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In this paper, we show that in order for a proper compact subset K of plane ℝ2 to be convex, it is necessary and sufficient that
inverse norm function be subharmonic.

1. Introduction

A function u : Ω⟶ ½−∞,∞Þ, where Ω is a domain in ℝn,
is said to be subharmonic if it is upper semicontinuous, not
identically −∞, and satisfies the sub mean value inequality:
its average over the boundary of each ball contained in Ω
is greater than or equal to its value at the center.

Let F be a nonempty closed subset of ℝnðn ≥ 2Þ. By Fc,
we denote the complement of F in ℝn and by coðFÞ the con-
vex hull of F. We define the distance function dF from F by

dF xð Þ = dist x, Fð Þ = inf y∈F x − yk k x ∈ℝnð Þ, ð1Þ

where k:k denotes the Euclidean norm.
For a given x in ℝn and a positive real number r, Sðx, rÞ

denotes the sphere centre x and radius r and Bðx, rÞ denotes
the open ball of centre x and radius r.

Motzkin’s Theorem ([1], Theorem 7.8) states that a non-
empty closed set F in ℝn is convex if and only if every point
in ℝn has a unique nearest point in F. Armitage and Kuran
([3], Theorem 3) used this result to prove that dFðxÞ is sub-
harmonic in ℝn if and only if F is convex. Parker [4] prove a
local Motzkin-type theorem in order to obtain a local ver-
sion of Armitage and Kuran’s result in the case where n =
2.

Theorem 1. Let F be a nonempty proper closed subset of ℝ2

and let D be a domain such that F ⊂D. Then, dF is subhar-
monic in D if and only if F is convex.

He also showed that Theorem 1 does not hold in higher
dimensions (see counterexample in [4]).

Now, let K be a compact subset of the plane and μ be
the Lebesgue measure concentrated on K , i.e., μ =m2jK .
Consider the multiplication by z operator A, i.e., ðAf ÞðzÞ
= zf ðzÞ for each f in L2ðμÞ. It is easy to check that A is
normal. Let s ∈ K and put Un = Bðs, 1/nÞ, so μðUnÞ ≠ 0.
Since μ is regular, then, μðUnÞ <∞. Now, define

f n =
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ Unð Þp χUn
, ð2Þ

so k f nk2 = 1 and kðA − sÞf nk2 ⟶ 0, that is, s ∈ σðAÞ,
where σðAÞ is the spectrum of A. Let s ∈ Kc, then, there
is an open set U ⊂ Kc with μðUÞ ≠ 0 and s ∈U . Define

ψ zð Þ = s − zð Þ−1, if z ∈Uc,
0, if z ∈U:

(
ð3Þ

There is r > 0 such that Bðs, rÞ ⊂U . If z ∈Uc, then,
ð1/js − zjÞ < ð1/rÞ. Therefore, kψk∞ ≤ ð1/rÞ a.e. and so ψ
∈ L∞ðμÞ. Define the operator T on L2ðμÞ by Tð f Þ = ψf ; then,
we have ðs − AÞT = Tðs − AÞ = I a.e. Thus, s is not in σðAÞ and
so σðAÞ = K. Thus, for z ∈ℂ/K , we have (see [5], Proposition
3.9 p.198):

z − Að Þ−1�� ��−1 ≤ dK zð Þ: ð4Þ
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We prove that equality occurs if and only if K is convex.
To prove this point, let us recall some definitions. For a
bounded linear operator T on a Hilbert space H , the numer-
ical rangeWðTÞ is the image of the unit sphere ofH under the
quadratic form x⟶ <Tx, x > associated with the operator.
More precisely,

W Tð Þ = <Tx, x> : x ∈H , xk k = 1f g: ð5Þ

Thus, the numerical range of an operator, like the spec-
trum, is a subset of the complex plane whose geometrical
properties should say something about the operator. One of
the most fundamental properties of the numerical range is
its convexity, stated by the famous Toeplitz-Hausdorff Theo-
rem. The other important property ofWðTÞ is that its closure
contains the spectrum of the operator. WðTÞ is a connected
set and for normal operator N, �WðNÞ = coðσðNÞÞ: Also, for
z ∉ �WðTÞ, d �WðTÞðzÞ ≤ kðz − TÞ−1k−1 (see relation 4.6–7 of

[6]). Therefore, if A is the shift operator defined on L2ðμÞ,
then, we have �WðAÞ = coðKÞ (Theorem 1.4–4. of [6]). If K is
convex, then,

dK zð Þ ≤ z − Að Þ−1�� ��−1: ð6Þ

It follows, by (4), (6), and Theorem 1, that

Theorem 2. If K is a compact subset of the plane, then, K is
convex if and only if the function uK : ℝ2 ⟶ ½0,∞� defined
by

uK zð Þ = z − Að Þ−1�� ��−1, if z ∈ Kc,
0, if z ∈ K ,

(
ð7Þ

is subharmonic in ℂ.

Corollary 3.

lim supz⟶∞
1

∥ z − Að Þ−1∥: log zj j > 0: ð8Þ

Corollary 4. If z is a complex number such that jzj is large
enough, then,

0 < log zj j
z − Að Þ−1�� �� < 1: ð9Þ

Corollary 5. (Laplacian). ΔuK ≥ 0 in Kc:

Corollary 6. If 0, 1 ∉ K , then,

1 − Að Þ−1�� ��:exp A−1�� ��−1� �
≤ 1: ð10Þ

Corollary 7. If 1 ∉ K , then,

0 < 1 − Að Þ−1�� �� < 1: ð11Þ

Let u be subharmonic in ℂ. Define functions A, B : ½0,
∞Þ⟶ ½−∞,∞Þ by

B rð Þ = B r, uð Þ = inf
θ
u reiθ
� �

, A rð Þ = A r, hð Þ = sup u reiθ
� �

θ

:

ð12Þ

Then, by the maximum principle, AðrÞ increases as r
increases, but the behavior of AðrÞ is often erratic. For
instance, it can be ∞ for some values of r. Nevertheless, if
AðrÞ increases not too rapidly, then, there are senses in
which the growth of A is controlled by that of B.

The order λ of a subharmonic function u on ℂ is defined
by

λ = lim sup
r⟶∞

log A rð Þ
log r : ð13Þ

Littlewood (1908) proved the existence of constants Cð
λÞ > −∞ such that if u is subharmonic in ℂ with finite order
λ, then,

lim sup
r⟶∞

B rð Þ
A rð Þ ≥ C λð Þ: ð14Þ

Littlewood stated his result for functions of the form
u = log j f j with f entire. His technique still works, though,
for general subharmonic u. Let us return now to Little-
wood’s inequality (14), and let CðλÞ denote also the largest
possible such constant. Littlewood showed that for 0 ≤ λ
≤ ð1/2Þ, we have CðλÞ ≥ cos ð2πλÞ. He conjectured (was
confirmed) that for 0 ≤ λ < 1, the correct value should be
CðλÞ = cos ð2πλÞ. An extremal function would be uλ,
defined for θ ∈ ½−π, π� by uλðreiθÞ = rλ cos ðλθÞ. Note that
for z ∈ℂ − ð−∞,0Þ, uλðzÞ = Rezλ is harmonic, so that its
Riesz mass is supported on the negative real axis. Also,
for fixed r, uλðreiθÞ is a symmetric decreasing function of
θ. Hence,

B r, uλð Þ = uλ −rð Þ = cos πλð Þuλ rð Þ = cos πλð ÞA r, uλð Þ, ð15Þ

so that the ratio BðrÞ/AðrÞ is constant when u = uλ. For
more details, see [7].

Remark 8. Let w = e2πi/n, n ≥ 2, T = cof1,w,⋯,wn−1g = the
convex hull of f1,w,⋯,wn−1g and K = r0:T for some r0 >
0. For the function u = uK defined in Theorem 2, we have
AðrÞ = r − r0 cos ðπ/nÞ and AðrÞ = r − r0, and then,

λ = lim
r⟶∞

log r − r0 cos π/nð Þð Þ
log r = 1 ð16Þ
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Also,

B rð Þ
A rð Þ = r − r0

r − r0 cos π/nð Þ , ð17Þ

and hence, Cð1Þ = 1.
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