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The paper deals with a coupling algorithm using shape and topological derivatives of a given cost functional and a problem
governed by nonstationary Maxwell’s equations in 3D. To establish the shape and topological derivatives, an adjoint method is
used. For the topological asymptotic expansion, two examples of cost functionals are considered with the perturbation of the
electric permittivity and magnetic permeability. We combine the shape derivative and topological one to propose an algorithm.
The proposed algorithm allows to insert a small inhomogeneity (electric or magnetic) in a given shape.

1. Introduction

Shape optimization is a minimization problem where the
unknown variables run over a class of admissible domains;
then, every shape optimization problem can be written in
the form

min;((, ug), (1)

where © is the class of admissible domains and j is the cost
functional; generally, u, is the solution of a given PDE.
Generally, the existence and uniqueness of the solution of
such problems are not guaranteed even for simple cases.
However, the literature about the subject is abundant, and
the techniques used are numerous (homogenization, domain
parametrization, geometric shape derivative, topological
optimization, ...), see [1] and references therein.

In this paper, we focus on geometric shape optimization
and topological asymptotic expansion methods, which we
briefly recall the principles to propose an algorithm coupling
them that we apply to Maxwell’s equations.

Shape optimization problem is a minimization problem
where the unknown variables run over a class of domains;

then, every shape optimization problem can be written in
the form

min {j(Q): Qe A}, (2)

where o/ is the class of admissible domains and j is the cost
functional.

The underlying principle is the following. Let Q ¢ R* be
an open bounded domain whose boundary 92 is a &* man-
ifold oriented by the normal vector field v outgoing to O, a
family 0, of open bounded domains of D and t=(0, T),
the time interval. We note that Q = Q x (0, T) is the cylinder
evolution domain, and X =T"x (0, T) is the lateral boundary
associated to any Q c O,. Let &, be the set of V € €([0, T},
&*(D,R?)) with (V,v,;)=0 for all V€&, ; we consider
the follow mapping T,(V), such that, for each x, V as the
form


https://orcid.org/0000-0001-8101-361X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2425990

For each s € [0, §[, T, is a one-to-one mapping from D to
D such that

() Ty=1I

(i) (s,x) — T, belongs to ([0, S]), €(D, D)) with
T,(0D) =0D

(iii) (s,x) — T;* belongs to ([0, S]), €*(D, D))

Such family O, is stable under the perturbation Q—
Q,=T,(V)(Q). We denote by Q,, the perturbed cylinder
O, %x(0,T),I,=0Q, and X =T, % (0, T), the perturbed lat-
eral boundary.

To each element Q € O, we associate ug, = (Eq, Hp,), the
solution of (11). For any V €&, and s€[0,S], we set that
u,=u(Q,) € L*(Q,) is said to be shape differentiable in
L*(I,H™(D)) if there exists U € %' ([0,S], L*(I, H"(D)))
such that

Ulson)lg, = #(00),

Q
-0,U(0) — 0,in L*(I, H"(D)),s — 0.
(4)

Definition 1. The shape derivative of u(€2, V) to the direction
V in the unique element u' (2, V) verifying

u'(Q, V)= <% U)

In the same way, we define the boundary shape derivative
and the material derivative.

(5)

5=0,(t,x)€Q

Definition 2. The element

aHr.v)= (5:6) ©

5=0,(t,x)€X

is the boundary shape derivative of g€ L'(I, H?), where
Ge®'([0,8], L' (H**(D)) such that

0
3 G(s)=0onZ,

‘ (7)
G(s"")|25 = g(rs) on 25‘

Definition 3. The material derivative of u((Q, V) in the direc-
tion V noted u(€2, V) € L*(I, H™(D)) is defined as the limit in
L*(I, H™(D)) when s goes to zeros of

Lo

(u(,) T, ~ u(Q). (®)

S

For more details on this approach, see [2].
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Remark 4. To compute the shape derivatives, we can also use
the approach of Simon and Murat in [3], recalled by Henrot
and Pierre in [1] and Allaire and Jouve in [4].

We consider a perturbation of the domain Q in the
following sense, for 0 € Wh°(R", R"), Q, = (Id + 6)(Q). Tt
is well known that for 6, sufficiently small (Id +6) is a dif-
feomorphism from R".

Definition 5. The shape derivative of u(Q) at Q is defined as
the Frechet derivative in W ®(RR®, R") at 0 of the applica-
tion 0 — u((Id + 0)(Q)); that is,

u((Id+0)(Q)) =u(Q) + ' (2)(6) +0(6),  (9)

where u'(Q) is a continuous and linear form on W'
(R", R").

In classical shape optimization, it is the boundary of the
initial domain (or a part of the boundary) which moves for
reaching the optimal shape. Thus, the optimal shape has
the same topology as the initial one (for example, if the ini-
tial domain is simply connected, the optimal one will be also
connected). Unlike the case of classical shape optimization,
the topology of the design may change during the optimiza-
tion process, for example, the inclusion of holes. The physi-
cal meaning of holes depends on the nature of the design. In
the case of structural optimization, the insertion of the holes
means simply removing some material, see [4]. In the case of
fluid dynamics, creating a hole means inserting a small
obstacle, see [5].

Topological sensitivity analysis aims at providing an
asymptotic expansion of a shape functional acting on the
neighborhood of a small hole created inside the domain.
The underlying principle is the following, see also [6]: For
a criterion j(Q) = J(ug), Q2 CR" and u, is the solution of
a boundary value problem defined over Q (generally a
PDE), the asymptotic expansion of the cost function j(Q)
can be generally written in the form:

JQ\ X +ew) = j(Q) = p(e)g(x0) + 0(p(¢)),

lim p(e) =0, p(e) > 0.

e—0

(10)

g(x,) is called topological derivative (or topological sen-
sibility) and provides an information for creating small hole
located at x,. Hence, the function g can be used like a
descent direction in the optimization process.

The algorithm that we propose combines the creation of
holes (insertion of a dielectric object) using the topological
gradient on the one hand and on the other hand the update
of the edges by making evolve using the derivative of shape.

In Section 2, we present Maxwell’s equations and an
existence and uniqueness result and partial regularity under
some conditions. The calculous of shape derivatives and
topological asymptotic expansion (under small perturba-
tions of the magnetic or electric fields) of the adjoint state
is presented in Section 3. Two examples of shape functionals
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are considered. The main contribution of this paper is the
proposition of the algorithm coupling between shape and
topological derivative, which is presented in Section 4. Sec-
tion 5 gives a conclusion and some possible extensions.

2. Maxwell’s Equations and the
Preliminary Results

Let D be a fixed domain of R*> and Qc D be an open
bounded regular domain with Lipshitz boundary 0Q =T
Let £(x,t) be the electric permittivity and p(x,t) be the
magnetic permeability, which are both positive definite
Hermitian 3 x 3 matrices.

Let f, and f, be the electric density through Q and g be
the electric density through I'.

The evolution of the electric field E(x, ) and the mag-
netic field H(x, t) in the space-time cylinder Q=0Qx (0, T)
is given by the Maxwell equation:

0,(¢E)-VxH=finQ, (11)
0,(ME)+V xE=f,inQ, (12)
vXE-aH, =ginZX. (13)

Here, v denotes the normal exterior vector along I', H,
is the tangential component of H, and a = a(x, t) is a pos-
itive function. For ¢ =0, the initial conditions are given by
E(x,0) =Ey(x) and H(x,0)=Hg(x).

Let
e 0 ) 0 -V x E
A0 = ,A]a]: U= ,f: fl .
0 u V x 0 H f
(14)
The Maxwell system (15) can be written as
aj(Aou) +Ajaju =f. (15)

Furthermore, let
H(Q) = {(E, H) € (1*(Q))° : V.(¢E) = V.(uH) = o}, (16)

where V.(¢E) = 3;(¢/°E; ). If A is a Hermitian positive defi-
nite matrix, its transpose is denoted by AT,

The well posedness of the Maxwell equations with given
boundary and initial data is widely studies in the literature.
We refer the literature to [7] for modeling and for the
existence and unicity and regularity of the solution, see [8].
However, we recall here on a result which established the
existence, unicity, and partial regularity of the Maxwell
equations.

Theorem 6. Le ¢, y, 0,E, 0,u, and €L°(Q) be such that ¢,
u=C>0 almost everywhere on Q and a>C>0 almost

everywhere on . Given f,(E, H,) € (L2(Q))° and ge¢
(I(2))’ with v.g =0, then there exists a unique weak solu-

tion (E, H) € C([0, T, L*(2)®). Moreover, there exists a con-
stant f3,, such that

T R T e
N i e e
(17)
for B2,

For the proof, see [2].

3. Shape Derivatives and Topological
Asymptotic Expansion for
Maxwell’s Equations

3.1. The Adjoint Method. To compute the shape derivative,
we use the adjoint method. The fundamental propriety of
the adjoint method is to provide the variation of a shape
functional J with respect to a parameter using the solution
U, and an adjoint state v, which do not depend on the cho-
sen parameter. Numerically, it means that the two systems
must be solved for obtaining an approximation of the shape
derivative DJ(ug,), Vx € Q. The principle is as follows. We
consider the minimization problem

mainj(oc) =J(a u(a)) €R”, (18)

with constraints A(a)u(a)=B(«a), a€RP, u(a) e R", A(«x)
€M, (R),BeR". Vu,v, the Lagrangian of the system,
is defined by

P, u(a),v) =J(a u(a)) + A(a)u(a)v - Bla)v.  (19)
Its derivative with respect to « is given by

DZ(a, u(e), v)h = D, Z (a0, u(ex), v)h
+D,Z (e, u(ex), v)hDu()
=D,J(a, u(), v)h + D, J (e, u(a))hDu(e)
+ D, A(a)u(a)vh
= A(a)D, u(a)vh — D, B(a)v.
(20)

We set v=v(«) as the adjoint state to obtain
A(a)v(a)w=-D,J(a, u(a)),Vw € R", (21)
as an adjoint equation. It follows

DZ (&, u(ax), v(a)) = D, & (o, u(«x), v(ex)) + D A(a)v(ax)u(ex)
- D, B(a)v(a).
(22)



3.2. Shape Derivative of the Cost Function. In the sequel,
we turn our attention to the minimization of the cost
functional defined by

@)= 5 [(Ba=r)e(Ea ) -

+(Ho ~ Hy) u(Ho = Hy) | dat

over a collection of open bounded sets Q2 € R?, with fixed
boundaries. (Eg, Hp,) is the solution of the initial boundary
value problem (11). The following result gives the shape
derivative of (23) under constraints (11).

Theorem 7. Assume that &,y are constants of Hermitian
definite positive matrices, let « be a positive constant, f =0,
g=0 and (E,Hy)) e H(D)°n% (D) and (Ey, Hg)€H'
(Dx(0,T))NF(Dx(0,T)). The shape functional (23) is
Frechet differentiable at Q) in the direction V with the Frechet
derivative

DJ(Q,V)= %J [q.0,Eq xv+a(0,Hy,), + Curly((Eq),9)
b
—adivy((Hg),-q) |V, dxdt
1
+ EJ (Eq—Ey)"e(Eq ~ Ep)
b
+(Ho ~ Hy) w(Ho ~ Hy) |V, ddt,
(24)
where V., =V (0).v, E,=E~v, H,=H.v, and div, are the
surface divergences, Curlp is the surface curl, R(.) is the real

part of a complex number, and (p, q) is the solution of the
adjoint initial boundary value problem:

€0,p-Vxq=0inQ,
o, q+Vxq=0inQ,
Pii=0=0d)9 = 05 in 0,

vXpt+ag,=0inZ.
As V, equation (23) is true for all V, and we have

DJ(Q)=%|[q(-0,Eqxv+a(d,Hg),) + Curly((Eq),-q)
~ adivy(Ho), )] + 5 (Eo - E)"e(Eq ~ Ep)

+(Hg - Hd)TP‘(HQ - Hd)} .
(26)
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Sketch of the proof. The Gateaux derivation of J(Q) in the
direction V is defined by

1
DJ(Q,V) = lim —(J() - ()
- @J (Eq - E,) ' eEqydtdl
Q

+ @J (Ho - Hy)'uH' ndrdt (27)
Q

1

o3| (B BB - E)
b

+(Hy—Hy)"uH, - Hoﬂ v, drdt,

where (E/,, H/,) is the shape derivative of (15). Let (p, q) be
the adjoint state, and then we have

DJ(©, V)= %J (£0,p—Vq)Edxdt
Q
+9?J (u0,q-Vp)H \dxdt
Q
1
v 5| [Ea- B e(Ea-B)
P
+(Hp = Hy)' pHg - Ho)} V., drds.
= %J [(v Xp)HQ’; +q. (v X E('))} dtdr.
z
1
+§J [(EQ - Ed)T‘S(EQ - E)
P
+(Ho - Hy)' pHg - Ho)} V., dIdt.
= %J q-[(V,0,Eq, +Eq V. V,) x+a(V,0,Hg
>
{(EQ - Ed)Ts(EQ - Ey)

+(Hy—Hy)"uH, - HO)} v, drdt.

1
" HQVVTVV)]dth.—J
) 2 Z
(28)

To achieve the proof, we have to remove the derivative
V., by integration by parts.

DI(Q’ V) = ‘%J [q'Vv(avEQ,r + ‘xavHQ,r)
b
+V,V,.(vXxEq,q)+aHg,qV,V,)|dldt
1
+ 5| (B Eo"e(Ea - By
b3
+ (Hp - Hy) uH - HO)} vV, drdt.
= %J [4-(9,Eq, + @0, Hp ) = divp(v X Eq,q)
b3
—adivy(Hg,q)|V,dldt
1
+ 3| [(Ba=Eo"e(Ea - By
b3

+(Hy—Hy)"uHg - HO)} V., drdt.



Abstract and Applied Analysis

= %’J [9-(0,Eq, +ad,Hq ;) + Curl (v X Eq ,q)

b5

—adivp(Hg,q)|V,dldt
1

+ EJ {(EQ - Ed)TS(EQ - Ey)

=
+(fg)—figTyfu)—fﬂQ}vvdrda
which finishes the proof.

For the complete proof, we refer the reader to [8].

3.3. Generalized Adjoint Method. Let 7" be a complex Hil-
bert space. For all € > 0, let g, be a sesquilinear and continu-
ous form on 7" and I, be a semilinear and continuous form
on 7/, such that the following problem has one and only one

solution:

u €7,

(30)
a,(u,v)=1L(v),Vve?.

Hypothesis 1. Assume that for € >0, there exists p(e) >0,

with lim, ;. p(¢)=0, da and 8] two complex numbers
such that

14, = ol = O(p(e)),
(4.~ ) () = p(e)da+ O(p(e)), (31
(1~ ) (1) = p(£)O1 + O(p(c).

Let J(Q,u,) =J(u,) be the cost functional. We denote
by j(e) =Jo(u,), Ve> 0.

Hypothesis 2. For all u € 7, there exists a linear and continu-
ous form, note L, such that

Tl 1) = T (1) + 8, (1) + (L, (1)) + O(lh],) . (32)
|I.|| designs the norm on 7.

For all £ >0, let v, the solution of the so-called adjoint

problem

v, €Y,

(33)
A (Ve w) =L, (w)Vwe 7.

u, is the solution of (30) for £ =0. Under Hypotheses 1

and 2, we have the following result, which gives the asymp-

totic expansion for j(¢).

Theorem 8. If Hypotheses 1 and 2 are satisfied, the asymp-
totic expansion to the cost function j(€) = J,(u,) is given by

J(€)=j(0) + p(£)d; + O(p(e)), (34)

where §; =96, +06,+6).

The proof of this theorem is standard in topological
optimization, see, for example, [6, 9].

The function J;(x,) is called topological derivative (or
topological sensitivity) and provides an information for
creating a small hole located at x,. Hence, the function §;
can be used like a descent direction in the optimization
process.

Remark 9. In the following, for all approximations, we use
Laplace exterior problem

IR3
AE,=0in —,
o=0in -
Eq(x) — Oat+oo, (35)
OE
B—\? =-E}(0)onT.

The function E, can be explicited by the help of a single
layer potential

2 [ v, -0Ew s
Jdw

= ¢(y),Vy € dwand E € H'*(0Q2),

(36)

with U being the fundamental solution of the Laplace
operator, which is given in 3D by

1

Ux)= F\x|

(37)

3.4. Problem Formulation and Topological Asymptotic
Expansion. The domain perturbation corresponds to the
perturbation of electric permittivity and the magnetic per-
meability. The corresponding perturbed problem writes
(for the electric field)

0,E—V (e, VE,) + u.E;, =0in Q, (38)
E4(x,0) = Ey(x) in 0, (39)
E€
%o _yons, (40)
ov
where
&, inQ/D,
=4 " ‘ (41)
g inD,
and
in Q/D,
‘Lls = #0 > (42)
y, inD,



For £=0, the corresponding problem is to find EJ
such that

0,EQ—V (£)VEY) + poE) = 0in Q, (43)
E)(x,0) =E,(x)inQ, (44)

0
aaE—Q =oon2. (45)

v

The variational problem assisted with (38) writes the
following: find Eg, such that

a(Eg, F) = L(F), (46)

where

a,(E5,, F) = JQ <aaE_t9 , F>dxdt " JQSSV.EB.%(VF)dxdt
+J u Eo R (F)dxdt,
Q

(47)

L(F) = LaFdsdt. (48)

And the variational problem associated to (43) is to
find EY, such that

a,(Eq, F) = I.(F), (49)

where

EO
ay(Eqy F) =J <a_9 F>dxdt+J €OVE,.R(VF)dxdt
Q\ Ot Q
+J toEn R (F)dxdt.
Q
(50)
Lemma 10. Problems (47) and (50) admit one and only one

solution. Moreover, there exists a function p(g) > 0 which goes
to zeros with &, such that

[[Eo =~ E |, = O(p(e))- (51)
Proof. For the proof, we refer the reader to [6]. O
3.4.1. Variation of the Sesquilinear Form
Proposition 11. Let Ef, (resp E?)) solution of (47) (resp. (50)),

and then there exists a real number 8, and a function
p(€) > 0 tending to zero as & tends to zero such that

a,(Egy F) - a(E) = p(e)3, + O(p(e)).  (52)
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OEC

EE°
- <a 22 ,F>dxdt+J e.V.E5.R(VF)dxdt
Q
J yEEB%(F)dxdt—J <—Q,F>dxdt
o\ ot

+J sov.Eg.gé(VF)ddeJ u, EL R (F)dxdt
Q Q

:J <aEQ,F>dxdt+J &V.E.R(VF)dxdt
Q\ 0t Q

€

+ yOEB%(F)dxdt+J & V.E, . R(VF)dxdt
Q D

+ ELR(F)dxdt - %Fdd
JMIQ()xt at’ xat
D, Q

+ J , &oV.E).R(VF)dxdt + J U EL R (F)dxdt

+

Jo {
= 9Eq _ % F Ydxdt

o\ 0t ot’

+ | &V.(E, - E). R (VF)dxdt

&3

sOV.Eg.%(vp)ddeJ toES R (F)dxdt
D,

+ | po(EG — EQ) R (F)dxdt + J & V.E5 R (VF)dxdt
Qg DE

+ ylEg%(F)dxdt—J &,V.EQ R (VF)dxdt
D, D,

€ €

+ | uELR(F)dxdt.
DE

(53)
Let X§ =E — E),, and then X%, is the solution of

0,X5-V.(e, VX)) + . X5 =0inQ,

X5(x,0)=0in 0,

£

0x5,
=0onZ,
ov

a,(Eq, F) —ay(Eq, F) = J & V. X5 . R(VF)dxdt
D,

€

+| (e, —&)V.ENR(VF)dxdt

J D,

+ | U XoR(F)dxdt
DS

+ (py + yO)E%,%(F)dxdt.

J D,

€

(54)
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The rest of the proof follows from the following
lemmas. 0

Lemma 12.

J £,V. X5, R(VF)dxdt = O(|D,|),
D,

€

| wxssr(p)asar=o(p)
D,

€

Proof. For the proof, see [6] for the example. O

Lemma 13.

J (¢, — &9)V.ELR(VF)dxdt = (&, — £))V.ED(0)R(VF)(0)|D,|,

e

JD (# + o) EgR(F)dxdt = (u; = o) E5y(0)R(VF(0)| D|-

€

(56)

Proof. For the proof, see [6, 9] for the examples. O
Remark 14. According to the definition of I,

(Sl = 0 (57)

3.4.2. Variation of the Cost Function. We consider two
examples of cost functions. Each one corresponds to a spe-
cific analysis.

Example 1. The cost function J defined by

g
Jo(Eq) =J & (|Eq — Ey|*)dxdt, e, = D,,
Q

Proposition 15. Let i, be the functional associated to the
perturbed problem, and then there exists a real §; and a
linear operator L, such that

Jo(Eo) = o (Ea) = p()d) + L(E) + O(p(e)).  (59)

Proof.
JolE) - 1o (E8)

:J s£(|EB—Ed|Z)dxdt—J so(\Eg—Edf)dxdt
Q Q
2
=J 50(|E§)_Ed|2_ |Eo, — Eq )
Q\D,

+ JDE(SO -£) ({E?) - Ed|2),

J & (\EB Byt - |EY - Ed{z)dxdt
Q\D

e

= J &y (Ef, — EQ) (EG + E¢y — 2E,) dxdt
QP (60)
- [ |5y — ES*ddt
Q\D,

+ 2sOJ (E, - EY) (EYy - Ey)dxdt,
Q\D,

J 60|E§)—E?)|2dxdt
Q\D,
<&||E5 - Ea||’|Q = O(p(e)),

JD (& —el)(|E}g —Ed|2>dxdt

= (50 = )| [ES(0) = E4(0)||*|D| + O(p(e))-

We achieve the proof by setting LS(E):ZSOJQ\D_
E(E), - E;)dxdt. O

Example 2. Here, we focus on the function

1( B a, in—,
Jo(En) = EJQ%MEQ ~ E,)dxdt, a, = D,

a, inD,.
(61)

Proposition 16. Let Ji, be the functional associated to the
perturbed problem, and then there exists a real §; and a
linear operator L,, such that

Jo(EQ) = Jo(Ea) = p()d) + L(E) + O(p(e)).  (62)
Proof.
To(ES) - To(Ep)
1

1 . 2
= EJQ%\V(EQ - Ed)|2dxdt - EJQ%W(E?) - Ed)‘ dxdt

1
:EJ ) (\V(Eg -Ey)|* - |V(Ey - Ey) \Z)dxdt
Q\D,

I

1 1
+_J oc1|V(E§2—Ed)\2dxdt——J oc0|V(E?2—Ed)|2dxdt,
2 D, 2 D,

€ €

(63)



I:

€

a|V(Ef, - Eg)|* - |V (E - Ey) |2> dxdt
(64)

JQ\D
oy (V(E, — EQ)V(EG + By — 2E,) ) dxdt,
QD,

N = N
—

In setting X¢, = Ef, — Ef), equation (63) writes

1
I- EJ 0, VXS B(VXE ) dxdt
Q\D,

+ J a VX,V (EQ — Ey)dxdt,
Q\D

II=_| o|V(E,-E,)[dxdt
J D,

3

o, |V(ES - E + EY - H) [*dxdt,
D,

B+, V()

EQ)V(EH - Ey),

N = N = N =
.

o |V(Eg -
Jp,

J (xIV
D,

J o, VX5, Pdxdt + IJ o, |V (ES — E,) | doxdt
D E

+

NI —

3

+ J o, VX,V (EQ - E;)dxdt.
DE

(66)

Consequently,

1
Ja(Ha) - Th(ER) = 5 | agVX(VXG)dade
Q\D,

1
+ EJ o, VXHR(VXG)dxdt
D

€

+ J @ VX,V (E) - Ey)
Q\D

+ J a0, VX,V (E) - Ey)
D,

- JD (@ — ay) |V (ES — Ey) " dxdt.

€

N —

(67)
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Setting

L(H) = JQa£VE.@(v(Eg ~ E;)dxdt and p(e)5,

1 (68)
2
= EJ (a9 — @,)|V(Eqy — Eg) | dxt.
DS
As

%J o, VX, R (VXS dxdt + %J o, VX, R (VXS dxdt

Q\D, D,

1
= 5J a VXL, R(VXE)dxdt = O(p(e)),
Q
(69)

we obtain the desired result.
The following result gives the asymptotic expansion of
the cost function for the perturbation of the electric field.

Theorem 17. Let j(&) = J§ (E5,) be the cost functional defined
by (58), where E, is the solution of (47) and EY, is the corre-
sponding solution for e =0. Let D, = eB(0, 1) C R®. j has the
following asymptotic expansion:

Jj(e) - j(0) = -§ﬂ83 (19— 1) EQ(0) R (F(0))
+(g9=¢1) [V X E(0)R(VF)(0)] +8,] + O(¢%),
(70)

where F is the solution of the so-called adjoint problem: find
F e such that

3,F-V.(e,VF) + uyF = ~L,(E) in Q,
F(x,0)=

OF
v

=0on2.

Proof. The Lagrangian # of the problem ming ], (EY, F),
EY,, solution of (43) is defined by
Z(Eq, F) = Jo(Eq) +a(Eg, F) ~ I(F). (72)

Its variation with respect to ¢

Zo(Eoy F) =Jo(Eq) + a.(Eq, F) = L(F).  (73)

O

It follows form Propositions 11 and 15 (or 16) that
Hypotheses 1 and 2 are satisfied. We use the fact that the
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variation of the Lagrangian is equal to the variation of the
cost function; that is,

j(e) = j(0) = Z(Eqy F) = Z,(Ep, F), (74)
and we use Theorem 8 to conclude.

4. A Coupling Algorithm between Shape and
Topological Derivative for
Maxwell Equations

In this section, we propose an algorithm coupling the
shape and topological derivative for a given shape func-
tional under Maxwell equation as constraints. For the
numerical approximation of Maxwell’s equation, one can
use the finite differences method, the finite elements method,
the Finite Element-Finite Difference Hybrid Methods, or the
block pseudospectral method and XFEM method.

The optimization algorithm is summarized in Figure 1.
(see also [10] in the case of linear elasticity).

Based on the boundary of the domain being an unknown
of the problem, we introduce Q fixed (in general rectangular
or parallelepiped) domain which includes all potential
domains Q. The numerical method approximation requires

the introduction of two finite element spaces V'cH HQ;
R") and W' cr? (Q;R") on the fictitious domain Q. As Q
can be a rectangular or parallelepiped domain, the ones

can be defined on the same structured mesh . Next, we
shall suppose that

Vi={vec(CR )y e () VT eT ] (75)

where P(T) is a finite dimensional space of regular functions
such that P(T) 2 P,(T) for some k>1 integer. The mesh
parameter h stands for h = max g»h where hy is the diam-
eter of T.

Since we use the topological gradient to create holes
(inhomogeneities) during the optimization process, it is pos-
sible to start with a shape containing some initial holes or
not. A very small penalization is used when solving the
direct problem and the adjoint one to avoid the indetermi-
nacy of the rigid motions of the eventual isolated part. Con-
cerning step 4, a new hole of a given radius is created by the
simple operation on the level-set function, which can be
written on each finite element node x;

w@»=mﬂ<W%%gii%;ﬂl> (76)

where y(x) is the level-set function, ¥(x;) is its new value, r
is the radius of the created hole, and c is its center.

In step 6, the update of the level set is done directly
thanks to the shape derivative applying the following evolu-
tion equation for the level-set function:

oy _

N =g(x),inQ, (77)

with or without initial holes

!

[ Step 1: Computation of the direct problem ]

i

[ Step 2: Computation of the adjoint problem if necessary l

!

[ Step 3: Computation of topological gradient ]

!

[ Step 4: if a threshold is reached, create a new hole ]

!

[ Step 5: Computation of the shape gradient ]

!

[ Step 6: Update of the level-set with the shape gradient ]

i

[ Step 7: Reinitialization of the level-set ]

‘ Step 0: Given initial shape (i.e. level-set function) ’

No Convergence
criterion reached

F1GURE 1: Proposed algorithm.

where g(x) corresponds to the function in front of 8.v in the
integral of (24). This evolution equation integrated on a
small time interval. In our simulations, the gradient is
extended by zero to the complementary of  in Q. However,
a smoother extension could be considered. This method is
simpler than the classical way which is to integrate a
Hamilton-Jacobi equation (see [4]). It seems also to be
numerically more robust.

Note that it is convenient to apply a threshold on the
gradient to avoid some incoherent values where the shape
gradient may have a singularity (corners, transition from
Dirichlet to Neumann condition).

To regularize the level-set function, the reinitialization
step 7 is considered. It consists classically in solving

aaii’ +sign (y,)(|Vy] - 1) =0in Q x R+, 78)

Y(0,2) =y (0)in 2,

whose stationary solution is a signed distance. This
Hamilton-Jacobi equation is known to admit multiple non-
smooth solutions. Classically, a smooth solution is computed
thanks to an upwind scheme. Since the fictitious domain Q
can be a rectangular/parallelepiped domain, it is possible to
use a classical upwind scheme on a Cartesian grid. However,
to keep the possibility of having a nonstructured mesh, for
instance, to proceed to a local refinement, we use a different
strategy. Equation (78) is solved on a small time interval
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[0, At] integrating the following equation where the non-
linearity is made explicit:

oy . vy __ LA
i + sign (y,) W Vy = sign (y,)in Q x} 0, At} ,
P(0,0) =y (x).

(79)

Here y" is the level-set function at the previous time
step, and y"*! is given by ¥(At,-). The problem (79) is a
pure convection one. This problem can be solved, for
instance, with the simple Galerkin-Characteristic scheme
proposed in [11]. This scheme is unconditionally stable but
rather dissipative. The effect is that the level sets are a little
smoothed.

5. Conclusion and Extensions

In this paper, we used the adjoint method (respectively,
generalized adjoint method) to compute shape derivatives
(respectively, topological asymptotic expansions) associated
with a given shape functional and Maxwell’s equations.
The obtained derivatives (shape and topological) allow us
to construct an algorithm, which can permit simultaneously
to insert a small dielectric objects (holes) with topological
derivative and to control its boundary by using the shape
derivative and level set method.

In the forthcoming work, we will intent to apply this
algorithm for some applications, for example, for the recon-
struction of metallic buried objects.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] A. Henrot and M. Pierre, Variation et optimisation de formes:
Une analyse géométrique, Springer, Berlin Heidelberg, 2005.

[2] J. Cagnol and J. P. Zolezio, “Shape derivative in the wave equa-
tion with Dirichlet boundary condidtion,” Journal of Differen-
tial Equations, vol. 158, pp. 175-210, 1990.

[3] F. Murat and J. Simon, Sur le controle par un domaine géomé-
trique, Habilitation de I'Université de Paris, 1976.

[4] G. Allaire, F. Jouve, and A.-M. Toader, “Structural optimiza-
tion using sensitivity analysis and a level set method,” Journal
of Computational Physics, vol. 194, pp. 363-393, 2004.

[5] A. Sy, “Fictitious domain approach and level-sets method
for Stokes problem,” Internationl Journal of Mathematical
Archive, vol. 2, no. 12, pp. 2768-2776, 2011.

[6] S. Amtutz, Aspects théoriques et numeériques en optimisation de
forme topologique, [Ph.D. thesis], INSA de Toulouse, 2003.

[7] R. Dautry and J. L. Lions, Analyse mathématique et calcul
numérique pour les sciences et techniques, Tome II, Masson,
Paris, France, 1987.

Abstract and Applied Analysis

[8] J. Cagnol and M. Eller, “Boundary regularity for Maxwell's
equations with applications to shape optimization,” Journal
of Differential Equations, vol. 250, no. 2, pp. 1114-1136, 2011.

[9] M. Masmoudi and J. Pommier, “The topological asymptotic
expansion for the Maxwell equations and some applications,”
Inverse Problems, vol. 21, no. 2, pp. 547-564, 2005.

[10] A. Sy and Y. Renard, “A fictitious domain approach for
structural optimization with a coupling between shape and
topological gradient,” Far East Journal of Mathematical Sci-
ences, vol. 47, no. 1, pp. 33-50, 2010.

[11] O. C. Zienkiewicz and R. L. Taylor, The Finite Element
Method, Volume 3: Fluids Dynamics, Elsevier, 6th edition,
2005.



	Coupling Shape Optimization and Topological Derivative for Maxwell Equations
	1. Introduction
	2. Maxwell’s Equations and the Preliminary Results
	3. Shape Derivatives and Topological Asymptotic Expansion for Maxwell’s Equations
	3.1. The Adjoint Method
	3.2. Shape Derivative of the Cost Function
	3.3. Generalized Adjoint Method
	3.4. Problem Formulation and Topological Asymptotic Expansion
	3.4.1. Variation of the Sesquilinear Form
	3.4.2. Variation of the Cost Function


	4. A Coupling Algorithm between Shape and Topological Derivative for Maxwell Equations
	5. Conclusion and Extensions
	Data Availability
	Conflicts of Interest



