, where Q: Z—Z
is a projection such that Im L =ker Q

Then, the abstract equation Lu = Nu has at least one solu-
tion in dom LN Q.
Let

U= {u € C*[0, +00): u, u', (pu’) "€ AC[0, +00), tlim e’

—00
. ‘u(i>(t)’ exist,i=0,1,2, (pu') "ell [0,00)},
(8)

where AC[0, +00) is the set of absolutely continuous func-
tions. The norm defined on U is ||u|| = max {||ul|,, [|#']| o

4" lloo } where [|u]oq = supyg,cpe ™ [ 24(t) |
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Let Z={zeL'[0,+00) N C*(0,+00): [;*s|z|ds<+oo}
and define the norm ||z|| = max {||z|| ., ||zll;> ||z||;1 } where
Izl =[5 12(s) | ds, [lzll, = [ s12(s) | ds and [|z]|, is the
supremum norm on [0, co). The hnear operator L : dom L
C U — Z will be defined by

Liurs (Lu)(t)= (p(0)u'(1)) ", (9)

where

m ylj
dom L= {u € UﬂC3[O,+oo): u(0) = Z (xjj u(t

_ . ! r_
_Owggg(paﬁl(ﬂ> _o}.
(10)
Also, the nonlinear operator N : U — Z will be defined
by (Nu)(t) =w(t, u(t), u'(t), u’'(t)), t € [0,+00); thus, prob-
lem (1)-(2) may be written in the form Lu = Nu.
Lemma 6. The following conditions hold:

(i) ker L={uedom L:u(t)=h,heR,te[0,00)}

m Ui t s (OO
ImL=<zeZ: ajj JJ LJ J z(v)dvdrdsdt =0
= o Jor() ol

(11)

(ii)) L :dom LcU— U is a Fredholm operator of
index zero, while the continuous linear projector
Q : Z —> Z may be defined as

Qy=0(t ]_i ocjj Jo oG )JS JOO z(v)dvdrdsdt,
(12)
where

0(t) = < B
O Sl e

(iii) The generalized inverse K,:Im L— dom L Nker

P of L may be written as

Kpy= —J; % J; EO z(v)dvdrds. (14)

| <A,llz||: where

00,1}. (15)

1

1
A1=max{ —
p

Proof. Let
(p(ou’a))":o, t € [0,00), (16)

then

u(t)=h+ (p(O)u'(O)) Jt L odss (p(oo)u’(oo)) ’J = s,

From (2), we have u'(0)=0, lim, __(p(t)u'(t))" =0
then, (17) becomes

u(t)=h. (18)
Therefore, kerL={uedom L:u(t)=hheR,te]0,
00)}; hence, (i) holds. Next, we show that (ii), (iii), and (iv)

also hold.
For z € Im Z, consider the problem

(p(yu'(1) " ==(1), (19)

which has a solution u(t) defined as

u(t) = u(0) + p(0)u' (0 >j id

o P

+ (ploo j t (20)

il p(; LL i

Applying the boundary conditions and using ", ajm;
=1, one obtains

m miot 1 s 0O
Z och J —J J z(v)dvdrdsdt =0,
= o dop(s))ol:

J; % J; EO z(v)dvdrds,

where h is an arbitrary constant and u(¢) is a solution of (19)
satistying (2). Therefore, condition (ii) holds.
For any z € Z, let the projector

Qz=0(t iocjj JO oG )JS JOO (v)dvdrdsdt,

Jj=1

(21)
u(t)=h-

€ (0,00).
(22)

Let z; =z — Qz, then z; = z(I — Q), where I is the identity
operator. Since



M=

I
—_

ajrj Jt LJ JOO O(v)dvdrdsdt =1, (23)

j 0 Jo P(s) Jo )

then zyeIm L and Z=Im L+Im Q. From Im LNIm Q
={0}, we have Z=Im L®Im Q. Therefore, dim ker L=
dim Im Q=1.Thus, L is a Fredholm operator of index zero
and (iii) holds.
Given P : U — U defined as
Pu=u(0), tel0,00), (24)

the generalized inverse K, : Im L — dom LNker P of L
can then be written as

_Jt % J; Jjo z(v)dvdrds. (25)

In fact, for any z € Im L,
(LKp)2(t) = [p()(Kp2) (0] " =2(1),  (26)

and for u € dom L Nker P, it follows that

(KpL)u(t) = —r Lr ro (p(v)u'(v)) ""dvdrds

Jop(s)Jo )z
:_J; %S)E KP(OO)” (00))’ - (P(T)”I(T)>,}d‘rds
:J pL) (P61 ©) = (p(0)u'(©)) ] s
= u(t) - u(0).
(27)

Since Pu =u(0) =0, then
(KpL)u(t)=u(t), te[0,00); (28)

thus, Kp = (L| 4o rrger p) - In addition,

t S OO
1(Kp2) |l = sup |J LJ J 2(v)dvdds|

te[0,+00) OP(S) 0Jr (29)
St [ arpaes o] b
< | ——ds< ||~ b
Hlo 1)l pll,
, 1 t oo
H(sz) H = sup e’ ——J J z(v)dvdr
© tefo,00) p(t) Jo s (30)
<3| tets[5] e
<= ezl < I 1zl
e p . Ll P . Ll
H(sz)"HOO: sup e_tl—J z(v)dv|
te[0,4+00)

o . (31)
L j2(v)ldv < |2

IN

Abstract and Applied Analysis

Hence, (29), (30), and (31) give

1

—Hm, Bl G2

1
Koz|| <max < ||—
etz 1

>
1

Lemma 7. The nonlinear operator N is L-compact if w is an S
-Carathéodory function.

Proof. To prove this lemma, we have to show that Theorem 4
satisfied the operator K oNu. This we will do in three steps.
Given that D c U is bounded and k = sup {|u|| : u € D}, con-
sider K oN(D). Since w : [0,00) x R* satisfies the S-Car-
athéodory conditions with respect to L'[0, c0), there exists
a Lebesgue integrable function ¢,, with tg, € L'{0,00) such
that

INu(t)] = ‘w(t, u(t), u' (1), u"(t))‘
< (1),

(33)
a.e.t € (0,00).

Hence, for all u € D,

|QNu||, = sup e |QNu(v)|
0,00

t€[0,00)
s [, sl [

: (v, uv),u' (v), u”(v))dvd‘rdsdt

= sup e’
te[0,00)

© s

< 16]ollgell Y. |«xj|j J dsdt
=1 0 Jo 1p(s)]

1 m
< 16llco el Iy Y laln; < oo,
j=1

IQNull,: = J:O |QNu(v)|dv
0wl [l e

L,

. (v, u(v), u' (v), u”(v))dvdrdcds

dt

m M (00 N
<16l ) o ——dsd
161 il le | ]|J Jo lp(s) | ¢

0

1 m
S Y laln; < oo,
j=1
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00

vIQNu(v)|dv

0
o mn (6 1 S [
-J, o] | el

. (v,u(v), u'(v),u"(v))dvdrdsd( dt
snwm¢ﬁpgy%qﬁﬂoggﬂdmc

1 m
SHmMWAyHEMEZMﬂm<@1
j=1

HQNMh=J

(34)

Hence, [|QNul =max {[|QNullo,|QNull,1,1QNull, }
bounded. Next, we prove that K,(I - Q)N(D) is compact.
For u € D, we have

||KPQNu|| = Sup e thpQNul < "(Pk"L‘ ” - ”1

te[0,00)

1 m
S r+lolp =1 Y, T 1y, | <o
pa

. 1 1
|(KpoNu) oo = sup e”I(KpoNu)'l < —llggll IIEIIOO

te[0,00)

1 m
: (1 + 1101l ";"1 Z | &; | 7]j> < 00,

j=1

I(KpoNu)' o = sup e'|(K

te[0,00)

1 m
-G+wmhm2|%mJ<m.

!
p,QN“) /l < ”‘Pk”Ll

j=1
(35)
Hence, K ,N(D) is uniformly bounded in U; thus, (i) of
Also, we will prove that (ii) of Theorem 4 holds. Also, we will
prove that (ii) of Theorem 4 holds, that is, K;, ,N(D) is equi-
continuous on [0, T|. Let t,,t, € [0, T), where T € (0, + 00).
Then,

‘KP,QNu(tZ) - KpoNu(t)) } <l

1 mn f s
Arronpn=n Y el J S ds—0, ast,——t,,
< L P 1]=21| J’%) " ‘P(S)| 1 2
|(KpoNu) "(t,) - (Kp, QNu)’(t1)|
1
oyl 1+||9||1|| I, ‘ -
[‘PkL( L Z‘ ”L) o(t)
1 g
gl H”9”1|,” de
‘PkL( L Z| |’1,> P ). }

—0, ast;—1,,

t
;U dr
)10

|(KpoNu)''(t,) = (KpoNu) "' (t)|
t, 1 m
SJ (?k(V)+||9||L1||P||1Z |“j”7j) —0, ast;—t,.
2] j=1
(36)

Thus, Kp oN(D) is equicontinuous every compact subset
of [0, 00). Finally, we show that (iii) of Theorem 4 holds; that
is, Kp oN(D) is equiconvergent at co:

|KpoNu(t) = KpoNu(co)|
© s
< llp,l <1+||9||L1||—|| > [a |n]>j FaLe
— 0, uniformlyast — oo,

|(KpoNu)' () = (KpoNu)'(00)

1. & 1 0
+M¢mp<1+uwynpm§j|a|m> )J di]

=1 t

— 0, uniformlyast— oo,

|(KpoNu)''(t) = (KpoNu) ' (c0)]

sjw( o)+ 10 >|n<pknyu—u z\ m) (37)

t

— 0, uniformlyast— oo.

Hence, Kp,N(D) is equiconvergent at co. Thus, from
Definition 3 and Theorem 4, we see that the nonlinear oper-
ator N is L-compact.

3. Existence Result

Theorem 8. Let w : [0,+00) x R®> — R be an S-Carathéodory
function. If the following hold:

(E;)There exists constant o € [0, 1) and functions b, ¢, d,
e,g € L'[0,00), satisfying j s|b(s)|ds < +oo, [ s|c(s)|ds
< +00, [ s|d(s)|ds<+00, [} s|e(s)|ds<+oo, [, slg( )lds<
+00, such that for all (x,y,z ) eR’andte|o, oo)

[w(t, x, y,2)| < e [b(t) | xl+c(t) | yl+d(2) | zl+e(t)|2|°] + g(2).
(38)

(E,)There exists a constant B > 0, such that for u € dom L,
if lu(t) | >B, for all t € [0,00), then

i oc]J L e )JS row(v, u(v), u' (v), u"(v))dvdrdsdtq& 0.

J=1

(39)

(E;)There exists a constant B* > 0, such that for any u(t)
=heR, if|h|>B", then



m 1; t 1 QEEee]
h-Zoch L@JJ w(v, b, 0,0)dvdsdrdt <0 (40)

w(v, h, 0,0)dvdsdrdt > 0.
(41)
Then, problem (1) subject to (2) has at least one solution if

I
1Bl + Hlellpe + N1l < = (42)

where A =max {[[/p], + | 1pllogr 21 1/ps [ VPl + 1.
In order to prove Theorem 8, the following lemmas are
required. These lemmas will help us prove that condition

(iii) of Theorem 5 holds.

Lemma 9. The set Q, ={uecdom L\ker L: Lu=ANufor
some A € [0, 1]} is bounded.

Proof. Assume that u € Q; and Lu = ANu, then 1 #0, QNu
=0 and by condition (E,) of Theorem 8, there exists ¢, € [0

,00), such that |u(t,) | <B. By the absolute continuity of , it
follows from u(0) = u(t,) — [ u'(t)dt that

tﬂ

|u(0)|£|u(t0)|+J lu'(v)ldv<B+ Hu'”oo. (43)
0

(v)dv, one gets

From u' (t) = 1/p(t) [y u'’

t
Hu'HOOS sup e“;'J |u"|(v)dvds
0

o t
te[0,00) |P() (44)
| s
Plleo
and from u'' = [*° u"""(v)dv, we obtain
00 (o]
lu'"l, < sup e"’J |u"'(v)|dvsj |Lu(v)|dv
te[0,00) t 0
- (45)
SJ INu(v)|dv < ||[Nu]| 1.
0
ence, from (43) and (45)
1
|[Pul| = [u(0)| < B+|[u'||  <B+|u'||,, <B+ _H |Nu||,-
Plleo
(46)

Also, for ueQ,, uedom L\ker L, then (I-Puec
dom L nker P and LPu = 0; then, from Lemma 6, one gets
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I(I = P)ul| = |[KpL(I - PuH

<max{
Smax{ —
Pl

Hence, from (46) and (47),

}||LI Pl (49

} INu].

||| < ||Pu|| + ||(I - P)u|| < B+ max

AL B e

Setting  max {|[1/p], +[|1/pl| oo 2[[1/pllos 11/pllo + 1}
= A gives

(48)

|lu]| < B+ A|Nul|:. (49)

From (38), we see that

INull;: SJ |w<t, u(v),u' (v), u”(z))ldv

Sl (50)
o
< [l [1BH e+ llelly + 1l ] + llella ||,
From (49), we obtain
B+ Alell|[u"||

lul< o, (51)

1= A[llblip+lellp+ldll ]
Hence, (2, is bounded. O
Lemma 10. Given that Q,={uecker L: Jlu—[(1-21)/]]

QNu =0, ¢€[0,1]}. Suppose that (40) holds, for all |h|>B*
where J : Im Q — ker L is the linear isomorphism defined
by J(h) = h, then Q, is bounded.

Proof. For all u(t) =

_ TAi « rJ o J JOO w(v, h, 0, 0)dvdsdrdt.

j=1 0Jrt

h € Q,, one obtains

(52)

When A = 1, then h = 0. However, when |h | >B*, then in
view of (40), one gets

1 o1 s (0O
-0y ochO L WL J w(v, h, 0, 0)dvdsdrdt < 0,

j=1
(53)

contradicting Ah* > 0. Then, ||u| = |x|<B*, implying that
|lu|| < B*. Hence, 2, is bounded. O

Proof of Theorem 8. We will now show that all the conditions
of Theorem 5 hold. Take U?_, 2 as an open bounded subset
of U. Lemma 6 shows that L is a Fredholm operator of index
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zero, and from Lemma 7, N is L-compact on Q. Thus, condi-
tions (i) and (ii) of Theorem 5 are satisfied based on the def-
inition of . Finally, we show that condition (iii) of Theorem
5 holds. Set E(u,A) =—-AJu+(1-2A)QNu. Since Q, CQ,
then for every ueker LN0Q, E(u,A) #0. Therefore, the
homotopy property of the Brouwer degree gives

deg (QN\kerL,aner L, 0)
=deg (E(-0),Q2nker L,0)
=deg (E(-1),Q2nker L,0)
=deg (£J,QnNker L,0) #0.

(54)

d

Hence, condition (iii) of Theorem 5 holds, and problem
(1)-(2) has at least one solution in U.

4. Example

Consider the following problem

u 1 1/16 1
¢ It)II:_t i . (n) " " i
(P()u (0)7=¢"\3 * 10 i \# 20"

(55)
1/6 172
u(O):ISJ u(ﬂdt—ZJ u(t)dt, u'(0)

0 0 (56)

_ . / I

=0, tEnm (p(t)u (t)) =0,

where
. 1
p(t)=¢€,te[0,00), 0, =18, &, = =2,5, = —, 1, = 3

Son() +()on

2 ; 2 . -2,
Zocj J dsdt—z a; Z+e_’7f—e—]—E
= Z5\2 4 4

=-0.01684 # 0.

(57)

Given that (t,x,y,z) € [0, 00) x R?, then w(t, x,y,2) >0

and

o3 ofl | [ [ s

=1
~dvdrdsdt #0;

hence, condition (E,) is satisfied. For any h € R such that
|h | >B*, where B* >0,

h- i "‘JJ%J e J J w(v, h,0,0)dvdrdsdt

=1

_ i J J JJ —e"dvdrdsdt (59)

0.016840*
=—— #0sincelh| > 0.
20
Now, |w(t,x,y,2) | <e*(|x[/20 + 1/10 - (1)""°+|z]/20).
Taking b(t) = 1/20e™, c(t) =0, d(t) = 1/20¢e”, e(t) =0, t € [0

,00), then b,c,d,e,geL'0,00) satisfy condition (E,).
Finally,

b 1

00 1 B 1 1 .
||b||L1=J Sole f|dt=%,||d||L1=J Setdt= o,
0 0
1 1 1
A:max{ — +H—H ,ZH—H 1}
Plli 1Pl lIPlleo
=max {2,2,2} =2,
1 1

1 1
ol +Nell + =55+ 25 =15 <3+ (©)

All the conditions are satisfied, and we conclude from
Theorem 8 that there exists at least one solution u(t) for
problem (55) subject to (56).
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