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In the present study, the effect of thermal stratification and heat generation in the boundary layer flow of the Eyring-Powell fluid
over the stratified extending surface due to convection has been investigated. The governing equations of the flow are transformed
from partial differential equations into a couple of nonlinear ordinary differential equations via similarity variables. The optimal
homotopy asymptotic method (OHAM) is used to acquire the approximate analytical solution to the problems. Impacts of flow
regulatory parameters on temperature, velocity, skin friction coefficient, and Nusselt number are examined. It is discovered that
the fluid velocity augments with a greater value of material parameter E, mixed convection parameter λ, and material fluid
parameter σ. The result also revealed that with a higher value of the Prandtl number Pr and the stratified parameter ε, the
temperature and the velocity profile decreases, but the opposite behavior is observed when the heat generation/absorption
parameter γ increases. The results are compared with available literature and are in good harmony. The present study has
substantial ramifications in industrial, engineering, and technological applications, for instance, in designing various chemical
processing equipment, distribution of temperature and moisture over agricultural fields, groves of fruit trees, environmental
pollution, geothermal reservoirs, thermal insulation, enhanced oil recovery, and underground energy transport.

1. Introduction

The study of the dynamics of non-Newtonian fluids has
inconceivable importance on account of its numerous bio-
logical, industrial, and engineering applications. They have
a vital role in material production, mixture, paper coating,
bioengineering, oil repository designing, petroleum pro-
duction, food engineering, chemical engineering, and the
study of electroosmatic flow, blood flow, etc. [1–8]. Non-
Newtonian fluid can be found in numerous materials for
example in shampoos, paints, cosmetic productions, body
fluids, grease, and animal blood to name a few. Several
models including the Eyring-Powell model (one among
the non-Newtonian fluid models) have been proposed by
different scientists for the analysis of dynamics of non-
Newtonian fluids. The Eyring-Powell model is derived

from the kinetic molecular theory of liquids rather than
empirical relation and properly shows the Newtonian
behavior at low and high shear rates; owing to this, it
gained the attention of many scholars. This class of fluid
does not have constant viscosity with temperature alter-
ations [9–13].

The Eyring-Powell fluid model has essential applications
in designing various chemical processing equipment, distri-
bution of temperature and moisture over agricultural fields,
groves of fruit trees, environmental pollution, geothermal
reservoirs, thermal insulation, enhanced oil recovery, and
underground energy transport [11]. The Eyring-Powell
model with heat transfer plays a crucial role in diverse indus-
trial, geophysical, and natural processes. The understanding
of the heat transfer effect in a variety of materials and
boundary layer flow overstretching sheets is also imperative
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as heat has substantial applications in diverse power station
engineering, biological phenomena, and industrial branches
like paper manufacture, metal extrusion, and bubble absorp-
tion [14–18].

Heat and mass transfer in the Eyring-Powell liquid
model undertakes an essential role in the procedures which
comprise the creation and spread of haze, plotting of mix-
ture handling instrumentation, environmental pollution,
drying of porous slides, raised oil recuperation, warm pro-
tection, and underground energy transport [19–21]. Ishaq
et al. [22] explored the 2D nanofluid film stream of the
Eyring-Powell liquid with changeable heat conduction in
the existence of MHD over the unsteady permeable extend-
ing sheet and asserted that the porosity parameter lessens
the movement of the fluid.

Hayat et al. [23] conducted a study on MHD nonlinear
extending flow of the Eyring-Powell nanofluid, where a zero
nanoparticle mass flux stipulation was applied at the sheet.
Their finding illustrates that with magnetic parameters, skin
friction coefficient raises though the heat transmits rate at
the surface declines. The heat and mass transfer analysis of
non-Newtonian fluid overstretching sheets has been done
by different scholars; Megahed et al. [24] conducted a study
on heat transfer for MHD fluid as a result of the unsteady
stretching plate with extended heat flux by varying viscosity
and thermal conductivity with temperature; Reddy et al. [25]
and Megahed and Gnaneswara [26] have also investigated
the heat and mass transfer of different non-Newtonian flow
across a stretched sheet.

Mixed convection flow plays a significant role, for exam-
ple, in air limit layer flows, atomic reactors, solar gatherers,
and in electronic hardware, just to name a few. Wubshet
and Temesgen [19] used Cattaneo–Christov heat and mass
flux model to inspect the mixed convection flow of the
Eyring-Powell nanofluid through a porous medium on a lin-
early extending sheet in the company of permeability and
Joule heating effects. They noticed that with the advanced
value of the Eyring-Powell fluid parameter, the fluid veloci-
ties, local Nusselt number, and skin friction coefficient pro-
motes. Malik et al. [27] have examined a mixed convection
flow for the MHD Eyring-Powell fluid over the extending
plate solving the problem numerically by the shooting
method. Their outcome indicates swelling of the Eyring-
Powell material parameter results in a meaningful decrease
in both heat and mass transfer. Moreover, Rahimi et al.
[28] presented a collocation method solution for an
Eyring-Powell fluid flow over a prolonging plate. They found
that the velocity enhances with mounting the Eyring-Powell
fluid material parameter, but the opposite behavior is
observed when the fluid material parameter is augmented.

Stratification plays a vigorous role in several industrial
and natural phenomena. Owing to its wide uses in fluid
mechanics, several investigators studied the stratification
phenomenon. Zubair et al. [29] investigated the attributes
of a chemical reaction and twofold stratification in the
Eyring-Powell fluid flow persuaded by a nonlinear prolong-
ing plate with changeable thickness. They confirmed the
temperature decline with thermal stratified parameters; Sal-
ahuddin et al. [30] inspected the vital aspects of the stratifi-

cation procedure with linear convection. They discovered
that with an enhanced value of the thermal stratification
parameter the velocity, the temperature profile reduces.
Hayat et al. [31] examined the MHD effect for heat and mass
transfer through the double stratified sheet. They reported
that thermal and solutal stratification parameters have a
conflicting effect on temperature distributions. Furthermore,
Ogunseye et al. [32] examined the effect of thermal radiation
on the flow and heat transfer of the Eyring-Powell nanofluid.
The understanding of the heat generation/absorption effect
of boundary layer flow is also crucial in different fields of
study and applications. Owing to this, a lot of scholars
[33–35] conducted a study on the heat generation effect on
boundary layer flow and heat transfer due to different non-
Newtonian fluids. The study of the boundary layer flow of
the Eyring-Powell fluid over a stretching surface plays a vital
role in industrial applications. A stretching surface has
abundant significance in numerous industrial applications
including electronic chips, fiber yarn, polymer industries,
and glass blowing.

Motivated by the above significant studies, we consider
the problem of the Eyring-Powell fluid flow over a stratified
stretching surface subject to mixed convection and heat gen-
eration/absorption effect. The problem has plenty of applica-
tions in various fields of science and engineering but it has
not been analytically investigated so far. Moreover, the effect
of heat generation and thermal stratification on the flow of
the fluid under consideration is not investigated. Hence,
the novelties of the current work are the investigation of
the heat generation and thermal stratification effects in the
boundary layer flow of the Eyring-Powell fluid over the
stratified extending surface due to convection, the use of
OHAM for solving the problem, and the analysis of effects
of different parameters on velocity and temperature of the
considered fluid. The effectiveness and reliability of the pro-
posed method have been proved in many research articles,
and it is used for solving both nonlinear and linear problems
by several authors [34, 36–38].

2. Mathematical Formulation

In the model, a two-dimensional incompressible steady
boundary layer mixed convection flow of the Eyring-
Powell fluid over the stratified extending surface has been
pondered. The sheet is elongated at invariable speed uw = a
x along the x -axis in a vertical direction and the fluid tem-
perature at and far away from the plate surface is given,
respectively, by Tw andT∞. The influence of heat genera-
tion/absorption is considered in the energy equation. The
geometric representation of the problem under consider-
ation and the coordinate system are displayed in Figure 1.

Applying the boundary layer estimation the governing
equation of the problem is condensed into the following
form (see [21, 39, 40]):

Continuity equation:

∂u
∂x

+ ∂v
∂y

= 0: ð1Þ
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Momentum equation:

u
∂u
∂x

+ v
∂u
∂y

= υ + 1
ρβc

−
1

2ρβc3
∂u
∂y

� �2
 !

∂2u
∂y2

+ gβ T − T∞ð Þ,
ð2Þ

where u and v, x and y, respectively, represent the horizontal
and vertical components of fluid velocity and the coordinate
system, β and c are the dimensional Eyring-Powell fluid
material parameters, and υ, g represent kinematic viscosity
and gravitational acceleration, respectively.

Energy equation:

u
∂T
∂x

+ v
∂T
∂y

= k
ρcp

∂2T
∂y2

+ Q
ρcp

T − T∞ð Þ: ð3Þ

The corresponding boundary conditions of the govern-
ing flow problem are (see [16, 31]) as follows:

u = uw = ax, v = 0, T = Tw = T0 + b1x at y = 0
u⟶ 0, T ⟶ T∞ = T0 + b2x as y⟶∞

)
, ð4Þ

where a is a linear stretching rate, b1 and b2 are positive
dimensional constants, and T0 is the stretching sheet refer-
ence temperature.

To make the arithmetical analysis simple, we convert
Equations (1)–(4) into ODEs, by introducing the stream
function ψðx, yÞ, such that

u = ∂ψ
∂y

, ð5Þ

v = −
∂ψ
∂x

, ð6Þ

where

ψ =
ffiffiffiffiffi
aυ

p
xf ηð Þ: ð7Þ

The dimensionless similarity variable η, stream function
f ðηÞ, and temperature θðηÞ are defined as follows (see [21,
39, 40]):

η = y

ffiffiffiffiffiffiffiffiffi
a
υ

� �r
, ð8Þ

θ ηð Þ = T − T∞
Tw − T0

, ð9Þ

where T = b1θx andT∞ = T0 + b2x.
Now, Equation (1) is identically pleased with u and v of

Equation (5). Furthermore, using Equation (5) and (8),
Equations (2) and (3) become converted into the following
ODEs:

1+∈ð Þf ′″ + f f ″ − σ ∈ f ″
� �2

f ′″ − f ′
� �2

+ λθ = 0, ð10Þ

θ″ + Prf θ′ + Prγθ − Prf ′θ − Pre1 f ′ = 0, ð11Þ

where ∈ = 1/ρβcυ, σ = u2wa/2υc2, λ = gβb1/a2, Pr = μcp/k, γ =
Q/acpρ, and e1 = b2/b1 represent a material parameter, fluid
parameter, mixed convection parameter, Prandtl number,
heat generation/absorption parameter, and thermal stratifi-
cation parameter, respectively. Moreover, the prescribed side
conditions Equation (4) become reduced to

f 0ð Þ = 0, f ′ 0ð Þ = 1, θ 0ð Þ = 1 − e1 at y = 0
f ′ ηð Þ = 0, θ ηð Þ = 0 as η⟶∞

)
: ð12Þ

The physical quantities of interest: local skin friction
coefficient Cf and the Nusselt number Nu, are described as
follows (see [30, 40]):

Cf =
τw
ρu2w

, ð13Þ

Nu = xqw
k Tw − T∞ð Þ , ð14Þ

where uw represents free stream speed, τw and qw given by
(see [21])

τw = μ + 1
βc

� �
∂u
∂y

−
1

6βc3
∂u
∂y

� �3
 !�����

y=0

, qw = −k
∂T
∂y

� �����
y=0

,

ð15Þ

Velocity boundary layer

x, u

y, v

u = uw = ax

T∞ = T0 + b2x

Tw = T0 + b1x
g

Thermal boundary layer

Figure 1: Physical model of the problem.
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denote skin shear stress on a surface and heat flux at the
surface.

From Equations (5), (8), (13), and (15), we obtain

ffiffiffiffiffiffiffi
Rex

p
Cf = 1+∈ð Þf ″ 0ð Þ − 1

3 ∈ σ f ″ 0ð Þ
� �3

,
ffiffiffiffiffiffiffi
Rex

p� �−1
Nu = −θ′ 0ð Þ,

ð16Þ

where Rex = xuw/υ = ax2 denotes the Reynolds number and
x is the distance from the reference point at which a bound-
ary layer begins to form.

3. Solution of the Problem via the OHAM

Employing the basic principle of OHAM on Equations (10)
and (11), we construct the homotopy equation:

where p ∈ ½0, 1� and f , θ,H1ðpÞ,H2ðpÞ are expanded as fol-
lows:

f = f0 + pf 1 + p2 f2 + p3 f3, θ = θ0 + pθ1 + p2θ2 + p3θ3,
H1 pð Þ = pc1 + p2c2 + p3c3,H2 pð Þ = pc4 + p2c5 + p3c6,

ð18Þ

where H1ðpÞ andH2ðpÞ are nonzero ancillary functions for
p ≠ 0 and zero for p = 0. Using Equation (18) in Equation
(17) and collecting like terms based on powers of p, we get
the next zero-, first-, second-, and third-order problems with
their boundary conditions.

The zeroth-order problem:

f0 ′″ ηð Þ = 0,
θ0″ ηð Þ = 0:

(
ð19Þ

Boundary conditions:

f0 0ð Þ = 0, f0 ′ 0ð Þ = 1, θ0 0ð Þ = 1 − e1,
f0 ′ ηð Þ = 0, θ0 ηð Þ = 0 asη⟶∞:

ð20Þ

The solution for Equation (19) with BCs (20) is

f0 ηð Þ = η 1 − η

20
� �

,

θ0 ηð Þ = 1 − εð Þ 1 − η

10
� �

:

8><
>: ð21Þ

The 1st-order problem:

f1 ′″ η, a1ð Þ = a1
1+∈ f0 f0″ − f0′

2 + λθ0
� �

,

θ1″ η, b1ð Þ = Prb1 f0θ0 ′ − f0 ′θ0 + γθ0 − εf0 ′
� �

:

8><
>: ð22Þ

Boundary conditions:

f1 0ð Þ = 0, f1 ′ 0ð Þ = 0, θ1 0ð Þ = 0,
f1 ′ ηð Þ = 0, θ1 ηð Þ = 0 as η⟶∞:

(
ð23Þ

Solution for Equation (22) with BC Equation (23) is

f1 η, a1ð Þ = a1
1+∈ð Þ

�
−η5

12000 + η4

240 −
η3

6 + 15
8 η2

+ λ

3 e1 − 1ð Þ η4

80 −
η3

2 + 5η2
� �

,

θ1 η, b1ð Þ = Prb1
2

�
ε − 1ð Þ η4

1200 −
η3

30 + η2 −
15η
2

� �

+ η2 −
η3

30 −
20η
3

� �
γ − γε − εð Þ

	
:

ð24Þ

The 2nd-order problem:

1 − pð Þ 1+∈ð Þf ′″ =H1 pð Þ 1+∈ð Þf ′″ + f f ″ − σ ∈ f ′′
2
f ′″ − f ′2 + λθ

� 	

1 − pð Þ θ″
� �

=H2 pð Þ θ″ + Prf θ′ − Prf ′θ + Prγθ − Prεf ′
h i

9>>=
>>;, ð17Þ

f2 ′″ η, a1, a2ð Þ = 1 + a1ð Þf1 ′″ +
1

1+∈ð Þ
a1 f0 f1″ + f0″ a2 f0 + a1 f1ð Þ − σ ∈ a1 f0′

′2 f1 ′″

− 2a1 f0 ′ f1 ′ + a2 f0′
2� �

+ λ a1θ1 + a2θ0ð Þ

2
64

3
75,

θ2″ η, c4, c5ð Þ = 1 + b2ð Þθ1″ + Pr
b1 f0θ1 ′ + f1θ0 ′
� �

+ b2 f0θ0 ′ − b1 f1 ′θ0 + f0 ′θ1
� �

−b2 f0 ′θ0 + γ b1θ1 + b2θ0ð Þ − ε b1 f1 ′ + b2 f0 ′
� �

2
64

3
75:

8>>>>>>>>><
>>>>>>>>>:

ð25Þ
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Boundary conditions:

f2 0ð Þ = 0, f2 ′ 0ð Þ = 0, θ2 0ð Þ = 0,
f2 ′ ηð Þ = 0, θ2 ηð Þ = 0 as η⟶∞:

(
ð26Þ

The solution for the problem is

f2 η, a1, a2ð Þ

= 1 + a1ð Þa1
1+∈ð Þ

�
−η5

12000 + η4

240 −
η3

6 + 15η2
8 + λ 1 − εð Þ

� η3

2 −
η4

240 −
5η2
3

� �	
+ 5a12

1+∈ð Þ2
�

η8

4032000 + η6

1200

−
η7

50400 −
19η5
960 + 5η4

32 −
275η2
336 + λ 1 − εð Þ

� 7η5
360 −

η6

1200 −
5η4
36 + η7

84000

� �	
+ 1

1+∈ð Þ
�
�
a2
10

η5

1200 −
η4

24 + 25η2
4

� �
−

a1
2

10 1+∈ð Þ
�

−η8

4032000

+ η7

50400 −
η6

720 + η5

32 −
19η2
56 + λ 1 − εð Þ

�
η6

720

−
η7

50400 −
η5

12 + 3125η2
18

��	
+ −σ ∈ a12

100 1+∈ð Þ2
�

−η5

12000

+ η4

240 −
η3

6 + 15η2
8 + λ 1 − εð Þ η3

6 −
η4

240 −
5η2
3

� �	

+ λa2
1+∈ð Þ 1 − εð Þ η3

6 −
η4

240 −
5η2
3

� �
−

2a12
1+∈ð Þ2

�
−η7

504000

+ η6

7200 −
η5

120 + 5η4
32 −

125η2
9 + λ 1 − εð Þ

�
η5

120

−
η6

7200 −
5η4
36 + 100η2

9

��
+ 2a12
10 1+∈ð Þ2

�
−η8

806400

+ η7

12600 −
η6

240 + η5

16 −
13625η2
252 + λ 1 − εð Þ

�
�

η6

240 −
η7

12600 −
η5

18 + 125η2
3

�	
−

a2
1+∈ð Þ

�
�
η3

6 −
η4

120 + η5

6000 −
5η2
4

�
+ λa1Prb1

1+∈ð Þ

�
ε − 1ð Þ η7

504000 −
η6

7200 + η5

120 −
5η4
32 + 125η2

9

� �

+ γ − γε − εð Þ η5

120 −
η6

720 −
5η4
36 + 100η2

9

� �
0
BBBB@

1
CCCCA:

ð27Þ

θ2 η, b1, b2ð Þ

= Pr 1 + b1ð Þb1
�
ε − 1ð Þ η4

2400 −
η3

60 + η2

2 + 25η
9

� �

+ γ − γε − εð Þ η2

2 −
η3

60 −
10η
3

� �	
+ Prb1ð Þ2

�
ε − 1ð Þ

� η6

14400 −
η7

1008000 −
η5

600 + η4

64 −
275η
56

� �

+ γ − γε − εð Þ η4

36 −
η5

600 −
10η3
9 + η6

36000 −
225η
2

� �	

+ Pra1b1 ε − 1ð Þ
1+∈ð Þ

�
η7

1260000 −
η6

18000 + η5

400 −
11η4
192

+ 5η3
8 −

7125η
280 + λ 1 − εð Þ

�
η6

24000 −
η5

400 + η4

18

−
5η3
9 + 625η

30

�	
+ Prb2 ε − 1ð Þ

10
η3

6 −
η4

240 −
25η
2

� �

+ Prb2 ε − 1ð Þ η2

2 −
η3

30 + η4

1200 −
5η
2

� �
+ γ − γε − εð Þ

� Prb2
η2

2 −
η3

60 −
10η
3

� �
+ Prb1ð Þ2γ

�
ε − 1ð Þ

�
η6

72000

−
η5

1200 + η4

24 −
5η3
8 + 250η

9

�
+ γ − γε − εð Þ

�
η4

24

−
η5

1200 −
5η3
9 + 200η

9

�	
−
Pra1b1ε
1+∈ð Þ

�
−η6

72000

+ η5

1200 −
η4

24 + 5η3
8 −

250η
9 + λ 1 − εð Þ

� η4

24 −
η5

1200 −
5η3
9 + 200η

9

� ��
ð28Þ

The 3rd-order problem:

f3 ′″ η, a1, a2, a3ð Þ = 1 + a1ð Þf2 ′″ + a2 f1 ′″ +
1

1+∈

a1 f0 f2″ + f 1″ a2 f0 + a1 f1ð Þ + f 0″ a2 f1 + a3 f0ð Þ − σ ∈ f 1′″ a2 f 0′′
2 + 2a1 f 0″ f 1″

� �
−σ ∈ a1 f 0′′

2
f 2′″ − a1 2f 0′ f 2′ + f 1′

2� �
− 2a2 f 0′ f 1′ − a3 f 0′

2 + λ a1θ2 + a2θ1 + a3θ0ð Þ

0
B@

1
CA

θ3″ η, b1, b2, b3ð Þ = 1 + b4ð Þθ2″ + b2θ1″ + Pr

b3 f0θ0 ′ + b2 f0θ1 ′ + f1θ0 ′
� �

+ b1 f0θ2 ′ + f1θ1 ′ + f2θ0′
� �

− b3 f 0′θ0
� �

+ b2 f0 ′θ1 + f1 ′θ0
� �

+ b1 f2 ′θ0 + f1 ′θ1 + f 0′θ2
� �

+γ b1θ2 + b2θ1 + b3θ0ð Þ − ε b1 f2 ′ + b2 f ′1 + b3 f 0′
� �

2
666664

3
777775

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

:

ð29Þ
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Boundary conditions:

f3 0ð Þ = 0, f3 ′ 0ð Þ = 0, θ3 0ð Þ = 0,
f3 ′ ηð Þ = 0, θ3 ηð Þ = 0 as η⟶∞:

(
ð30Þ

Solution for Equation (29) subjected to BCs Equation
(30) is achieved in the same way as the zeroth-, first-, and
second-order problems. However, there are very bulky
expressions to be included herein this paper. Collecting the
solution of Equations (21), (24), (28), and (29), we get the
four terms solution given as

f
∼
η, a1, a2, a3ð Þ = f0 ηð Þ + f1 η, a1ð Þ + f2 η, a1, a2ð Þ + f3 η, a1, a2, a3ð Þ,

θ
∼
η, b1, b2, b3ð Þ = θ0 ηð Þ + θ1 η, b1ð Þ + θ2 η, b1, b2ð Þ + θ3 η, b1, b2, b3ð Þ:

8<
:

ð31Þ

4. Result and Discussion

The OHAM is used to solve the transformed nonlinear
ODEs describing the problem. The effect of a variety of
parameters on skin friction coefficient Cf , Nusselt number
Nu, temperature, and velocity has been investigated. The
obtained results are displayed with the help of graphical
illustrations and tables. Table 1 displays the obtained value
of Nu and Cf for particular values of certain parameters
and a comparison has been made with published results of

others’ work. From the table, it is detected that Cf increases
with swelling values of the Eyring-Powell fluid material
parameter E and mixed convection parameter λ, but it falls
off with an augmented value of thermal stratification param-
eter ε and material fluid parameter σ. It is also found that Nu
increases with enhancing mixed convection λ and Eyring-
Powell fluid parameter σ.

The impact of the thermal stratification parameter ε and
the Prandtl number Pr on Nusselt number Nu and the skin
friction coefficient Cf for the fixed value of the other param-
eters is available in Table 2. The table illustrates Cf is a
decreasing function of Prandtl number Pr and the thermal
stratification parameter ε. Table 2 also indicates that the
local Nusselt number Nu enhances with the increasing value
of Pr and ε.

The effect of a variety of parameters on the fluid velocity
profile is displayed in Figures 2–7. In Figure 2, the impact of
mounting the material parameter E on dimensionless fluid
velocity is displayed. The figure points out that the velocity
increase with augmenting value of E. Physically, E has an
inverse relation with the non-Newtonian fluid’s dynamic
viscosity. Hence, with increased value of E, the flow resis-
tance reduces, and consequently, the fluid velocity inten-
sifies. Figure 3 is sketched to illustrate the influence of
mixed convection parameter λ on velocity profile. It depicts
that an intensification in λ results in the rise in the velocity
profile. In reality, while fluids are heated their density
reduces and buoyancy increases, as a consequence their

Table 1: Comparison of results for the skin friction coefficient and Nusselt number for various value of ε, λ, σ, and E when Pr = 0:7 and
γ = 0:1 are fixed.

E σ λ ε
Present study Salahuddin et al. [30]

Skin friction −θ′ 0ð Þ Skin friction −θ′ 0ð Þ
0.1 0.1 0.1 0.1 -0.9948 0.9224 -0.9953 0.9201

0.3 0.1 0.3 0.3 -0.9235 0.9448 -0.9221 0.9450

0.5 0.1 0.5 0.5 -0.8632 0.9661 -0.8629 0.9657

0.1 0.3 0.1 0.1 -0.9987 0.9194 -0.9988 0.9196

0.1 0.5 0.1 0.1 -0.9931 0.9187 -0.9922 0.9192

0.1 0.1 0.3 0.1 -0.8973 0.9482 -0.8969 0.9478

0.1 0.1 0.5 0.1 -0.8046 0.9689 -0.8045 0.9695

0.1 0.1 0.1 0.3 -0.9996 1.0221 -0.9998 1.0216

0.1 0.1 0.1 0.5 -0.8798 1.1223 -0.0043 1.1216

Table 2: Comparison of the present result for local skin friction coefficient and Nusselt number for different values of Pr and ε when γ
= σ = λ = E = 0:1 are fixed.

Present result Bilal and Ashbar [39] Ogunseye et al. [32]
Pr ε Skin friction −θ′ 0ð Þ Skin friction −θ′ 0ð Þ Skin friction −θ′ 0ð Þ
0.1 0.1 -0.954538 0.281633 — — -0.954529 0.281631

0.3 0.3 -0.972917 0.524666 -0.972921 0.524669 -0.972908 0.524668

0.5 0.3 -0.985953 0.734565 -0.985951 0.734568 -0.985952 0.734567

0.7 0.5 -0.989286 0.804125 -0.999881 1.021608 -0.989285 0.804125

0.7 0.7 -1.004314 1.121622 −1.004313 1.121621 -1.004309 1.121622

0.7 0.9 -1.008614 1.220177 -1.008613 1.220178 — —

0.9 1.0 -1.021372 1.237912 — — -1.021368 1.237908
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velocity boosts. Thus, by advancing value λ, one can enhance
the velocity within a boundary layer when required.

The influence of thermal stratification parameter ε on the
fluid velocity is illustrated in Figure 4. It is witnessed that with
higher value of ε, the velocity profile declines. Actually, when ε
increases, the convective potential between the heated surface
and ambient temperature reduces. The effect of heat genera-
tion parameter γ on velocity is exhibited through Figure 5.

As can be seen from the figure, the velocity profile enlarges
with the value of γ. In reality, while the heat generation param-
eter rises, additional heat is produced in the fluid; conse-
quently, the fluid turn out to be hotter and less dense, and as
a result, its viscosity decreases. Figure 6 displays the effect of
material fluid parameter σ on the velocity profile. It is con-
firmed that the velocity graph increases with the mounting
value of σ. In actual fact, σ is inversely related to its viscosity.
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Figure 3: Impact of λ on velocity profile when E = 0:3, Pr = 0:72, ε = σ = γ = 0:1.
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Figure 2: Impact of E on velocity profile when λ = 0:4,Pr = 0:72, ε = σ = γ = 0:1.
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So, the higher the fluid parameter σ leads to the deterioration
of the viscous forces; for this reason, the fluid flows rapidly.
Figure 7 describes the impact of the Pr on the velocity profile.
It is detected that an increment in Pr corresponds to a decrease
in the velocity profile of the fluid. Physically, Pr is directly

related to the viscosity of the fluid. Because of this fact, as
the Pr increases, the fluid turns out to be denser, which causes
a decrease in the velocity profile. This may be accredited to the
fact that convection currents became diminutive at higher Pr
and leads to a decline in velocity.
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Figure 5: Impact of γ on velocity profile when λ = 0:4, E = 0:3, Pr = 0:72, ε = σ = 0:1.
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Figure 4: Impact of ε on velocity profile when λ = 0:4, E = 0:3, Pr = 0:72, σ = γ = 0:1.
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The effect of a variety of parametric quantities on the
nondimensional temperature distribution of the fluid under
consideration is displayed in Figures 8–13. The characteristic

of stratification parameter ε on the temperature is depicted
in Figure 8. Physically, the rise in ε declines the temperature
distinction between the fluid on the surface and the
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Figure 7: Impact of Pr on velocity profile when λ = 0:4, E = 0:3, ε = σ = γ = 0:1.
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Figure 6: Impact of σ on velocity profile when λ = 0:4, E = 0:3, Pr = 0:72, ε = γ = 0:1.

9Abstract and Applied Analysis



surrounding fluid, this in turn trim down the temperature
profile. Thus, the temperature distribution in the fluid drops
with an augmentation in the value of ε. Figure 9 reports the
effect of the Prandtl number Pr on the temperature profile. It

is revealed that when the value of Pr is augmented, the tem-
perature graph reduces. Mathematically, Pr is inversely
related to thermal conductivity; hence, the fluid with greater
Pr has a low energy diffusion rate. So, the raise in the Pr
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Figure 9: Impact of Pr on temperature profile when λ = 0:4, E = 0:3, ε = σ = γ = 0:1.
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Figure 8: Impact of ε on temperature profile when Pr = 0:72, λ = 0:4, E = 0:3, σ = γ = 0:1.
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produces a sturdy reduction in the temperature, which
upshots the thermal boundary layer thickness. Therefore,
in heat transfer, Pr is used to rheostat the thicknesses of
thermal and momentum boundary layers.

Figure 10 is plotted to scrutinize the impact of heat gen-
eration/absorption parameter γ on the fluid temperature.

The figure confirms that when the value γ intensifies, the
temperature profile also increases. Physically, higher γ gen-
erates extra heat in the fluid system, due to this the temper-
ature profile enhanced. Thus, when the heat generation
parameter upshots, considerable heat which can increase
the temperature profile of the fluid will be produced.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

𝛾 = 0.1
𝛾 = 0.3

𝛾 = 0.6

𝛾 = 1

𝜂

𝜃 
(𝜂
)

Figure 10: Impact of γ on temperature profile when Pr = 0:72, λ = 0:4, E = 0:3, ε = σ = 0:1.
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Figure 11: Impact of σ on temperature profile when Pr = 0:72, λ = 0:4, E = 0:3, ε = γ = 0:1.
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Therefore, increasing the heat generation/absorption parame-
ter is used to enhance the temperature of the fluid, but some-
times, the augmented values of heat generation parameter
results in overmounting in the temperature boundary layer
and it should be controlled by using suitable mechanisms.

The characteristic of material fluid parameter σ on the
fluid temperature is displayed in Figure 11. It is witnessed
that an increment in the value of σ corresponds to a turn
down in the temperature profile. This behavior is revealed
as σ is inversely associated to the viscosity of the fluid. So,
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Figure 13: Impact of λ on temperature profile when Pr = 0:72, E = 0:3, ε = σ = γ = 0:1.
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Figure 12: Impact of E on temperature profile when Pr = 0:72, λ = 0:4, ε = σ = γ = 0:1.
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when σ increases, viscosity reduces which in turn increases
the heat transfer rate. Consequently, the temperature of the
fluid reduces. Figure 12 portrays the behavior of material
parameter E on temperature profile. As we can observe from
the figure, an improvement of value of E results in a decrease
in the fluid temperature graph. Physically, when E is
increased, fluid resistance reduces and contributes to the
reduction of temperature distribution. Figure 13 depicts
the impact of varied convection parameter λ on tempera-
ture. It has been found that when the value of λ increases,
the temperature profile declines. This happens attributable
to the reduction of the fluid density, as hotter fluids are less
dense. Thus, with enhanced value of λ heat transfer rate
increases, thereby temperature profile decreases.

5. Conclusion

In this work, we analyze heat transfer and flow of the
incompressible, steady Eyring-Powell fluid flow over a
two-dimensional stratified prolonging surface with mixed
convection. The nonlinear PDEs governing the flow prob-
lem and their respective prescribed side conditions have
been converted into a couple of nonlinear ODEs via vari-
able similarity transformation and then solved analytically
by the OHAM. The quantities of attention in this work
are velocity f ′, temperature θ, skin friction coefficient Cf

, and Nusselt number Nu. Thus, the effect of varied
parameters embedded in the model on f ′, θ, Cf , and Nu
has been examined and described with the aid of tables
and graphs. The main observations drawn from this find-
ing are the following:

(i) With an intensification in value of the thermal
stratification parameter ε, both the fluid velocity
and the temperature profile decreases. Hence, in
various manufacturing processes ε can help to con-
trol heat and velocity of fluids

(ii) As the value of the Eyring-Powell fluid material
parameter E upsurges, the velocity profile boosts,
while the temperature profile declines

(iii) With snowballing values of the mixed convection
parameter λ and the material fluid parameter σ,
the velocity profile enhances

(iv) As the value of Prandtl number Pr enlarges, the
velocity profile dwindles

(v) The temperature distribution turn down with
enhancing values of the Prandtl number Pr, the
material fluid parameter σ, and the mixed convec-
tion parameter λ

(vi) As the value of the heat generation/absorption
parameter γ amplifies, both the temperature and
the velocity profile increase

(vii) As the values of the mixed convection and the
Eyring-Powell fluid material parameters heighten,

both the Nusselt number Nu and the skin friction
coefficient augment

(viii) With mounting values of the thermal stratification
and the material fluid parameters, the skin friction
coefficient falloffs

(ix) The local Nusselt number Nu is an increasing
function of Prandtl number Pr and the thermal
stratification parameter ε, the mixed convection
parameter λ, and the Eyring-Powell fluid material
parameter E

Abbreviations

a: Linear stretching rate, T−1 (1/s)
b1, b2: Dimensional constants, QL−1(K/m)
c: Dimensional Eyring-Powell fluid material parameter
cf : The local skin friction coefficient
cp: Specific heat of the fluid at a constant temperature,

L2T−2θ−1 (J/kg·K)
e1: The thermal stratification parameter
f : The dimensionless stream function
g: Gravitational acceleration, LT−2 (m/s2)
k: The fluid thermal conductivity, MLT−3θ−1 (W/m·K)
Nu: Nusselt number
Pr: Prandtl number
Q: Heat generation/absorption coefficient
qw: Radiation heat flux at the plate surface,MT−3 (W/m2)
T : The fluid temperature, Q (K)
T0: Stretching sheet reference temperature, Q (K)
Tw: The fluid temperature at the plate surface, Q (K)
T∞: The temperature far away from the plate surface,Q (K)
u: Velocity component along the x-axis, LT−1 (m/s)
uw: The velocity of the stretching sheet, LT−1 (m/s)
v: Velocity component along the y-axis, ½LT−1� (m/s)
x, y: Vertical and horizontal coordinate system
η: Dimensionless similarity variable
υ: Kinematic viscosity of the fluid, L2T−1 (m2/s)
ρ: The fluid density, ML−3 (kg/m3)
β: Dimensional Eyring-Powell fluid material parameter
θ: Dimensionless temperature
ψ: Dimensionless stream function
ε: Material parameter
λ: Mixed convection parameter
γ: Heat generation/absorption parameter, Lθ−2T3M−1

(mK2s3/kg)
τ: Skin shear stress (N/m2)
σ: Fluid parameter
∞: Free stream condition
w: Condition at the plate surface.
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