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In this paper, we establish a generalization of the Galewski-Rădulescu nonsmooth global implicit function theorem to locally
Lipschitz functions defined from infinite dimensional Banach spaces into Euclidean spaces. Moreover, we derive, under suitable
conditions, a series of results on the existence, uniqueness, and possible continuity of global implicit functions that parametrize
the set of zeros of locally Lipschitz functions. Our methods rely on a nonsmooth critical point theory based on a generalization
of the Ekeland variational principle.

1. Introduction

Many mathematical models involving real or vector-valued
functions stand as equations of the form

f xð Þ = 0: ð1Þ

For complex phenomena, the unknown x is often a
vector-variable x = ðx1, x2,⋯, xnÞ belonging to ℝn or to an
abstract Banach space having a direct sum V1 ⊕V2 ⊕⋯⊕
Vn. It may even happen that equation (1) is just a state equa-
tion depending in fact on a parameter (or a control) h. In
this case, it takes the form

F x, hð Þ = 0, ð2Þ

and the most aspiring aim of mathematical analysis is to
know the local or global structure of the solution set F−1ð0Þ
by finding out whether it is nonempty, discrete, a graph or a
manifold, etc.

The essence of the implicit function theorem in mathemat-
ical analysis is to ascertain if the solutions to an equation involv-
ing parameters exist and may be viewed locally as a function of
those parameters and to know a priori which properties this
function might inherit from those of the data. Geometrically,
implicit function theorems provide sufficient conditions under

which the solution set in some neighborhood of a given solution
is the graph of some function. The well-known implicit function
theorems deal with a continuous differentiability hypothesis
and in such cases are equivalent to inverse function theorems
(see [1]). It was originally conceived (in the complex variable
form in a pioneering work by Lagrange) over two centuries
ago to tackle celestial mechanics problems. Subsequently, it
attracted Cauchy who managed to provide its rigorous version
and became its discoverer. Later, the generalization of this
implicit function theorem to the case of finitely many real var-
iables was proved for the first time by Dini. In this way, the clas-
sical theory of implicit functions started with single variables
and have progressed through multiple real variables to equa-
tions in infinite dimensional spaces, e.g., functional equations
involving integral or differential operators. Nowadays, most cat-
egories of smooth functions have virtually their own version of
the implicit function theorem, and there are special versions
adapted to Banach spaces and algebraic geometry and to vari-
ous types of geometrically degenerate situations. Some of these
(such as Nash-Moser implicit function theorem) are quite
sophisticated and have been used in amazing ways to solve
important open problems (in Riemannian manifolds, partial
differential equations, functional analysis,…) [1]. There are also
in the literature [2, 3] some implicit numerical schemes used to
approximate the solutions of certain differential equations and
that could be regarded as implicit functions in sequence spaces.
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Nevertheless, there are interesting phenomena governed
by parametric equations with nonsmooth data which need to
be stressed and are more and more attracting researchers.
Indeed, the implicit function theorems for nondifferentiable
functions are less known but are regaining interest in the liter-
ature due to their importance in applied sciences that deal with
functions having less regularity than smoothness. Few ver-
sions have been stated in Euclidean spaces for functions that
are continuous with respect to all their variables and (partially)
monotone with respect to some of their variables [4, 5].

Recently, Galewski and Rădulescu [6] proved a generalized
global implicit function theorem for locally Lipschitz function
F : ℝn ×ℝp ⟶ℝn, by using a nonsmooth Palais-Smale con-
dition and a coercivity condition. Their proof is essentially
based on the fact that a locally Lipschitz function in a finite
dimension is almost everywhere differentiable with respect to
the Lebesgue measure according to Rademacher’s theorem
[7]. It is known that Rademacher’s theorem for locally Lipschitz
functions has no direct infinite dimensional extension. This jus-
tifies all difficulties to have conditions of existence of local or
global implicit function in the case of locally Lipschitz function
defined on infinite dimensional space (see [8]). Several works
have been done to overcome these difficulties. For example,
the papers [9, 10] provided conditions for surjectivity and inver-
sion of locally Lipschitz functions between Banach spaces under
assumptions formulated in terms of pseudo-Jacobian.

In this work, our aim is to establish under suitable con-
ditions a global implicit function theorem for locally
Lipschitz map F : X × Y ⟶H, where X, Y are real Banach
spaces and H is a real Euclidean space, and to provide con-
ditions under which this implicit function is continuous.
This extends Theorem 30 of Galewski and Rădulescu to
the locally Lipschitz functions in infinite dimension with a
very relatively simple method compared to those used for
this purpose. Knowing that there exist noncoercive functions
satisfying the ðhÞ-condition (see Definition 18 and Remark
19), we work in this paper under the ðhÞ-condition using a
variational approach and applying a recent nonsmooth ver-
sion of Mountain Pass Theorem, namely, Theorem 27.

The contribution of this work is quadruple:

(i) An improvement of the classical Clarke’s implicit
function Theorem 24 for function F : ℝn ×ℝp

⟶ℝn by replacing ℝp by any Banach space Y
(Remark 26). Consequently, by considering the
approach used in [6] (Theorem 4) and Remark 26,
we prove our first main result (Theorem 31) on
the existence and uniqueness of global implicit
function theorem for equation Fðx, yÞ = 0, where F
: ℝn × Y ⟶ℝn with Y a Banach space

(ii) The proof of the continuity of the implicit function
based on a simple additional hypothesis, Theorem 35

(iii) The weakening of the coercivity assumption used in
[6] by considering a compactness type condition
called ðhÞ-condition in [11]

(iv) By our Lemmas 42 and 43, we obtain Theorem 38
on the existence and uniqueness of global implicit

functions under the ðhÞ-condition on the function
x↦ kFðx, yÞkα with 0 < α < 2. This is a generaliza-
tion of the result (49) in the nonsmooth case. It also
generalizes the result [12] (Theorem 3.6) in the C1

case

This article is organized as follows. In Section 2, we recall
some preliminary and auxilliary results on Clarke’s general-
ized gradient, Clarke’s generalized Jacobian, and the ðhÞ
-condition for locally Lipschitz functions. Section 3 is
devoted to our main results established under the ðhÞ-con-
dition, on the existence and uniqueness of global implicit
function for equation Fðx, yÞ = 0, where F is defined from
ℝn × Y to ℝn and Y is a Banach space, namely, Theorems
31, 35, 38, 39, and 40. In Section 4, we give an example of
a function satisfying our conditions of existence of implicit
function but not the conditions of Theorem 1 of 6 which
we have extended. This is the energy functional defined in
(139), of a certain differential inclusion problem involving
the p-Laplacian [13].

2. Preliminaries and Auxilliary Results

Let U be a nonempty open subset of a Banach space X and
let f : U ⟶ℝ be a function. We recall that f is Lipschitz
if there exists some constant K > 0 such that for all y and z
in U , we have

f yð Þ − f zð Þj j ≤ K y − zk k: ð3Þ

For x ∈U , f is said to be locally Lipschitz at x if there
exists an open neighborhood V ⊂U of x on which the
restriction of f is Lipschitz. We will say that f is locally
Lipschitz on U if f is locally Lipschitz at every point x ∈U .
We recall that any convex function has this property in
Euclidean spaces.

Definition 1. Let f : U ⊂ X⟶ℝ be a locally Lipschitz func-
tion. Let x ∈U and v ∈ X \ f0g. The generalized directional
derivative of f at x in the direction v, denoted by f 0ðx ; vÞ,
is defined by

f 0 x ; vð Þ≔ lim sup
w⟶x
t⟶0+

f w + tvð Þ − f wð Þ
t

: ð4Þ

Observe at once that f 0ðx ; vÞ is a (finite) number for all
v ∈ X \ f0g.

Indeed, let x ∈ V ⊂U and let K > 0 be such that (3) holds
for all y, z ∈ V , with V bounded (without loss of generality).
Let ðwmÞm>0 ⊂ X be a sequence such that wm ⟶ x and tm a
sequence of ð0 ; +∞Þ such that tm ⟶ 0. For v ∈ X \ f0g, as
m⟶ +∞, the vectors wm + tmv will belong to V . Indeed,
by boundedness of V , there exists ρ > 0 such that kx − yk
< ρ⇒ y ∈ V . Then, for m large enough, we have

wm + tmvð Þ − xk k ≤ wm − xk k + tm vk k < ρ

2 + ρ

2 = ρ: ð5Þ
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Thus, there exists m0 > 0 such that for all m >m0, we
have

f wm + tmvð Þ − f wmð Þj j
tm

≤ K vk k: ð6Þ

It follows from (3) and (6) that for all v ∈ X,

f 0 x, vð Þ�� �� ≤ K vk k: ð7Þ

Remark 2. If f is locally Lipschitz and Gâteaux differentiable
at x, then its Gâteaux differential f G′ ðxÞ at x coincides with
its generalized gradient. That is,

f 0 x ; vð Þ = f G′ xð Þ ⋅ v for all v ∈ X: ð8Þ

Proposition 3. The function v↦ f 0ðx ; vÞ is positively homo-
geneous and subadditive.

Proof. The homogeneity is an immediate consequence of
Definition 1. We prove the subadditivity. Let v and z be in
X. Then,

f 0 x ; v + zð Þ = limsup
w⟶x
t⟶0+

f w + tv + tzð Þ − f wð Þ
t

≤ limsup
w⟶x
t⟶0+

f w + tz + tvð Þ − f w + tzð Þ
t

+ limsup
w⟶x
t⟶0+

f w + tzð Þ − f wð Þ
t

≤ limsup
r⟶x
t⟶0+

f r + tvð Þ − f rð Þ
t

+ limsup
w⟶x
t⟶0+

f w + tzð Þ − f wð Þ
t

, r ≔w + tz

= f 0 x ; vð Þ + f 0 x ; zð Þ:
ð9Þ

From the previous Proposition 3 and the Hahn-Banach
theorem [14] (p. 62), it follows that there exists at least one
linear function ξ∗ : X ⟶ℝ satisfying

f 0 x ; vð Þ ≥ ξ∗, v
� � ð10Þ

for all v ∈ X. From (10) and (7) also rewritten with ð−vÞ,
we obtain

ξ∗, v
� ��� �� ≤ K vk k ð11Þ

for all v ∈ X. Thus, ξ∗ ∈ X∗ (as usual, X∗ denotes the
(continuous) dual of X and <.,.> is the duality pairing
between X and X∗). Thus, we can give the following
definition.

Definition 4. Let f : U ⊂ X ⟶ℝ be locally Lipschitz at a
point x ∈U . Clarke’s generalized gradient of f at x, denoted
∂f ðxÞ, is the (nonempty) set of all ξ∗ ∈ X∗ satisfying (10), i.e.,

∂f xð Þs≔ ξ∗ ∈ X∗ : ∀v ∈ X, f 0 x ; vð Þ ≥ ξ∗, v
� �� �

: ð12Þ

We refer to [15–17] for some of the fundamental results
in the calculus of generalized gradients. In particular, we
shall need the following.

Proposition 5 (see [18], Chang). If f : U ⟶ℝ is a convex
function, then Clarke’s generalized gradient of f at x, defined
in (12), coincides with the subdifferential of f in the sense of
convex analysis.

Proposition 6 (see [11], Chen). Let X be a real Banach space
and f : X⟶ℝ be a locally Lipschitz function. Then, the
function γ : X⟶ℝ defined by

γ uð Þ≔ min
x∗∈∂f uð Þ

x∗k k, for all u ∈ X, ð13Þ

is well defined and lower semicontinuous.

Proposition 7 (see [15], Proposition 6). If x0 is a minimizer
of f , then 0 ∈ ∂f ðx0Þ.

Remark 8. Let X be an infinite dimensional Banach space
and f : X⟶ℝp be a locally Lipschitz mapping. For any
finite dimensional subspace of X, it makes sense to talk
about Clarke’s generalized Jacobian of the function f L : L∍x
↦ f ðxÞ ∈ℝp at every point x ∈ L.

Notation 9. . For a locally Lipschitz function f : ℝn ⟶ℝp

and x ∈ℝn, we consider the set Ωf ðxÞ defined by Ωf ðxÞ≔
fðxmÞm sequence inℝn such that xm ⟶ x and f is differen-
tiable at xmg.

Let X, Z be two Banach spaces such that dim Z = n <∞.
Let F : X⟶ Z be a locally Lipschitz mapping and L a finite
dimensional subspace of X. For x ∈ L, we denote by ∂FLðxÞ
Clarke’s generalized Jacobian at a point x, of the restriction
of F to L, namely, the function

FL : L⟶ Z ; x↦ F xð Þ: ð14Þ

Let Y be a Banach space and consider a function F
: ℝn × Y ⟶ℝp which is locally Lipschitz. For any ð�x, �yÞ ∈
ℝn × Y , ∂xFð�x, �yÞ denotes Clarke’s generalized Jacobian at
a point �x of the function

F ⋅ ,�yð Þ: ℝn ⟶ℝp, x↦ F x, �yð Þ: ð15Þ

Let X, Y , Z be three Banach spaces with dim Z <∞ and
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F : X × Y ⟶ Z a locally Lipschitz function. For any finite
dimensional subspace L of X and for every ð�x, �yÞ ∈ L × Y ,
∂xFLðð�x, �yÞ will denote Clarke’s generalized Jacobian of the
function ~F : L∍x↦ ~FðxÞ≔ Fðx, �yÞ ∈ Z at a point �x.

Theorem 10 (Rademacher). Let f : ℝn ⟶ℝ be a locally
Lipschitz function. Then, f is almost everywhere differentiable
with respect to Lebesgue measure.

According to Rademacher’s Theorem 10, we have the
following.

Proposition 11 (see [19], Clarke). Let f : ℝn ⟶ℝ be a
locally Lipschitz function and x ∈ℝn. If ∂f ðxÞ denotes the
set defined by (12), then

∂f xð Þ = co lim
m⟶+∞

f ′ xmð Þ: xmð Þm∈ℕ ∈Ωf xð Þ
n o

: ð16Þ

Note that, since f is almost everywhere differentiable
with respect to Lebesgue measure, there exists a sequence
ðxmÞm∈ℕ ⊂ℝn such that xm ⟶ x, and for any m ∈ℕ, f is
differentiable at xm. So, Ωf ðxÞ ≠∅. In addition for any
ðxmÞm∈ℕ ∈Ωf ðxÞ and for any v ∈ℝn, we have

f ′ xmð Þ ⋅ v�� �� ≤ K vj j, ð17Þ

where K is the Lipschitz constant of f . This means that
ð f ′ðxmÞÞm is bounded in Lðℝn,ℝÞ which has a finite
dimension. Then, there exists a subsequence ð f ′ðxσðmÞÞÞm
of ð f ′ðxmÞÞm that converges to some x∗ ∈Lðℝn,ℝÞ. That is,

lim
m⟶+∞

f ′ xσ mð Þ
� �

= x∗: ð18Þ

Thus, the convex hull of such limits in (18) is ∂f ðxÞ.
Even if the function f is defined from ℝn to ℝp, regard-

ing (17) and (18) component by component, we notice that
the set defined by (16) is nonempty, compact, and convex in
Lðℝn,ℝpÞ (see [20] (Definition 1)). Thus, this characteriza-
tion of ∂f ðxÞ stated in Proposition 11 is extended to locally
Lipschitz functions defined from ℝn to ℝp. In this case, ∂f
ðxÞ is called Clarke’s generalized Jacobian of the function f
at a point x.

Definition 12. Let f : ℝn ⟶ℝp be a locally Lipschitz map-
ping and x ∈ℝn. Clarke’s generalized Jacobian of f at x also
denoted by ∂f ðxÞ is defined as follows:

∂f xð Þ = co lim
m⟶+∞

f ′ xmð Þ: xmð Þm∈ℕ ∈Ωf xð Þ
n o

: ð19Þ

The following notions will also be useful in the sequel.

Definition 13. Let f : ℝn ⟶ℝp be a locally Lipschitz map-
ping and x ∈ℝn with n ≥ p. We say that ∂f ðxÞ is of maximal
rank if for all x∗ ∈ ∂f ðxÞ, x∗ is surjective.

Definition 14. Let X be a metric space. A function f : X
⟶ℝ is said to be (sequentially) lower semicontinuous at
a point x ∈ X, if for all sequence ðxmÞm∈ℕ ⊂ X such that xm
⟶ x, we have the inequality

f xð Þ ≤ liminf
m⟶+∞

f xmð Þ: ð20Þ

If for all sequence ðxmÞm∈ℕ ⊂ X such that xm ⇀ x, (20)
holds; we say that f is weakly sequentially lower semicontin-
uous at x.

Remark 15. Let X be a normed vector space and ðxmÞm a
sequence of X. If x ∈ X, then

xm ⟶ x⇒ xm ⇀ x: ð21Þ

It follows that the weakly sequentially lower semiconti-
nuity implies the sequentially lower semicontinuity. But
the converse is not generally true. However, in the convex
case, these two notions are equivalents.

The following theorem is a generalization of Ekeland’s
variational principle [21].

Theorem 16 (see [21], J. Chen). Let h : ½0,+∞Þ⟶ ½0,+∞Þ
be a continuous nondecreasing function such that

ð∞
0

ds
1 + h sð Þ = +∞: ð22Þ

Let M be a complete metric space, x0 ∈M fixed, f : M
⟶ℝ∪f∞g a lower semicontinuous function, not identi-
cally +∞, and bounded from below. Then, for every ε > 0,
and y ∈M such that

f yð Þ < inf
M

f + ε, ð23Þ

and every λ > 0, there exists some point z ∈M such that

f zð Þ < f yð Þ, d z, x0ð Þ ≤ r0 +�r,

f xð Þ ≥ f zð Þ − ε

λ 1 + h d x0, zð Þð Þ½ � d x, zð Þ,∀x ∈M, ð24Þ

where r0 = dðx0, yÞ and �r is such that

ðr0+�r
r0

ds
1 + h sð Þ ≥ λ: ð25Þ

By Theorem 16, one has the following.

Theorem 17 (see [21], J. Chen). Let X be a Banach space,
h : ½0,+∞Þ⟶ ½0,+∞Þ be a continuous nondecreasing func-
tion such that

ð∞
0

ds
1 + h sð Þ = +∞ ð26Þ

and f : X⟶ℝ a locally Lipschitz function, bounded
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from below. Then, there exists a minimizing sequence ðzmÞm
of f such that

f 0 zm ; v − zmð Þ 1 + h zmk kð Þð Þ ≥ −εm v − zmk k,∀v ∈ X, ð27Þ

where εm ⟶ 0+ as m⟶ +∞.

Proof. For each positive integer m, choose ym ∈ Y be such
that

f ymð Þ ≤ inf
M

f + εm: ð28Þ

Take x0 = 0, X =M, and λ = 1 in Theorem 16. Then,
there exists zm ∈ X such that

f zmð Þ ≤ f ymð Þ, zmk k ≤ ymk k +�r,
f xð Þ ≥ f zmð Þ − εm

1 + h zmk kð Þ½ � x − zmk k,∀x ∈ X, ð29Þ

where �r is such that

ð ymk k+�r

ymk k

ds
1 + h sð Þ ≥ 1: ð30Þ

Consequently, for each x ∈ X, one has

inf
ε>0
δ>0

sup
wk k<ε
0<t<δ

f zm +w − t x − zmð Þð Þ − f zm +wð Þ
t

= inf
δ>0

sup
0<t<δ

f zm + t x − zmð Þð Þ − f zmð Þ
t

≥
−εm x − zmk k
1 + h zk km

	 
 :
ð31Þ

Hence, f 0ðzm ; v − zmÞð1 + hðkzmkÞÞ ≥ −εmkv − zmk, for
all v ∈ X.

Moreover, obviously, ðzmÞm is a minimizing sequence of
f .

Definition 18. Let X be a Banach space, f : X⟶ℝ be
bounded from below, locally Lipschitz function, and h : ½0,
+∞Þ⟶ ½0,+∞Þ be continuous nondecreasing function
such that

ð∞
0

ds
1 + h sð Þ = +∞: ð32Þ

We say that ðumÞn≥0 ⊂ X is a ðhÞ-sequence of f if
ð f ðumÞÞm is bounded and f 0ðum ; v − umÞð1 + hðkumkÞÞ ≥ −
εmkv − umk, for all v ∈ X, where εm ⟶ 0+. We say that f sat-
isfies the ðhÞ-condition if any ðhÞ-sequence of f possesses a
convergent subsequence.

Remark 19. Sometimes, the following version of ðhÞ-condi-
tion is also used: Any sequence ðumÞm ⊂ X such that

ð f ðumÞÞm is bounded and

lim
m⟶∞

γ umð Þ 1 + h umk kð Þð Þ = 0 ð33Þ

possesses a convergent subsequence, where γ is defined
in Proposition 6. This condition is equivalent to that of Def-
inition 18.

Remark 20. A coercive function defined on ℝn satisfies the
ðhÞ-condition regardless of h. But a function satisfying the
ðhÞ-condition is not necessary coercive. Indeed, Section 4 is
devoted to the exposition of an example of a noncoercive
function satisfying the ðhÞ-condition. It is the function
defined in (139).

The following is the Weierstrass theorem.

Lemma 21 (see [13], Lemma 2.1). Assume that f : X⟶ℝ
is functional on a reflexive Banach space X which is weakly
lower semicontinuous and coercive. Then, there exists x∗ ∈
X such that f ðx∗Þ =minx∈X f ðxÞ.

Better, by virtue of Theorem 17, we can prove the follow-
ing result.

Theorem 22. Let X be a Banach space, h : ½0,+∞Þ⟶ ½0,+
∞Þ a continuous nondecreasing function such that

ð∞
0

ds
1 + h sð Þ = +∞, ð34Þ

and f : X⟶ℝ a locally Lipschitz function and bounded
from below. If f satisfies the ðhÞ-condition, then f achieves its
minimum at some critical point z ∈ X of f .

Proof. By virtue of Theorem 17, there exists a minimizing
sequence ðzmÞm of f and

f 0 zm ; v − zmð Þ 1 + h zmk kð Þð Þ ≥ −εm v − zmk k for all v ∈ X
ð35Þ

where εm ⟶ 0+. Since f satisfies the ðhÞ-condition,
ðzmÞm has a convergent subsequence in X. We can assume
that zm ⟶ z in X. Consequently, by the continuity of f ,

f zð Þ = lim
m⟶+∞

f zmð Þ = inf
x∈X

f xð Þ: ð36Þ

By Remark 19 and the lower continuity of γ, we know
γðzÞ = 0.

Theorem 23 (see [22], Clarke). Let f : ℝn ⟶ℝn be a
locally Lipschitz mapping such that the Clarke generalized
Jacobian ∂f ðx0Þ of f at a point x0 ∈ℝn is of maximal rank.
Then, there exist neighborhoods U and V of x0 and f ðx0Þ,
respectively, and a Lipschitz function g : V ⟶U such that
f ðgðuÞÞ = u for all u ∈U and gð f ðuÞÞ = v for all v ∈ V .
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The following result is Clarke’s implicit function theo-
rem which will be very useful.

Theorem 24 (see [6], Clarke]. Assume that F : ℝn ×ℝp

⟶ℝn is a locally Lipschitz mapping on a neighborhood of
a point ðx0, y0Þ such that Fðx0, y0Þ = 0. Assume further that
∂xFðx0, y0Þ is of maximal rank. Then there exists a neighbor-
hood V ⊂ℝp of y0 and a Lipschitz function G : V ⟶ℝn

such that for every y in V , it holds

F G yð Þ, yð Þ = 0,
G y0ð Þ = x0:

ð37Þ

Remark 25. It would be important to point out that the
Clarke implicit function Theorem 24 is a corollary of the
Clarke inverse function Theorem 23 that can be found in
the book [23]. Indeed, as it is done for example in [24] on
page 256, when we put

~F : ℝn ×ℝp ⟶ℝn ×ℝp,
x, yð Þ↦ F x, yð Þ, yð Þ:

ð38Þ

~F is locally Lipschitz in a neighborhood of ðx0, y0Þ.
Moreover, when the Jacobian matrix D~F exists, it is of the
form

DxF DyF

0n Ip

 !
, ð39Þ

and it follows that the Clarke generalized Jacobian ∂~Fð
x0, y0Þ of ~F at the point ðx0, y0Þ is of maximal rank. Then,
by Theorem 4 D.3 of [23], there exist U ⊂ℝn ×ℝp, V ≔ Fð
UÞ ⊂ℝn ×ℝp, and f : V ⟶U which is inverse of ~F on U .
Obviously, f has the form f ðx, yÞ = ðϕðx, yÞ, yÞ, where ϕ
: ℝn ×ℝp ⟶ℝn. Therefore,

x, yð Þ ∈U , F x, yð Þ = 0⇔ f 0, yð Þ = ϕ 0, yð Þ, yð Þ = x, yð Þ
⇔x = ϕ 0, yð Þ:

ð40Þ

Thus, we can write GðyÞ = ϕð0, yÞ.
If ℝp is replaced by any infinite dimensional Banach

space Y in Theorem 24, Clarke’s generalized Jacobian of
the function ~F above cannot be defined. In other words,
we will no longer be in finite dimension to be able to apply
Theorem 1 in Clarke’s work [22].

This remark is very important in the rest of the work.

Remark 26. Let Y be an infinite dimensional Banach space
and F : ℝn × Y ⟶ℝn be a locally Lipschitz mapping on a
neighborhood of a point ðx0, y0Þ such that Fðx0, y0Þ = 0.
Assume that ∂xFðx0, y0Þ, Clarke’s generalized Jacobian is of
maximal rank. Then, there exists V ⊂ Y , subset containing
y0, and a Lipschitz mapping φ : V ⟶U ⊂ℝn such that

for every y ∈ V , we have

F φ yð Þ, yð Þ = 0, φ y0ð Þ = x0: ð41Þ

Moreover, we have the following equivalence:

x, yð Þ ∈U ×V , F x, yð Þ = 0⇔ x = φ yð Þ: ð42Þ

Indeed, let M be a finite dimensional subspace of Y with
y0 ∈M and dimM =mðm<∞Þ. We consider the map

~F : ℝn ×M⟶ℝn,
x, yð Þ↦ F x, yð Þ:

ð43Þ

Obviously, ~F is locally Lipschitz mapping, and ∂x~Fðx0,
y0Þ = ∂xFðx0, y0Þ is of maximal rank. Then, by Theorem
24, there exist V ⊂M, open in M and containing y0, U ⊂
ℝn, open containing x0 and a locally Lipschitz mapping φ
: V ⟶U such that conditions (41) and (42) hold.

Here is another result that will serve us in this work.

Theorem 27 (see [11], J. Chen). Let h : ½0,+∞Þ⟶ ½0,+∞Þ
be a continuous nondecreasing function such that

ð∞
0

ds
1 + h sð Þ = +∞: ð44Þ

X is a reflexive Banach space and J : X⟶ℝ is a locally
Lipschitz function. Assume that there exists u0 ∈ X, u1 ∈ X
and a bounded open neighborhood Ω of u0 such that u1 ∉
Ω and

inf
x∈∂Ω

J xð Þ >max J u0ð Þ, J u1ð Þf g: ð45Þ

Let M ≔ fg ∈ Cð½0, 1�, XÞ: gð0Þ = u0, gð1Þ = u1g and c≔
infg∈M maxs∈½0,1� JðgðsÞÞ. If J satisfies the ðhÞ-condition, then
c is a critical value of J and c >max fJðu0Þ, Jðu1Þg.

Lemma 28. Let X be a normed vector space and H be a Hil-
bert space equipped with the inner product h,i. Let f : X
⟶H be a locally Lipschitz mapping. Then, the function φ
: X ⟶ℝ defined by

φ xð Þ = f xð Þ, f xð Þh i = f xð Þk k2H ð46Þ

is locally Lipschitz.

Theorem 29 (see [16], Clarke). Let X be a normed vector
space, f : X ⟶ℝn be locally Lipschitz function near x ∈ X,
and h : ℝn ⟶ℝ be a given C1 function. Then,

∂ h ∘ fð Þ xð Þ ⊂ ∇h f xð Þð Þ½ �∂f xð Þ: ð47Þ

Theorem 30 (see [6], Theorem 1). Assume that F : ℝn ×
ℝp ⟶ℝn is a locally Lipschitz mapping such that
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ða1Þ for any y ∈ℝp the functional φy : ℝ
n ⟶ℝ given by

φy xð Þ = 1
2

F x, yð Þk k2 ð48Þ

is coercive, i.e., limkxk⟶∞φyðxÞ = +∞
ða2Þ for any ðx, yÞ ∈ℝn ×ℝp, the set ∂xFðx, yÞ is of max-

imal rank
Then, there exists a unique locally Lipschitz function f

: ℝp ⟶ℝn such that equation Fðx, yÞ = 0 and x = f ðyÞ are
equivalent in the set ℝn ×ℝp.

3. Main Results

The following is a generalization of the global implicit func-
tion theorem of [6] to the case of locally Lipschitz functions
from Banach spaces to Euclidean spaces.

Theorem 31. Let Y be a real Banach space and F : ℝn × Y
⟶ℝn be a locally Lipschitz function. Suppose that

(1) for every y ∈ Y , the function φy defined by

φy xð Þ = 1
2

F x, yð Þk k2 ð49Þ

satisfies the ðhÞ-condition, where h : ½0,+∞Þ⟶ ½0,+∞Þ
is a continuous nondecreasing function such that

ð∞
0

ds
1 + h sð Þ = +∞ ð50Þ

(2) for all ðx, yÞ ∈ℝn × Y , ∂xFðx, yÞ is of maximal rank

Then, there exists a unique function f : Y ⟶ℝn such
that the equation “ðx, yÞ ∈ℝn × Y and Fðx, yÞ = 0” are equiv-
alent to x = f ðyÞ. Moreover, for any finite dimensional sub-
space L of Y , f is locally Lipschitz on L.

Proof. Let y ∈ Y . We prove that there exists a unique element
xy ∈ℝn such that Fðxy, yÞ = 0. Indeed, φy is locally Lipschitz
and satisfies the ðhÞ-condition. Then, by Theorem 22, there
is xy ∈ℝn such that minℝnφy = φyðxyÞ. Since φy = g ∘ Fð⋅ ,yÞ
: ℝn ⟶ℝ and by assumption (1), the function Fð⋅ ,yÞ: ℝn

∍x↦ Fðx, yÞ ∈ℝn is a locally Lipschitz mapping and g : ℝn

∍x↦ 1/2kxk2 = 1/2hx, xiℝn ∈ℝ, it follows from Lemma 28
that φy is locally Lipschitz. Then, by Proposition 7, we have
0 ∈ ∂ϕyðxyÞ. Moreover, according to Theorem 29, we have

∂φyðxyÞ ⊂ ∇g½Fð⋅ ,yÞxy� ∘ ∂Fð⋅ ,yÞxy = ∇gðFðxy, yÞÞ ∘ ∂xF
ðxy , yÞ = f∇gðFðxy, yÞÞ ∘ x∗ : x∗ ∈ ∂xFðxy , yÞg:

Thus, there exists x∗ ∈ ∂xFðxy, yÞ such that ∇gðFðxy , yÞ
Þ ∘ x∗ = 0, i.e.,

∀v ∈ℝn,∇g F xy , y
	 
	 


x∗ vð Þ½ � = F xy, y
	 


, x∗ vð Þ� �
= 0: ð51Þ

By assumption (2) x∗ðℝnÞ =ℝn. It follows that Fðxy , yÞ
= 0.

About the uniqueness of xy ∈ℝn such that Fðxy , yÞ = 0,
we argue by contradiction supposing that there exists x1 ≠
xy in ℝn with Fðx1, yÞ = Fðxy, yÞ = 0. We use Remark 26.
Thus, we set e = x1 − xy , and we define the mapping ψy

: ℝn ⟶ℝ by

ψy xð Þ≔ φy x + xy
	 


= 1
2 F x + xy, y

	 
�� ��2: ð52Þ

We have ψyð0Þ = ψyðeÞ = 0. Consider ψy on the bound-
ary ∂Bð0, ρÞ of the ball Bð0, ρÞ ⊂ℝn with some 0 < ρ < kek.
By assumption (2) and Remark 26, we conclude that there
exist V ⊂ Y containing y (not necessary open in Y , but open
in some finite dimensional subspace L ⊂ Y), an open subset
U ⊂ℝn containing xy, and a function ξ : V ⟶U such that
the following equivalence holds:

x, yð Þ ∈U ×V , F x, yð Þ = 0⇔ x = ξ yð Þ: ð53Þ

ψy is also a locally Lipschitz function (so continuous),
and ∂Bð0, ρÞ is compact (by the fact that it is closed and
bounded). Then, ∃�x ∈ ∂Bð0, ρÞ such that

ψy �xð Þ = min
∂B 0,ρð Þ

ψy: ð54Þ

We claim that there exists at least one ρ > 0, ρ < kek such
that minkxk=ρψy > 0. Otherwise, we would have

∀0 < ρ < ek k, min
xk k=ρ

ψy = 0 ; ð55Þ

this means that for all nonnegative ρ < kek, there exists
�x ∈ℝn, k�xk = ρ such that ψyð�xÞ = 0. Since U is open around
xy, there exists 0 < ε < kek such that

x − xy
�� �� ≤ ε⇒ x ∈U : ð56Þ

Let �x ∈ℝn, k�xk = ε : ψyð�xÞ = 0. Then,

�x + xy
	 


− xy
�� �� = �xk k = ε, ψy �xð Þ = 1

2 F �x + xy, y
	 
�� ��2

= 0⇔ F �x + xy , y
	 


= 0:
ð57Þ

By (56) and (57), we have ð�x + xyÞ ∈U , ð�x + xyÞ ≠ xy and
Fð�x + xy , yÞ = 0. It follows from (53) that �x + xy = ξðyÞ. Thus,
�x + xy and xy are two different elements of U with �x + xy =
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ξðyÞ = xy, what is impossible. As conclusion,

∃ρ < ek k, inf
xk k=ρ

ψy > 0 =max ψy 0ð Þ, ψy eð Þ
n o

: ð58Þ

The function ψy is locally Lipschitz and satisfies the ðhÞ
-condition (because φy satisfies this condition). Then, by
(58) and Theorem 24 applied to J = ψy, we note that ψy

has a generalized critical point v which is different from 0
and e since the corresponding critical value ψyðvÞ holds

ψy vð Þ >max ψy 0ð Þ, ψy eð Þ
n o

= 0: ð59Þ

We have also

0 ∈ ∂φy xy + v
	 


⊂ ∇g F ⋅ ,yð Þ xy + v
	 
� 

∘∂F ⋅ ,yð Þ xy + v
	 


= ∇g F xy + v, y
	 
	 


∘ ∂xF xy + v, y
	 


:

ð60Þ

This implies that Fðxy + v, yÞ = 0⇔ ψyðvÞ = 0. This con-
tradiction with (59) confirms that for every y ∈ Y , there
exists a unique xy ∈ℝn such that Fðxy, yÞ = 0, and we can
set f ðyÞ = xy. Of course, according to Remark 26, we can
say that for any finite dimensional subspace L of Y , f is
locally Lipschitz on L.

An example of function satisfying the assumptions of
Theorem 31 for which Y is a Banach space is F : ℝ × Y
⟶ℝ defined by

F x, yð Þ = 2x + xj j + yk k: ð61Þ

Indeed, F defined in (61) is locally Lipschitz function
which is not differentiable and for any y ∈ Y if we consider
the function φy : ℝ⟶ℝ defined by

φy xð Þ = 1
2 F x, yð Þj j2 = 1

2 xj j + 2x + yk kð Þ2, ð62Þ

then φy is coercive and consequently satisfies the ðhÞ
-condition. Moreover, for any ðx, yÞ ∈ℝ × Y , the partial gen-
eralized gradient ∂xFðx, yÞ defined as follows

∂xF x, yð Þ =
3f g, if x > 0,
1f g, if x < 0,
1, 3½ �, if x = 0,

8>><
>>: ð63Þ

is of maximal rank. Namely, for any ðx, yÞ ∈ℝ × Y , 0 ∉
∂xFðx, yÞ ⊂ℝ. Indeed, a straightforward argument shows
that

F x, yð Þ = 0⇔ x = − yk k: ð64Þ

With the conclusion about the regularity of f in Theo-
rem 31, we cannot expect in general the continuity of f on
the whole Y . Here is a counterexample.

Remark 32. Let us set Y = ℓ1, where ℓ1 stands for the space of
real sequences ðumÞm∈ℕ such that ∑∞

m=0jumj <∞, endowed
with the nonequivalent norms:

umk k1 = 〠
∞

m=0
umj j,

umk k2 = 〠
∞

m=0
umj j2

 !1/2

:

ð65Þ

Indeed, for m ∈ℕ∗, we define Xm ≔ ð1, 1/2, 1/3,⋯,1/m,
0,⋯Þ ∈ ℓ1. We claim that ðXmÞm is a bounded sequence with
respect to the norm k⋅k2 which is unbounded with respect to
k⋅k1. For m ∈ℕ∗, we have

Xmk k2 = 〠
m

k=1

1
k2

 !1/2

,

Xmk k1 = 〠
m

k=1

1
k
:

ð66Þ

Then,

lim
m⟶+∞

Xmk k2 = 〠
+∞

k=1

1
k2

 !1/2

< +∞, ð67Þ

lim
m⟶+∞

Xmk k1 = 〠
+∞

k=1

1
k
= +∞: ð68Þ

Now, let us consider the canonical injection I : ðℓ1,
k⋅k2Þ⟶ ðℓ1, k⋅k1Þ. It is obvious by (67) that I is not con-
tinuous on ℓ1. However, for any finite dimensional subspace
L of ℓ1, since the restriction of these norms on L are equiva-
lent on L, it follows that I L : ðL1, k⋅k2Þ⟶ ðL1, k⋅k1Þ is
Lipschitz.

We add some technical hypothesis to those of Theorem
31 in order to obtain the continuity of the implicit function
f .

Definition 33. Let X, Y be two normed vector spaces. We say
that a function F : X × Y ⟶ℝ is coercive with respect to x
(the first variable), locally uniformly with respect to y (the
second variable), if for any �y ∈ Y , there exists an open neigh-
borhood V of �y in Y such that

lim
xk k⟶∞

inf
y∈V

F x, yð Þ = +∞: ð69Þ

Lemma 34. Let E be a Euclidean space. Then, every bounded
sequence with a unique limit point is convergent.

Proof. Let ðxmÞm≥0 be a sequence of E which has a unique
limit point �x ∈ E. This implies that any subsequence of
ðxmÞm≥0 has a subsequence converging to �x by the Bolzano
Weierstrass theorem. We argue by contradiction assuming
that ðxmÞm≥0 is not convergent. Then, there exists ε > 0 such
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that

for any k > 0, there existsmk ≥ k, with xmk
− �x

�� �� > ε: ð70Þ

ðxmk
Þ
k
must have a subsequence ðxmki

Þ
i
such that

xmki
⟶ �x, ð71Þ

which contradicts (70).

Theorem 35. Let Y be a real Banach space and F : ℝn × Y
⟶ℝn be locally Lipschitz. Suppose that

(1) the function χ : ℝn × Y ⟶ℝ defined by

χ x, yð Þ = 1
2

F x, yð Þk k2 ð72Þ

is coercive with respect to x, locally uniformly with respect to y

(2) for all ðx, yÞ ∈ℝn × Y , ∂xFðx, yÞ is of maximal rank

Then, there exists a unique function f : Y ⟶ℝn such
that

x, yð Þ ∈ℝn × Y ,
F x, yð Þ = 0⇔ x = f yð Þ:

ð73Þ

Moreover, f is continuous on the whole Y .

Proof. Let y ∈ Y . We consider the function φy : ℝ
n ⟶ℝ

defined by

φy xð Þ≔ 1
2 F x, yð Þk k2: ð74Þ

Since φy is coercive (because χ is coercive with respect to
x, locally uniformly with respect to y), it follows that for any
continuous nondecreasing function h : ½0,+∞Þ⟶ ½0,+∞Þ
such that

ð∞
0

ds
1 + h sð Þ = +∞, ð75Þ

φy satisfies the ðhÞ-condition. Moreover, F is locally
Lipschitz. So, by Theorem 31, we conclude that there exists
a unique global implicit function f : Y ⟶ℝn such that

x, yð Þ ∈ℝn × Y ,
F x, yð Þ = 0⇔ x = f yð Þ:

ð76Þ

It remains to show that f is continuous on the whole Y .
For this, let ðymÞm∈ℕ ⊂ Y be sequence such that

ym ⟶ �y ∈ Y : ð77Þ

For all m ∈ℕ, Fð f ðymÞ, ymÞ = 0. This implies that the
sequence ðχðxm, ymÞÞm = ðkFð f ðymÞ, ymÞkÞm is bounded.
Since χ is coercive with respect to x, locally uniformly with
respect to y, there exists an open subset Q ⊂ Y containing �y
such that

lim
xk k⟶∞

inf
y∈Q

χ x, yð Þ = lim
xk k⟶∞

inf
y∈Q

1
2 F x, yð Þk k2 = +∞: ð78Þ

In addition, by the convergence of ym to �y, there exists
m0 ∈ℕ such that

m >m0 ⇒ ym ∈Q: ð79Þ

So,

form >m0,
1
2 F xm, ymð Þk k2 ≥ inf

y∈Q

1
2 F xm, yð Þk k2: ð80Þ

According to (78) and (80), we conclude that the
sequence ðxmÞm∈ℕ ≔ ð f ðymÞÞ is bounded in ℝn. Let �x be a
limit point of ðxmÞm. Thus, there exists a convergent subse-
quence ðxmk

Þ
k
of ðxmÞ such that

xmk
⟶ �x ∈ℝn: ð81Þ

On the other hand, for all k ∈ℕ, Fðxmk
, ymk

Þ = 0. Then, it
follows from (77), (81), and the continuity of the function F
that

0 = lim
k⟶+∞

F xmk
, ymk

� �
= F �x, �yð Þ: ð82Þ

Thus, we have

F �x, �yð Þ = 0⇔ �x = f �yð Þ: ð83Þ

So, ðxmÞm has a unique limit point �x = f ð�yÞ. So, by
Lemma 34,

xm ⟶ �x, ð84Þ

that is,

f ymð Þ⟶ f �yð Þ: ð85Þ

From (77) and (85), f is continuous on Y .
As a consequence of our Theorem 31, we have the fol-

lowing nonsmooth global inverse function theorem.

Theorem 36. Assume f : ℝn ⟶ℝn is a locally Lipschitz
mapping such that

(1) for any y ∈ℝn, there exists a continuous nondecreas-
ing function h : ℝ+ ⟶ℝ+ such that
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ð∞
0

ds
1 + h sð Þ = +∞, ð86Þ

and the functional φy : ℝ
n ⟶ℝ defined by

φy xð Þ = 1
2

f xð Þ − yk k2 ð87Þ

satisfies the ðhÞ-condition

(2) for any x ∈ℝn, we have that ∂f ðxÞ is of maximal
rank

Then, f is a global homeomorphism on ℝn and f −1 is
locally Lipschitz.

Corollary 37 (see [25], Hadamard-Palais]. Let X, Y be finite
dimensional Banach spaces. Assume that f : X⟶ Y is a C1

-mapping such that

(1) limkxk⟶∞k f ðxÞk =∞

(2) for any x ∈ X, f ′ðxÞ is invertible
then f is a diffeomorphism.

Question. Is it still possible the conclusion of Theorem
31 under the assumption of the ðhÞ-condition on the func-
tion τy : x↦ kFðx, yÞkα, where α is a positive constant dif-
ferent from 2?

In fact, according to our two Lemmas 42 and 43 and
Corollary 44, it is enough to assume that τy is locally
Lipschitz in the case 0 < α < 2. Else, this additional hypothe-
sis is not need in the case α > 2.

Therefore, we have the following result from Theorem
31.

Theorem 38. Let Y be a real Banach space and F : ℝn × Y
⟶ℝn be a locally Lipschitz mapping. Suppose that

(1) for any y ∈ Y , there exists 0 < α < 2, so that the func-
tion τy : ℝ

n ⟶ℝ

τy xð Þ = F x, yð Þk kα ð88Þ

is locally Lipschitz and satisfies the ðhÞ-condition, where
h : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous nondecreasing func-
tion such that

ð∞
0

ds
1 + h sð Þ = +∞ ð89Þ

(2) for all ðx, yÞ ∈ℝn × Y , ∂xFðx, yÞ is of maximal rank

Then, there exists a unique function f : Y ⟶ℝn such
that the equation }ðx, yÞ ∈ℝn × Y and Fðx, yÞ = 0} are equiv-

alent to x = f ðyÞ. Moreover, for any finite dimensional sub-
space L of Y , f is locally Lipschitz on L.

Proof. Let y ∈ Y . We notice that τy = ½2φy�α/2, where φy is
defined by (49). Since τy satisfies the ðhÞ-condition, it fol-
lows from Lemma 43 and Corollary 44 that φy satisfies the
ðhÞ-condition. Thus, we achieve the proof by using Theorem
31.

But, what happens if we replace ℝn by any Banach space
X in the domain of the function F?

Theorem 39. Let X, Y be Banach spaces and Z be Euclidean
space such that dim Z = n <∞. Let F : X × Y ⟶ Z be
locally Lipschitz function. Assume that

(1) for all y ∈ Y , the function φy : X⟶ℝ defined by

ϕy xð Þ = 1
2

F x, yð Þk k2 ð90Þ

satisfies the ðhÞ-condition, where h : ½0,+∞Þ⟶ ½0,+∞Þ
is a continuous nondecreasing function such that

ð∞
0

ds
1 + h sð Þ = +∞ ð91Þ

(2) for any finite dimensional subspace L of X with dim
L = n and for all ðx, yÞ ∈ L × Y , ∂xFLðx, yÞ is of max-
imal rank

Then,

x, yð Þ ∈ X × Y ,
F x, yð Þ = 0⇔ x = 0:

ð92Þ

Proof. We use Theorem 31 in order to prove this result.
Firstly, we prove that there exists a unique global implicit
function f : Y ⟶ X such that ðx, yÞ ∈ X × Y and Fðx, yÞ =
0 are equivalent from x = f ðyÞ. After that, we will claim that
f ≡ 0 on Y .

Let y ∈ Y . Since φy is bounded form below, locally
Lipschitz, and satisfies the ðhÞ-condition, we see by Theorem
22 that φy has a minimum which is achieved at a critical
point xy ∈ X. Let L be a finite dimensional subspace of X
such that xy ∈ L and dimL = n.

Consider functions ~F : L × Y ⟶ Z and ~φy : L⟶ℝ
defined, respectively, by

~F x, yð Þ = F x, yð Þ, ~φy xð Þ = φy xð Þ = 1
2 F x, yð Þk k2 = 1

2
~F x, yð Þ�� ��2:

ð93Þ
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By assumption (1), the function ~F is locally Lipschitz and
~φy is then locally Lipschitz as composition of ~F by C1 func-
tion g where

g : Z⟶ℝ ; x↦ 1
2 xk k2 = 1

2 x, xh iZ: ð94Þ

Likewise, ~φy satisfies the ðhÞ-condition. It follows that ~φy

has a minimum on L. Since xy ∈ L, it is obvious that
minx∈L~φyðxÞ = φðxyÞ. Thus, by Theorem 29, we obtain

0 ∈ ∂~φy xy
	 


= ∂Lφy xy
	 


⊂ ∇g ~F xy, y
	 
	 


∘ ∂x~F xy, y
	 


= ∇g F xy, y
	 
	 


∘ ∂xFL xy , y
	 


:
ð95Þ

This means that there exists x∗ ∈ ∂xFLðxy, yÞ such that

∀h ∈ L, F xy, y
	 


, x∗ hð Þ� �
= 0: ð96Þ

Thus, we conclude by assumption (2) that ~Fðxy, yÞ = Fð
xy, yÞ = 0. It is clear by Theorem 31 that xy is the only solu-
tion of the equation Fðxy, yÞ = 0 in L. But the question is the
uniqueness of this solution in all X. Even though it is unpre-
dictable, we will answer yes to this question in the following.
About uniqueness of xy ∈ X such that Fðxy , yÞ = 0, we argue
by contradiction.

Suppose that there exists x1 ≠ xy such that Fðx1, yÞ = Fð
xy, yÞ = 0. We choose then another finite dimensional sub-
space of X (that we note again L here to keep the same nota-
tion) which contains both x1 and xy, such that dim L = n.
We consider the same functions defined in (93), but with
the subspace L that we choose here. We find that minx∈L~φy

ðxÞ = ~φyðxyÞ and by [15] (Proposition 6), Theorem 29, and

assumption (2), we conclude that ~Fðxy, yÞ = 0. Considering
the function ~ψy defined as in (52) by

~ψy xð Þ≔ ~φy x + xy
	 


= 1
2 F x + xy, y

	 
�� ��2 ð97Þ

and following the same approach in the proof of Theo-
rem 31, we come to the contradiction. Thus, there exists a
unique global implicit function f : Y ⟶ X such that Fð f ð
yÞ, yÞ = 0 for all y ∈ Y .

It remains to be shown that f ≡ 0 on Y . Indeed, since X is
infinite dimensional Banach space, it is possible to find two n
-dimensional subspaces L1 and L2 of X such that L1 ∩ L2 =
f0Xg. Let F1 : L1 × Y ⟶ Z and F2 : L2 × Y ⟶ Z be the
function defined by

F1 x, yð Þ = F x, yð Þ,
F2 x, yð Þ = F x, yð Þ:

ð98Þ

By assumptions (1) and (2), both functions F1 and F2
verify the assumptions of Theorem 31. Consequently, there
exist two functions φ1 : Y ⟶ L1 and ϕ2 : Y ⟶ L2 such
that ∀y ∈ Y , Fðφ1ðyÞ, yÞ = Fðφ2ðyÞ, yÞ = 0. Then, according

to the uniqueness of xy ∈ X such that Fðxy, yÞ = 0, we have
φ1ðyÞ = f ðyÞ = φ2ðyÞ ∈ L1 ∩ L1. Thus, f ðyÞ = 0, ∀y ∈ Y .

In virtue of Lemma 43, the following theorem is a conse-
quence of Theorem 39.

Theorem 40. Let X, Y be Banach spaces and Z be Euclidean
space such that dimZ = n <∞. Let F : X × Y ⟶ Z be locally
Lipschitz function. Assume that

(1) for every y ∈ Y , there exists 0 < α < 2 such that the
function τy : X ⟶ℝ defined by

τy xð Þ = F x, yð Þk kα ð99Þ

is locally Lipschitz and satisfies the ðhÞ-condition, where
h : ½0,+∞Þ⟶ ½0,+∞Þ is a continuous nondecreasing func-
tion such that

ð∞
0

ds
1 + h sð Þ = +∞ ð100Þ

(2) for any finite dimensional subspace L of X and for any
ðx, yÞ ∈ L × Y , ∂xFLðx, yÞ is of maximal rank

Then.

x, yð Þ ∈ X × Y ,
F x, yð Þ = 0⇔ x = 0:

ð101Þ

Remark 41. If α > 2, it is useless to add the locally Lipschitz
condition to the ðhÞ-condition for the first assumption of
Theorems 38 and 40. Indeed, in Theorem 38, for example,
since φy is locally Lipschitz and α/2 > 1, it follows from

Lemma 43 that τy = ½2φy�α/2 is also locally Lipschitz. More-
over, φy satisfies the ðhÞ-condition.

Lemma 42. Let g : ℝn ⟶ℝ+ be a locally Lipschitz function.
Let α > 1. If gα is locally Lipschitz, then for any x, v ∈ℝn with
v ≠ 0, we have

gα½ �0 x ; vð Þ = α ⋅ g xð Þ½ �α−1g0 x ; vð Þ: ð102Þ

Proof. Let ðwmÞm be a sequence in ℝn and ðtmÞm ⊂ ð0;+∞Þ
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another sequence such that

wm ⟶ x,
tm ⟶ 0+:

ð103Þ

For fixed m, the function μ : Im ⟶ℝ ; t↦ tα is differ-
entiable, where

Im ≔ θg amð Þ + 1 − θð Þg bmð Þ ; θ ∈ 0, 1½ �f g, with am =wm + tmv, bm =wm:

ð104Þ

Now, it is known that there exists cm ∈ Im such that

g amð Þ½ �α − g bmð Þ½ �α = μ g amð Þ½ � − μ g bmð Þ½ �
= μ′ cmð Þ g amð Þ − g bmð Þ½ �
= μ′ θmg amð Þ + 1 − θmð Þg bmð Þ½ � ⋅ g amð Þ − g bmð Þ½ �
= α ⋅ θmg amð Þ + 1 − θmð Þg bmð Þ½ �α−1 ⋅ g amð Þ − g bmð Þ½ �
=Km ⋅ g wm + tmvð Þ − g wmð Þ½ �,

ð105Þ

where

Km = α ⋅ θmg wm + tmvð Þ + 1 − θmð Þg wmð Þ½ �α−1, ð106Þ

with θm ∈ ½0, 1�. Then, we have

g½ �α wm + tmvð Þ − g½ �α wmð Þ
tm

=Km ⋅
g wm + tmvð Þ − g wmð Þ

tm
:

ð107Þ

Since g is continuous, there exists a neighborhood V of
x and K > 0 such that

g zð Þj j ≤K ,∀z ∈V : ð108Þ

It follows from the convergence of ðwm, tmÞ to ðx, 0Þ and
the continuity of g and (108) that

lim
m⟶+∞

Km = α ⋅ g xð Þ½ �α−1: ð109Þ

By (107), (109), and the fact that

limsup w⟶x
t⟶0+

g w + tvð Þ − g wð Þ
t

= g0 x ; vð Þ, ð110Þ

we conclude that

gα½ �0 x ; vð Þ = α ⋅ g xð Þ½ �α−1g0 x ; vð Þ: ð111Þ

Lemma 43. Let g : ℝn ⟶ℝ+ be a locally Lipschitz function.
Let α > 1 and h : ½0,+∞Þ⟶ ½0,+∞Þ a continuous nonde-

creasing function such that

ð∞
0

ds
1 + h sð Þ = +∞: ð112Þ

Then, gαðxÞ≔ ½gðxÞ�α is locally Lipschitz function.
Moreover, g satisfies the ðhÞ-condition if and only if gα sat-
isfies the ðhÞ-condition.

Proof. Let �x ∈ X. There exist V∍�x open subset of ℝn and k > 0
such that

g xð Þ − g yð Þj j ≤ k x − yk k,∀x, y ∈ V : ð113Þ

Let ρ > 0 such that �Bρð�xÞ≔ fx ∈ℝn : k�x − xk ≤ ρg ⊂ V .
For x, y ∈ �Bρ, as in the previous Lemma 42, there exists θ ∈
½0, 1� such that we have

gα xð Þ − gα yð Þj j = α ⋅ g xð Þ − g yð Þj j ⋅ θg xð Þ + 1 − θð Þg yð Þ½ �α−1:
ð114Þ

g is continuous, and �Bρ is compact. Let

M = max
z∈�Bρ �xð Þ

g zð Þj j: ð115Þ

Then, we have

θg xð Þ + 1 − θð Þg yð Þj jα−1 ≤Mα−1: ð116Þ

It follows from (113), (114), and (116) that we have

gα xð Þ − gα yð Þj j ≤ kMα−1 x − yk k,∀x, y ∈ Bρ �xð Þ, ð117Þ

where Bρð�xÞ≔ fx ∈ℝn : k�x − xk < ρg ⊂ V is open. Then, gα

is locally Lipschitz.
For the second part of Lemma 43, just specify that

ðumÞm≥0 is a ðhÞ-sequence of g if and only if ðumÞm≥0 is a ð
hÞ-sequence of gα.

Let ðvmÞm≥0 ⊂ℝn be a ðhÞ-sequence of g. Then, there
exist q > 0, ðτmÞm ⊂ ð0,+∞Þ with τm ⟶ 0+, such that

g vmð Þ ≤ q, ∀m ≥ 0, ð118Þ

g0 vm ; v − vmð Þ 1 + h vmk kð Þð Þ ≥ −τm v − vk km,∀v ∈ℝn:

ð119Þ
It follows from (118) that ½gðvmÞ�α is bounded. From

Lemma 42 and inequality (119), we deduce that

gα½ �0 vm ; v − vmð Þ 1 + h vmk kð Þð Þ
≥ −�τm v − vmk k,∀v ∈ℝn, �τm ≔ τmαq

α−1 ⟶ 0+:
ð120Þ

Thus, ðvmÞm≥0 is a ðhÞ-sequence of gα.
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Conversely, let ðumÞm≥0 ⊂ℝn be a ðhÞ-sequence of gα.
Then, there exists p > 0 such that

g umð Þ½ �α ≤ p,∀m ≥ 0, ð121Þ

gα½ �0 um ; v − umð Þ 1 + h umk kð Þð Þ ≥ −εm v − umk k,∀v ∈ℝn, εm ⟶ 0+:
ð122Þ

It follows from (121) that there exists �p > 0 such that

g umð Þ ≤ �p,∀m ≥ 0: ð123Þ

By Lemma 42, (122), and (123), we have

g0 um ; v − umð Þ 1 + h umk kð Þð Þ ≥
− δm v − umk k,∀v ∈ℝn, δm ≔

εm
α�p α−1ð Þ ⟶ 0+: ð124Þ

Therefore, ðumÞm≥0 is also a ðhÞ-sequence of g. Then, for
any α > 1, g satisfies the ðhÞ-condition if and only if gα sat-
isfies the ðhÞ-condition.

But what about 0 < α < 1?

Corollary 44. Let g : ℝn ⟶ℝ+ be a function and 0 < α < 1
such that gα is locally Lipschitz. Then, g is locally Lipschitz
and for any continuous nondecreasing function h : ℝ+ ⟶
ℝ+ such that

ð∞
0

ds
1 + h sð Þ = +∞: ð125Þ

g satisfies the ðhÞ-condition if and only if gα satisfies the
ðhÞ-condition.

Proof. We notice that g = ðgαÞ1/α and 1/α > 1. Then, we
apply Lemma 43.

4. Example of Noncoercive Function Satisfying
the (h)-Condition

To illustrate that the compactness condition allowing to
obtain the existence of a global implicit function in our main
results is weaker than that used in Theorem 30, we provide
in this section an example of a noncoercive and locally
Lipschitz function satisfying the ðhÞ-condition. We follow
the idea used by Chen and Tang in [13] (Theorem 3.3).

Let 1 < p <∞. Define

Lp 0, T ;ℝN	 

= u ∈ L1 0, T ;ℝN	 


:
ðT
0
u tð Þj jpdt<∞

� �
,

ð126Þ

with the norm

uk kp =
ðT
0
uj jpdt

� �1/p
: ð127Þ

For u ∈ L1locð0, T ;ℝNÞ, u′ is said to be the weak deriva-
tive of u, if u′ ∈ L1locð0, T ;ℝNÞ and

ðT
0
u′ϕdt = −

ðT
0
uϕ′dt,∀ϕ ∈ C∞

0 0, T ;ℝN	 

: ð128Þ

Let

W1,p
0 0, T ;ℝN	 


= u ∈ Lp 0, T ;ℝN	 

: u 0ð Þ = u Tð Þ, u′ ∈ Lp 0, T ;ℝN	 
n o

:

ð129Þ

W1,p
0 ð0, T ;ℝNÞ is a reflexive Banach space (see [13])

with the norm

uk kW1,p
0 0,T ;ℝNð Þ =

ðT
0

uj jp + u′
�� ��p� �

dt
� �1/p

: ð130Þ

Remark 45 (see [13]). We have the following direct decom-
position of W1,p

0 ð0, T ;ℝNÞ

W1,p
0 0, T ;ℝN	 


=ℝN ⊕V , whereV = v ∈W1,p
0 0, T ;ℝN	 


:
ðT
0
v tð Þdt = 0

� �
:

ð131Þ

Consider now the following functional:

J uð Þ =
ðT
0

1
p
u′
�� ��pdt, u ∈W1,p

0 0, T ;ℝN	 

: ð132Þ

We know that (see [26]) J ∈ C1ðW1,p
0 ð0, T ;ℝNÞ,ℝÞ and

p-Laplacian operator u↦ ðju′jp−2u′Þ′ is the derivative oper-
ator of J in the weak sense. That is,

A = J ′ : W1,p
0 0, T ;ℝN	 


⟶ W1,p
0 0, T ;ℝN	 
� �∗

, ð133Þ

A uð Þ, vh i =
ðT
0

u′ tð Þ�� ��p−2u′ tð Þ, v′ tð Þ� �
ℝN

dt, u, v ∈W1,p
0 0, T ;ℝN	 


:

ð134Þ
Proposition 46 (see [27], Fan and Zhao). J ′ is a mapping of
ðSÞ+, i.e., if

um ⇀ u,

limsup
m⟶∞

J ′ umð Þ − J ′ uð Þ, um − u
� �

≤ 0, ð135Þ

then ðumÞm has a convergent subsequence in W1,p
0 ð0, T ;ℝNÞ.

For every u ∈W1,p
0 ð0, T ;ℝNÞ, set

�u = 1
T

ðT
0
u tð Þdt, ð136Þ

~u tð Þ = u tð Þ − �u: ð137Þ
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We have the following Poincare-Wirtinger inequality
(see [28]):

∃a > 0 such that ~uk k∞ ≤ a u′
�� ��

p
,∀u ∈W1,p

0 0, T ;ℝN	 

:

ð138Þ

We consider the functional ϕ : W1,p
0 ð0, T ;ℝNÞ⟶ℝ

defined by

ϕ uð Þ =
ðT
0

1
p
u′
�� ��pdt − ðT

0
j t, uð Þdt, u ∈W1,p

0 0, T ;ℝN	 

,

ð139Þ

where jðt, uÞ: ½0, T� ×ℝN ⟶ℝ is the norm j⋅j on ℝN

defined by

j t, uð Þ = uj j = 〠
N

i=1
uij j2

 !1/2

, for u≔ u1, u2,⋯,uNð Þ ∈ℝN :

ð140Þ

Let hðsÞ = s. Following the same approach as done by
Chen and Tang in [13], we will show that the function φ sat-
isfies the ðhÞ-condition and is noncoercive on all of W1,p

0 ð0
, T ;ℝNÞ.

We show that the function j satisfies the following
assumptions:

(1) For all u ∈ℝN , t↦ jðt, uÞ is measurable

(2) For almost all t ∈ ½0, T�, u↦ jðt, uÞ is locally
Lipschitz

(3) For every r > 0, there exists αr ∈ L1ð½0, T�Þ such that
for almost all t ∈ ½0, T�, juj ≤ r and all w ∈ ∂jðt, uÞ,
we have jwj ≤ αrðtÞ, where ∂jðt, sÞ is Clarke’s gener-
alized gradient of j with respect to the variable s

(4) There exist 0 < μ < p and M > 0 such that for almost
all t ∈ ½0, T� and all juj ≥M, we have

j0 t, u ; uð Þ < μj t, uð Þ ð141Þ

(5) jðt, uÞ⟶ +∞ uniformly for almost all t ∈ ½0, T� as
juj⟶∞

Obviously, the function j defined in (140) satisfies condi-
tions (1), (2), and (5). In addition, for ðt, uÞ ∈ ½0, T� ×ℝN , we
have the following:

(1) If u ≠ 0, ∂jðt, uÞ = fu/jujg
(2) If u = 0, ∂jðt, 0Þ = fw ∈ℝN : jyj ≥ hw, yi, for any y ∈

ℝNg = �Bð0, 1Þ

That is,

∂j t, 0ð Þ = �B 0, 1ð Þ≔ y ∈ℝN : yj j ≤ 1
� �

: ð142Þ

Indeed, for t ∈ ½0, T�, the function jðt, ⋅Þ is convex. Then,
Clarke’s generalized gradient ∂jðt, uÞ of jðt, ⋅Þ at a point u
coincides with the subdifferential of jðt, ⋅Þ in convex analysis
sense (see Proposition 5). We recall also that the norm in
Hibert space is Fréchet differentiable at any point u ≠ 0.

Thus,

wj j ≤ 1, for allw ∈ ∂j t, uð Þ: ð143Þ

Consequently, according to (143), for every r > 0, and
αrðtÞ = 1, then αr ∈ L1ð½0, T�Þ and

uj j ≤ r⇒ wj j ≤ αr ,∀w ∈ ∂j t, uð Þ: ð144Þ

Thus, the function j satisfies the assumption ð3Þ.
On other hand, since 1 < p, taking μ = 1 + p/2, we have

0 < 1 < μ < p: ð145Þ

Moreover, for M > 0, we have

uj j ≥M⇒ u ≠ 0, ð146Þ

μj t, uð Þ = μ uj j: ð147Þ
Then,

j0 t, u ; uð Þ = u
uj j , u

� �
= uj j: ð148Þ

It follows from (145), (146), and (148) that

uj j ≥M⇒ j0 t, u ; uð Þ < μj t, uð Þ: ð149Þ

Thus, the function j satisfies the assumption (4).
Under the previous assumptions, φ is locally Lipschitz

(see [13] (Theorem 3.3)).

(1) By (130), for any u ∈ℝN , we have

uk k = T1/p uj j,
ðT
0

1
p
u′
�� ��pdt = 0,

ϕ uð Þ = −
ðT
0
uj jdt = −T uj j:

ð150Þ

Then,

lim
uk k⟶+∞
u∈ℝN

ϕ uð Þ = lim
uj j⟶+∞

− T uj j = −∞:
ð151Þ

Thus, φ is not coercive.
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(2) Let fumgm≥1 be a ðhÞ-sequence of φ, i.e., there exists
M1 > 0 such that

φ umð Þj j ≤M1, ð152Þ

lim
m⟶+∞

1 + umk kð Þγ umð Þ = 0, ð153Þ

where

γ umð Þ = min
w∗∈∂ϕ umð Þ

w∗k k: ð154Þ

Without loss of generality, we suppose that um ≠ 0, ∀m
≥ 1.

According to Proposition 6, let u∗m ∈ ∂ϕðumÞ such that
ku∗mk = γðumÞ.

By definition (134) of operator A, we have

u∗m = A umð Þ −wm, ð155Þ

with wm ∈ ∂jðt, umÞ.
From the second assertion of (152), we have

u∗m, umh i =
ðT
0
um′ tð Þj jpdt −

ðT
0
wm tð Þ, um tð Þð Þdt ≤ εm, εm↓0:

ð156Þ

Thus, it follows from Definition 4 and inequality (156)
that

ðT
0
um′ tð Þj jpdt −

ðT
0
j0 t, um tð Þ ; um tð Þð Þdt ≤ εm: ð157Þ

Since um ≠ 0, according to (148), the inequality (157)
implies

ðT
0
um′ tð Þj jpdt −

ðT
0
um tð Þj jdt ≤ εm: ð158Þ

From the first assertion of (152), we have

−
μ

p

ðT
0
um′ tð Þ�� ��pdt + ðT

0
μ um tð Þj jdt ≤ μM1: ð159Þ

It follows from (158) and (159) that

1 − μ

p

� �ðT
0
um′ tð Þ�� ��pdt + ðT

0
μ − 1ð Þ um tð Þj jdt ≤Mm, ð160Þ

with Mm = εm + μM1. By (160), we have

1 − μ

p

� �ðT
0
um′ tð Þ�� ��p ≤Mm,m ≥ 1,Mm ⟶ μM1: ð161Þ

By (161), there exists M0 > 0 such that for t ∈ ½0, T� and

m ≥ 1,

um′ tð Þ�� �� ≤M0: ð162Þ

From (161) and the Poincare-Wirtinger inequality (138),
f~umg is bounded in W1,p

0 ð0, T ;ℝNÞ. By exploiting (152)
once again, we use (136) to have

1
p

ðT
0
~um′j jpdt −

ðT
0
um tð Þj jdt

����
���� ≤M1,m ≥ 1: ð163Þ

Since f~umg is bounded, it follows from (163) that there
exists M2 > 0 such that

ðT
0
um tð Þj jdt ≤M2,∀m ≥ 1: ð164Þ

Thus, there exists M3 > 0 such that for t ∈ ½0, T� and m
≥ 1,

um tð Þj j ≤M3: ð165Þ

By (162) and (165), we infer that fumgm≥1 ⊂W1,p
0 ð0, T ;

ℝNÞ is bounded, and so by passing to a subsequence if nec-
essary, we may assume that

um ⇀ u inW1,p
0 0, T ;ℝN	 


,

um ⟶ u inC0 0, T ;ℝN	 

:

ð166Þ

Next, we will prove that um ⟶ u inW1,p
0 ð0, T ;ℝNÞ. By

Proposition 46, it suffices to prove that the following
inequality holds:

lim
m⟶∞

A umð Þ − A uð Þ, um − uh i ≤ 0: ð167Þ

In fact, from the choice of the sequence fumgm≥1, we
have

u∗m, umh ij j ≤ εm↓0: ð168Þ

Then, by (155), we have

A umð Þ, um − uh ii −
ðT
0
wm tð Þ, um tð Þ − u tð Þð Þð ÞℝN dt ≤ εm,∀m ≥ 1:

ð169Þ

By (3), fwmg ⊂ L1½0, T� is bounded and

lim
m⟶∞

ðT
0
wm tð Þ, um tð Þ − u tð Þð Þð ÞℝN dt = 0: ð170Þ

Then,

limsup
m⟶∞

A umð Þ, um − uh i ≤ 0: ð171Þ

15Abstract and Applied Analysis



So, we have

limsup
m⟶∞

A umð Þ − A uð Þ, um − uh i ≤ 0, εm↓0: ð172Þ

5. An Application

Inspired by the example result of Galewski-Rădulescu [6]
(Theorem 7), we provide in this section an existence and
uniqueness result for the problem

Ax = F xð Þ + ξ, ð173Þ

where ξ ∈ℝn is fixed; A is an n × n matrix which does not
need to be positive definite, negative definite, or symmetric;
and F : ℝn ⟶ℝn is a locally Lipschitz function.

Theorem 47. Let A be an n × n matrix. If F : ℝn ⟶ℝn is a
locally Lipschitz mapping satisfying the following conditions:

(1) For any ξ ∈ℝn, there exists a continuous nondecreas-
ing function h : ℝ+ ⟶ℝ+ such that

ð∞
0

ds
1 + h sð Þ = +∞, ð174Þ

and the functional φξ : ℝ
n ⟶ℝ defined by

φξ xð Þ = Ax − F xð Þ − ξk k ð175Þ

satisfies the ðhÞ-condition

(2) For any x ∈ℝn and for every T ∈ ∂FðxÞ, ðA − TÞ is
invertible

Then, problem (173) has a unique solution for fixed ξ ∈
ℝn. Moreover, the map that assigns to each ξ ∈ℝn, the
unique solution of problem (173) is locally Lipschitz.

Proof. Consider the function f ðxÞ = Ax − FðxÞ from ℝn to
itself. By assumption (173) and Lemma 43, for any ξ ∈ℝn,
the functional φξ : ℝ

n ⟶ℝ defined by

φξ xð Þ = 1
2 f xð Þ − ξk k2 = 1

2 A xð Þ − F xð Þ − ξk k2 ð176Þ

satisfies the ðhÞ-condition. In addition, according to
(173), ∂f ðxÞ = A − ∂FðxÞ is of maximal rank for any x ∈ℝn

. Then, we achieve the proof applying Theorem 36.

Example of matrix A and function F satisfying condi-
tions of Theorem 47.

Let us take a matrix

A =
−3 1
2 −1

 !
ð177Þ

and the function F defined from ℝ2 to ℝ2 by

F uð Þ = x3 + yj j, 2x + xj j + y3
	 


, u = x, yð Þ: ð178Þ

Considering the Euclidean norm

uk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
for all u ∈ℝ2, ð179Þ

we have

x3, y3
	 
�� ��2 − 1

2 uk k3
� �2

= x6 + y6 −
1
4 x2 + y2
	 
3

= 3
4 x2 + y2
	 


x2 − y2
	 
2 ≥ 0:

ð180Þ

It follows that

x3, y3
	 
�� �� ≥ 1

2 uk k3: ð181Þ

On the other hand, for u ∈ℝ2,

Auk k ≤ Ak k ⋅ uk k: ð182Þ

From (181) and (182), we have

F uð Þ − Au − ξk k = x3 + yj j, 2x + xj j + y3
	 


− Au − ξ
�� ��

≥ x3, y3
	 
�� �� − 0, 2xð Þk k − yj j, xj jð Þk k − Auk k − ξk k

≥
1
2 uk k3 − 2 uk k − uk k − Ak k ⋅ uk k − ξk k

≥
1
2 uk k2 − 3 − Ak k
� �

uk k − ξk k:

ð183Þ

Hence, for fixed ξ ∈ℝ2, the function φξ : ℝ
n ⟶ℝ

defined by

φξ uð Þ = F uð Þ − Au − ξk k ð184Þ

is coercive. Consequently, the function φξ satisfies the ð
hÞ-condition.

Let u = ðx, yÞ ∈ℝ2.

(1) If x ≠ 0 and y ≠ 0, then F is differentiable at u and
∂FðuÞ − A = JFðuÞ − A is defined by

∂F uð Þ − A =
3x2 + 3 sgn yð Þ − 1
sgn xð Þ 3y2 + 1

 !
: ð185Þ
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Thus, ∂FðuÞ − A will be one of the following matrices:

3x2 + 3 0
1 3y2 + 1

 !
,

3x2 + 3 −2
1 3y2 + 1

 !
,

3x2 + 3 −2
−1 3y2 + 1

 !
,

3x2 + 3 0
−1 3y2 + 1

 !
:

ð186Þ

In all these cases, we have det ð∂FðuÞ − AÞ ≠ 0.

(2) If x < 0 andy = 0, then ∂FðuÞ is defined by

∂F uð Þ = conv
3x2 −1
1 0

 !
,

3x2 1
1 0

 !( )
=

3x2 s

1 0

 !
: − 1 ≤ s ≤ 1

( )
:

ð187Þ

It follows that

∂F uð Þ − A =
3x2 + 3 s − 1
−1 1

 !
: − 1 ≤ s ≤ 1

( )
: ð188Þ

Then, for T ∈ ∂FðuÞ, there exists s ∈ ½−1, 1� such that

det T − Að Þ = 3x2 + 3
	 


+ s − 1ð Þ = x2 + s + 2 ≥ x2 + 1 > 0:
ð189Þ

(3) If x > 0 andy = 0, then ∂FðuÞ is the following:

∂F uð Þ = conv
3x2 1
3 0

 !
,

3x2 −1
3 0

 !( )
=

3x2 s

3 0

 !
: − 1 ≤ s ≤ 1

( )
:

ð190Þ

It follows that

∂F uð Þ − A =
3x2 + 3 s − 1

1 1

 !
: − 1 ≤ s ≤ 1

( )
: ð191Þ

Then, for T ∈ ∂FðuÞ, there exists s ∈ ½−1, 1� such that

det T − Að Þ = 3x2 + 3
	 


− s − 1ð Þ = 3x2 + 1
	 


+ 3 − sð Þ ≥ 3x2 + 1 > 0:
ð192Þ

(4) If x = 0 and y < 0, then ∂FðuÞ is the following:

∂F uð Þ = conv
0 −1
3 3y2

 !
,

0 −1
1 3y2

 !( )
=

0 −1
λ 3y2

 !
: 1 ≤ λ ≤ 3

( )
:

ð193Þ

It follows that

∂F uð Þ − A =
3 −2

λ − 2 3y2 + 1

 !
: 1 ≤ λ ≤ 3

( )
: ð194Þ

Then, for T ∈ ∂FðuÞ, there exists λ ∈ ½1, 3� such that

det T − Að Þ = 3 3y2 + 1
	 


+ 2 λ − 2ð Þ = 9x2 + 2λ − 1 > 0:
ð195Þ

(5) If x = 0andy > 0, then ∂FðuÞ is the following:

∂F uð Þ = conv
0 1
3 3y2

 !
,

0 1
1 3y2

 !( )
=

0 1
λ 3y2

 !
: 1 ≤ λ ≤ 3

( )
:

ð196Þ

It follows that

∂F uð Þ − A =
3 0

λ − 2 3y2 + 1

 !
: 1 ≤ λ ≤ 3

( )
: ð197Þ

Then, for T ∈ ∂FðuÞ, there exists λ ∈ ½1, 3� such that

det T − Að Þ = 3 3y2 + 1
	 


> 0: ð198Þ

(6) If u = ð0, 0Þ, then ∂FðuÞ is the following:

∂F uð Þ = conv
0 1

3 0

 !
,

0 −1

3 0

 !
,

0 −1

1 0

 !
,

0 1

1 0

 !( )

=
0 τ

s 0

 !
: τ, sð Þ ∈ −1, 1½ � × 1, 3½ �

( )
:

ð199Þ

It follows that

∂F 0, 0ð Þ − A =
3 τ − 1

s − 2 1

 !
: τ, sð Þ ∈ −1, 1½ � × 1, 3½ �

( )
:

ð200Þ

Then, for T ∈ ∂FðuÞ, there exists ðτ, sÞ ∈ ½−1, 1� × ½1, 3�
such that

det T − Að Þ = 3 − s − 2ð Þ τ − 1ð Þ = s − 1ð Þ 1 − τð Þ + τ + 2 ≥ τ + 2 > 0:
ð201Þ
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6. Conclusion

We have provided a general nonsmooth global implicit func-
tion theorem that yields Galewski-Rădulescu’s nonsmooth
global implicit function theorem and a series of results on
the existence, uniqueness, and possible continuity of global
implicit functions for the zeros of locally Lipschitz functions.
Our results deal with functions defined on infinite dimen-
sional Banach spaces and thus generalize also classical
Clarke’s implicit function theorem for functions F : ℝn ×
ℝp ⟶ℝn by replacing ℝp by any Banach space Y . We have
worked in this paper under the ðhÞ-condition which is
weaker than the coercivity required in [6]. Our method is
based on a variational approach and a recent nonsmooth
version of Mountain Pass Theorem.

More precisely, firstly, we have proved our Theorem 31
on the existence and uniqueness of the global implicit func-
tion theorem for equations Fðx, yÞ = 0, where F : ℝn × Y
⟶ℝn is a locally Lipschitz function with Y a Banach
space. Secondly, we observe that this extension to infinite
dimension may not guarantee the continuity of the global
implicit function. Thus, we provide an additional hypothesis
on Theorem 31 in order to obtain the continuity of the
implicit function f . Moreover, our Lemmas 42 and 43 allow
us to prove other more general results on the existence and
uniqueness of global implicit functions under the ðhÞ-con-
dition on the function x↦ kFðx, yÞkα with 0 < α < 2.
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