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In this work, the existence of at least one solution for the following third-order integral andm-point boundary value problem on the

half-line at resonance ðρðtÞu′ðtÞÞ″ =wðt, uðtÞ, u′ðtÞ, u″ðtÞÞ, t ∈ ½0,∞Þ, uð0Þ =∑m
j=1 α j

Ð η j
0 uðtÞdt, u′ð0Þ = 0, lim

t⟶∞
ðρðtÞu′ðtÞÞ′ = 0,

will be investigated. The Mawhin’s coincidence degree theory will be used to obtain existence results while an example will be
used to validate the result obatined.

1. Introduction

This work studies the existence of solution for a resonant
third-order boundary value problem with integral and m
-point boundary conditions on the half-line

ρ tð Þu′ tð Þ
� �

″ =w t, u tð Þ, u′ tð Þ, u″ tð Þ
� �

, t ∈ 0,∞½ Þ, ð1Þ

u 0ð Þ = 〠
m

j=1
αj

ðη j
0
u tð Þdt, u′ 0ð Þ = 0, lim

t⟶∞
ρ tð Þu′ tð Þ
� �

′ = 0, ð2Þ

where w : ½0,∞Þ ×ℝ3 ⟶ℝ is an S-Carathéodory function,
αi ∈ℝ, i = 1, 2,⋯,m, 0 < η1 <⋯ < ηm < 1, ρ ∈ C½0,∞Þ ∩ C2

ð0,∞Þ, ρðtÞ > 0 for t ∈ ½0,∞Þ, 1/ρ ∈ L1½0,∞Þ and the reso-
nance condition is ∑m

j=1 αjηj = 1.
Boundary value problems on the half-line arise in the

modeling of various physical processes like the flow of fluid
over semi-infinite porous media and wet surfaces [1].

Boundary value problem (1)-(2) is said to be at resonance
since the corresponding homogeneous problem

ρ tð Þu′ tð Þ
� �

″ = 0, t ∈ 0,∞½ Þ,

u 0ð Þ = 〠
m

j=1
αj

ðη j
0
u tð Þdt, u′ 0ð Þ = 0, lim

t⟶∞
ρ tð Þu′ tð Þ
� �

′ = 0,

ð3Þ

has a nontrivial solution uðtÞ = C, where C is a constant.
Boundary value problems at resonance can be expressed in
the abstract form as Lu =Nu, where L is a linear differential
operator that is not invertible. Mawhin's coincidence degree
theory [2] is an excellent tool for studying resonant problems
of this type.

The problem of existence of solutions for resonant
boundary value problems has received the attention of many
authors recently, both in the bounded domain and on the
half-line. For instance, the authors in [3] studied the third-
order problem

u′′′ tð Þ = f t, u tð Þ, u′ tð Þ, u″ tð Þ
� �

, t ∈ 0, 1½ �,

u 0ð Þ = 〠
m−2

i=1
αiu ξið Þ, u′ 0ð Þ = 0, u 1ð Þ = βu ηð Þ

ð4Þ
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under the resonance conditions: β = 1,∑m−2
i=1 αi = 1,∑m−2

i=1 αi
ξ2i = 1 and β = 1/η2,∑m−2

i=1 αi = 1,∑m−2
i=1 αiξ

2
i = 1. They applied

the coincidence degree arguments to obtain existence results
in a bounded domain. For other works on a bounded
domain, see [4–7].

In [8], the authors considered the multipoint boundary
value problem on the half-line

u″ tð Þ = f t, u tð Þ, u′ tð Þ
� �

, t ∈ 0,∞½ Þ,

u 0ð Þ = 0, u′ ∞ð Þ = 〠
m−1

i=1
αiu′ ξið Þ,

ð5Þ

where αi > 0 and 0 = ξ1 <⋯ < ξm−1 <∞. They applied a
perturbation technique in obtaining existence results under
the resonant condition ∑m−1

i=1 αi = 1.
Iyase [9] used coincidence degree arguments to study

existence of solutions for the multipoint boundary value
problem at resonance on the half-line

q tð Þu″ tð Þ
� �

′ = g t, u tð Þ, u′ tð Þ, u″ tð Þ
� �

,  0,∞ð Þ,

u′ 0ð Þ = 〠
m−1

i=1
αi

ðξi
0
u tð Þdt, u 0ð Þ = 0, lim

t⟶∞
q tð Þu″ tð Þ = 0

ð6Þ

under the resonant condition ∑m−1
i=1 αi = 2 which is different

from ours. For other literature on resonant multipoint
boundary value problems on the half-line, see [10–14]. Moti-
vated by the results mentioned above, we study the existence
of solutions for the resonant third-order boundary value
problem with integral and m-point boundary conditions on
the half-line. In Section 2 of this work, necessary lemmas,
theorems, and definitions will be given; Section 3 will be ded-
icated to stating and proving the condition for existence of
solutions. An example will be given in Section 4 to corrobo-
rate the result obtained.

2. Preliminaries

In this section, we will give definitions, theorems, and
lemmas that are required for this work.

Definition 1 (see [6]). Let U and Z be Banach spaces. A linear
operator L : dom L ⊂U ⟶ Z is called a Fredholm mapping
of index zero if ker L and Z/Im L are finite dimensional.

Take U , Z to be normed spaces, L : dom L ⊂U ⟶ Z a
Fredholm mapping of zero index and P : U ⟶U , Q : Z
⟶ Z projectors that are continuous such that Im P = ker
L, ker Q = Im L, Im Q = ker L and U = ker L ⊕ ker P, Z =
Im L ⊕ Im Q, then Ljdom L∩ker P : dom L ∩ ker P⟶ Im L
is invertible. The inverse of the mapping L will be denoted
by Kp : Im L⟶ dom L ∩ ker P while the generalized
inverse, KP,Q : Z⟶ dom L ∩ ker P is defined as KP,Q = Kp

ðI −QÞ.

Definition 2 (see [13]). A map w : ½0, +∞Þ ×ℝ3 ⟶ℝ is S
-Carathéodory, if the following conditions are satisfied:

(i) For each ðd, e, f Þ ∈ℝ3, the mapping t⟶ qðt, d, e,
f Þ is Lebesgue measurable

(ii) For a.e. t ∈ ½0,∞Þ, the mapping ðd, e, f Þ⟶wðt, d,
e, f Þ is continuous on ℝ3

(iii) For each k > 0, there exists φkðtÞ, with tφkðtÞ ∈ L1½0,
+∞Þ such that, for a.e. t ∈ ½0,∞Þ and every d, e, f
∈ ½−k, k�, we have

∣w t, d, e, fð Þ∣ ≤ φk tð Þ: ð7Þ

Definition 3. Let L : dom L ⊂U ⟶ Z be a Fredholm map-
ping, E a metric space, andN : E⟶ Z a nonlinear mapping.
N is said to be L-compact on E if QN : E⟶ Z and KP,QN
: E⟶U are compact on E. Also, N is L-completely contin-
uous if it is L-compact on every bounded E ⊂U .

Theorem 4 (see [9]). LetU be the space of all bounded contin-
uous vector-valued functions on ½0,∞Þ and M ⊂U . Then, M
is relatively compact on U if the following conditions hold:

(i) M is a bounded subset of U

(ii) The functions in M are equicontinuous on any com-
pact interval of ½0,∞Þ

(iii) The functions from M are equiconvergent; that is, if
given ε > 0, there exists T = TðεÞ > 0 such that ∣f ðtÞ
− f ð∞Þ ∣ <ε, for all t > T and f ∈M

Theorem 5 (see [2]). Let L : dom L ⊂U ⟶ Z be a Fredholm
map of index zero and let N : U ⟶ Z be L-compact on �Ω.
Assume that the following conditions are satisfied:

(i) Lu ≠ λNu for every ðu, λÞ ∈ ½ðdom L \ ker LÞ ∩ ∂Ω�
× ð0, 1Þ

(ii) Nu ∉ Im L for every u ∈ ker L ∩ ∂Ω

(iii) deg ðQNjker L,Ω ∩ ker L, 0Þ ≠ 0, where Q : Z⟶ Z
is a projection such that Im L = ker Q

Then, the abstract equation Lu =Nu has at least one solu-
tion in dom L ∩ �Ω.

Let

U = u ∈ C2 0, +∞Þ½ : u, u′, ρu′
� �

′ ∈ AC 0, +∞Þ½ , lim
t⟶∞

e−t
n
� u ið Þ tð Þ
��� ��� exist, i = 0, 1, 2, ρu′

� �
′′ ∈ L1 0,∞Þ½

o
,

ð8Þ

where AC½0, +∞Þ is the set of absolutely continuous func-
tions. The norm defined on U is kuk =max fkuk∞, ku′k∞,
ku′′k∞g where kuk∞ = supt∈½0,+∞Þe

−t ∣ uðtÞ ∣ .
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Let Z = fz ∈ L1½0,+∞Þ ∩ C2ð0,+∞Þ: Ð +∞0 s ∣ z ∣ ds<+∞g
and define the norm kzk =max fkzk∞, kzk1, kzkL1g where
kzkL1 =

Ð∞
0 ∣ zðsÞ ∣ ds, kzk1 =

Ð∞
0 s ∣ zðsÞ ∣ ds and kzk∞ is the

supremum norm on ½0,∞Þ. The linear operator L : dom L
⊂U ⟶ Z will be defined by

L : u↦ Luð Þ tð Þ = ρ tð Þu′ tð Þ
� �

′′, ð9Þ

where

dom L = u ∈U ∩ C3 0,+∞Þ½ : u 0ð Þ = 〠
m

j=1
αj

ðη j
0
u tð Þdt, u′ 0ð Þ

(

= 0, lim
t⟶∞

ρ tð Þu′ tð Þ
� �

′ = 0
)
:

ð10Þ

Also, the nonlinear operator N : U ⟶ Z will be defined
by ðNuÞðtÞ =wðt, uðtÞ, u′ðtÞ, u′′ðtÞÞ, t ∈ ½0,+∞Þ; thus, prob-
lem (1)-(2) may be written in the form Lu =Nu.

Lemma 6. The following conditions hold:

(i) ker L = fu ∈ dom L : uðtÞ = h, h ∈ℝ, t ∈ ½0,∞Þg

Im L = z ∈ Z : 〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτdsdt = 0

( )

ð11Þ

(ii) L : dom L ⊂U ⟶U is a Fredholm operator of
index zero, while the continuous linear projector
Q : Z⟶ Z may be defined as

Qy = θ tð Þ〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτdsdt,

ð12Þ

where

θ tð Þ = e−t

∑m
j=1 αj

Ð η j
0

Ð t
0 1 − e−s/ρ sð Þdsdt

ð13Þ

(iii) The generalized inverse Kp : Im L⟶ dom L ∩ ker
P of L may be written as

KPy = −
ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτds: ð14Þ

Furthermore, kKPyk ≤ A1kzkL1 where

A1 =max 1
ρ

����
����
1

, 1
ρ

����
����
∞
, 1

� �
: ð15Þ

Proof. Let

ρ tð Þu′ tð Þ
� �

′′ = 0, t ∈ 0,∞½ Þ, ð16Þ

then

u tð Þ = h + ρ 0ð Þu′ 0ð Þ
� �ðt

0

1
ρ sð Þ ds + ρ ∞ð Þu′ ∞ð Þ

� �
′
ðt
0

s
ρ sð Þ ds:

ð17Þ

☐

From (2), we have u′ð0Þ = 0, limt⟶∞ðρðtÞu′ðtÞÞ′ = 0;
then, (17) becomes

u tð Þ = h: ð18Þ

Therefore, ker L = fu ∈ dom L : uðtÞ = h, h ∈ℝ, t ∈ ½0,
∞Þg; hence, (i) holds. Next, we show that (ii), (iii), and (iv)
also hold.

For z ∈ Im Z, consider the problem

ρ tð Þu′ tð Þ
� �

′′ = z tð Þ, ð19Þ

which has a solution uðtÞ defined as

u tð Þ = u 0ð Þ + ρ 0ð Þu′ 0ð Þ
ðt
0

1
ρ sð Þ ds

+ ρ ∞ð Þu″ ∞ð Þ
� �

′
ðt
0

s
ρ sð Þ ds

−
ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτds:

ð20Þ

Applying the boundary conditions and using ∑m
j=1 αjηj

= 1, one obtains

〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτdsdt = 0,

u tð Þ = h −
ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτds,
ð21Þ

where h is an arbitrary constant and uðtÞ is a solution of (19)
satisfying (2). Therefore, condition (ii) holds.

For any z ∈ Z, let the projector

Qz = θ tð Þ〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτdsdt, t ∈ 0,∞ð Þ:

ð22Þ

Let z1 = z −Qz, then z1 = zðI −QÞ, where I is the identity
operator. Since
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〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

θ vð Þdvdτdsdt = 1, ð23Þ

then z1 ∈ Im L and Z = Im L + Im Q. From Im L ∩ Im Q
= f0g, we have Z = Im L ⊕ Im Q. Therefore, dim ker L =
dim Im Q = 1. Thus, L is a Fredholm operator of index zero
and (iii) holds.

Given P : U ⟶U defined as

Pu = u 0ð Þ, t ∈ 0,∞½ Þ, ð24Þ

the generalized inverse KP : Im L⟶ dom L ∩ ker P of L
can then be written as

−
ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτds: ð25Þ

In fact, for any z ∈ Im L,

LKPð Þz tð Þ = ρ tð Þ KPzð Þ′ tð Þ
h i

′′ = z tð Þ, ð26Þ

and for u ∈ dom L ∩ ker P, it follows that

KPLð Þu tð Þ = −
ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

ρ vð Þu′ vð Þ
� �

′′dvdτds

= −
ðt
0

1
ρ sð Þ

ðs
0

ρ ∞ð Þu′ ∞ð Þ
� �

′ − ρ τð Þu′ τð Þ
� �

′
h i

dτds

=
ðt
0

1
ρ sð Þ ρ sð Þu′ sð Þ

� �
− ρ 0ð Þu′ 0ð Þ
� �h i

ds

= u tð Þ − u 0ð Þ:
ð27Þ

Since Pu = uð0Þ = 0, then

KPLð Þu tð Þ = u tð Þ, t ∈ 0,∞½ Þ ; ð28Þ

thus, KP = ðLjdom L∩ker PÞ−1. In addition,

KPzð Þk k∞ = sup
t∈ 0,+∞½ Þ

e−t ∣ −
ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

z vð Þdvdτds∣

≤ zk kL1
ð∞
0

s
∣ρ sð Þ ∣ ds ≤

1
ρ

����
����
1
zk kL1 ,

ð29Þ

KPzð Þ′�� ��
∞ = sup

t∈ 0,∞½ Þ
e−t −

1
ρ tð Þ

ðt
0

ð∞
τ

z vð Þdvdτ
����

����
≤
1
e

1
ρ

����
����
∞

zk kL1 ≤
1
ρ

����
����
∞

zk kL1 ,
ð30Þ

KPzð Þ′′�� ��
∞ = sup

t∈ 0,+∞½ Þ
e−t∣ −

ð∞
τ

z vð Þdv∣

≤
ð∞
0
∣z vð Þ∣dv ≤ zk kL1 :

ð31Þ

Hence, (29), (30), and (31) give

KPzk k ≤max 1
ρ

����
����
1
, 1
ρ

����
����
∞
, 1

� �
zk kL1 : ð32Þ

Lemma 7. The nonlinear operator N is L-compact if w is an S
-Carathéodory function.

Proof. To prove this lemma, we have to show that Theorem 4
satisfied the operator KP,QNu. This we will do in three steps.
Given that D ⊂U is bounded and k = sup f∥u∥ : u ∈Dg, con-
sider KP,QNðDÞ. Since w : ½0,∞Þ ×ℝ3 satisfies the S-Car-
athéodory conditions with respect to L1½0,∞Þ, there exists
a Lebesgue integrable function φk, with tφk ∈ L

1½0,∞Þ such
that

Nu tð Þj j = w t, u tð Þ, u′ tð Þ, u′′ tð Þ
� ���� ���

≤ φk tð Þ, a:e:t ∈ 0,∞ð Þ:
ð33Þ

☐

Hence, for all u ∈D,

QNuk k∞ = sup
t∈ 0,∞½ Þ

e−t∣QNu vð Þ∣

= sup
t∈ 0,∞½ Þ

e−t θ tð Þ〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w

�����
� v; ;u vð Þ, u′ vð Þ, u′′ vð Þ
� �

dvdτdsdt

�����
≤ θk k∞ φkk kL1 〠

m

j=1
∣αj∣
ðη j
0

ð∞
0

s
∣ρ sð Þ ∣ dsdt

≤ ∥θ∥∞∥φk∥L1∥
1
ρ
∥1 〠

m

j=1
∣αj∣ηj <∞,

∥QNu∥L1 =
ð∞
0
∣QNu vð Þ∣dv

=
ð∞
0

θ tð Þ〠
m

j=1
αj

ðη j
0

ðζ
0

1
ρ sð Þ

ðs
0

ð∞
τ

w

�����
� v, u vð Þ, u′ vð Þ, u′′ vð Þ
� �

dvdτdζds

�����dt
≤ ∥θ∥L1∥φk∥L1 〠

m

j=1
∣αj∣
ðη j
0

ð∞
0

s
∣ρ sð Þ ∣ dsdζ

≤ ∥θ∥L1∥φk∥L1∥
1
ρ
∥1 〠

m

j=1
∣αj∣ηj <∞,
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∥QNu∥1 =
ð∞
0
v∣QNu vð Þ∣dv

=
ð∞
0
t θ tð Þ〠

m

j=1
αj

ðη j
0

ðζ
0

1
ρ sð Þ

ðs
0

ð∞
τ

w

�����
� v, u vð Þ, u′ vð Þ, u′′ vð Þ
� �

dvdτdsdζ

�����dt
≤ ∥θ∥1∥φk∥L1 〠

m

j=1
∣αj∣
ðη j
0

ð∞
0

s
∣ρ sð Þ ∣ dsdζ

≤ ∥θ∥1∥φk∥L1∥
1
ρ
∥1 〠

m

j=1
∣αj∣ηj <∞:

ð34Þ

Hence, ∥QNu∥ =max f∥QNu∥∞,∥QNu∥L1 ,∥QNu∥1g is
bounded. Next, we prove that KPðI −QÞNð�DÞ is compact.
For u ∈D, we have

∥KP,QNu∥∞ = sup
t∈ 0,∞½ Þ

e−t∣KP,QNu∣ ≤ ∥φk∥L1∥
1
ρ
∥1

� 1 + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
∣ αj ∣ ηj

 !
<∞,

∥ KP,QNu
� 	′∥∞ = sup

t∈ 0,∞½ Þ
e−t∣ KP,QNu
� 	′∣ ≤ 1

e
∥φk∥L1∥

1
q
∥∞

� 1 + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
∣ αj ∣ ηj

 !
<∞,

∥ KP,QNu
� 	′′∥∞ = sup

t∈ 0,∞½ Þ
e−t∣ KP,QNu
� 	′′∣ ≤ ∥φk∥L1

� 1 + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
∣ αj ∣ η j

 !
<∞:

ð35Þ

Hence, KP,QNðDÞ is uniformly bounded in U ; thus, (i) of
Also, we will prove that (ii) of Theorem 4 holds. Also, we will
prove that (ii) of Theorem 4 holds, that is, KP,QNðDÞ is equi-
continuous on ½0, T�. Let t1, t2 ∈ ½0, TÞ, where T ∈ ð0, +∞Þ.
Then,

KP,QNu t2ð Þ − KP,QNu t1ð Þ�� �� ≤ ∥φk∥L1

� 1 + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
αj

�� ��ηj
 !ðt2

t1

s
ρ sð Þj j ds⟶ 0, as t1 ⟶ t2,

KP,QNu
� 	′ t2ð Þ − KP,QNu

� 	′ t1ð Þ�� ��
≤ ∥φk∥L1 1 + ∥θ∥L1∥

1
ρ
∥1 〠

m

j=1
αj

�� ��ηj
 !

1
ρ t1ð Þ −

1
ρ t2ð Þ

����
����
ðt1
0
dτ

"

+ ∥φk∥L1 1 + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
αj

�� ��ηj
 !

1
ρ t2ð Þ

ðt1
t1

dτ

#

⟶ 0, as t1 ⟶ t2,

KP,QNu
� 	′′ t2ð Þ − KP,QNu

� 	′′ t1ð Þ�� ��
≤
ðt2
t1

φk vð Þ + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
αj

�� ��ηj
 !

⟶ 0, as t1 ⟶ t2:

ð36Þ

Thus, KP,QNðDÞ is equicontinuous every compact subset
of ½0,∞Þ. Finally, we show that (iii) of Theorem 4 holds; that
is, KP,QNðDÞ is equiconvergent at ∞:

KP,QNu tð Þ − KP,QNu ∞ð Þ�� ��
≤ ∥φk∥L1 1 + ∥θ∥L1∥

1
ρ
∥1 〠

m

j=1
αj

�� ��η j
 !ð∞

t

s
ρ sð Þ ds

⟶ 0, uniformly as t⟶∞,

∣ KP,QNu
� 	′ tð Þ − KP,QNu

� 	′ ∞ð Þ∣

+ ∥φk∥L1 1 + ∥θ∥L1∥
1
ρ
∥1 〠

m

j=1
∣ αj ∣ ηj

 !
1

ρ ∞ð Þ
ð∞
t
dτ�

⟶ 0, uniformly as t⟶∞,

KP,QNu
� 	′′ tð Þ − KP,QNu

� 	′′ ∞ð Þ�� ��
≤
ð∞
t

φk vð Þ + θ vð Þj j∥φk∥L1∥
1
ρ
∥1 〠

m

j=1
αj

�� ��ηj
 !

⟶ 0, uniformly as t⟶∞:

ð37Þ

Hence, KP,QNðDÞ is equiconvergent at ∞. Thus, from
Definition 3 and Theorem 4, we see that the nonlinear oper-
ator N is L-compact.

3. Existence Result

Theorem 8. Letw : ½0,+∞Þ × R3 ⟶ R be an S-Carathéodory
function. If the following hold:

(E1)There exists constant σ ∈ ½0, 1Þ and functions b, c, d,
e, g ∈ L1½0,∞Þ, satisfying

Ð +∞
0 sjbðsÞjds < +∞, Ð +∞0 sjcðsÞjds

< +∞,Ð +∞0 sjdðsÞjds<+∞,Ð +∞0 sjeðsÞjds<+∞,Ð +∞0 s∣gðsÞ∣ds<
+∞, such that for all ðx, y, zÞ ∈ℝ3 and t ∈ ½0,∞Þ,

∣w t, x, y, zð Þ∣ ≤ e−t b tð Þ ∣ x∣+c tð Þ ∣ y∣+d tð Þ ∣ z∣+e tð Þ zj jσ½ � + g tð Þ:
ð38Þ

(E2)There exists a constant B > 0, such that for u ∈ dom L,
if ∣uðtÞ ∣ >B, for all t ∈ ½0,∞Þ, then

θ tð Þ〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, u vð Þ, u′ vð Þ, u′′ vð Þ
� �

dvdτdsdt ≠ 0:

ð39Þ

(E3)There exists a constant B∗ > 0, such that for any uðtÞ
= h ∈ℝ, if ∣h ∣ >B∗, then
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h · 〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, h, 0, 0ð Þdvdsdτdt < 0 ð40Þ

or h · 〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, h, 0, 0ð Þdvdsdτdt > 0:

ð41Þ

Then, problem (1) subject to (2) has at least one solution if

bk kL1 + ck kL1 + dk kL1 <
1
A
, ð42Þ

where A =max fk1/ρk1 + k1/ρk∞, 2k1/ρk∞, k1/ρk∞ + 1g.

In order to prove Theorem 8, the following lemmas are
required. These lemmas will help us prove that condition
(iii) of Theorem 5 holds.

Lemma 9. The set Ω1 = fu ∈ dom L \ ker L : Lu = λNu for
some λ ∈ ½0, 1�g is bounded.

Proof. Assume that u ∈Ω1 and Lu = λNu, then λ ≠ 0, QNu
= 0 and by condition (E2) of Theorem 8, there exists t0 ∈ ½0
,∞Þ, such that ∣uðt0Þ ∣ ≤B. By the absolute continuity of u, it
follows from uð0Þ = uðt0Þ −

Ð t0
0 u′ðtÞdt that

∣u 0ð Þ∣ ≤ ∣u t0ð Þ∣ +
ðt0
0
∣u′ vð Þ∣dv ≤ B + u′

�� ��
∞: ð43Þ

From u′ðtÞ = 1/ρðtÞÐ t0 u′′ðvÞdv, one gets
u′
�� ��

∞ ≤ sup
t∈ 0,∞½ Þ

e−t
1

∣ρ tð Þ ∣
ðt
0
∣u″∣ vð Þdvds

≤
1
ρ

����
����
∞

u″
�� ��

∞,
ð44Þ

and from u′′ = Ð∞t u′′′ðvÞdv, we obtain

∥u′′∥∞ ≤ sup
t∈ 0,∞½ Þ

e−t
ð∞
t
∣u′′′ vð Þ∣dv ≤

ð∞
0
∣Lu vð Þ∣dv

≤
ð∞
0
∣Nu vð Þ∣dv ≤ Nuk kL1 :

ð45Þ

ence, from (43) and (45)

Puk k = ∣u 0ð Þ∣ ≤ B + u′
�� ��

∞ ≤ B + u′
�� ��

L1
≤ B + 1

ρ

����
����
∞

Nuk kL1 :

ð46Þ

Also, for u ∈Ω1, u ∈ dom L \ ker L, then ðI − PÞu ∈
dom L ∩ ker P and LPu = 0; then, from Lemma 6, one gets

I − Pð Þuk k = KPL I − Pð Þuk k
≤max 1

ρ

����
����
1
, 1
ρ

����
����
∞
, 1

� �
L I − Pð Þuk kL1

≤max 1
ρ

����
����
1
, 1
ρ

����
����
∞
, 1

� �
Nuk kL1 :

ð47Þ

Hence, from (46) and (47),

uk k ≤ Puk k + I − Pð Þuk k ≤ B +max

� 1
ρ

����
����
1
+ 1

ρ

����
����
∞
, 2 1

ρ

����
����
∞
, 1
ρ

����
����
∞
+ 1

� �
Nuk kL1 :

ð48Þ

Setting max fk1/ρk1 + k1/ρk∞, 2k1/ρk∞, k1/ρk∞ + 1g
= A gives

uk k ≤ B + A Nuk kL1 : ð49Þ

From (38), we see that

∥Nu∥L1 ≤
ð∞
0
∣w t, u vð Þ, u′ vð Þ, u′′ zð Þ
� �

∣dv

≤ uk k bk kL1 + ck kL1 + dk kL1½ � + ek kL1 u′′
�� ��σ

∞:

ð50Þ

From (49), we obtain

∥u∥≤
B + A∥e∥L1 u′′

�� ��σ
∞

1 − A ∥b∥L1+∥c∥L1+∥d∥L1½ � : ð51Þ

Hence, Ω1 is bounded. ☐

Lemma 10. Given that Ω2 = fu ∈ ker L : J−1u − ½ð1 − λÞ/λ�
QNu = 0, λ ∈ ½0, 1�g. Suppose that (40) holds, for all ∣h ∣ >B∗

where J : Im Q⟶ ker L is the linear isomorphism defined
by JðhÞ = h, then Ω2 is bounded.

Proof. For all uðtÞ = h ∈Ω2, one obtains

h = 1 − λ

λ
〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, h, 0, 0ð Þdvdsdτdt:

ð52Þ

When λ = 1, then h = 0. However, when ∣h ∣ >B∗, then in
view of (40), one gets

λh2 = h 1 − λð Þ〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, h, 0, 0ð Þdvdsdτdt < 0,

ð53Þ

contradicting λh2 > 0. Then, kuk = ∣x ∣ ≤B∗, implying that
kuk ≤ B∗. Hence, Ω2 is bounded. ☐

Proof of Theorem 8.We will now show that all the conditions
of Theorem 5 hold. Take ∪2

k=1 �Ωk as an open bounded subset
of U . Lemma 6 shows that L is a Fredholm operator of index
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zero, and from Lemma 7, N is L-compact on �Ω. Thus, condi-
tions (i) and (ii) of Theorem 5 are satisfied based on the def-
inition ofΩ. Finally, we show that condition (iii) of Theorem
5 holds. Set Eðu, λÞ = −λJu + ð1 − λÞQNu. Since �Ω2 ⊂Ω,
then for every u ∈ ker L ∩ ∂Ω, Eðu, λÞ ≠ 0. Therefore, the
homotopy property of the Brouwer degree gives

deg QNjker L,Ω ∩ ker L, 0
� 	

= deg E ·, 0ð Þ,Ω ∩ ker L, 0ð Þ
= deg E ·, 1ð Þ,Ω ∩ ker L, 0ð Þ
= deg ±J ,Ω ∩ ker L, 0ð Þ ≠ 0:

ð54Þ

☐

Hence, condition (iii) of Theorem 5 holds, and problem
(1)-(2) has at least one solution in U .

4. Example

Consider the following problem

ρ tð Þu′ tð Þ
� �

″ = e−t
u
20 + 1

10 sin u″
� �1/16

+ 1
20 u

″

 �

,

ð55Þ

u 0ð Þ = 18
ð1/6
0

u tð Þdt − 2
ð1/2
0

u tð Þdt, u′ 0ð Þ

= 0, lim
t⟶∞

ρ tð Þu′ tð Þ
� �

′ = 0,
ð56Þ

where

ρ tð Þ = et , t ∈ 0,∞½ Þ, α1 = 18, α2 = −2, η1 =
1
6 , η2 =

1
2 ,

〠
2

j=1
αjηj = 18 1

6


 �
− 2 1

2


 �
= 3 ≠ 1,

〠
2

j=1
αj

ðη j
0

ðt
0

1 − e−s

es
dsdt = 〠

2

j=1
αj

η j
2 + e−η j −

e−2η j

4 −
3
4

 !

= −0:01684 ≠ 0:
ð57Þ

Given that ðt, x, y, zÞ ∈ ½0,∞Þ ×ℝ3, then wðt, x, y, zÞ > 0
and

θ tð Þ〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, u vð Þ, u′ vð Þ, u″ vð Þ
� �

� dvdτdsdt ≠ 0 ;
ð58Þ

hence, condition (E2) is satisfied. For any h ∈ℝ such that
∣h ∣ >B∗, where B∗ > 0,

h · 〠
m

j=1
αj

ðη j
0

ðt
0

1
ρ sð Þ

ðs
0

ð∞
τ

w v, h, 0, 0ð Þdvdτdsdt

= h〠
m

j=1
αj

ðη j
0

ðt
0

1
es

ðs
0

ð∞
τ

h
20 e

−vdvdτdsdt

= −
0:01684h2

20 ≠ 0 since ∣h∣ > 0:

ð59Þ

Now, ∣wðt, x, y, zÞ ∣ ≤e−tð∣x∣/20 + 1/10 · ð1Þ1/16+∣z∣/20Þ.
Taking bðtÞ = 1/20e−t , cðtÞ = 0, dðtÞ = 1/20e−t , eðtÞ = 0, t ∈ ½0
,∞Þ, then b, c, d, e, g ∈ L1½0,∞Þ satisfy condition (E1).
Finally,

bk kL1 =
ð∞
0

1
20 ∣e

−t∣dt = 1
20 , dk kL1 =

ð∞
0

1
20 e

−tdt = 1
20 ,

A =max 1
ρ

����
����
1
+ 1

ρ

����
����
∞
, 2 1

ρ

����
����
∞
, 1
ρ

����
����
∞
+ 1

� �
=max 2, 2, 2f g = 2,

bk kL1 + ck kL1 + dk kL1 =
1
20 + 1

20 = 1
10 < 1

2 : ð60Þ

All the conditions are satisfied, and we conclude from
Theorem 8 that there exists at least one solution uðtÞ for
problem (55) subject to (56).
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