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Based on the concept of pseudocomplement, we introduce a new representation of preopenness of L-fuzzy sets in RL-fuzzy
bitopological spaces. The concepts of pairwise RL-fuzzy precontinuous and pairwise RL-fuzzy preirresolute functions are
extended and discussed based on the ði, jÞ-RL-preopen gradation. Further, we follow up with a study of pairwise RL-fuzzy
precompactness in RL-fuzzy bitopological spaces of an L-fuzzy set. We find that our paper offers more general results since
RL-fuzzy bitopology is a generalization of L-bitopology, RL-bitopology, and L-fuzzy topology.

1. Introduction

The fuzzy set theory was introduced in the year 1965 by
Zadeh [1]. The development of fuzzy set theory, since its
introduction, has been dramatic and breathtaking! Thou-
sands of research papers have appeared in various journals
devoted entirely to theoretical and application aspects of
fuzzy sets. Artificial intelligence, automata theory, computer
science, control theory, decision-making, expert systems,
medical diagnosis, neural networks, pattern recognition,
robotics, and social sciences are a few fields where fuzzy sets
find application. Within a short time since its introduction,
the fuzzy sets have permeated almost every academic disci-
pline and have made their way into consumer products!
Apart from this, it is also used for the construction of
machines by way of intelligent robotics (engines, cars, ships,
turbines, etc.) and controls (Sendai subway train in Japan,
etc.) as well as for military purposes.

In 1991, Bin Shahna [2] introduced the concept of α-
open and preopen sets in the context of fuzzy sets, and he
introduced a preliminary study of fuzzy strong semicontinu-
ity and fuzzy precontinuity as well. Later, the concepts of
fuzzy α-open sets, fuzzy preopen, fuzzy α-continuous map-
pings, and fuzzy precontinuous mappings have been gener-
alized to the setting of fuzzy bitopological spaces in [3],

where some of their fundamental properties have been
studied.

Shi [4] presented the concept of an L-fuzzy preopen
degree of L-fuzzy set in L-fuzzy topological spaces. In addi-
tion, he discussed the fundamental properties of L-fuzzy pre-
continuous and L-fuzzy preirresolute mappings. It has been
found that Shi’s operator is incredibly useful in introducing
other gradations as well as in analyzing many topological
characteristics [5].

The concept of RL-topology has recently been intro-
duced and studied by H. Li and Q. Li [6] as an extension
of L-topology. A detailed discussion is also presented con-
cerning RL-continuous mapping and RL-compactness by
means of an inequality. As a generalization of RL-topology
and L-fuzzy topology, H. Li and Q. Li [7] defined RL-fuzzy
topology. Further investigations are conducted regarding
the RL-fuzzy compactness in RL-fuzzy topological spaces.
As a consequence of their work, Zhang et al. [8] presented
the Lindelöf property degree as well as the countable RL-
fuzzy compactness degree of an L-subset. It is clear that
the gradation of fuzzy compactness and Lindelöf property
in the sense of Kubiak and Šostak are special cases of the
corresponding degrees in RL-fuzzy topology.

In this paper, the pseudocomplement of L-fuzzy sets is
put forward as a basis for the definition of ði, jÞ-RL-preopen
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degree in RL-fuzzy bitopology. Additionally, we introduce
and discuss pairwise RL-fuzzy precontinuous, pairwise
RL-fuzzy preirresolute mappings, and pairwise RL-fuzzy
precompactness.

2. Preliminaries

Throughout this paper, ðL, ∨, ∧ , ′Þ denotes a complete
DeMorgan algebra [9, 10] and X is a nonempty crisp set.
By LX , we refer to the family of all L-fuzzy sets presented
on X. The greatest and the smallest elements in L and LX

are 1L, 0L and 1LX , 0LX , respectively. For any α, β ∈ L, α ≺ β
means that the element α is wedge below β in L [11]. JðLÞ
(resp. PðLÞ) denotes the collection of nonzero coprime (resp.
nonunit prime) members in L. The greatest minimal collec-
tion and the greatest maximal collection of α are denoted by
αðαÞ and βðαÞ, respectively. Moreover, α∗ðαÞ = αðαÞ ∩ JðLÞ
and β∗ðαÞ = βðαÞ ∩ PðLÞ. The valuable L-fuzzy set A is an
L-fuzzy set that achieves the condition A≤A′. V L

X refers to
the family of valuable L-fuzzy sets on X, i.e, V L

X = fA ∈
LX : A≤A′g. Moreover, ΨL

XðAÞ = fB ∈ LX : B ≤ Ag for every
A ∈V L

X . Let ψ : X⟶ Y be a mapping, A ∈V L
X , and B ∈

V L
Y , ψ

L
!jA : ΨL

XðAÞ⟶ LY with D ∈ΨL
XðAÞ↦ ψ

L
!ðDÞ, is

called an L-fuzzy function restriction (briefly, RL-fuzzy
function), defined by ψ

L
!
,A : A⟶ B with ψ

L
!ðAÞ ≤ B.

Moreover, ψ
L
 
,AðCÞ = ∨fD ∈ΨL

XðAÞ: ψL
!ðDÞ ≤ Cg for each

C ∈ΨL
YðBÞ. Clearly, ψL

 
,AðCÞ = A ∧ ψ

L
 ðCÞ. Let A ∈V L

X and

B ∈ΨL
XðAÞ, then hALB = A ∧ B′ if B ≠ A and hALB = 0LX if B

= A. The operation hALB is called the pseudocomplement
of B with respect to A [6, 7]. The following proposition
lists some of its properties:

Proposition 1 (see [6, 7]). If A ∈V L
X , H,G ∈ΨL

XðAÞ, and
fHigi∈Ω ⊆ΨL

XðAÞ, then:

(1) hALH = A⇔H ≤ A′

(2) H ≤G⇒ hALG ≤ hALH
(3) hAL∧i∈ΩHi = ∨i∈ΩhALHi

(4) hAL∧i∈ΩHi ≤ ∧i∈ΩhALHi, hAL∧i∈ΩHi = ∧i∈ΩhALHi provided
that ∨i∈ΩHi ≠ A

Lemma 2 (see [6]). For any A ∈V L
X , B ∈V L

Y , ψL
!
,A : A⟶ B,

H ∈ΨL
XðAÞ, and U ⊆ΨL

XðAÞ, we have

∨
y∈Y

ψ
L
!
,A Hð Þ yð Þ ∧ ∧

G∈U
G yð Þ

� �
= ∨

x∈X
H xð Þ ∧ ∧

G∈U
ψ
L
 
,A Gð Þ xð Þ

� �
:

ð1Þ

Equivalently [8],

∧
y∈Y

A
LψL

!
,A

D
Hð Þ yð Þ∨ ∨

G∈P
G yð Þ

� �
= ∧

x∈X
A
LH
�

xð Þ∨ ∨
G∈P

ψ
L
 
,A Gð Þ xð Þ

� �
:

ð2Þ

A subcollection T ⊆ LX is called an L-topology [9, 10, 12]
(briefly, L-t) if T includes the smallest and the greatest L-
fuzzy sets in LX . Moreover, the subcollection T is closed
for every suprema and finite infima. If T is an L-topology
on X, then the paire ðX,T Þ is said to be an L-topological
space on X. Furthermore, elements of T are said to be open,
and their complements are said to be closed. For any map-
ping ψ : ðX,T 1Þ⟶ ðY ,T 2Þ, ψ is said to be L-continuous
iff ψ

L
 ðCÞ ∈T 1 for every C ∈T 2.

The mapping T : LX ⟶ L is called an L-fuzzy topol-
ogy on the set X [13–15] if it achieves the following
statements:

(1) T ð0LX Þ =T ð1LX Þ = 1L
(2) T ðH1 ∧H2Þ ≥T ðH1Þ ∧T ðH2Þ, for every H1,

H2 ∈ LX

(3) T ð∨i∈ΩHiÞ ≥ ∧i∈ΩT ðHiÞ, for every fHigi∈Ω ⊆ LX

If T is an L-topology on X, then the pair ðX,T Þ is said
to be an L-fuzzy topological space (briefly, L-fts). The degree
of openness and the degree of closeness of G ∈ LX are repre-
sented by T ðGÞ and T ∗ðGÞ =T ðG′Þ, respectively. The
mapping ψ : ðX,T 1Þ⟶ ðY ,T 2Þ is said to be an L-fuzzy
continuous if and only if T 1ðψL

 ðMÞÞ ≥T 2ðMÞ for every

M ∈ LY .

Definition 3 (see [6]). Let A ∈V L
X andR ⊆ΨL

XðAÞ; thenR is
called a relative L-topology (briefly, RL-t) A if it achieves the
next conditions:

(1) A ∈R and H ∈R, for each H ≤ A′

(2) H1 ∧H2 ∈R, for any H1, H2 ∈R

(3) ∨i∈ΩHi ∈R, for any fHigi∈Ω ⊆R

If R is an RL-topology on A, then, the pair ðA,RÞ is
called an RL-topological space on A (briefly, RL-ts). The
relative open L-fuzzy sets (briefly, RL-open fuzzy set) are
the members of R while their pseudocomplements are said
to be RL-closed fuzzy sets, i.e., hALB ∈R. The family of all R
L-closed fuzzy sets with respect to R is denoted by hALR.
Let A ∈V L

X , B ∈V L
Y and ðA,R1Þ, ðB,R2Þ be two RL-ts.

The RL-fuzzy mapping ψ
L
!
,A : A⟶ B is called an RL-con-

tinuous if and only if ψ
L
 
,AðCÞ ∈ hALR1 for each C ∈ hALR2.

Equivalently, ψ
L
!
,A : A⟶ B is called an RL-continuous if

and only if ψ
L
 
,AðHÞ ∈R1 for each H ∈R2. If R1 and R2

are RL-topologies on A ∈V L
X , then ðA,R1,R2Þ is called an

RL-bitopological space (briefly, RL-bts). Ri-RL-open (resp.
closed) refers to the open (resp. closed) L-fuzzy set with
respect to ðA,RiÞ, where i = 1, 2. In case of A = 1X , we will
get back to L-topology and L-bitopology.

The concepts of βα-cover, strong βα-cover, Qα-cover,
α-shading, strong α-shading, α-remote collection, and strong
α-remote family [16] are extended to RL-topological spaces
in [17] as follows:
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Definition 4 (see [17]). For each A ∈V L
X , RL-topology R

on A, H ∈ΨL
XðAÞ, and α ∈ L0, a set U ⊆ΨL

XðAÞ is said
to be

(1) βα-cover of H if α ∈ βðhALHðxÞ∨∨G∈UGðxÞÞ for all
x ∈ X and U is said to be strong βα-cover of B if
a ∈ βð∧x∈XðhALHðxÞ∨∨G∈UGðxÞÞÞ

(2) Qα-cover of B if hALHðxÞ∨∨G∈UGðxÞ ≥ α for all x ∈ X

Definition 5 (see [17]). For each A ∈V L
X , RL-topology R

on A, α ∈ L1, and H ∈ΨL
XðAÞ, a family A ⊆ΨL

XðAÞ is said
to be

(1) α-shading of H if ðhALHðxÞ∨∨G∈AGðxÞÞ ≰ α for all
x ∈ X

(2) strong α-shading ofH if∧x∈XðhALHðxÞ∨∨G∈AGðxÞÞ ≰ α

(3) α-remote family of H if ðHðxÞ ∧ ∧G∈AGðxÞÞ ≱ α for
all x ∈ X

(4) strong α-remote family of H if ∨x∈XðHðxÞ ∧ ∧G∈A
GðxÞÞ ≱ α

Theorem 6 (see [6]). For each RL-ts ðA,RÞ, the next state-
ments are valid:

(1) A ∈ hALR and H ∈ hALR for every H ≤ A′

(2) H1∨H2 ∈ hALR for every H1, H2 ∈ hALR
(3) ∧i∈IHi ∈ hALR for every −Hi : i ∈Ωg ⊆ hALR

Definition 7 (see [7]). The mapping R : ΨL
XðAÞ⟶ L such

that A ∈V L
X is called an RL-fuzzy topology on A if R

achieves the next statements:

(1) RðAÞ = 1L, for every H ≤ A′, RðHÞ = 1L
(2) RðH1 ∧H2Þ ≥RðH1Þ ∧RðH2Þ, for every H1, H2 ∈

ΨL
XðAÞ

(3) Rð∨i∈ΩHiÞ ≥ ∧i∈ΩRðHiÞ, for every fHigi∈Ω ⊆ΨL
XðAÞ

If R is an RL-fuzzy topology on A, then the pair ðA,RÞ
is called an RL-fuzzy topological space (briefly, RL-fts). For
every H ∈ΨL

XðAÞ,RðHÞ (resp. RðhALHÞ) refers to the degree
of openness (resp. closeness) of H relative toR, respectively.
Moreover, if RðHÞ = 1L (resp. RðhALHÞ = 1L), then the RL-
openness (resp. RL-closeness) of an L-fuzzy set H is con-
firmed. Clearly, if A = 1LX , then RL-fuzzy topology on A turn
into Kubiak-Šostak’s L-fuzzy topology. Further, if R is an
RL-topology on A and χR : ΨL

XðAÞ⟶ L is a mapping
defined by χRðHÞ = 1L if H ∈R, and χRðHÞ = 0L if H ∉R,
then χR introduces a special RL-ft on A.

Theorem 8 (see [7]). For every A ∈V L
X and RL -ft R on

A. The mapping A
LR: ΨL

XðAÞ⟶ L defined by hALRðHÞ =

RðhALHÞ for every H ∈ΨL
XðAÞ achieves the next

statements:

(1) hALRðAÞ = 1L, for every H ≤ A′, hALRðHÞ = 1L

(2) hALRðH1∨H2Þ ≥ hALRðH1Þ ∧ hALRðH2Þ, for every H1,
H2 ∈ΨL

XðAÞ
(3) hALRð∧i∈ΩHiÞ ≥ ∧i∈IhALRðHiÞ, for every fHigi∈Ω ⊆

ΨL
XðAÞ

hALR is called an RL-fuzzy cotopology (briefly, RL-fct) on A.

Definition 9 (see [7]). Let A ∈V L
X , B ∈V L

Y and ðA,R1Þ, ðB,
R2Þ be two RL-fts on A and B, respectively. The RL-fuzzy
mapping ψL,A : A⟶ B is called an RL-fuzzy continuous if
and only if

R1 ψ
L
 
,A Cð Þ

� �
≥R1 Cð Þ, ð3Þ

that is,

R1
A
LψL

 
,A

D
Cð Þ

� �
≥R1

B
LC
�� �

, ð4Þ

for every C ∈ΨL
YðBÞ. Further, if ðA, hALR1Þ and ðB, hBLR2Þ are

RL-fcts with respect to ðA,R1Þ and ðB,R2Þ respectively,
then ψ

L
!
,A is called an RL-fuzzy continuous if and only if

A
LR1
�

ψ
L
 
,A Cð Þ

� �
≥ B

LR2
�

Cð Þ, ð5Þ

for every C ∈ΨL
XðBÞ.

Definition 10 (see [17, 18]). Let A ∈V L
X , and ðA,RÞ be an

RL-fts onA. ThemappingClR : ΨL
XðAÞ⟶ LJðΨL

XðAÞÞ given by

ClR Hð Þ xλð Þ = ∧
xλ≤G≥H

A
L R A

LG
�� �� �� ð6Þ

for every xλ ∈ JðΨL
XðAÞÞ and H ∈ΨL

XðAÞ is said to be the
induced RL-fuzzy closure operator by R.

Definition 11 (see [7]). For every A ∈V L
X and RRL-ft on A,

an L-fuzzy set B ∈ΨL
XðAÞ is called an RL-fuzzy compact

(briefly, RL-fc) if for every P ⊆ΨL
XðAÞ; the next inequality

is true:

∨
G∈P

R A
LG
�� �

∨ ∨
x∈X

H xð Þ ∧ ∧
G∈P

G xð Þ
� �

≥ ∧
S∈2P

∨
x∈X

H xð Þ ∧ ∧
G∈S

G xð Þ
� �

:

ð7Þ

Theorem 12 (see [7]). For A = 1LX , the next statements are
true:

(1) hALH =H ′, H ∈ΨL
XðAÞ iff H ∈ LX

(2) RL-fc is turned into L-fc

(3) H is RL-fc iff H is L-fc
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Theorem 13 (see [7]). For every A ∈V L
X and RL-fts ðA,RÞ,

the next conclusions are true:

(1) IfH1,H2 ∈ΨL
XðAÞ andH1,H2 are RL-fc, then H1∨H2

is RL-fc

(2) If H1,H2 ∈ΨL
XðAÞ such that H1 is an RL-fc and H2 is

an RL-closed, then H1 ∧H2 is an RL-fc

3. The ði, jÞ-RL-Preopenness Degree of
L-Fuzzy Set

If R1 and R2 be two RL-fuzzy topologies on A ∈V L
X , the

the triple ðA,R1,R2Þ is called an RL-fuzzy bitopological
space (briefly, RL-fbts). Moreover, if S any topological
property, then we refer to S with respect the RL-ft Ri by
Ri-S. An L-fuzzy set H ∈ΨL

XðAÞ of an RL-bts ðA,Rl,R2Þ
is said to be an ði, jÞ-RL-preopen if and only if H ≤ IntRi

ðClR jðHÞÞ. In the remainder of this paper i, j = 1, 2 such
that i ≠ j.

Definition 14. Let A ∈V L
X and ðA,R1,R2Þ be an RL-fbts on

A. The ði, jÞ-RL-preopenness gradation of H ∈ΨL
XðAÞ with

respect to Ri and Rj is the mapping ði, jÞ‐P : ΨL
XðAÞ⟶

L given by

i, jð Þ‐P Hð Þ = ∧
xλ≺H

∨
xλ≺M

Ri Hð Þ ∧ ∧
yμ≺M

∧
yμ≰G≥H

A
L Rj

A
LG
�� �� ��� �

:

ð8Þ

The value ði, jÞ‐P ðHÞ introduces the gradation of
ði, jÞ-RL-preopenness of H is and ði, jÞ‐P ∗ðHÞ = ði, jÞ‐
P ðhALHÞ introduces the gradation of ði, jÞ-RL-preclose-
ness of H.

The next corollary is a direct consequence of the above
definition and Definition 10:

Corollary 15. Let ðA,R1,R2Þ be an RL-fbts on A ∈V L
X .

Then, for every H ∈ΨL
XðAÞ, we have

i, jð Þ‐P Hð Þ = ∧
xλ≺H

∨
xλ≺M

Ri Mð Þ ∧ ∧
yμ≺M

ClR j Hð Þ yμ
� �� �

:

ð9Þ

Theorem 16. Let R1,R2 : Ψ
L
XðAÞ⟶ f0L, 1Lg be RL-ts

on A ∈V L
X , and ði, jÞ‐P : ΨL

XðAÞ⟶ f0L, 1Lg be the
degree of ði, jÞ-RL-preopenness with respect to Ri and Rj

with i ≠ j. Then ði, jÞ‐P ðHÞ = 1L if and only if H is an
ði, jÞ-RL-preopen.

Proof. The next inequality provides the proof:

i, jð Þ‐P Hð Þ = 1L ⇔ ∧
xλ≺H

∨
xλ≺C

Ri Cð Þ ∧ ∧
yμ≺C

ClR j Hð Þ yμ
� �� �

= 1L ⇔ ∀xλ ≺H,∃C such that xλ ≺ C,Ri Cð Þ
= 1L and ∧

yμ≺C
ClR j Hð Þ yμ

� �

= 1L ⇔ ∀xλ ≺H,∃C such that xλ ≺ C,Ri Cð Þ
= 1L and∀yμ ≺ C, ClR j Hð Þ yμ

� �

= 1L ⇔ ∀xλ ≺H,∃C such that xλ ≺ C,Ri Cð Þ
= 1L andC ≤ ClR j Hð Þ⇔H

≤ IntRi ClR j Hð Þ
� �

⇔H is i, jð Þ‐RL‐preopen:
ð10Þ

Theorem 17. Let ðA,R1,R2Þ be an RL-fbts on A ∈V L
X and

ði, jÞ‐P be the degree of ði, jÞ-RL-preopenness with respect to
Ri and R j with i ≠ j. Then, for every H ∈ΨL

XðAÞ, we have
RiðHÞ ≤ ði, jÞ‐P ðHÞ.

Proof. The next inequality provides the proof:

i, jð Þ‐P Hð Þ = ∧
xλ≺H

∨
xλ≺C

Ri Cð Þ ∧ ∧
yμ≺C

ClR j Hð Þ yμ
� �� �

≥ ∧
xλ≺H

Ri Hð Þ ∧ ∧
yμ≺H

ClR j Hð Þ yμ
� �� �

=Ri Hð Þ ∧ 1L =Ri Hð Þ:

ð11Þ

Corollary 18. Let ðA,R1,R2Þ be an RL-fbts on A ∈V L
X and

ði, jÞ‐P be the degree of ði, jÞ-RL-preopenness with respect to
Ri and R j with i ≠ j. Then, for every H ∈ΨL

XðAÞ, we have

hALRiðHÞ ≤ ði, jÞ‐P ∗ðHÞ.

Theorem 19. If ðA,R1,R2Þ be an RL-fbts on A ∈V L
X , and

ði, jÞ‐P be the degree of ði, jÞ-RL-preopenness with respect
to Ri and R j with i ≠ j, then ði, jÞ‐P ð ∨

i∈Ω
HiÞ ≥ ∧

i∈Ω
ði, jÞ‐

P ðHiÞ for every fHigi∈Ω ⊆ΨL
XðAÞ.

Proof. Let α ∈ L and α ≺ ∧
i∈Ω
ði, jÞ‐P ðHiÞ. Then for any i ∈Ω

and for any xλ ≺Hi, there exists Ci ∈ΨL
XðAÞ such that

xλ ≺ Ci, a ≺Ri Cið Þ, α ≺ ∧
yμ≺Ci

∧
yμ≰D≥Hi

A
L R j

A
LD
�� �� ��

: ð12Þ
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Hence,

α ≤ ∧
i∈Ω

R Cið Þ ≤R j ∨
i∈Ω

Ci

� �
, α ≤ ∧

i∈Ω
∧

yμ≺Ci

∧
yμ≰D≥Hi

A
L Rj

A
LD
�� �� ��

:

ð13Þ

By

xλ : xλ ≺ ∨
i∈I
Ci

n o
=
[
i∈I

− xλ : xλ ≺ Cig, ð14Þ

we have

i, jð Þ‐P ∨
i∈I
Hi

� �

= ∧
xλ≺ ∨

i∈Ω
Hi

∨
xλ≺C

Ri Cð Þ ∧ ∧
yμ≺C

∧
yμ≰D≥ ∨

i∈Ω
Ai

A
L R j

A
LD
�� �� ��

8<
:

9=
;

≥ ∧
xλ≺ ∨

i∈Ω
Hi

Ri ∨
i∈Ω

Ci

� �
∧ ∧

xλ≺ ∨
i∈Ω

Ci

∧
xλ≰D≥ ∨

i∈Ω
Ai

A
L R j

A
LD
�� �� ��

8<
:

9=
;

= ∧
xλ≺ ∨

i∈Ω
Hi

Ri ∨
i∈Ω

Ci

� �
∧ ∧

i∈Ω
∧

xλ≺Ci

∧
xλ≰D≥ ∨

i∈Ω
Hi

A
L R j

A
LD
�� �� ��

8<
:

9=
;

≥ ∧
i∈Ω

∧
xλ≺Hi

Ri ∨
i∈Ω

Ci

� �
∧ ∧

i∈Ω
∧

xλ≺Ci

∧
xλ≰D≥Hi

A
L R j

A
LD
�� �� ��� �

≥ α:

ð15Þ

Then, ði, jÞ‐P ð ∨
i∈Ω

HiÞ ≥ ∧
i∈Ω
ði, jÞ‐P ðHiÞ.

Corollary 20. Let ðA,R1,R2Þ be an RL-fbts on A ∈V L
X , and

ði, jÞ‐P be the degree of ði, jÞ-RL-preopenness with respect to
Ri and Rj with i ≠ j. Then, ði, jÞ‐P ∗ð ∧

i∈Ω
HiÞ ≥ ∧

i∈Ω
ði, jÞ‐P ∗

ðHiÞ for any fHigi∈Ω ⊆ΨL
XðAÞ.

4. A New Representation of Pairwise Fuzzy
Precontinuous (Preirresolute) Functions

Let ðA,R1,R2Þ, ðB,R∗
1 ,R∗

2 Þ be RL-fbts on A ∈V L
X and B ∈

V L
Y , respectively. The RL-fuzzy mapping ψL,A : A⟶ B is

called pairwise RL-fuzzy continuous (briefly, PRL-fco) if
and only if ψL,A : ðA,R1Þ⟶ ðB,R∗

1 Þ and ψL,A : ðA,R2Þ
⟶ ðB,R∗

2 Þ are RL-fuzzy continuous. In a similar way, we
define the concept pairwise RL-fuzzy open mapping (briefly,
PRL-fo).

Definition 21. Let ðA,R1,R2Þ and ðB,R∗
1 ,R∗

2 Þ be RL-fbts
on A ∈V L

X and B ∈V L
Y , respectively, and ði, jÞ‐P 1, ði, jÞ‐

P 2 are the corresponding ði, jÞ-RL-preopenness degrees.
An RL-fuzzy mapping ψL,A : A⟶ B is said to be

(1) pairwise RL-fuzzy precontinuous (briefly, PRL-fpco)
if and only ifR∗

i ðMÞ ≤ ði, jÞ‐P 1ðψL
 
,AðMÞÞ is true for

every M ∈ΨL
XðBÞ

(2) pairwise RL-fuzzy preirresolute (briefly, PRL-fpirr) if
and only if ði, jÞ‐P 2ðMÞ ≤ ði, jÞ‐P 1ðψL

 
,AðMÞÞ is true

for every M ∈ΨL
XðBÞ

Corollary 22. Let ðA,R1,R2Þ and ðB,R∗
1 ,R∗

2 Þ be RL-fbts
on A ∈V L

X and B ∈V L
Y , respectively, and ði, jÞ‐P 1, ði, jÞ‐P 2

be the corresponding ði, jÞ-RL-preopenness degrees. Then,

(1) ψL,A is PRL-fpco if and only if hBLR∗
i ðMÞ ≤ ði, jÞ‐P ∗

1

ðψ
L
 
,AðMÞÞ for every M ∈ΨL

XðBÞ
(2) ψL,A is PRL-fpirr if and only if ði, jÞ‐P ∗

2 ðMÞ ≤ ði, jÞ‐
P ∗

1 ðψL
 
,AðMÞÞ for every M ∈ΨL

XðBÞ

Theorem 23. Let ðA,R1,R2Þ and ðB,R∗
1 ,R∗

2 Þ be RL-fbts
on A ∈V L

X and B ∈V L
Y , respectively, and ði, jÞ‐P 1, ði, jÞ‐P 2

be the corresponding ði, jÞ-RL-preopenness degrees. Then,

(1) ψL,A : ðA,R1,R2Þ⟶ ðB,R∗
1 ,R∗

2 Þ is PRL-fpco if
and only if ψL,A : ðA,R1½α�,R2½α�Þ⟶ ðB,R∗

1 ½α�,
R∗

2 ½α�Þ is PRL-pco for every α ∈ JðLÞ
(2) ψL,A : ðA,R1,R2Þ⟶ ðB,R∗

1 ,R∗
2 Þ is PRL-fpirr if

and only if ψL,A : ðA,R1½α�,R2½α�Þ⟶ ðB,R∗
1 ½α�,

R∗
2 ½α�Þ is PRL-pirr for every α ∈ JðLÞ

Proof.

(1) If M ∈R∗
i ½α� for every M ∈ΨL

XðBÞ and α ∈ JðLÞ, then
R∗

i ðMÞ ≥ α. Since ψL,A : ðA,R1,R2Þ⟶ ðB,R∗
1 ,

R∗
2 Þ is PRL-fpco, then ði, jÞ‐P 1ðψL

 
,AðMÞÞ ≥R∗

i

ðMÞ ≥ α, i.e., ði, jÞ‐P 1ðψL
 
,AðMÞÞ ≥ α. Subsequently,

ψ
L
 
,AðMÞ is ði, jÞ-RL-preopen L-fuzzy set in ðA,

R1½α�,R2½α�Þ. Thus, ψL,A : ðA,R1½α�,R2½α�Þ⟶ ðB,
R∗

1 ½α�,R∗
2 ½α�Þ is PRL-pco mapping

Now, if R∗
i ðMÞ ≥ α for every M ∈ΨL

XðBÞ and α ∈ JðLÞ,
then M ∈R∗

i ½α�. Since ψL,A : ðA,R1½α�,R2½α�Þ⟶ ðB,R∗
1 ½α�,

R∗
2 ½α�Þ is PRL-pco, we have ψL

 
,AðMÞ is ði, jÞ-RL-preopen in

ðA,R1½α�,R2½α�Þ. Then, ði, jÞ‐P 1ðψL
 
,AðMÞÞ ≥ α for every α

∈ JðLÞ ∩ JðR∗
i ðMÞÞ, where JðR∗

i ðMÞÞ = −α ∈ JðLÞ ∣ α ≤R∗
i

ðMÞg. Hence ði, jÞ‐P 1ðψL
 
,AðMÞÞ ≥ ∨JðR∗

i ðMÞÞ = R∗
i ðMÞ.

(2) Let M be an ði, jÞ-RL-preopen L-fuzzy set with
respect to ðB,R∗

1 ½α�,R∗
2 ½α�Þ, then ði, jÞ‐P 2ðMÞ ≥ α.

Since ψL,A : ðA,R1,R2Þ⟶ ðB,R∗
1 ,R∗

2 Þ is PRL-
fpirr, then ði, jÞ‐P 1ðψL

 
,AðMÞÞ ≥ ði, jÞ‐P 2ðMÞ ≥ α, so

ði, jÞ‐P 1ðψL
 
,AðMÞÞ ≥ α, then ψ

L
 
,AðMÞ is ði:jÞ-RL-

preopen L-fuzzy set with respect to ðA,R1½α�,
R2½α�Þ. Hence, ψL,A : ðA,R1½α�,R2½α�Þ⟶ ðB,R∗

1 ½α�,
R∗

2 ½α�Þ is PRL-pirr
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Now, if ði, jÞ‐P 2ðMÞ ≥ α for every α ∈ JðLÞ, then M is an
α-ði:jÞ-RL-preopen with respect to ðB,R∗

1 ½α�,R∗
2 ½α�Þ. Since

ψL,A : ðA,R1½α�,R2½α�Þ⟶ ðB,R∗
1 ½α�,R∗

2 ½α�Þ is PRL-pirr,
f
L
 
,AðMÞ is α-ði, jÞ-RL-preopen with respect to ðA,R1½α�,

R2½α�Þ. Therefore, ði, jÞ‐P 1ðψL
 
,AðMÞÞ ≥ α for all α ∈ JðLÞ ∩ J

ðði, jÞ‐P 2ðMÞÞ, where Jðði, jÞ‐P 2ðMÞÞ = −α ∈ JðLÞ ∣ α ≤ ði, jÞ
‐ P 2ðMÞg. Hence, ði, jÞ‐P 1ðψL

 
,AðMÞÞ ≥ ∨Jðði, jÞ‐P 2ðMÞÞ =

ði, jÞ‐P 2ðMÞ.

Theorem 24. Let ðA,R1,R2Þ, ðB,R∗
1 ,R∗

2 Þ be RL-fbts on
A ∈V L

X and B ∈V L
Y , respectively. If ψL,A : A⟶ B is PRL-

fco, then, ψL,A is also PRL-fpco.

Proof. Let ψL,A : A⟶ B be PRL-fco; then R∗
i ðMÞ ≤Ri

ðψ
L
 
,AðMÞÞ for every M ∈ΨL

XðBÞ and i = 1, 2. Based on

Theorem 17, we have

R∗
i Mð Þ ≤Ri ψ

L
 
,A Mð Þ

� �
≤ i, jð Þ‐P 1 ψ

L
 
,A Mð Þ

� �
, ð16Þ

for every M ∈ΨL
XðBÞ. Hence, ψL,A is PRL-fpco.

Theorem 25. Let ðA,R1,R2Þ, ðB,R∗
1 ,R∗

2 Þ be two RL-fbts
on A ∈V L

X and B ∈V L
Y , respectively. If ψL,A : ðA,R1,R2Þ

⟶ ðA,R∗
1 ,R∗

2 Þ is PRL-fpirr, then ψL,A is PRL-fprco.

Proof. If ψL,A : ðA,R1,R2Þ⟶ ðB,R∗
1 ,R∗

2 Þ be PRL-fpirr,
then ði, jÞ‐P 2ðMÞ ≤ ði, jÞ‐P 1ðψL

 
,AðMÞÞ for every M ∈ΨL

X

ðBÞ. Based on Theorem 17, we have RiðMÞ ≤ ði, jÞ‐P 2ðMÞ
≤ ði, jÞ‐P 1ðψL

 
,AðMÞÞ. Hence, ψL,A is PRL-fpco.

Theorem 26. Let ðA,R1,R2Þ, ðB,R∗
1 ,R∗

2 Þ, and ðC,R∗∗
1 ,

R∗∗
2 Þ be PRL-fbts on A ∈V L

X , B ∈V L
Y , and C ∈V L

Z , respec-
tively. If ψL,A : ðA,R1,R2Þ⟶ ðB,R∗

1 ,R∗
2 Þ is PRL-fpco

and ϕL,B : ðB,R∗
1 ,R∗

2 Þ⟶ ðC,R∗∗
1 ,R∗∗

2 Þ is PRL-fco, then
ðϕ ∘ ψÞL,A : ðA,R1,R2Þ⟶ ðC,R∗∗

1 ,R∗∗
2 Þ is PRL-fpco.

Proof. Straightforward.

5. A New Representation of Pairwise
Fuzzy Precompactness

Definition 27. For any RL-fbt ðR1,R2Þ on A ∈V L
X , an L -

fuzzy set H ∈ΨL
XðAÞ is called a pairwise RL-fuzzy precom-

pact (briefly, PRL -fpcom) with respect to ðR1,R2Þ if for
every R ⊆ΨL

XðAÞ, the next inequality is true:

∧
D∈R

i, jð Þ‐P Dð Þ ∧ ∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈R

D xð Þ
� �

≤ ∨
Q∈2 Rð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈Q

D xð Þ
� �

,
ð17Þ

where 2ðRÞ denotes the family of all finite subfamilies of R.

Theorem 28. Let ðR1,R2Þ be RL-fbt on A ∈V L
X . An L-fuzzy

set H ∈ΨL
XðAÞ is called a PRL-fpcom with respect to ðR1,

R2Þ if for every W ⊆ΨL
XðAÞ, we have

∨
D∈W

i, jð Þ‐P A
LD
�� �

∨ ∨
x∈X

H xð Þ ∧ ∧
D∈W

D xð Þ
� �

≥ ∧
H∈2 Wð Þ

∨
x∈X

H xð Þ ∧ ∧
D∈H

D xð Þ
� �

:
ð18Þ

Proof. Straightforward.

Theorem 29. If ðR1,R2Þ is an RL-fbt on A ∈V L
X , and B ∈

ΨL
XðAÞ, then the following conditions are equivalent:

(1) H is a PRL-fpcom

(2) For every α ∈ JðLÞ, each strong α-remote family R of
H with ∧D∈Rði, jÞ‐P ∗ðDÞ ≰ α′ has a finite subfamily
H which is a (strong) α-remote family of H

(3) For every α ∈ JðLÞ, in each strong α-remote family R
of H with ∧D∈Rði, jÞ‐P ∗ðDÞ ≰ α′, there exists a finite
subfamilyH ofR and β ∈ β∗ðαÞ withH is a (strong)
β-remote family of H

(4) For every α ∈ PðLÞ, each strong α-shading U of H
with ∧D∈Uði, jÞ‐P ðDÞ ≰ α has a finite subfamily V

which is a (strong) α-shading of H

(5) For every α ∈ PðLÞ, in every strong α-shading U of H
with ∧D∈Uði, jÞ‐P ðDÞ ≰ α, there exists a finite family
V of U and β ∈ β∗ðαÞ with V is a (strong) β-shad-
ing of H

(6) For every α ∈ JðLÞ and β ∈ β∗ðαÞ, every Qα-coverU of
H with ði, jÞ‐P ðDÞ ≥ α (for every D ∈U) has a finite
subfamily V which is a Qβ-cover of H

(7) For every α ∈ JðLÞ and every β ∈ β∗ðαÞ, Qα-coverU of
H with ði, jÞ‐P ðDÞ ≥ α (for every D ∈U) has a finite
subfamily V which is a (strong) βα-cover of H

Proof. Straightforward.

Theorem 30. Let ðR1,R2Þ be an RL-fbt on A ∈V L
X , H ∈

ΨL
XðAÞ and βðα ∧ βÞ = βðαÞ ∧ βðβÞ for all α, β ∈ L; then, the

following conditions are equivalent:

(1) H is PRL-fpcom

(2) For every α ∈ JðLÞ, every strong βα-cover U of B with
α ∈ βð∧D∈Uði, jÞ‐P ðDÞÞ has a finite subfamily V

which is a (strong) βα-cover of H

(3) For every α ∈ JðLÞ, in every strong βα-cover U of H
with α ∈ βð∧D∈Uði, jÞ‐P ðDÞÞ, there exists a finite sub-
family V of U and β ∈ JðLÞ such that α ∈ β∗ðβÞ with
V is a (strongly) ββ-cover of H
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Proof. Straightforward.

Definition 31. Let A ∈V L
X , B ∈ΨL

XðAÞ, α ∈ JðLÞ, and ðA,R1,
R2Þ be an RL-bts. An L-fuzzy set H is said to be an α-
pairwise RL-fuzzy precompact (briefly, αPRL-fcom) if and
only if for each β ∈ βðαÞ, Qα-ði, jÞ-RL-preopen cover U of
H has a finite subfamily V which is a Qβ-ði, jÞ-RL-preopen
cover of H.

Theorem 32. Let A ∈V L
X , and ðA,R1,R2Þ be an RL-bts. An

L-fuzzy set H ∈ΨL
XðAÞ is PRL-fpcom if and only ifH is αPRL-

fpcom for every α ∈ JðLÞ.

Proof. If H is aPRL-fpcom, then for every α ∈ L1, β ∈ βðαÞ,
and U which can be any Qα-ði, jÞ-RL-preopen cover of H,
we obtain

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

,

ð19Þ

and α ≤ ∧x∈XðhALHðxÞ∨∨D∈UDðxÞÞ, so that

α ≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

: ð20Þ

By β ∈ βðαÞ, we have

β ≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

: ð21Þ

Then, there is V ∈ 2ðUÞ such that β ≤ ∧x∈XðhALHðxÞ∨
∨D∈VDðxÞÞ. It follows that V is Qβ-ði, jÞ-RL-preopen cover
of H.

Now, suppose that every Qα-ði, jÞ-RL-preopen cover U
of H has a finite subfamily V which is a Qα-ði, jÞ-RL-preo-
pen cover of H for each β ∈ βðαÞ. Then, α ≤ ∧x∈XðhALHðxÞ∨
∨D∈UDðxÞÞ implies that β ≤ ∧x∈XðhALHðxÞ∨∨D∈UDðxÞÞ. Hence,
α ≤ ∧x∈XðhALHðxÞ∨∨D∈UDðxÞÞ implies that β ≤ ∨V ∈2ðUÞ∧x∈X
ðhALHðxÞ∨∨D∈UDðxÞÞ. Soα ≤ ∧x∈XðhALHðxÞ∨∨D∈UDðxÞÞ implies
that

∨
β∈β αð Þ

β ≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

, ð22Þ

that is,

α ≤ ∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

ð23Þ

yields

α ≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

: ð24Þ

Therefore,

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

:

ð25Þ

Theorem 33. Let A ∈V L
X and ðA,R1,R2Þ be an RL-fbts. An

L-fuzzy set H ∈ΨL
XðAÞ is a PRL-fpcom in ðA,R1,R2Þ iff H is

an αPRL-fpcom in ðA,R1½α�,R2½α�Þ for each α ∈ JðLÞ.

Proof. If H ∈ΨL
XðAÞ be a PRL-fpcom in ðA,R1,R2Þ, then

for every family U ⊆ΨL
XðAÞ, we have

∧
D∈U

i, jð Þ‐P Dð Þ ∧ ∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

:
ð26Þ

Hence, for all α ∈ JðLÞ and U ⊆ ðði, jÞ‐P Þ½α�, we have that

α ≤ ∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈U

D xð Þ
� �

⇒ α ≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

:

ð27Þ

Hence, for each β ∈ βðαÞ, there is V ∈ 2ðUÞ such that β
≤ ∧x∈XðhALHðxÞ∨∨D∈VDðxÞÞ, i.e., for each α ∈ JðLÞ and β ∈
βðαÞ, each Qα-ði, jÞ-RL-preopen cover U of H in ðA,R1½α�,
R2½α�Þ has a finite subfamily V which is a Qα-ði:jÞ-RL-pre-
open cover. Then, for each α ∈ JðLÞ, H is αPRL-fpcom in
ðA,R1½α�,R2½α�Þ.

Now, suppose that for each α ∈ JðLÞ, H is αPRL-fpcom
in ðA,R1½α�,R2½α�Þ and let α ≤ ∧D∈Uði, jÞ‐P ðDÞ ∧ ∧x∈XðhALH
ðxÞ∨∨D∈UDðxÞÞ for each U ⊆ΨL

XðAÞ, then α ≤ ∧D∈U ði, jÞ‐P
ðDÞ and α ≤ ∧x∈XðhALHðxÞ∨∨D∈UDðxÞÞ, i.e, U ⊆ ðði, jÞ‐P Þ½α�
and α ≤ ∧x∈XðhALHðxÞ∨∨D∈UDðxÞÞ. Then, for every β ∈ βðαÞ,
there is V ∈ 2ðUÞ suth that

β ≤ ∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

: ð28Þ

Then,

α ≤ ∨
V ∈2 Uð Þ

∧
x∈X

A
LH
�

xð Þ∨ ∨
D∈V

D xð Þ
� �

: ð29Þ

So that H is a PRL-fpcom in ðA,R1,R2Þ.

Lemma 34. Let A ∈V L
X and ðA,R1,R2Þ be an RL-bitopolo-

gical space, α ∈ JðLÞ, and H,G ∈ΨL
XðAÞ. If H is αPRL-fpcom

and G is ði, jÞ-RL-preclosed, then H ∧G is αPRL-fpcom.

As an immediate consequence from the above lemma,
we have the following theorem:
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Theorem 35. Let A ∈V L
X and ðA,R1,R2Þ be an RL-fbts,

and H,G ∈ΨL
XðAÞ. If H is a PRL-fpcom and ði, jÞ‐P ∗ðGÞ =

1L, then H ∧ G is a PRL-fpcom.

Lemma 36. Let A ∈V L
X and ðA,R1,R2Þ be an RL-bts, α ∈

JðLÞ, and H,G ∈ΨL
XðAÞ. If H,G are αPRL-fpcom, then H∨

G is αPRL-fpcom.

Theorem 37. Let A ∈V L
X and ðA,R1,R2Þ be an RL-fbts,

and H,G ∈ΨL
XðAÞ. If H,G are PRL-fpcom, then H∨G is

PRL-fpcom.

Proof. Straightforward.

Lemma 38. Let ðA,R1,R2Þ, ðB,R∗
1 ,R∗

2 Þ be RL-bts’s on A
∈V L

X and B ∈V L
Y , respectively, α ∈ JðLÞ, H ∈ΨL

XðAÞ, and
ψL,A : A⟶ B be a PRL-irresolute function. If H is αPRL-
fpcom in ðA,R1,R2Þ, then ψ

L
!
,AðHÞ is αPRL − fpcom in ðB,

R∗
1 ,R∗

2 Þ.

Theorem 39. Let ðA,R1,R2Þ and ðB,R∗
1 ,R∗

2 Þ be two RL-
fbts’s on A ∈V L

X and B ∈V L
Y , respectively, H ∈ΨL

XðAÞ, and
ψL,A : A⟶ B be a PRL-fuzzy irresolute function. If H is a
PRL-fpcom in ðA,R1,R2Þ, then ψ

L
!
,AðHÞ is a PRL-fpcom

in ðB,R∗
1 ,R∗

2 Þ.

Proof. Let H be a PRL-fpcom in ðA,R1,R2Þ. By Theorem
33, we have H which is αPRL-fpcom in ðA,R1½α�,R2½α�Þ
for every α ∈ JðLÞ. By Theorem 33, ψL,A : ðA,R1½α�,R2½α�Þ
⟶ ðB,R∗

1 ½α�,R∗
2 ½α�Þ is PRL-irresolute. Therefore, based

on Lemma 38, ψ
L
!
,AðHÞ is αPRL-fpcom in ðB,R∗

1 ½α�,R∗
2 ½α�Þ.

Thus, ψ
L
!
,AðHÞ is PRL-fpcom in ðB,R∗

1 ,R∗
2 Þ.

6. Conclusion

In this paper, we presented the gradation of preopenness of
L-fuzzy sets in RL-fuzzy bitopological spaces relied on
pseudo-complement. The new gradation is used to extend
and characterize pairwise RL-fuzzy precontinuous and pair-
wise RL-fuzzy preirresolute functions. Moreover, we dis-
cussed pairwise RL-fuzzy precompactness of an L-fuzzy set
in RL-fuzzy bitopological spaces. We think that our findings
present more general results and it will open the way for
many other studies.
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