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The paper deals with a coupling algorithm using shape and topological derivatives of a given cost functional and a problem
governed by nonstationary Maxwell’s equations in 3D. To establish the shape and topological derivatives, an adjoint method is
used. For the topological asymptotic expansion, two examples of cost functionals are considered with the perturbation of the
electric permittivity and magnetic permeability. We combine the shape derivative and topological one to propose an algorithm.
The proposed algorithm allows to insert a small inhomogeneity (electric or magnetic) in a given shape.

1. Introduction

Shape optimization is a minimization problem where the
unknown variables run over a class of admissible domains;
then, every shape optimization problem can be written in
the form

min
Ω∈Θ

j Ω, uΩð Þ, ð1Þ

where Θ is the class of admissible domains and j is the cost
functional; generally, uΩ is the solution of a given PDE.
Generally, the existence and uniqueness of the solution of
such problems are not guaranteed even for simple cases.
However, the literature about the subject is abundant, and
the techniques used are numerous (homogenization, domain
parametrization, geometric shape derivative, topological
optimization, …), see [1] and references therein.

In this paper, we focus on geometric shape optimization
and topological asymptotic expansion methods, which we
briefly recall the principles to propose an algorithm coupling
them that we apply to Maxwell’s equations.

Shape optimization problem is a minimization problem
where the unknown variables run over a class of domains;

then, every shape optimization problem can be written in
the form

min j Ωð Þ: Ω ∈Af g, ð2Þ

where A is the class of admissible domains and j is the cost
functional.

The underlying principle is the following. Let Ω ⊂ℝ3 be
an open bounded domain whose boundary ∂Ω is a Ck man-
ifold oriented by the normal vector field ν outgoing to Ω, a
family Ok of open bounded domains of D and t = ð0, TÞ,
the time interval. We note that Q =Ω × ð0, TÞ is the cylinder
evolution domain, and Σ = Γ × ð0, TÞ is the lateral boundary
associated to any Ω ⊂ Ok: Let ξk be the set of V ∈Cð½0, T�,
CkðD,ℝ3ÞÞ with hV , ν∂Di = 0 for all V ∈ ξk ; we consider
the follow mapping TsðVÞ, such that, for each x, V as the
form

V sð Þ xð Þ = ∂
∂s

Ts

� �
∘ Ts xð Þ: ð3Þ
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For each s ∈ ½0, S½, Ts is a one-to-one mapping from D to
D such that

(i) T0 = I

(ii) ðs, xÞ⟶ Ts belongs to Cð½0, S�Þ,CkðD,DÞÞ with
Tsð∂DÞ = ∂D

(iii) ðs, xÞ⟶ T−1
s belongs to C1ð½0, S�Þ,CkðD,DÞÞ

Such family Ok is stable under the perturbation Ω↦
Ωs = TsðVÞðΩÞ: We denote by Qs, the perturbed cylinder
Ωs × ð0, TÞ, Γs = ∂Ωs and Σs = Γs × ð0, TÞ, the perturbed lat-
eral boundary.

To each element Ω ∈ Ok, we associate uΩ = ðEΩ,HΩÞ, the
solution of (11). For any V ∈ ξk, and s ∈ ½0, S½, we set that
us = uðΩsÞ ∈ L2ðQsÞ is said to be shape differentiable in
L2ðI,HmðDÞÞ if there exists U ∈C1ð½0, S�, L2ðI,HmðDÞÞÞ
such that

U s,:,:ð ÞjQs
= u Ωsð Þ,

U sð Þ −U 0ð Þ
s

− ∂sU 0ð Þ⟶ 0, in L2 I,Hm Dð Þð Þ, s⟶ 0:

ð4Þ

Definition 1. The shape derivative of uðΩ, VÞ to the direction
V in the unique element u′ðΩ, VÞ verifying

u′ Ω, Vð Þ = ∂
∂s

U
� �����

s=0, t,xð Þ∈Q
: ð5Þ

In the same way, we define the boundary shape derivative
and the material derivative.

Definition 2. The element

gΓ′ Γ,Vð Þ = ∂
∂s

G
� �����

s=0, t,xð Þ∈Σ
ð6Þ

is the boundary shape derivative of g ∈ L1ðI,HpÞ, where
G ∈C1ð½0, S�, L1ðHp+1/2ðDÞÞ such that

∂
∂νs

G sð Þ = 0 onΣ,

G s,:,:ð ÞjΣs
= g Γsð Þ onΣs:

ð7Þ

Definition 3. The material derivative of uðΩ, VÞ in the direc-
tionV noted _uðΩ, VÞ ∈ L2ðI, HmðDÞÞ is defined as the limit in
L2ðI, HmðDÞÞ when s goes to zeros of

1
s
u Ωsð Þ ∘ Ts − u Ωð Þð Þ: ð8Þ

For more details on this approach, see [2].

Remark 4. To compute the shape derivatives, we can also use
the approach of Simon and Murat in [3], recalled by Henrot
and Pierre in [1] and Allaire and Jouve in [4].

We consider a perturbation of the domain Ω in the
following sense, for θ ∈W1,∞ðℝn,ℝnÞ, Ωθ = ðId + θÞðΩÞ. It
is well known that for θ, sufficiently small ðId + θÞ is a dif-
feomorphism from ℝn:

Definition 5. The shape derivative of uðΩÞ at Ω is defined as
the Frechet derivative in W1,∞ðℝn,ℝnÞ at 0 of the applica-
tion θ⟶ uððId + θÞðΩÞÞ; that is,

u Id + θð Þ Ωð Þð Þ = u Ωð Þ + u′ Ωð Þ θð Þ + o θð Þ, ð9Þ

where u′ðΩÞ is a continuous and linear form on W1,∞

ðℝn,ℝnÞ:

In classical shape optimization, it is the boundary of the
initial domain (or a part of the boundary) which moves for
reaching the optimal shape. Thus, the optimal shape has
the same topology as the initial one (for example, if the ini-
tial domain is simply connected, the optimal one will be also
connected). Unlike the case of classical shape optimization,
the topology of the design may change during the optimiza-
tion process, for example, the inclusion of holes. The physi-
cal meaning of holes depends on the nature of the design. In
the case of structural optimization, the insertion of the holes
means simply removing some material, see [4]. In the case of
fluid dynamics, creating a hole means inserting a small
obstacle, see [5].

Topological sensitivity analysis aims at providing an
asymptotic expansion of a shape functional acting on the
neighborhood of a small hole created inside the domain.
The underlying principle is the following, see also [6]: For
a criterion jðΩÞ = JΩðuΩÞ,Ω ⊂ℝn and uΩ is the solution of
a boundary value problem defined over Ω (generally a
PDE), the asymptotic expansion of the cost function jðΩÞ
can be generally written in the form:

j Ω \ x0 + εωð Þ − j Ωð Þ = ρ εð Þg x0ð Þ + o ρ εð Þð Þ,
lim
ε⟶0

ρ εð Þ = 0, ρ εð Þ > 0:
ð10Þ

gðx0Þ is called topological derivative (or topological sen-
sibility) and provides an information for creating small hole
located at x0. Hence, the function g can be used like a
descent direction in the optimization process.

The algorithm that we propose combines the creation of
holes (insertion of a dielectric object) using the topological
gradient on the one hand and on the other hand the update
of the edges by making evolve using the derivative of shape.

In Section 2, we present Maxwell’s equations and an
existence and uniqueness result and partial regularity under
some conditions. The calculous of shape derivatives and
topological asymptotic expansion (under small perturba-
tions of the magnetic or electric fields) of the adjoint state
is presented in Section 3. Two examples of shape functionals
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are considered. The main contribution of this paper is the
proposition of the algorithm coupling between shape and
topological derivative, which is presented in Section 4. Sec-
tion 5 gives a conclusion and some possible extensions.

2. Maxwell’s Equations and the
Preliminary Results

Let D be a fixed domain of ℝ3 and Ω ⊂D be an open
bounded regular domain with Lipshitz boundary ∂Ω = Γ:
Let εðx, tÞ be the electric permittivity and μðx, tÞ be the
magnetic permeability, which are both positive definite
Hermitian 3 × 3 matrices.

Let f1 and f2 be the electric density through Ω and g be
the electric density through Γ:

The evolution of the electric field Eðx, tÞ and the mag-
netic field Hðx, tÞ in the space-time cylinder Q =Ω × ð0, TÞ
is given by the Maxwell equation:

∂t εEð Þ−∇ ×H = f1 inQ, ð11Þ

∂t μEð Þ+∇ × E = f2 inQ, ð12Þ
ν × E − αHτ = g inΣ: ð13Þ

Here, ν denotes the normal exterior vector along Γ, Hτ
is the tangential component of H, and α = αðx, tÞ is a pos-
itive function. For t = 0, the initial conditions are given by
Eðx, 0Þ = E0ðxÞ and Hðx, 0Þ =H0ðxÞ:

Let

A0 =
ε 0
0 μ

" #
, Aj∂j =

0 −∇ ×
∇ × 0

" #
, u =

E

H

" #
, f =

f1

f2

" #
:

ð14Þ

The Maxwell system (15) can be written as

∂j A
0u

À Á
+ Aj∂ju = f : ð15Þ

Furthermore, let

H Ωð Þ = E,Hð Þ ∈ L2 Ωð ÞÀ Á6
: ∇: εEð Þ = ∇: μHð Þ = 0

n o
, ð16Þ

where ∇:ðεEÞ = ∂jðεjkEkÞ: If A is a Hermitian positive defi-

nite matrix, its transpose is denoted by AT :
The well posedness of the Maxwell equations with given

boundary and initial data is widely studies in the literature.
We refer the literature to [7] for modeling and for the
existence and unicity and regularity of the solution, see [8].
However, we recall here on a result which established the
existence, unicity, and partial regularity of the Maxwell
equations.

Theorem 6. Le ε, μ, ∂tE, ∂tμ, and ∈L∞ðQÞ be such that ε,
μ ≥ C > 0 almost everywhere on Q and α ≥ C > 0 almost

everywhere on Σ: Given f , ðE0,H0Þ ∈ ðL2ðΩÞÞ6 and g ∈
ðL2ðΣÞÞ3 with ν:g = 0, then there exists a unique weak solu-

tion ðE,HÞ ∈ Cð½0, T�, L2ðΩÞ6Þ: Moreover, there exists a con-
stant β0, such that

e−βT E,Hð Þ Tð Þ



 


2

Ω
+ e−βT E,Hð Þ tð Þ



 


2

Q
+ e−βT Eτ,Hτð Þ



 


2

Σ

≤ E0,H0À Á

 

2
Ω
+ 1
β

e−βT f



 


2

Q
+ e−βTg



 


2

Σ
,

ð17Þ

for β ≥ β0:

For the proof, see [2].

3. Shape Derivatives and Topological
Asymptotic Expansion for
Maxwell’s Equations

3.1. The Adjoint Method. To compute the shape derivative,
we use the adjoint method. The fundamental propriety of
the adjoint method is to provide the variation of a shape
functional J with respect to a parameter using the solution
uΩ and an adjoint state vΩ which do not depend on the cho-
sen parameter. Numerically, it means that the two systems
must be solved for obtaining an approximation of the shape
derivative DJðuΩÞ, ∀x ∈Ω: The principle is as follows. We
consider the minimization problem

min
α

j αð Þ = J α, u αð Þð Þ ∈ℝn, ð18Þ

with constraints AðαÞuðαÞ = BðαÞ, α ∈ℝp, uðαÞ ∈ℝn, AðαÞ
∈Mn×nðℝÞ, B ∈ℝn: ∀u, v, the Lagrangian of the system,
is defined by

L α, u αð Þ, vð Þ = J α, u αð Þð Þ + A αð Þu αð Þv − B αð Þv: ð19Þ

Its derivative with respect to α is given by

DL α, u αð Þ, vð Þh =DαL α, u αð Þ, vð Þh
+DuL α, u αð Þ, vð ÞhDu αð Þ

=Dα J α, u αð Þ, vð Þh +DuJ α, u αð Þð ÞhDu αð Þ
+DαA αð Þu αð Þvh

= A αð ÞDαu αð Þvh −DαB αð Þv:
ð20Þ

We set v = vðαÞ as the adjoint state to obtain

A αð Þv αð Þω = −DuJ α, u αð Þð Þ,∀ω ∈ℝn, ð21Þ

as an adjoint equation. It follows

DL α, u αð Þ, v αð Þð Þ =DαL α, u αð Þ, v αð Þð Þ +DαA αð Þv αð Þu αð Þ
−DαB αð Þv αð Þ:

ð22Þ
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3.2. Shape Derivative of the Cost Function. In the sequel,
we turn our attention to the minimization of the cost
functional defined by

J Ωð Þ = 1
2

ð
Q

EΩ − Edð ÞTε EΩ − EDð Þ
h

+ HΩ −Hdð ÞTμ HΩ −Hdð Þ
i
dxdt

ð23Þ

over a collection of open bounded sets Ω ∈ℝ3, with fixed
boundaries. ðEΩ,HΩÞ is the solution of the initial boundary
value problem (11). The following result gives the shape
derivative of (23) under constraints (11).

Theorem 7. Assume that ε, μ are constants of Hermitian
definite positive matrices, let α be a positive constant, f = 0,
g = 0 and ðE0,H0Þ ∈H1ðDÞ6 ∩HðDÞ and ðEΩ,HΩÞ ∈H1

ðD × ð0, TÞÞ ∩HðD × ð0, TÞÞ: The shape functional (23) is
Frechet differentiable at Ω in the direction V with the Frechet
derivative

DJ Ω, Vð Þ =R

ð
Σ

q:∂νEΩ × ν + α ∂νHΩð Þτ + CurlΓ EΩð Þν:q
À ÁÂ

− αdivΓ HΩð Þν:q
À ÁÃ

Vνdxdt

+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − EDð Þ

+ HΩ −Hdð ÞTμ HΩ −Hdð Þ
i
Vνdxdt,

ð24Þ

where Vν =Vð0Þ:ν, Eν = E:ν, Hν =H:ν, and divΓ are the
surface divergences, CurlΓ is the surface curl, Rð:Þ is the real
part of a complex number, and ðp, qÞ is the solution of the
adjoint initial boundary value problem:

ε∂tp−∇ × q = 0 inQ,

μ∂tq+∇ × q = 0 inQ,

p t=0j = 0q t=0j = 0 ; inΩ,

ν × p + αqτ = 0 inΣ:

ð25Þ

As V , equation (23) is true for all V , and we have

DJ Ωð Þ =R q :∂νEΩ × ν + α ∂νHΩð Þτ
À Á

+ CurlΓ EΩð Þν:q
À ÁÂ

− αdivΓ HΩð Þνq
À ÁÃ

+ 1
2

EΩ − Edð ÞTε EΩ − EDð Þ
+ HΩ −Hdð ÞTμ HΩ −Hdð Þ

i
:

ð26Þ

Sketch of the proof. The Gâteaux derivation of JðΩÞ in the
direction V is defined by

DJ Ω, Vð Þ = lim
s⟶0

1
s

J Ωsð Þ − J Ωð Þð Þ

=R

ð
Q
EΩ − Edð ÞTεEΩ′dtdΓ

+R

ð
Q
HΩ −Hdð ÞTμH′ΩdΓdt

+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ

+ HΩ −Hdð ÞTμHΩ −H0
�i

VνdΓdt,

ð27Þ

where ðEΩ
′ ,HΩ

′Þ is the shape derivative of (15). Let ðp, qÞ be
the adjoint state, and then we have

DJ Ω, Vð Þ =R

ð
Q
ε∂tp−∇qð ÞEΩ

′dxdt

+R

ð
Q
μ∂tq−∇pð ÞHΩ

′dxdt

+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ
h

+ HΩ −Hdð ÞTμHΩ −H0Þ
i
VνdΓdt:

=R

ð
Σ

ν × pð ÞHΩ,τ′ + q: ν × EΩ
′

� �h i
dtdΓ:

+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ
h

+ HΩ −Hdð ÞTμHΩ −H0Þ
i
VνdΓdt:

=R

ð
Σ

q: Vν∂νEΩ,τ + EΩ,ν∇τVνð Þ × +α Vν∂νHΩ,τð½

+HΩ,ν∇τVνÞ�dΓdt:
1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ
h

+ HΩ −Hdð ÞTμHΩ −H0Þ
i
VνdΓdt:

ð28Þ
To achieve the proof, we have to remove the derivative

Vν, by integration by parts.

DJ Ω, Vð Þ =R

ð
Σ

q:Vν ∂νEΩ,τ + α∂νHΩ,τð Þ½
+ ∇τVν: ν × EΩ,νqð Þ + αHΩ,νq∇τVνÞ�dΓdt
+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ
h

+ HΩ −Hdð ÞTμHΩ −H0Þ
i
VνdΓdt:

=R

ð
Σ

q: ∂νEΩ,τ + α∂νHΩ,τð Þ − divΓ ν × EΩ,νqð Þ½
− αdivΓ HΩ,νqð Þ�VνdΓdt

+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ
h

+ HΩ −Hdð ÞTμHΩ −H0Þ
i
VνdΓdt:
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=R

ð
Σ

q: ∂νEΩ,τ + α∂νHΩ,τð Þ + CurlΓ ν × EΩ,νqð Þ½
− αdivΓ HΩ,νqð Þ�VνdΓdt

+ 1
2

ð
Σ

EΩ − Edð ÞTε EΩ − E0ð Þ
h

+ HΩ −Hdð ÞTμHΩ −H0Þ
i
VνdΓdt,

ð29Þ

which finishes the proof.

For the complete proof, we refer the reader to [8].

3.3. Generalized Adjoint Method. Let V be a complex Hil-
bert space. For all ε > 0, let aε be a sesquilinear and continu-
ous form on V and lε be a semilinear and continuous form
on V , such that the following problem has one and only one
solution:

uε ∈V ,
aε uε, vð Þ = lε vð Þ,∀v ∈V :

(
ð30Þ

Hypothesis 1. Assume that for ε > 0, there exists ρðεÞ > 0,
with limε⟶0+ρðεÞ = 0, δa and δl two complex numbers
such that

uε − u0k kV =O ρ εð Þð Þ,
aε − a0ð Þ uε, vð Þ = ρ εð Þδa +O ρ εð Þð Þ,
lε − l0ð Þ uε, vð Þ = ρ εð Þδl +O ρ εð Þð Þ:

ð31Þ

Let JðΩ, uεÞ = JΩðuεÞ be the cost functional. We denote
by jðεÞ = JΩðuεÞ, ∀ε > 0:

Hypothesis 2. For all u ∈V , there exists a linear and continu-
ous form, note Lu, such that

JΩ u + hð Þ = JΩ uð Þ + δJΩ uð Þ +R Lu hð Þð Þ +O hk kV
À Á

: ð32Þ

k:k designs the norm on V :

For all ε > 0, let vε the solution of the so-called adjoint
problem

vε ∈V ,
aε vε,wð Þ = Lu0 wð Þ,∀w ∈V :

(
ð33Þ

u0 is the solution of (30) for ε = 0: Under Hypotheses 1
and 2, we have the following result, which gives the asymp-
totic expansion for jðεÞ:

Theorem 8. If Hypotheses 1 and 2 are satisfied, the asymp-
totic expansion to the cost function jðεÞ = JΩðuεÞ is given by

j εð Þ = j 0ð Þ + ρ εð Þδj +O ρ εð Þð Þ, ð34Þ

where δj = δa + δl + δJ :

The proof of this theorem is standard in topological
optimization, see, for example, [6, 9].

The function δjðx0Þ is called topological derivative (or
topological sensitivity) and provides an information for
creating a small hole located at x0. Hence, the function δj
can be used like a descent direction in the optimization
process.

Remark 9. In the following, for all approximations, we use
Laplace exterior problem

ΔEΩ = 0 in ℝ3

Ω
,

EΩ xð Þ⟶ 0 at+∞,

∂EΩ

∂ν
= −E0

Ω 0ð Þ onΓ:

ð35Þ

The function EΩ can be explicited by the help of a single
layer potential

E xð Þ
2 +

ð
∂ω
∇y Uð y − xð ÞE xð Þ:ν yð Þds yð Þ

= ϕ yð Þ,∀y ∈ ∂ω and E ∈H1/2 ∂Ωð Þ,
ð36Þ

with U being the fundamental solution of the Laplace
operator, which is given in 3D by

U xð Þ = 1
4π xj j : ð37Þ

3.4. Problem Formulation and Topological Asymptotic
Expansion. The domain perturbation corresponds to the
perturbation of electric permittivity and the magnetic per-
meability. The corresponding perturbed problem writes
(for the electric field)

∂tE
ε
Ω−∇ εε∇E

ε
Ωð Þ + μεE

ε
Ω = 0 inQ, ð38Þ

Eε
Ω x, 0ð Þ = E0 xð Þ inΩ, ð39Þ
∂Eε

Ω

∂ν
= σ onΣ, ð40Þ

where

εε =
ε0 inQ/Dε

ε1 inDε

(
ð41Þ

and

με =
μ0 inQ/Dε

μ1 inDε

,
(

ð42Þ
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For ε = 0, the corresponding problem is to find E0
Ω

such that

∂tE
0
Ω−∇ ε0∇E

0
Ω

À Á
+ μ0E

0
Ω = 0 inQ, ð43Þ

E0
Ω x, 0ð Þ = E0 xð Þ inΩ, ð44Þ

∂E0
Ω

∂ν
= σ onΣ: ð45Þ

The variational problem assisted with (38) writes the
following: find Eε

Ω such that

aε Eε
Ω, Fð Þ = lε Fð Þ, ð46Þ

where

aε Eε
Ω, Fð Þ =

ð
Q

∂Eε
Ω

∂t

ε

, F
� �

dxdt +
ð
Q
εε∇:E

ε
Ω:R ∇Fð Þdxdt

+
ð
Q
μεE

ε
ΩR Fð Þdxdt,

ð47Þ

lε Fð Þ =
ð
Σ

σFdsdt: ð48Þ

And the variational problem associated to (43) is to
find E0

Ω such that

aε Eε
Ω, Fð Þ = lε Fð Þ, ð49Þ

where

a0 EΩ, Fð Þ =
ð
Q

∂E0
Ω

∂t
, F

� �
dxdt +

ð
Q
ε0∇E0

Ω:R ∇Fð Þdxdt

+
ð
Q
μ0E

0
ΩR Fð Þdxdt:

ð50Þ

Lemma 10. Problems (47) and (50) admit one and only one
solution. Moreover, there exists a function ρðεÞ > 0 which goes
to zeros with ε, such that

Eε
Ω − E0

Ω



 


V
=O ρ εð Þð Þ: ð51Þ

Proof. For the proof, we refer the reader to [6].

3.4.1. Variation of the Sesquilinear Form

Proposition 11. Let Eε
Ω (resp E0

Ω) solution of (47) (resp. (50)),
and then there exists a real number δa, and a function
ρðεÞ > 0 tending to zero as ε tends to zero such that

aε Eε
Ω, Fð Þ − a0 E0

Ω

À Á
= ρ εð Þδa +O ρ εð Þð Þ: ð52Þ

Proof.

aε Eε
Ω, Fð Þ − a0 EΩ, Fð Þ

=
ð
Q

∂Eε
Ω

∂t

ε

, F
� �

dxdt +
ð
Q
εε∇:E

ε
Ω:R ∇Fð Þdxdt

+
ð
Q
μεE

ε
ΩR Fð Þdxdt −

ð
Q

∂E0
Ω

∂t
, F

� �
dxdt

+
ð
Q
ε0∇:E

0
Ω:R ∇Fð Þdxdt +

ð
Q
μ0E

0
ΩR Fð Þdxdt

=
ð
Q

∂Eε
Ω

∂t
, F

� �
dxdt +

ð
Qε

ε0∇:E
ε
Ω:R ∇Fð Þdxdt

+
ð
Qε

μ0E
ε
ΩR Fð Þdxdt +

ð
Dε

ε1∇:E
ε
Ω:R ∇Fð Þdxdt

+
ð
Dε

μ1E
ε
ΩR Fð Þdxdt −

ð
Q

∂E0
Ω

∂t
, F

� �
dxdt

+
ð
Qε

ε0∇:E
0
Ω:R ∇Fð Þdxdt +

ð
Qε

μ0E
0
ΩR Fð Þdxdt

+
ð
Dε

ε0∇:E
0
Ω:R ∇Fð Þdxdt +

ð
Dε

μ0E
0
ΩR Fð Þdxdt

=
ð
Q

∂Eε
Ω

∂t
−
∂E0

Ω

∂t
, F

� �
dxdt

+
ð
Qε

ε0∇: E
ε
Ω − E0

Ω

À Á
:R ∇Fð Þdxdt

+
ð
Qε

μ0 Eε
Ω − E0

Ω

À Á
R Fð Þdxdt +

ð
Dε

ε1∇:E
ε
ΩR ∇Fð Þdxdt

+
ð
Dε

μ1E
ε
ΩR Fð Þdxdt −

ð
Dε

ε0∇:E
0
ΩR ∇Fð Þdxdt

+
ð
Dε

μ0E
0
ΩR Fð Þdxdt:

ð53Þ

Let Xε
Ω = Eε

Ω − E0
Ω, and then Xε

Ω is the solution of

∂tX
ε
Ω−∇: εε∇X

ε
Ωð Þ + μεX

ε
Ω = 0 inQ,

Xε
Ω x, 0ð Þ = 0 inΩ,

∂xεΩ
∂ν

= 0 onΣ,

aε Eε
Ω, Fð Þ − a0 EΩ, Fð Þ =

ð
Dε

ε0∇:X
ε
Ω:R ∇Fð Þdxdt

+
ð
Dε

ε1 − ε0ð Þ∇:E0
ΩR ∇Fð Þdxdt

+
ð
Dε

μ0X
ε
ΩR Fð Þdxdt

+
ð
Dε

μ1 + μ0ð ÞE0
ΩR Fð Þdxdt:

ð54Þ
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The rest of the proof follows from the following
lemmas.

Lemma 12.

ð
Dε

ε0∇:X
ε
ΩR ∇Fð Þdxdt =O Dεj jð Þ,

ð
Dε

μ0X
ε
ΩR Fð Þdxdt =O Dεj jð Þ:

ð55Þ

Proof. For the proof, see [6] for the example.

Lemma 13.

ð
Dε

ε1 − ε0ð Þ∇:E0
ΩR ∇Fð Þdxdt = ε1 − ε0ð Þ∇:E0

Ω 0ð ÞR ∇Fð Þ 0ð Þ Dεj j,
ð
Dε

μ1 + μ0ð ÞE0
ΩR Fð Þdxdt = μ1 − μ0ð ÞE0

Ω 0ð ÞR ∇ð F 0ð Þ Dεj j:

ð56Þ

Proof. For the proof, see [6, 9] for the examples.

Remark 14. According to the definition of lε,

δl = 0: ð57Þ

3.4.2. Variation of the Cost Function. We consider two
examples of cost functions. Each one corresponds to a spe-
cific analysis.

Example 1. The cost function J defined by

JΩ EΩð Þ =
ð
Q
εε EΩ − Edj j2À Á

dxdt, εε =
ε0 in Q

Dε,
ε1 inDε:

8<
:

ð58Þ

Proposition 15. Let JεΩ be the functional associated to the
perturbed problem, and then there exists a real δJ and a
linear operator Lε such that

JεΩ Eε
Ωð Þ − J0Ω E0

Ω

À Á
= ρ εð ÞδJ + Lε Eð Þ +O ρ εð Þð Þ: ð59Þ

Proof.

JεΩ Eε
Ωð Þ − J0Ω E0

Ω

À Á
=
ð
Q
εε Eε

Ω − Edj j2
� �

dxdt −
ð
Q
ε0 E0

Ω − Ed

�� ��2� �
dxdt

=
ð
Q\Dε

ε0 Eε
Ω − Edj j2 − E0

Ω − Ed

�� ��2� �
+
ð
Dε

ε0 − ε1ð Þ E0
Ω − Ed

�� ��2� �
,

ð
Q\Dε

ε0 Eε
Ω − Edj j2 − E0

Ω − Ed

�� ��2� �
dxdt

=
ð
Q\Dε

ε0 Eε
Ω − E0

Ω

À Á
Eε
Ω + E0

Ω − 2Ed

À Á
dxdt

=
ð
Q\Dε

ε0 E
ε
Ω − E0

Ω

�� ��2dxdt
+ 2ε0

ð
Q\Dε

Eε
Ω − E0

Ω

À Á
E0
Ω − Ed

À Á
dxdt,

ð
Q\Dε

ε0 E
ε
Ω − E0

Ω

�� ��2dxdt
≤ ε0 Eε

Ω − E0
Ω



 

2 Qj j =O ρ εð Þð Þ,ð
Dε

ε0 − ε1ð Þ E0
Ω − Ed

�� ��2� �
dxdt

= ε0 − ε1ð Þ E0
Ω 0ð Þ − Ed 0ð Þ

 

2 Dεj j +O ρ εð Þð Þ:

ð60Þ

We achieve the proof by setting LεðEÞ = 2ε0
Ð
Q\Dε

EðE0
Ω − EdÞdxdt:

Example 2. Here, we focus on the function

JΩ EΩð Þ = 1
2

ð
Q
αε ∇ EΩ − Edð Þj j2dxdt, αε =

α0 in Q
Dε

,

α1 inDε:

8<
:

ð61Þ
Proposition 16. Let JεΩ be the functional associated to the
perturbed problem, and then there exists a real δJ and a
linear operator Lε, such that

JεΩ Eε
Ωð Þ − J0Ω E0

Ω

À Á
= ρ εð ÞδJ + Lε Eð Þ +O ρ εð Þð Þ: ð62Þ

Proof.

JεΩ Eε
Ωð Þ − J0Ω Eε

Ωð Þ
= 1
2

ð
Q
αε ∇ Eε

Ω − Edð Þj j2dxdt − 1
2

ð
Q
α0 ∇ E0

Ω − Ed

À Á�� ��2dxdt
= 1
2

ð
Q\Dε

α0 ∇ Eε
Ω − Edð Þj j2 − ∇ E0

Ω − Ed

À Á�� ��2� �
dxdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

+ 1
2

ð
Dε

α1 ∇ Eε
Ω − Edð Þj j2dxdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

−
1
2

ð
Dε

α0 ∇ E0
Ω − Ed

À Á�� ��2dxdt,

ð63Þ
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I = 1
2

ð
Q\Dε

α0 ∇ Eε
Ω − Edð Þj j2 − ∇ E0

Ω − Ed

À Á�� ��2!dxdt
= 1
2

ð
Q\Dε

α0 ∇ Eε
Ω − E0

Ω

À Á
∇ Eε

Ω + E0
Ω − 2Ed

À ÁÀ Á
dxdt,

ð64Þ

I = 1
2

ð
Q\Dε

α0 ∇ Eε
Ω − E0

Ω

À Á
R ∇ Eε

Ω − E0
Ω

À ÁÀ ÁÀ Á
+
ð
Q\Dε

α0 ∇ Eε
Ω − E0

Ω

À Á
∇ E0

Ω − Ed

À ÁÀ Á
:

ð65Þ

In setting Xε
Ω = Eε

Ω − Eε
Ω, equation (63) writes

I = 1
2

ð
Q\Dε

α0∇X
ε
ΩR ∇Xε

Ωð Þdxdt

+
ð
Q\Dε

α0∇X
ε
Ω∇ E0

Ω − Ed

À Á
dxdt,

II = 1
2

ð
Dε

α1 ∇ Eε
Ω − Edð Þj j2dxdt

= 1
2

ð
Dε

α1 ∇ Eε
Ω − E0

Ω + E0
Ω −Hd

À Á�� ��2dxdt,
= 1
2

ð
Dε

α1 ∇ Eε
Ω − E0

Ω

À Á�� ��2 + 1
2

ð
Dε

α1 ∇ E0
Ω − Ed

À Á�� ��2
+
ð
Dε

α1∇ Eε
Ω − E0

Ω

À Á
∇ E0

Ω − Ed

À Á
,

= 1
2

ð
Dε

α1 ∇X
ε
Ωj j2dxdt + 1

2

ð
Dε

α1 ∇ E0
Ω − Ed

À Á�� ��2dxdt
+
ð
Dε

α1∇X
ε
Ω∇ E0

Ω − Ed

À Á
dxdt:

ð66Þ

Consequently,

JεΩ Hε
Ωð Þ − J0Ω Eε

Ωð Þ = 1
2

ð
Q\Dε

α0∇X
ε
ΩR ∇Xε

Ωð Þdxdt

+ 1
2

ð
Dε

α1∇X
ε
ΩR ∇Xε

Ωð Þdxdt

+
ð
Q\Dε

α0∇X
ε
Ω∇ E0

Ω − Ed

À Á
+
ð
Dε

α1∇X
ε
Ω∇ E0

Ω − Ed

À Á
−
1
2

ð
Dε

α0 − α1ð Þ ∇ E0
Ω − Ed

À Á�� ��2dxdt:
ð67Þ

Setting

Lε Hð Þ =
ð
Q
αε∇E:R ∇ð E0

Ω − Ed

À Á
dxdt and ρ εð ÞδJ

= 1
2

ð
Dε

α0 − α1ð Þ ∇ E0
Ω − Ed

À Á�� ��2dxdt: ð68Þ

As

1
2

ð
Q\Dε

α0∇X
ε
ΩR ∇Xε

Ωð Þdxdt + 1
2

ð
Dε

α1∇X
ε
ΩR ∇Xε

Ωð Þdxdt

= 1
2

ð
Q
αε∇X

ε
ΩR ∇Xε

Ωð Þdxdt =O ρ εð Þð Þ,

ð69Þ

we obtain the desired result.
The following result gives the asymptotic expansion of

the cost function for the perturbation of the electric field.

Theorem 17. Let jðεÞ = JεΩðEε
ΩÞ be the cost functional defined

by (58), where Eε
Ω is the solution of (47) and E0

Ω is the corre-
sponding solution for ε = 0. Let Dε = εBð0, 1Þ ⊂ℝ3: j has the
following asymptotic expansion:

j εð Þ − j 0ð Þ = −
4
3
πε3 μ0 − μ1ð ÞE0

Ω 0ð ÞR F 0ð Þð ÞÂ
+ ε0−ε1ð Þ ∇ × E0

Ω 0ð ÞR ∇Fð Þ 0ð ÞÂ Ã
+ δJ

Ã
+O ε3
À Á

,
ð70Þ

where F is the solution of the so-called adjoint problem: find
F ∈V such that

∂t F−∇: ε0∇Fð Þ + μ0F = −Lε Eð Þ in Q,
F x, 0ð Þ = 0 inΩ,

∂F
∂ν

= 0 onΣ:

ð71Þ

Proof. The Lagrangian L of the problem minV JΩðE0
Ω, FÞ,

E0
Ω, solution of (43) is defined by

L EΩ, Fð Þ = JΩ EΩð Þ + a EΩ, Fð Þ − l Fð Þ: ð72Þ

Its variation with respect to ε

Lε Eε
Ω, Fð Þ = JεΩ Eε

Ωð Þ + aε Eε
Ω, Fð Þ − lε Fð Þ: ð73Þ

It follows form Propositions 11 and 15 (or 16) that
Hypotheses 1 and 2 are satisfied. We use the fact that the
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variation of the Lagrangian is equal to the variation of the
cost function; that is,

j εð Þ − j 0ð Þ =Lε Eε
Ω, Fð Þ −Lε E0

Ω, F
À Á

, ð74Þ

and we use Theorem 8 to conclude.

4. A Coupling Algorithm between Shape and
Topological Derivative for
Maxwell Equations

In this section, we propose an algorithm coupling the
shape and topological derivative for a given shape func-
tional under Maxwell equation as constraints. For the
numerical approximation of Maxwell’s equation, one can
use the finite differences method, the finite elements method,
the Finite Element-Finite Difference Hybrid Methods, or the
block pseudospectral method and XFEM method.

The optimization algorithm is summarized in Figure 1.
(see also [10] in the case of linear elasticity).

Based on the boundary of the domain being an unknown
of the problem, we introduce ~Ω fixed (in general rectangular
or parallelepiped) domain which includes all potential
domains Ω. The numerical method approximation requires

the introduction of two finite element spaces ~V
h ⊂H1ð~Ω ;

ℝnÞ and ~W
h ⊂ L2ð~Ω ;ℝnÞ on the fictitious domain ~Ω. As ~Ω

can be a rectangular or parallelepiped domain, the ones
can be defined on the same structured mesh T h. Next, we
shall suppose that

~V
h = vh ∈ C �~C,ℝn

� �
vhΩj ∈ P Tð Þð Þn∀T ∈T h

n o
, ð75Þ

where PðTÞ is a finite dimensional space of regular functions
such that PðTÞ ⊇ PkðTÞ for some k ≥ 1 integer. The mesh
parameter h stands for h =maxT∈T hhT where hT is the diam-
eter of T .

Since we use the topological gradient to create holes
(inhomogeneities) during the optimization process, it is pos-
sible to start with a shape containing some initial holes or
not. A very small penalization is used when solving the
direct problem and the adjoint one to avoid the indetermi-
nacy of the rigid motions of the eventual isolated part. Con-
cerning step 4, a new hole of a given radius is created by the
simple operation on the level-set function, which can be
written on each finite element node xi

�ψ xið Þ≔max ψ xið Þ, r2 − xi − ck k2À Á
2r

 !
, ð76Þ

where ψðxÞ is the level-set function, �ψðxiÞ is its new value, r
is the radius of the created hole, and c is its center.

In step 6, the update of the level set is done directly
thanks to the shape derivative applying the following evolu-
tion equation for the level-set function:

∂ψ
∂t

= g xð Þ, in ~Ω, ð77Þ

where gðxÞ corresponds to the function in front of θ:ν in the
integral of (24). This evolution equation integrated on a
small time interval. In our simulations, the gradient is
extended by zero to the complementary of Ω in ~Ω. However,
a smoother extension could be considered. This method is
simpler than the classical way which is to integrate a
Hamilton-Jacobi equation (see [4]). It seems also to be
numerically more robust.

Note that it is convenient to apply a threshold on the
gradient to avoid some incoherent values where the shape
gradient may have a singularity (corners, transition from
Dirichlet to Neumann condition).

To regularize the level-set function, the reinitialization
step 7 is considered. It consists classically in solving

∂ψ
∂t

+ sign ψ0ð Þ ∇ψj j − 1ð Þ = 0 in ~Ω ×ℝ+,

ψ 0, xð Þ = ψ0 xð Þin ~Ω,

8><
>: ð78Þ

whose stationary solution is a signed distance. This
Hamilton-Jacobi equation is known to admit multiple non-
smooth solutions. Classically, a smooth solution is computed
thanks to an upwind scheme. Since the fictitious domain ~Ω
can be a rectangular/parallelepiped domain, it is possible to
use a classical upwind scheme on a Cartesian grid. However,
to keep the possibility of having a nonstructured mesh, for
instance, to proceed to a local refinement, we use a different
strategy. Equation (78) is solved on a small time interval

Step 1: Computation of the direct problem

with or without initial holes
Step 0: Given initial shape (i.e. level-set function)

Yes
End

Convergence
criterion reached

No

Step 7: Reinitialization of the level-set

Step 6: Update of the level-set with the shape gradient

Step 5: Computation of the shape gradient

Step 4: if a threshold is reached, create a new hole

Step 3: Computation of topological gradient

Step 2: Computation of the adjoint problem if necessary

Figure 1: Proposed algorithm.
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½0, Δt� integrating the following equation where the non-
linearity is made explicit:

∂�ψ
∂t

+ sign ψ0ð Þ ∇ψn

∇ψnj j∇�ψ = sign ψ0ð Þin ~Ω ×
�
0, Δt

�
,

�ψ 0, xð Þ = ψn xð Þ:

8><
>:

ð79Þ

Here ψn is the level-set function at the previous time
step, and ψn+1 is given by �ψðΔt, ·Þ. The problem (79) is a
pure convection one. This problem can be solved, for
instance, with the simple Galerkin-Characteristic scheme
proposed in [11]. This scheme is unconditionally stable but
rather dissipative. The effect is that the level sets are a little
smoothed.

5. Conclusion and Extensions

In this paper, we used the adjoint method (respectively,
generalized adjoint method) to compute shape derivatives
(respectively, topological asymptotic expansions) associated
with a given shape functional and Maxwell’s equations.
The obtained derivatives (shape and topological) allow us
to construct an algorithm, which can permit simultaneously
to insert a small dielectric objects (holes) with topological
derivative and to control its boundary by using the shape
derivative and level set method.

In the forthcoming work, we will intent to apply this
algorithm for some applications, for example, for the recon-
struction of metallic buried objects.
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