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In this work, we study the effect of nonlinear source term in Black-Scholes model by finding the solution of it. We use the
mathematical concepts of existence and uniqueness to arrive the conclusion. The transformation of the nonlinear equation into
heat equation leads to the existence of solution through fixed-point theorems, semigroup theory, and certain regularity
conditions imposed on variables.

1. Introduction

The Black-Scholes equation is a mathematical model that
plays an important role in dynamics of financial and eco-
nomic identity. In order to increase the efficiency of Black-
Scholes model, the condition on the parameters is made
uncertain, and their behaviours are studied in [1–4]. Agye-
man and Oduro in [5]studied the existence with nonlinear
force term depending on this deviation of the option price.

Based on this theory, let us study the solvability of the
following nonlinear Black-Scholes type equation.

~Vt +
1
2σ

2S2 ~VSS + rS~VS − r ~V = ~φ
ðT
0
f S, t, ~VS

À Á
dt

� �
~V , ð1Þ

where S > 0, t ∈ ð0, TÞ, and Ω∗ ⊂Rn.
Here, ~V is the option price; σ is the volatility constant; S

is the stock price; r is the risk-free interest rate; ~φ is the
potential function; time T > 0 and the nonlinear term f ðS,
t, ~VSÞdt represent the various price effects that happens dur-
ing the period. Assume that the force effect happen as a mul-

tiple of the option price. In [1], the function
f : Ω∗ × ½0, T� ×Ω∗ ⟶Ω∗ is assumed to satisfy the Car-
atheodory conditions that, f ð:,:,~VÞ is measurable over all ~V
∈Ω∗. In addition, the function f ð:,t,:Þ and its derivatives
are bounded and continuous throughout its entire region
for all time t. More details on the function spaces are
explained in [6].

The nonlinear term ~Φð·Þ~V on the right hand side repre-
sents the monetary assistance provided to the investor.
Pilant and Rundell in [7] studied the existence and unique-
ness of the partial differential equations (PDEs) with nonlin-
ear term using fixed-point technique. Shu and Shi in [8]
studied the mild solution of impulsive fractional evolution
equations through fixed-point technique. Following this,
Nanda and Das [9] extended the aforementioned method
for solving various forms heat conduction problems involv-
ing nonlinear source terms. The similar problem is studied
by one of the authors in [10], where fixed-point technique
is applied but for its inverse theory. In [11, 12], the authors
adopted fixed-point technique in the discussion on the exis-
tence of various forms of solution of an almost periodic sto-
chastic differential equations. The works in [13–15] studied
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the existence of solutions for PDE under nonlocal condi-
tions. Moreover, the works in [16–20] also deals with the dif-
ferent forms of Black-Scholes equation and studied the
existence theory. In [21], the author used the semigroup the-
ory and operators to study the Black-Scholes model. Hence,
considering the mentioned points, it is clear that the discus-
sion on Black-Scholes model using fixed-point theory is of
great interest. The problem under consideration is a special
one as it depends on the forcing term that reflects today’s
economic outlook.

The novelty of this problem lies in the form under inves-
tigation. This is one of the most difficult forms of the Black-
Scholes equation. Physically, this problem is interpreted as
follows: find the value for option “~V” that make up for any
losses incurred while exercising the option. The integral
term is defined to check the cash flow required for offsetting.
The loss must be within the specified range. This paper is
organized as follows: the existence part is discussed is Sec-
tion 2, the uniqueness property is established in Section 3,
and the conclusion in Section 4. This discussion is based
on the technique adapted in [22].

2. Existence Result

In this segment, transform the left hand side of (1) in the
form of heat equation and thereby the direct application of
the notations and procedure of [22], we obtain the necessary
result. Also, the integrodifferential forcing term can be neu-
tralized through the method discussed in [14]. Let

S = ex, t = T −
2τ
σ2

~V S, tð Þ = ~v x, τð Þ = ~v ln Sð Þ, σ
2

2 T − tð Þ
� �

:

ð2Þ

The derivatives of transformation are

∂~V
∂t

= −σ2

2 ~vτ,
∂~V
∂S

= 1
S
~vx,

∂2 ~V
∂S2

= 1
S2

~vxx − ~vxð Þ: ð3Þ

Substituting the derivatives of Black-Scholes equation,
we get

~Vt +
1
2σ

2S2 ~VSS + rS~VS − r ~V = −~vτ + ~vxx − ~vx +
2r
σ2

~vx −
2r
σ2 ~v:

ð4Þ

Setting k = 2r/σ2, the equation becomes

~Vt +
1
2σ

2S2 ~VSS + rS~VS − r ~V = −~vτ + ~vxx + k − 1ð Þ~vx − k~v,

ð5Þ

for −∞ < x <∞,0 ≤ τ ≤ σ2/2T . As more modifications on
variables are required to make the unnecessary terms be
removed, let

~v x, τð Þ = eαx+βτ~u x, τð Þ = ϕ~u: ð6Þ

Computing the partial derivatives of ~v and using this in
(5), we get

~Vt +
1
2σ

2S2 ~VSS + rS~VS − r ~V = −~uτ + ~uxx + 2α + k − 1ð Þ½ �~ux
+ α2 + k − 1ð Þα − k − β
Â Ã

~u,
ð7Þ

since α and β are arbitrary constants, introduced to elimi-
nate the ~ux and ~u terms

α = − k − 1ð Þ
2 , β = α2 + k − 1ð Þα − k = − k + 1ð Þ2

4 : ð8Þ

Then, α and β form the coefficients of 0, which eliminate
~ux and ~u terms, respectively. The equation is then reduced to
a one-dimensional heat equation, we can attain that

~Vt +
1
2σ

2S2 ~VSS + rS~VS − r ~V = −~uτ + ~uxx#: ð9Þ

Substituting (9) in (1) and replacing the variables on the
R.H.S of (1) S = x, t = τ, and ~V = ~u. Thence, we have

~uτ − ~uxx + ~φ
ðT
0
f x, τ, ~uxð Þdτ

� �
~u = 0, ð10Þ

with conditions

~ujτ=0 = ~u0, ~uj∂Ω∗ = 0, τ, xð Þ ∈ 0, Tð � ×Ω∗, ð11Þ

where Ω∗ lies in a multidimensional bounded domain C2:
Obviously, the significance of the nonlinear term (9) is its
dependence on

~uT ≔
ðT
0
f x, τ, ~uxð Þdτ: ð12Þ

That is, while the existence on ½0, T� is unknown at
whole interval, T > 0 is given a precursor.

From [23, 24], the existence of the solution of (1) should
be nonnegative, nondecreasing potential ~φ for which x⟼
~φðxÞx is derivable. We present a brief demonstration on its
solvability based on generic assumptions about potential ~φ.

The proof depends on fixed-point theorem due to
Schauder and the fact that under acceptable presumptions,
Bð~uTÞ≔ −ΔD + ~φð~uTÞ from a semigroup fe−τBð~uT Þ ; τ ≥ 0g
on LpðΩ∗Þ, where −ΔD stands for Laplacian, which is sub-
ject to Dirichlet boundary conditions. The expected form
of solution (1)

~u τð Þ = e−τB ~uTð Þ~u0, τ ∈ 0, T½ �, ð13Þ

and, as a result, ~uT is described by the relation

~uT =
ðT
0
e−τB ~uTð Þ~u0dτ: ð14Þ
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Theorem 1. Let ~φ ∈CðR,RÞ be nonnegative and n < 2p: If
one of the relations

~u0 ∈L∞ Ω∗ð Þ, ð15Þ

or

(i) ~φðxÞ ≤ að1 + jxjÞ, x ∈R holds, then for some a > 0 and
~u0 ∈LpðΩ∗Þ:

There exists at least one possible solution

~u ∈C 0, T½ �,Lp Ω∗ð ÞÀ Á
∩C1 0, Tð �,Lp Ω∗ð ÞÀ Á

∩C 0, Tð �,W 2
p Ω∗ð Þ

� �
,

ð16Þ

to (1). Moreover, k~uðτÞkp ≤ k~u0kp for τ ∈ ½0, T�: If 0 ≤ ~u0,
then 0 ≤ ~uðτÞ for τ ∈ ½0, T�:

Proof. Part (i).
Take a nonnegative function ~φ ∈CðR,RÞ. Based on the

boundedness of ~φ and by defining ~u0 ∈L∞ðΩ∗Þ, we arrive at

~φ ∈C L∞ Ω∗ð Þ,L∞ Ω∗ð Þð Þ, ð17Þ

is bounded.
Set R0 ≔ Tk~u0k∞ and let

XT ≔ �BL∞ Ω∗ð Þ 0,R0ð Þ, ð18Þ

indicate a closed ball whose cent is at origin and radius R0.
Take 2p ∈ ðn,∞Þ with the fact that, for any ~uT ∈XT , the map-
ping ~φð~uTÞ≔ ½Ω∗ ↦ ~φð~uTÞΩ∗� satisfies without a doubt,

~φ ~uTð Þk kL Lp Ω∗ð Þð Þ ≤ ~φ ~uTð Þk k∞, ≤ max
−R0,R0½ �

~φ, ~uT ∈XT : ð19Þ

Combining the results and the fact −ΔD ∈HðW 2
p,DðΩ∗Þ,

LpðΩ∗ÞÞ

B ~uTð Þ≔ −ΔD + ~φ ~uTð Þ ∈H W 2
p,D Ω∗ð Þ,Lp Ω∗ð Þ ; κ, ω R0ð Þ

� �
,

ð20Þ

for some positive ωðR0Þ and 1 ≤ κ. Moreover, for a nonnega-
tive ~φ, the operator −Bð~uTÞ generates a positive contraction
semigroup ðe−τBð~uT ÞÞτ≥0 on each L jðΩ∗Þ for j ∈ ð1,∞�.

Hence,

e−τB ~uTð Þ
 

L Lp Ω∗ð Þð Þ ≤ 1, τ ≥ 0, j ∈ 1,∞ð �: ð21Þ

Let us delineate,

~Φ ~uTð Þ≔
ðT
0
e−τB ~uTð Þ~u0dτ, ~uT ∈XT : ð22Þ

Then, (21) signifies that

~Φ ~uTð Þ 
∞ ≤

ðT
0

e−τB ~uTð Þ
 

L Lp Ω∗ð Þð Þ ~u0
 

∞ dτ ≤ T ~u0
 

∞ ≤R0,

ð23Þ

with ~Φ : XT ⟶XT : Using the condition 2γ ∈ ðn/p, 2Þ and
(20) together with 1 ≤KðR0Þ and positive ζðR0Þ, such that

e−τB ~uTð Þ
 

L Lp Ω∗ð Þ,W 2γ
p,D Ω∗ð Þð Þ ≤K R0ð Þeζ R0ð Þττ−γ, τ > 0:

ð24Þ

Therefore,

~Φ ~uTð Þ 
W

2γ
p,D Ω∗ð Þ ≤

ðT
0

e−τB ~uTð Þ
 

L Lp Ω∗ð Þ,W 2γ
p,D Ω∗ð Þð Þ ~u0

 
p
dτ,

≤
K R0ð Þ
1 − γ

eζ R0ð ÞTT1−γ
� �

~u0
�� ��

p
≤ c R0ð Þ,


ð25Þ

~ΦðXTÞ is bounded in W
2γ
p,DðΩ∗Þ, the latter is being com-

pact ingrained in Cð�Ω∗Þ since 2γ ∈ n/p. To validate the prop-
erty of continuity of ~Φ,

e−τB ~uTð Þ − e−τB ~vTð Þ = −
ðτ
0

d
dx e

− τ−xð ÞB ~uTð Þe−xB ~vTð Þdx,

= −
ðτ
0
e− τ−xð ÞB ~uTð Þe−xB ~vTð Þ −B ~vTð Þ +B ~uTð Þ½ �dx,

= −
ðτ
0
e− τ−xð ÞB ~uTð Þe−xB ~vTð Þ ~φ ~uTð Þ − ~φ ~vTð Þð Þdx,

ð26Þ

thereby using (19), (21), and (24), we get

e−τB ~uTð Þ − e−τB ~vTð Þ
 

L Lp Ω∗ð Þ,W 2γ
p,D Ω∗ð Þð Þ

≤
ðτ
0
e− τ−xð ÞB ~uTð Þ

 
L Lp Ω∗ð Þ,W 2γ

p,D Ω∗ð Þð Þ ~φ ~uTð Þ − ~φ ~vTð Þk kL Lp Ω∗ð Þð Þ e−xB ~vTð Þ
 

L Lp Ω∗ð Þð Þdx,

≤ c R0ð Þec R0ð ÞTτ1−γ ~φ ~uTð Þ − ~φ ~vTð Þk k∞:

ð27Þ
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The continuous embedding of W 2γ
p,DðΩ∗Þ in Cð�Ω∗Þ

~Φ ~uTð Þ − ~Φ ~vTð Þ 
∞ ≤ c ~Φ ~uTð Þ − ~Φ ~vTð Þ 

W
2γ
p,D Ω∗ð Þ

≤ c
ðT
0

e−τB ~uTð Þ − e−τB ~vTð Þ
 

L Lp Ω∗ð Þ,W 2γ
p,D Ω∗ð Þð Þ ~u0

 
p
dτ,

ð28Þ

using (25) and (27), we get

~Φ ~uTð Þ − ~Φ ~vTð Þ 
∞ ≤ c

ðT
0
c R0ð Þec R0ð ÞTτ1−α ~φ ~uTð Þ − ~φ ~vTð Þk k∞ ~u0

 
p
dτ,

≤ c1 R0ð Þ ~φ ~uTð Þ − ~φ ~vTð Þk k∞,
ð29Þ

for ~uT , ~vT ∈XT : Hence, the required results on continuity
~Φ : XT ⟶XT are established through (17). Using the pre-
compact image of ~Φ ∈EðXT ,XTÞ, the theorem due to
Schauder shows the presence of point ~uT ∈XTwith the prop-
erty ~uT = ~Φð~uTÞ. Now, define ~uðτÞ as

~u τð Þ≔ e−τB ~uTð Þ~u0, τ ∈ 0, T½ �: ð30Þ

in order to obtain the solution for (1). If 0 ≤ ~u0, then 0 ≤ ~uðτÞ
for τ ∈ ½0, T� because the semigroup is positive. This com-
pletes proof of part (i).

Part (ii). Now, assume a nonnegative ~φ ∈CðR,RÞ and
that að1 + jxjÞ ≥ ~φðxÞ, x ∈R, for positive a. Let us presume

~u0 ∈LpðΩ∗Þ with n < 2p . We modify the set

R0 ≔ T ~u0
 

∞,

XT ≔ �BLp Ω∗ð Þ 0,R0ð Þ:
ð31Þ

One of the presumption on ~φ includes

~φ ∈BC XT ,Lp Ω∗ð ÞÀ Á
: ð32Þ

Further, W 2−2ε
p,D ðΩ∗Þ maintains its continuity for small

n < 2p in Cð�Ω∗Þ over ε > 0. Thus, for ω ∈W 2
p,DðΩ∗Þ, we have

~Φ ~uTð Þω 
p
≤ c ~φ ~uTð Þk kp ωk kW 2−2ε

p,D Ω∗ð Þ,

≤ c ~φ ~uTð Þk kp ωk kεp ωk k1−εW 2
p,D Ω∗ð Þ,

≤ c δð Þ ~φ ~uTð Þk k1/εp ωk kp + δ ωk kW 2
p,D Ω∗ð Þ,

ð33Þ

with meager positive δ. Hence, the relation (20) holds good
if the equality (33) and the corresponding results are com-
bined. Moreover, (21) holds for j = p. Defining ~Φ as in
(22), by similar arguments as in previous part, a precompact
image of ~Φ ∈CðXT ,XTÞ can be arrived (26) along with con-
tinuity that follows from the relations (21), (24), and (33) as
given in the following:

The required result is achieved by applying Schauder’s
fixed-point theorem.

Corollary 2. Let ~u be the solution to (1) provided by Theorem
1. If p ≥ 2, then

∇~uTk k22 +
ð
Ω∗
~φ ~uTð Þ ~uTj j2 dx =

ð
Ω∗

~u0 − ~u Tð ÞÀ Á
~uT dx ≤ 2T ~u0

 2
2
:

ð35Þ

If ~u0 ∈W γ
pðΩ∗Þ for some positive γ, then ~uT ∈W 2

pðΩ∗Þ

−Δ~uT + ~φ ~uTð Þ~uT = ~u0 − ~u Tð Þ inΩ∗, ~uT = 0 on ∂Ω∗: ð36Þ

Proof. The proof is the direct consequence of Theorem 1.

3. Uniqueness Result

Following the methodology adopted in [24], we demonstrate
the property of uniqueness for small data in (1) if R0 ≔ T
k~u0k∞ is small along with locally Lipschitz continuous

~φ : R⟶R, ð37Þ

and

x⟼ ~φ xð Þx, ð38Þ

is a function which is nondecreasing.
Assume that the existence of solutions is true and the

relations (37) and (38) hold good, let the solutions of (1)
be ~u and ~v with ~uð0Þ = ~u0 = ~vð0Þ ∈L∞ðΩ∗Þ. Fix ωT ≔

e−τB ~uTð Þ − e−τB ~vTð Þ
 

L Lp Ω∗ð Þð Þ
≤
ðτ
0
e− τ−xð ÞB ~uTð Þ

 
L Lp Ω∗ð Þð Þ ~φ ~uTð Þ − ~φ ~vTð Þk kL Lp Ω∗ð Þ,W 2−2ε

p,D Ω∗ð Þð Þ e−xB ~vTð Þ
 

L Lp Ω∗ð Þ,W 2−2ε
p,D Ω∗ð Þð Þdx,

≤ c R0ð Þ ~φ ~uTð Þ − ~φ ~vTð Þk kp:

ð34Þ
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~uT − ~vT .

⟹ ~φ ~uTð Þ − ~φ ~vTð Þk k2 ≤ L R0ð Þ ~uT − ~vTk k2, = L R0ð Þ ωTk k2, ð39Þ

for fixed value LðR0Þ, obtained by the definition on ~φ,
which behaves as uniformly Lipschitz over its region of
existence, (i.e., on the set ½−R0,R0�). This leads to the
fact (35) which entails that

∇ωTk k22 = −
ð
Ω∗

~uT − ~vT½ � ~φ ~uTð Þ~uT − ~φ ~vTð Þ~vTð Þdx

+
ð
Ω∗
ωT ~v Tð Þ − ~u Tð Þ½ �dx,

≤ ~v Tð Þ − ~u Tð Þk k2 ωTk k2:

ð40Þ

where (38) allows inequality to end. Now, owing to (21),
(26), and (39), we get

So, (40) and (41) cover it

Ω∗
Tk k22 ≤R0 L R0ð Þ Ω∗

Tk k22 ≤ c Ω∗ð ÞR0L R0ð Þ ∇ωTk k22,
ð42Þ

where cðΩ∗Þ is borrowed from Poincare’sine quality. Now, if
R0LðR0ÞcðΩ∗Þ < 1, it refers to ωT ≡ 0 in ω⟹ ~uT = ~vT .

In the following proposition, we study the monotonicity
condition and its effect on uniqueness theory.

Proposition 3. Let ~φ be unknown that satisfies (37), 2p > n,
and consider ~u0 ∈LpðΩ∗Þ. There is M > 0 such that (1)
has a unique value

~u ∈C 0, T½ �,Lp Ω∗ð ÞÀ Á
∩C1 0, Tð �,Lp Ω∗ð ÞÀ Á

∩C 0, Tð �,W 2
p Ω∗ð Þ

� �
,

ð43Þ

based on the inequality Tk~u0kp ≤M:

Proof. The proof is obtained through Banach’s fixed-point
theorem. Fix 2γ ∈ ðn/p, 2Þ and take R0 > 0 along with

XT ≔ �B
W

2γ
p,D Ω∗ð Þ 0,R0ð Þ: ð44Þ

Notice that W 2γ
p,DðΩ∗Þ embeds continuously into Cð�Ω∗Þ.

Thus, as ~φ is uniformly Lipschitz continuous on compact
sets, there exists a constant LðR0Þ > 0 with ~φ

~φ ~uTð Þ − ~φ ~vTð Þk k∞ ≤ L R0ð Þ ~uT − ~vTk kW 2γ
p,D Ω∗ð Þ, ~uT , ~vT ∈XT :

ð45Þ

Especially from the proof of Theorem 1, we can write

~Φ ~uTð Þ 
W

2γ
p,D Ω∗ð Þ ≤

K R0ð Þ
1 − γ

eζ R0ð ÞTT1−γ ~u0
 

p
, ð46Þ

Moreover, (27) and (45) combines to give

e−τB ~uTð Þ − e−τB ~vTð Þ
 

L Lp Ω∗ð Þ,W 2γ
p,D Ω∗ð Þð Þ

≤ c R0ð Þec R0ð ÞTT1−γ ~uT − ~vTk kW 2γ
p,D Ω∗ð Þ,

ð47Þ

for some ~uT , ~vT ∈XT and positive cðR0Þ. Therefore,

~Φ ~uTð Þ − ~Φ ~vTð Þ 
W

2γ
p,D Ω∗ð Þ

≤
ðT
0

~u0
 

p
e−τB ~uTð Þ − e−τB ~vTð Þ

 
L Lp Ω∗ð Þ,W 2γ

p,D Ω∗ð Þð Þdτ,

≤ c1 R0ð Þ ~u0
 

p
ec R0ð ÞTT2−γ ~uT − ~vTk kW 2γ

p,D Ω∗ð Þ:

ð48Þ

The inequality together with (46) shows that ~Φ : XT

⟶XT behaves like a contraction mapping with Tk~u0kp
being very small. Consequently, if Tk~u0kp is very small, then

there exists a unique ~uT ∈XT with ~Φð~uTÞ = ~uT .

4. Conclusion

As discussed, the nonlinear force term on the right hand side
plays an important role in establishing the existence of solu-
tion. It is clear that the cash flows to the market needs to be
examined and must always be within limits. This fixed value
must be compared with the actual price of the option and
the investment decision that must be made.

~v Tð Þ − ~u Tð Þk k2 = e−τB ~uTð Þ − e−τB ~vTð Þ
� �

~u0
 

2
,

≤
ðT
0

e− τ−xð ÞB ~uTð Þ
 

L L2 Ω∗ð Þð Þ
~φ ~uTð Þ − ~φ ~vTð Þk k2 e−xB ~vTð Þ

 
L L∞ Ω∗ð Þð Þ

~u0
 

∞dx,

≤R0L R0ð Þ ωTk k2:

ð41Þ
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