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The Bishop frame or rotation minimizing frame (RMF) is an alternative approach to define a moving frame that is well defined
even when the curve has vanished second derivative, and it has been widely used in the areas of computer graphics, engineering,
and biology. The main aim of this paper is using the RMF for classification of singularity type of timelike sweeping surface and
Bishop spherical Darboux image which is mightily concerning a unit speed spacelike curve with timelike binormal vector in E3.

1. Introduction

Kinematically, a sweeping surface is a surface traced by a one-
parameter family of spheres with centers on a regular space
curve, its directrix or spine. If the radii of the spheres are fixed,
the sweeping surface is called tubular. There are several
examples that we are familiar with, such as circular cylinder
(spine is a line, the axis of the cylinder), right circular cone
(spine is a line (the axis), radii of the spheres not constant),
torus (directrix is a circle), and rotation surface (spine is a
line). This visualization is a popularization of the classical
notation of a partner of a planar curve [1-4]. One of the note-
worthy facts linked with the sweeping surface is that the
sweeping surface can be developable surface, that is, can be
developed onto a plane without tearing and stretching. There-
fore, sweeping surfaces have great usefulness in considerable
product design which uses leather, paper, and sheet metal as
materials (see, e.g., [5-8]). The developable surface can be
represented using the Serret-Frenet frame of space curves
from the viewpoint of singularity theory. In [9], Izumiya and
Takeuchi defined the rectifying developable surfaces of space
curves, where they proved that a regular curve is a geodesic
of its rectifying developable surface and revealed the relation-

ship between singularities of the rectifying developable surface
and geometric invariants. Ishikawa investigated the relation-
ship between the singularities of tangent developable surfaces
and some types of space curves [10]. He also gave a classifica-
tion of tangent developable surfaces by using the local topolog-
ical property. There are several works about the singularity
theory of developable ruled surfaces by using the Serret-Frenet
frame of space curves, for example, [11-16]. However, the
Serret-Frenet frame is undefined wherever the curvature van-
ishes, such as at points of inflection or along straight sections
of the curve. A new frame is needed for the kind of mathemat-
ical analysis that is typically done with computer graphics.
Therefore, Bishop [17] introduced the rotation minimizing
frame (RMF) or Bishop frame, which could provide the desired
means to ride along a space curve with vanished second 1deriv-
ative. After that, many research works linked to the RMF have
been treated in the Euclidean space and Minkowski space
[18-23].

In this paper, the classification of singularity type of
timelike sweeping surfaces is studied with the RMF in E;.
We present a new invariant related to the singularities of
these sweeping surfaces. It is demonstrated that the generic
singularities of this sweeping surface are cuspidal edge and
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swallowtail, and the types of these singularities can be char-
acterized by this invariant, respectively. Afterwards, we have
solved the problem of requiring the surface that is timelike
sweeping surface and at the same time spacelike/timelike
developable surface. Two examples are presented to explain
the theoretical results.

2. Preliminaries

In this section, we give some definitions and basic concepts
that we will use in this paper (see, for instance, [1, 8, 24]).
Let R = {(p,, p,, p3)l:p; € R(i=1,2,3)} be a 3-dimensional

Cartesian space. For any q=(q;,9,,4;) and p=(p;, p,, p3)
€ R3, the pseudoscalar product of q and p is defined by

< P> =q,p, + 4P, — 43P;3- (1)

We call (R? <, >) Minkowski 3-space. We write E;
instead of (R%, <, >). We say that a nonzero vector q € E3
is spacelike, lightlike, or timelike if <q,q > >0, <q,q> =0,
or <q,q > <0, respectively. The norm of the vector q € E3

is defined to be ||q|| = \/|<q, q > |. For any two vectors q, p
€ E3, we define the cross product by

ik
axp=|q, 4, q|=((9L3—DGP2)> (01 — DB103)— (P2 — DP1))>

P P Ps
(2)

where i, j, and k are the canonical basis of E;. The hyper-
bolic and Lorentzian unit spheres, respectively, are

H) ={qeE||q’=q; + 5 -3 =1},

(3)
St={qeE||q* =+ -¢5=1}.

Let y = y(s) be a unit speed spacelike curve with timelike
binormal normal in Ej; by «(s) and 7(s), we denote the
natural curvature and torsion, respectively. Consider the
Serret-Frenet frame {v, (s),0,(s), v,(s)} associated with curve
y(s), then the Serret-Frenet formulae read

vl (s) 0 x 0 v, (s)
b [=] =+ 0 || we | (4)
v3(s) 0 7 0 v5($)

where v, (s)(s) = y'(s), v2(s) =y (5)/|ly"'(5)II> and vs(s) = -
v, (s) x v,(s) are called the unit tangent vector, the principal
normal vector, and the binormal vector, respectively. Here,
“prime” denotes the derivative with respect to the parameter
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s. The Serret-Frenet vector fields satisfy the relations

<V, U > = <0,,0,> =1,
<v;, U3 > =-1,
V) XU,y = —03, (5)
V) X U3 = —0,,
Uy X U3 =0;.

The Bishop frame or rotation minimizing frame (RMF)
of y(s) is defined by the alternative frame equations

¢ 0 -m)\ [¢
Ei =[-u 0 0 SHE (6)
E; -4, 0 0 &

where w(s) = -, &, + u, &, is RMF Darboux vector. Here, the
Bishop curvatures are defined by y, (s) =« cosh @, p,(s) =«
sinh ¢. The relation matrix can be expressed as

¢ 1 0 0 v,
&, 1=10 coshg sinhg v, |> (7)
&, 0 sinh¢ coshe v,

where ¢(s) >0 is a hyperbolic angle. One can show that

Wi~ =1 @ =tanh”! <%> sy #0,
1

(8)
P(s) ==, 7ds + @5, 9o = P(5)-

We define a Bishop spherical Darboux image g(s): I
— H? as

_ —th& + 1,6, . 9)

) V-

Then, we define a new geometric invariant o(s) = y,u,

! !
by
A ruled surface in E? is locally the map Dy IXR
— E? defined by

Dy (5 1) = a(s) + 1x(s), t€ R, (10)
where «(s) is called the directrix curve and x(s) the director
curve. The straight lines t — a(s) + tx(s) are called rulings.
It is well known that D,,) is a developable surface iff

det(a'(s), x(s),x'(s)) = 0.

Definition 1. A surface in the Minkowski 3-space E; is called
a timelike surface if the induced metric on the surface is a
Lorentz metric and is called a spacelike surface if the induced
metric on the surface is a positive definite Riemannian metric,
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i.e.,, the normal vector on spacelike (timelike) surface is a time-
like (spacelike) vector.

3. Timelike Sweeping Surfaces and Singularities

In this section, the classification of singularity type of time-
like sweeping surfaces is studied with the RMF in E3. Let y
=7(s) be a unit speed spacelike curve with timelike binor-
mal as defined on the RMF frame. Then, we can give the
parametric form of sweeping surface given by the spine
curve y(s) as follows:

M :y(s: 1) =y(s) + R(s)r(t) = y(s) +ri(1)81(s) +r2(1)8,(5),

(11)

where r(t) = (0,7,(t),7,(t))" is called planar profile (cross
section); “T” represents transposition, with another parame-
ter t € I CR. The semiorthogonal matrix (s) = {&(s), &, (s),
E,(s)} specifies the RMF along y(s). We will utilize “dot”
to indicate the derivative with respect to the arc length
parameter of the profile curve r(¢).

The tangent vectors and the unit normal vector to the
surface, respectively, are

Vi(s 1) =1§ + 1585, }
Yo(s: 1) = (1= pyry = py13)8, (12)
YeXVs . <
n(s, t) = =r&, +1&,.
R T

From Equation (3.3), it follows that n(s, ¢) is contained
in the normal plane of the spine curve y(s), since it is
orthogonal to &. Thus, the normal of the profile curve r(¢)
and the surface normal are identical. Through this work,
we will assume that the profile curve r(¢) is a unit speed
timelike curve, that is, 7§ — 3 = —1. Thus, M is a timelike
sweeping surface. From now on, we shall often not write
the parameter s explicitly in our formulae.

Our aim of this work is the following theorem.

Theorem 2. For the timelike sweeping surface Equation (3.1),
with 3 — 3 # 0, one has the following
(A)

(1) g(s) is locally diffeomorphic to a timelike line {0} x R
at s, iff a(sy) 0

(2) g(s) is locally diffeomorphic to the cusp C x R at s, iff
o(sy) #0and o' (s)) =0

(B)

(1) M is locally diffeomorphic to cuspidal edge CE at
(0> £p) iff x =2g(s,) and o(s,) #0

(2) M is locally diffeomorphic to swallowtail SW at
(so> to) iff x==g(sy), 0(sy) #0, and o' (s5) =0

Here, CxR={(x,x,) | x]=x3} xR, CE={(x},x, x3)
|x,=u,x,=v,x;=v}, and SW ={(x;,x,,x;) | x; =u,x,
=3v? + uv?,; =4V + 2uv}. The graphs of CxR, CE, and
SW are seen in Figures 1-3.

3.1. Lorentzian Bishop Height Functions. Now, we will define
two different families of Lorentzian Bishop height functions
that will be useful to study the singularities of M as follows:
9 IxS}— R, by H(s,x) = <y(s), x >. We call it the Lor-
entzian Bishop height function. We use the notation §,(s)
= $(s,x) for any fixed x € S2. We also define § : I x S? x
R — R, by H(s,x, w) = <y, x > —w. We call it the extended
Lorentzian Bishop height function of y(s). We denote that
B, (s) = H(s,x). From now on, we shall often not write the
parameter s. Then, we have the following proposition.

Proposition 3. Let y=y(s) be a unit speed spacelike curve
with timelike binormal normal and p? — 3 # 0. Then, the fol-

lowing hold:
(A)
(1) §L(s) =0 iff x=a,&, + a,€, and a® — a% = 1
(2) b (s) =1, (s) = 0 iff x = +g(s)
(3) by(s) =B,/ (s) =" (s) = 0 iff x = +g(s) and a(s) =0
(4) by(s) =b'(s) =5, (s) =B/ (s) = 0 iff x = +g(s) and

(5) by(s) =,/ (5) =B, (s) = B (5) = B (s) = 0 iff x
g(s) and o(s)=0'(s)=0"'(s) =0

(B)

(1) B, (s) = 0 iff there exist <y,x> =w

(2) B(s) =B.(s) = 0 iff there exist t € R such that x=

sinh t&; + cosh t&, and <y, x> =w

(3) By(s) =By(s) =B,/ (s) =B,'(s) = 0

>=w, and o(s)=0

(4) B,(s) =Dy(s) =B, (s) = b, (S)=f)”(5)=0 iff x = +g(

s), <Y,x> =w, and o(s)

iff x==g(s), <y, x

Proof. According to Equation (2.2), we have ||& 'H2 #0 iff
2 2
pi—py #0.



Ficure 1: Cx R.

Ficure 2: CE.

FIGURE 3: SW.

(A)

(1) Since f);(s) =<&,x> and {£¢&,, &} is RMF along
y(s), then there exist a;, a, € R such that x=a,&,
+a,&,. By the condition that x € H?, we get a? —
a3 =-1. The converse direction also holds
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(2) Since §.'(s) =<&', x> = <y, & — &, x> =0, we
have a,u, + a,p, =0. It follows from the fact af —
a3=-1 that a;==+u,/\/ui—p3 and a,=7Fu,/

\/ 4} — y3. Therefore, we have

I )

XZi(%(_ﬂzfl +I41’Ez)> (s)=8(s)- (13)

Therefore, §.(s) = §.'(s) = 0 iff x = +g(s).

(3) Since by"'(s) =<8, x> = < (~p} +p3)E + & — py
’52, x> =0, by the conditions of (2), we have

¥ (7,%? (‘("2("1 + .“1/*‘2)) (s)== (7/ﬁ> (s)=0.

(14)

Thus, §.(s)=5.'(s)=H."(s) =0 iff x==+g(s) and o(s)
=0.

(4) Since

B (5) = <83 = <=3 (st — oty )
(v m ())&
(W (-t + 1) ) x> = 0),

(15)

by the conditions of (7), we have

_ 1 " N () = + o' $)=0.
+<m([42[41 !41“2))() (\/m>() 0

(16)

(5) Since §°)(s) = <™ x>0, we have

< ((H? -1 - 4(141#{’ - ﬂzté’) - 3(#12 - 442))5

(1" = 5y (i = iy ) + 0l (47 48) )
- (#é” -5, (#im - #éﬂz) + (-~ + H%))Ez, x>=0}.

(17)
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By using the conditions of (8), we have

1
t s (bt = ot + (st = ) (=453 + 1) ) (5) = 0.
2

I
(18)

Therefore, §.(s) =§.'(s) = §."'(s) = hV (s) = p{*) = 0 iff x
=+g(s)and o(s) =o' (s)=0"'(s) =0

(B)

Using the same computation as the proof of (A), we can
get (B) (4) +.0 O

Proposition 4. Let y =y(s) be a unit speed spacelike curve
with timelike binormal and % — 3 # 0. Then, we have o(s)
=0 iff g(s) is a constant timelike vector.

Proof. By simple calculations, we have

a(s)

!
g()="""5 (&1 +1,65). (19)
(x/#% —14%)
Thus, g'(s) = 0 iff 0(s) = pu; — pypy =0+ .0 O

Proposition 5. Let y: I — [E3 be a unit speed spacelike curve
with timelike binormal and y’ — 3 # 0. Then, we have the
following.

(a) y is a B-slant helix iff y,/u, is constant

(b) &, is a part of circle on H2 whose center is the timelike
constant vector g,

Proof.

!
— i, =0. Hence, we can

(a) Suppose that o(s) = u,u,

write

! !
(h)fzwz_“(jho. (20)
t H “

Thus, u,/p, = constant, that is, y is a B-slant helix.

(b) Since

= const.

(21)

<g, &> =

Hy ( Hy _
< _*£1+Ez>a£2> -
i - #

-1
V1 - Y3l

This means that &, is a part of circle on H? whose center
is the constant timelike vector g, (s)+.0 O

3.2. Unfolding of Functions by One Variable. In this subsec-
tion, we use some general results on the singularity theory
for families of function germs. Let & : (Rx R, (sy, %))

— R be a smooth function and f(s) = &, (s,%,). Then, §
is called an r-parameter unfolding of f(s). We say that f(s)
has A,-singularity at s, if {#(s,) =0 for all 1<p<k and
fk*1 (s,) # 0. We also say that | has A ,-singularity (k1) at s,

. Let the (k—1)-jet of the partial derivative 0%/0x; at s, be

K1 ((0F10x,)(5,%,) ) (s9) = =L L (s — s,) (without the con-

=0 "ji
stant term), for i=1,---,7. Then, &(s) is called a p-versal

unfolding if the kX r matrix of coefficients (L;;) has rank

(k<r). So, we write important set about the unfolding
relative to the above notations. The discriminant set of &
is the set

Dy = {x € R" | there exists s with §(s, x) = %—% (s,x)=0at(s,x) }
s

(22)

The bifurcation set of § is the set

, . N . D
23%—{1(6]1{ Ithereexlstsswnha(s,x)—W(s,x)—Oat(s,x) .

(23)

We can also give the following theorem [12, 13].

Theorem 6. Let §: (RxR',(spx))) — R be an r
-parameter unfolding of {(s), which has the A, singularity at
So-

Suppose that F is a p-versal unfolding.

(a) If k=1, then Dg is locally diffeomorphic to {0} x
R and Bg =T

(b) If k=2, then Dg is locally diffeomorphic to C x R,
and By is locally diffeomorphic to {0} x R™!

(c) If k=3, then Dg is locally diffeomorphic to SW x
R'~, and By is locally diffeomorphic to Cx R™?

Hence, we have the following fundamental proposition.

Proposition 7. Let y: I — [ be a unit speed spacelike curve
with timelike binormal and 3 — 3 # 0. (1) If h(s) = H(s, x)
has an A-singularity (k =2, 3) at s) € R, then $ is a p-versal
unfolding of By, (s,). (2) If By(s) =
gularity (k=2,3) at sy € R, then § is a p-versal unfolding

Of Bxu (SO) .

Proof. (see (4)).
Since x = (xy, X1, X,) € H2, x2 + x3 — x} = -1, x,, x;, and
x, cannot be all zero. Without loss of generality, we may

assume that x, # 0. Then, by x, = y/1 + x3 + x3, we have

D(s%) = xoyp(s) +x1y1(5) =/ 1+ 25 + 27y, (5). (24)

(s, x, w) has an A;-sin-



6
Thus, we have
a_‘b =y, (S) xOYZ( ) 5 =y (S) _ xl)}Z(S)
ox, '’ V91+xd- axl ! V1+x3+x2
FS w75 _ Vo A
ds0x, '° /-1+x3 —x3 0s0x, ! 1+x3 —x?

(25)

Therefore, the 2-jets of 0$/0x; at s, (i=0,1) are as
follows. Let x, = (xq9, X19» X39) € H2, and assume that x,, #
XY3(s)

0, then
(aé S5 x0)> ( (s) - m) (s=50)s
X xlyé(s) _
( S 0)) ( ) m) (S 50)’
aj 5%) ( xooYz >(S 5) + % <y(’)r _ xooi’;@)) (s—50)%
(5 %)) ( xloyz > —%0)>

%(ﬁ'(s) "—”20( )<s )

(i) If by (s,) has the A,-singularity at s, then f)' (s5) =0.
So the (2-

A= ((yé@) - Tl jfs)) (o - 22t f”) @)

Suppose that the rank of the matrix A is zero, then we
have

1) x 2 matrix of coefficients (L; ) is

Since ||y’ (sy)|| = |&(so)|| = 1, we have y}(sy) #0 so that
we have the contradiction as follows:

0=< ()’6(50)’ )’1(50)’ Vé(%))) (X00> X105 X29) >

= V(’)(So)xoo + Yi(SO)xIO - V;(So)xzo
x2,75(s x2,ya(s (29)
AN VTS EN
, %20 20
_ ¥2(50) (xéo +x10 xzo) VZ(SO) £0.
X20 X20
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Therefore, rank (A) =1, and § is the (p) versal unfold-
ing of b, at s,

(ii) If I)xo (so) has the A;-singularity at s, € R, then f);o
(s9) = f);o'(so) =0, and by Proposition 3.

0= (a05). o)
M~ 4 !

where y2 — 2 >0, 0'(s,) =0, and o''(s,) # 0. So, the (3 -1)
x 2 matrix of the coefficients (L;) is

)+ Sy Xuhals)

B (Lu L12> _ Y X20 X20
! !

Ly Ly Y(I]/ + X0, () ,yil(s) _ X109, (5)
X0 %20

(31)

For the purpose, we also require the 2 x 2 matrix B to be
nonsingular, which always does. In fact, the determinate of
this matrix at s, is

! ! !
Yo Y1 Y2 )
! li 1 _ ! Iy
0, V1’ Yzl —x—<)/ XY >8>
20

Xo0o X100 *20
1

7<Y XY | (i€ &y) >
xzo\/l/h I

(32)

Since y' =& we have y'' = y &, — u, &,. Substituting these
relations to the above equality, we have

_ L VHi

X20

det (B) #0. (33)

This means that rank (B) = 2.
(2) Under the same notations as in (4), we have

5(5’ X, X;) = XY ($) + %19, (5) = \/ 1+ X5 + %77, () = %,
(34)

We require the 2 x 3 matrix

Xp0¥2(9) X10¥5(5)
vo(s) - U i) - 2O
G- ’20 2:) ’
! !
y(’)l _ XooY2 (8) y{’(s) XY, (9) 0
%20 %20

(35)
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to have the maximal rank. By case (4) in Equation (3.14), the
second row of G does not vanish, so rank (G) =2+.0 [

Proof of Theorem 1 (see (4)). By Proposition 3, the bifurca-
tion set of $(s, x) is

By = {% (—u,&, +pt1€2)|s€]RsE]R}. (36)

1~

O

The assertion (4) of Theorem 2 follows from Propositions

3 and 7 and Theorem 6. The discriminant set of $(s,x) is
given as follows:

Dg ={xo =y +sinh t§; +cosh &, [seR}.  (37)

The assertion (4) of Theorem 2 follows from Propositions
3 and 7 and Theorem 6 +.

Example 1. Given the spacelike helix
y(s) = (cosh 5,V/2s, sinh s) —3<s<3. (38)
It is easy to show that

v,(s) = (sinh s,v/2, cosh s) ,
,(s) = (cosh s, 0, sinh s),

vs3(s) = (\/5 sinh s, 1, v/2 cosh s),
k(s) = 1,and 7(s) = V2.

(39)

Then, ¢(s) =—+/2s + ¢,. If we choose ¢, =0, for exam-
ple, we have

1, (s) = cosh v/2s,
ty(s) = — sinh v/2s.

We can calculate the geometric invariant

o(s)=-V2,

o'(s)=0.

(41)

7
20
40
FIGURE 4: Bishop spherical Darboux image has a cusp as s =0.
We also have
cosh <\/§s) cosh s — v/2 sinh (\/ES) sinh s
&n
& &L | = —sinh (\/fs) ,
&3 cosh <\/§5) sinh s — V/2 sinh (\/Es) cosh s
—sinh (\/55) cosh s + V2 cosh (\/ES) sinh s
&
&, & | = cosh (\/Eg)
&3 —sinh (\/55) sinh s + v/2 cosh <\/§s) cosh s
(42)

The timelike Bishop spherical Darboux image is shown
in Figure 4)

&1 &x
g(s) =sinh v2s| &, | +cosh v2s| &, |. (43)
3B €23
The timelike sweeping surface family is
€ a1
y(s, t) = (cosh s,V/2s, sinh s) +r(t)] &y | +ra(t)] &
3B €2
(44)

By choosing r,(t) =cosh t and r,(t) =sinh ¢, then we
immediately have a timelike sweeping surface (see Figure 5).

3.3. Developable Surfaces. Developable surfaces can be briefly
introduced as special cases of ruled surfaces. Such surfaces are
widely used, for example, in the manufacture of automobile
body parts, airplane wings, and ship hulls. Therefore, we ana-
lyze the case that the profile curve r(¢) degenerates into a
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F1GURE 5: Timelike sweeping surface with spacelike helix singularity
curve.

FiGure 6: Timelike developable surface with its singular curve.

FIGURE 7: Spacelike developable surface with its singular curve.
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timelike line. Then, we have the following timelike developable
surface

M D(s, t) =y(s) +t&,(s), t € R. (45)

We also have the following spacelike developable surface
M DH(s, 1) =p(s) + & (s), t e R. (46)

It is clear that D(s, 0) = y(s) (resp. D (5,0)1 =p(s)), 0 <

s <L, that is, the surface MM (resp. M) interpolate the curve
y(s). Also, we have

0D 09

25 X or - T )
0D 0Dt
s e —(1 = tu;)&5(s)-

Thus, we have that 9 (resp. M™*) is nonsingular at (s, t,)
if and only if 1 — tou, (sy) # 0 (resp. 1 — tou, (sy) # 0). We des-
ignate y(s) to represent y;(s) (i =1, 2), and based on Theorem
3.3 in [23], we can give the following corollary.

Corollary 8. For the developable ruled surfaces D(s,t) and
D*(s, t), we have the following:

(1) D (resp. D*) is locally diffeomorphic to the cuspidal
edge CE C(2,3) xR at (s t,) iff u(sy) =0 and u'(
so) #0

(2) D (resp. D*) is locally diffeomorphic to swallowtail
SW at (g, t) iff p(sy) # 0 and p' (s) = 0

Example 2. By making using of Example 1, we have the
following:

(1) If s, = 0, then u, (s,) =0 and p;(s,) # 0. The timelike
developable surface

—sinh (\/Es) cosh s+ /2 cosh (\/2:) sinh s
cosh (\/55) , teR
—sinh (\/-2_5) sinh s + /2 cosh (\/Es) cosh s

Ds,t) = (cosh 5,V/2s,sinh s) +t

(48)

is locally diffeomorphic to the cuspidal edge; see Figure 6.
We can obtain the singular locus of I as follows:

2 cosh s — v/2 coth (ﬁs) sinh s
V/2s - coth (\/Es) . (49)
2 sinh s — v/2 coth (\/55) cosh s
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(2) If s, = 0, then y, (s,) # 0 and ;(s,) = 0. The spacelike
developable surface

cosh (\/Es) cosh s — /2 sinh (\/Es) sinh s
—sinh (\/Es) , teR
cosh (ﬁs) sinh s — v/2 sinh (\/fs) cosh s

D (s,t) = (cosh 5,V/2s, sinh s) +t

(50)

is locally diffeomorphic to swallowtail; see Figure 7. Also, the
singular locus of IM* is

2 cosh s — v/2 tanh (\/Es) sinh s
/25 — tanh (\/55) . (51)
2 sinh s — v/2 tanh (\/ES) cosh s

&' (s) =

4. Conclusion

In this paper, we introduced the notion of timelike sweeping
surfaces with rotation minimizing frames in Minkowski 3-
space 3. By applying singularity, we classified the generic
properties and present a new geometric invariant related to
the singularities of this timelike sweeping surface. It leads
to the fact that the generic singularities of this sweeping sur-
face are cuspidal edge and swallowtail, and the types of these
singularities can be characterized by this geometric invari-
ant, respectively. Finally, some examples are presented to
explain the theoretical results.
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