Research Article

A Positive Answer on Nirenberg’s Problem on Expansive Mappings in Hilbert Spaces

Teffer M. Asfaw

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Correspondence should be addressed to Teffer M. Asfaw; tefferam@yahoo.com

Received 28 April 2021; Accepted 24 February 2022; Published 17 March 2022

1. Introduction and Preliminaries

In what follows, X denotes a real Hilbert space with an inner product $< , >$, and the symbol $\| \cdot \|$ denotes the norm in X. An operator $T : X \to X$ is called “α-expansive” if there exists $\alpha > 0$ such that $\|Tx - Ty\| \geq \alpha \|x - y\|$ for all $x, y \in X$. The operator is called expansive if $\alpha = 1$. In 1974, Nirenberg [1] proposed a problem as to whether or not a continuous and expansive operator $T : X \to X$ is surjective if $R(T)^\perp \neq \emptyset$. I shall give a positive answer for the problem provided that $R(T)^\perp$ is unbounded. Clearly, T cannot be surjective if $R(T)^\perp$ is bounded.

Remark 1. Recently, I published a paper in [2] planning to give a proof of the problem. A minor error was found after publication. The editors decided a retraction based on their belief that the error is profound and not fixable. However, the error was minor, not profound and fixable. I submitted a corrigendum about the published paper but the editors decided to retract it based on the error in the original paper. Thus, the present paper reuses contents from [2]. The differences between the current and the retracted papers are given below.

(i) In Theorem 7, it is assumed that $R(T)$ has unbounded interior which was not assumed in [2].

(ii) The sequences $p(n, m)$ and $q(n, m)$ used in Step 1 in [2] are not required (in the current paper) to show the (S_ϵ) property of the operator $S + \lambda I$. Instead, the (S_ϵ) property of $S + \lambda I$ is achieved based on Kirschbraun-Valentine [3, 4] extension theorem (c.f., $L^{10} - L^7$ on page 5 of the current paper). It is essential to mention that Valentine’s [4] result is a generalization of Kirschbraun [3] extension theorem.

Morel and Steinlein [5] constructed an example of such an operator T defined from $\ell^1(N)$ into $\ell^1(N)$ satisfying the stated conditions but fails to be surjective. In a Hilbert space setting (i.e., if $H = \ell^2(N)$), Szczepanski [6] constructed a family of nonsurjective continuous maps $\{ F_\epsilon : H \to H \}_{\epsilon > 0}$ such that $R(F_\epsilon)$ contains $B_1(0)$ and F_ϵ is expansive on each sphere and $\|Fx - Fy\| \geq \|x - y\|$ for all $x, y \in P_\epsilon$, where $P_\epsilon = \{ x \in H : 1 < \|x\| < 1 + \epsilon \}$.

1. Introduction and Preliminaries

In what follows, X denotes a real Hilbert space with an inner product $< , >$, and the symbol $\| \cdot \|$ denotes the norm in X. An operator $T : X \to X$ is called “α-expansive” if there exists $\alpha > 0$ such that $\|Tx - Ty\| \geq \alpha \|x - y\|$ for all $x, y \in X$. The operator is called expansive if $\alpha = 1$. In 1974, Nirenberg [1] proposed a problem as to whether or not a continuous and expansive operator $T : X \to X$ is surjective if $R(T)^\perp \neq \emptyset$. I shall give a positive answer for the problem provided that $R(T)^\perp$ is unbounded. Clearly, T cannot be surjective if $R(T)^\perp$ is bounded.

Remark 1. Recently, I published a paper in [2] planning to give a proof of the problem. A minor error was found after publication. The editors decided a retraction based on their belief that the error is profound and not fixable. However, the error was minor, not profound and fixable. I submitted a corrigendum about the published paper but the editors decided to retract it based on the error in the original paper. Thus, the present paper reuses contents from [2]. The differences between the current and the retracted papers are given below.

(i) In Theorem 7, it is assumed that $R(T)$ has unbounded interior which was not assumed in [2].

(ii) The sequences $p(n, m)$ and $q(n, m)$ used in Step 1 in [2] are not required (in the current paper) to show the (S_ϵ) property of the operator $S + \lambda I$. Instead, the (S_ϵ) property of $S + \lambda I$ is achieved based on Kirschbraun-Valentine [3, 4] extension theorem (c.f., $L^{10} - L^7$ on page 5 of the current paper). It is essential to mention that Valentine’s [4] result is a generalization of Kirschbraun [3] extension theorem.

Morel and Steinlein [5] constructed an example of such an operator T defined from $\ell^1(N)$ into $\ell^1(N)$ satisfying the stated conditions but fails to be surjective. In a Hilbert space setting (i.e., if $H = \ell^2(N)$), Szczepanski [6] constructed a family of nonsurjective continuous maps $\{ F_\epsilon : H \to H \}_{\epsilon > 0}$ such that $R(F_\epsilon)$ contains $B_1(0)$ and F_ϵ is expansive on each sphere and $\|Fx - Fy\| \geq \|x - y\|$ for all $x, y \in P_\epsilon$, where $P_\epsilon = \{ x \in H : 1 < \|x\| < 1 + \epsilon \}$. In addition, Szczepanski [7] gave a negative answer for the problem in $X = \ell^2(N)$ by constructing a continuous and nonsurjective operator T satisfying weak expansive condition. Chang and Shujie [8], Theorem 7, gave a positive answer for the problem provided that $T : X \to Y$ is Fréchet differentiable on X (where X is a real Banach space and Y is reflexive), and its derivative is locally bounded.
Recently, Kartsatos [9, Theorem 6 (with \(\alpha = 1\) and \(c \in (0, 1)\)), and Xiang [10], Theorem 2.12 (with \(c \in (-\infty, a)\)), gave surjectivity results if the condition \(R(T) = \emptyset\) is replaced by strong monotonicity of \(T + aI\).

The following remarks on the recent result due to Ives and Preiss [11], are essential.

Remark 2. Ives and Preiss [11], Theorem 4, constructed an operator \(\mathcal{P} : X \rightarrow X\) (where \(X = L^2(0, \infty)\)) satisfying the following properties.

(i) \(\mathcal{P}x = x\) for all \(x \in B_1(0)\)

(ii) The \(\mathcal{P}\) image of \(\{x \in X : \|x\| \geq 1\}\) is nowhere dense in \(X\)

(iii) \(\mathcal{P}\) is not surjective.

We shall show that (i) and (ii) imply the boundedness of \(\mathcal{R}(\mathcal{P})\). Indeed, let \(F = \mathcal{P}(X \setminus B_1(0))\). The continuity and expansiveness of \(\mathcal{P}\) and the closedness of \(X \setminus B_1(0)\) show that \(F\) is closed. Since \(F\) is nowhere dense, it follows that \(F^c = \emptyset\), i.e., \(F = \partial F\) and \(X \setminus F = X\). Let \(V = R(\mathcal{P})\). Then, for each \(x \in V\), there exists a sequence \(\{x_n\}\) in \(X \setminus F\) such that \(x_n \rightarrow x\) as \(n \rightarrow \infty\). Since \(V\) is nonempty and open containing \(x\) (\(V\) is a neighbourhood of \(x\)), there exists a positive integer \(N\) such that \(x_n \in V\) for all \(n \geq N\). In addition, we see that

\[
R(\mathcal{P}) = \mathcal{P}(B_1(0)) \cup \mathcal{P}(X \setminus B_1(0)) = B_1(0) \cup F,
\]

i.e., we have \(V = V \cap (B_1(0) \cup F) = B_1(0) \cup (F \cap V)\). Since \(x_n \in F\) for all \(n\) (i.e., \(x_n \in F \cap V\) for all \(n\)) and \(B_1(0)\) and \(F \cap V\) are disjoint, we conclude that \(x_n \in B_1(0)\) for all \(n \geq N\). This shows that \(x \in B_1(0)\), i.e., \(V \subseteq B_1(0)\). Thus, the set \(V\) is bounded, i.e., \(\mathcal{P}\) is not surjective.

Remark 3. Remark 2 shows that conditions (i) through (v) in Theorem 4 due to Ives and Preiss [11] imply that \(R(T)\) has a bounded interior, i.e., \(T\) is nonsurjective. It is essential to mention that the result in [11] did not give a negative answer for Nirenberg's problem if \(R(T)\) is unbounded. In addition, we point out that the case of boundedness of \(R(T)^*\) can be ignored from the statement of Nirenberg's problem.

The following definition is needed in the sequel.

Definition 4. Let \(Y\) be a real reflexive Banach space and \(Y^*\) be its dual space. Let \(G\) be a nonempty, bounded, and open subset of \(Y\) and \(S : \bar{G} \rightarrow Y^*\) be bounded on finite dimensional subsets of \(Y\). Then, \(S\) is said to be \(\ast\) of type \((S_n)\) if a sequence \(\{x_n\}\) in \(\bar{G}\) satisfies \(x_n \rightarrow x_0\) and \(\limsup_{n \rightarrow \infty} S(x_n) = 0\); then, \(x_n \rightarrow x_0\) and \(S(x_n) \rightarrow S(x_0)\) as \(n \rightarrow \infty\).

Broder [12], Definition 5, introduced the following definition.

Definition 5. Let \(G\) be a nonempty, bounded, and open subset of a reflexive Banach space \(Y\). A family of operators \(\{S_t\}_{t \in [0, 1]}\), defined from \(G\) into \(Y^*\), is called a “homotopy of class \((S_t)\)” if for sequences \(\{x_n\}\) in \(\bar{G}\) and \(\{t_n\}\) in \([0, 1]\) such that \(x_n \rightarrow x_0\), \(t_n \rightarrow t_0\) and \(\limsup_{n \rightarrow \infty} (S^{t_n}x_n, x_n - x_0) \leq 0\), we have \(x_n \rightarrow x_0\) and \(S^{t_n}x_n \rightarrow S^{t_0}x_0\) as \(n \rightarrow \infty\).

The operator \(J : Y \rightarrow 2^{Y^*}\) defined by

\[
J(y) = \{y^* \in Y^* : (y^*, y) = \|y^*\|^2, y = \|y\|\},
\]

is called the normalized dual mapping. It is well-known that \(J\) is single-valued, bounded, monotone, bicontractive, surjective, and of type \((S_t)\) if \(Y\) and \(Y^*\) are locally uniformly convex and real reflexive Banach spaces.

Theorem 7 gives a proof of the Nirenberg problem.

Lemma 6. Let \(G\) be a nonempty, bounded, and open subset of a real reflexive Banach space \(Y\). Let \(f^* \in Y^*\). Then, the following basic properties hold.

(i) Normalization. \(d(J, G, 0) = 1\) if \(0 \in G\) and \(d(J, G, 0) = 0\) if \(0 \notin G\).

(ii) Existence. Let \(S : \bar{G} \rightarrow Y^*\) be a bounded operator of type \((S_t)\) such that \(f^* \in S(\partial G)\) and \(d(S, G, f^*) \neq 0\). Then, \(f^* \in S(G)\).

(iii) Homotopy Invariance. Let \(\{S_t\}_{t \in [0, 1]}\) be a homotopy of class \((S_t)\) defined from \(G\) into \(Y^*\) such that \(f^* \in S_t(\partial G)\) for all \(t \in [0, 1]\). Then, \(d(S_t, G, f^*)\) is independent of \(t \in [0, 1]\).

(iv) Invariance under Affine Homotopy. Let \(S_t : \bar{G} \rightarrow Y^*\) \((i = 1, 2)\) be a bounded operator of type \((S_t)\) and \(K^t = T_0 + (1 - t)S_2\) for \(t \in [0, 1]\). Then, \(\{K_t\}_{t \in [0, 1]}\) is a homotopy of class \((S_t)\), and \(d(K_t, G, f^*)\) is independent of \(t \in [0, 1]\) provided that \(\ast \in K^t(\partial G)\) for all \(t \in [0, 1]\).

2. Main Result

Theorem 7. Let \(X\) be a real Hilbert space and \(T : X \rightarrow X\) be a continuous and \(\alpha\)-expansive operator such that \(R(T)^*\) is unbounded. Then, \(T\) is surjective.

Proof. Choose \(x_0 \in R(T)^*\). Then, there exists \(r > 0\) such that \(B_r(x_0) \subseteq R(T)\). Let \(T \bar{x} = T \bar{x} - x_0\). Then, the operator \(\bar{T} : X \rightarrow X\) is \(\alpha\)-expansive and continuous such that \(R(T)^* - x_0 = R(T)\). It follows that \(R(T)^*\) is unbounded if and only if \(R(\bar{T})^*\) is unbounded. Clearly, the set \(V = B_r(x_0) - x_0\) is open and \(0 \in V \subseteq R(\bar{T})\), i.e., \(0 \in R(\bar{T})^*\). In addition, we see that \(T\) is surjective if and only if \(\bar{T}\) is surjective. Thus, we assume without loss of generality that \(0 \in R(T)^*\). Let \(U = R(T)^*\) and \(f \in X\). The continuity \(\alpha\)-expansive conditions imply
that $R(T)$ is closed and
\[
\|T^{-1}x - T^{-1}y\| \leq \alpha^{-1}\|x - y\|,
\]
for all $x \in R(T)$ and $y \in R(T)$. Then, it follows that
\[
(\langle T^{-1}x + \alpha^{-1}x, x-y \rangle - \langle T^{-1}y + \alpha^{-1}y, y-x \rangle)
\]
\[
= \langle T^{-1}x - T^{-1}y, x-y \rangle + \alpha^{-1}\|x-y\|^2
\]
\[
\geq -\|T^{-1}x - T^{-1}y\|\|x-y\| + \alpha^{-1}\|x-y\|^2
\]
\[
\geq -\alpha^{-1}\|x-y\|^2 + \alpha^{-1}\|x-y\|^2
\]
\[
= 0,
\]
for all $x \in R(T)$ and $y \in R(T)$, i.e., $T^{-1} + \alpha^{-1}I: R(T) \rightarrow X$ is a continuous and monotone operator. It holds that $U \subseteq R(T)$ because $R(T)$ is closed and $U \subseteq R(T)$. Let $S: U \rightarrow X$ be the restriction of $T^{-1} + \alpha^{-1}I$ on U. Let $\lambda > 0$, and for each $f \in X$ and $\mu \in (0, 1)$, let $f_{\mu} = \mu^{-1/2}f$. Let
\[
S_{\chi}x = Sx + \lambda (x - f_{\mu}), x \in U.
\]
The monotonicity of S implies
\[
\langle S_{\mu}x - S_{\mu}y, x - y \rangle \geq \lambda\|x - y\|^2,
\]
for all $x \in U$ and $y \in U$. The monotonicity of S and the condition $0 \in \partial U$ yield
\[
\langle S_{\mu}x, x \rangle = \langle Sx - S0 + S0 + \lambda (x - f_{\mu}), x \rangle
\]
\[
\geq \lambda\|x\|^2 - \left(\lambda\|f_{\mu}\| + \|S0\|\right)\|x\|,
\]
for all $x \in U$. Since ∂U is unbounded, the right side of (7) approaches infinity as $\|x\| \rightarrow \infty$. Then, there exists $R = R(f_{\mu}) > 0$ such that
\[
\langle Sx + \lambda(x - f_{\mu}), x \rangle > 0,
\]
for all $x \in U \cap \partial B_R(0)$. Let $\Omega = U \cap \partial B_R(0)$. We shall show that the operator $S + \lambda(I - f_{\mu}): \Omega \rightarrow X$ is of type (S_λ). We shall apply Kirszbraun-Valentine [3, 4] extension theorem. Indeed, the Lipschitz operator T^{-1} (with Lipschitz constant α^{-1}) can be extended to an operator $P: X \rightarrow X$ with the same Lipschitz constant. Thus, the operator $\tilde{S} + \lambda(I - f_{\mu}): \Omega \rightarrow X$ is continuous and uniformly monotone, i.e., \tilde{S} is of type (S_λ). Let \tilde{S}_Ω be the restriction of \tilde{S} on $\tilde{\Omega}$. We shall show that \tilde{S}_Ω is of type (S_λ). Indeed, let $x_n \in \tilde{\Omega}$ for all n such that $x_n \rightarrow x_0 \in X$ as $n \rightarrow \infty$. Then
\[
\limsup_{n \rightarrow \infty} \langle \tilde{S}x_n - x_0, x_n - x_0 \rangle \leq 0.
\]
It is enough to show that $x_n \rightarrow x_0 \in \Omega$. Since $\tilde{S} = \tilde{S}_\Omega$ on $\tilde{\Omega}$, it follows that
\[
\limsup_{n \rightarrow \infty} \langle \tilde{S}x_n - x_n, x_n - x_0 \rangle \leq 0.
\]
The uniform monotonicity of \tilde{S} with domain X (i.e., using (5), (6) and $\tilde{S} = \tilde{S}_1$ on $\tilde{\Omega}$) shows that
\[
\langle \tilde{S}x_n - \tilde{S}x_0 + \tilde{S}x_0, x_n - x_0 \rangle = \langle \tilde{S}x_n - \tilde{S}x_0, x_n - x_0 \rangle
\]
\[
+ \langle \tilde{S}x_0, x_n - x_0 \rangle
\]
\[
\geq \lambda\|x_n - x_0\|^2 + \langle \tilde{S}x_0, x_n - x_0 \rangle,
\]
for all n. Thus, (9)–(11) yield
\[
\limsup_{n \rightarrow \infty} \langle \lambda\|x_n - x_0\|^2 + \langle \tilde{S}x_0, x_n - x_0 \rangle \rangle \leq \limsup_{n \rightarrow \infty} \langle \tilde{S}x_n, x_n - x_0 \rangle \leq 0.
\]
Since $\langle \tilde{S}x_0, x_n - x_0 \rangle \rightarrow 0$ as $n \rightarrow \infty$ (because $x_n \rightarrow 0$), (12) shows that
\[
\limsup_{n \rightarrow \infty} \lambda\|x_n - x_0\|^2 \leq 0,
\]
i.e., $x_n \rightarrow x_0$ as $n \rightarrow \infty$. Clearly $x_0 \in \Omega$ because $x_n \in \Omega$ for all n. The continuity of \tilde{S}_Ω implies that $\tilde{S}x_n \rightarrow \tilde{S}x_0$ as $n \rightarrow \infty$. Thus, the operator $\tilde{S}_\Omega = S + \lambda(I - f_{\mu}): \Omega \rightarrow X$ is bounded, continuous, and of type (S_λ). Clearly, the identity operator $I: \Omega \rightarrow X$ is bounded and of type (S_λ). For each $\lambda > 0$, let $H_\lambda: [0, 1] \times \Omega \rightarrow X$ be given by
\[
H_\lambda(t, x) = t(\lambda x + \lambda x - \lambda f_{\mu}) + (1-t)x, (t, x) \in [0, 1] \times \Omega.
\]
Then, (iv) of Lemma 6 shows that the family $\{H_\lambda(t_x)\}_{t \in [0, 1]}$ is an affine homotopy of class (S_λ). Clearly, $0 \neq H_\lambda(0, x)$ for all $x \in \partial \Omega$. Thus, exactly one of the following holds:

(i) There exists $\lambda > 0$ such that for each $\lambda' \geq \lambda$, there exist $\mu^* \in (0, 1)$ and $x_{\lambda'} \in \partial \Omega$ such that $H_{\lambda'}(t_{\lambda'}, x_{\lambda'}) = 0$ for all $\lambda' \geq \lambda'$

(ii) For each $\lambda > 0$ there exists $\lambda' \geq \lambda$ such that
Abstract and Applied Analysis

4

\[H_{\lambda'}(t, x) \neq 0 \text{ for all } (t, x) \in [0, 1] \times \partial \Omega \text{ and some } \lambda' \geq \lambda'. \]

Suppose (i) holds, i.e., there exists \(n > 0 \) such that for each \(n' \geq n \), this corresponds \(t_n' \in [0, 1] \), \(x_n' \in \partial \Omega \subseteq \Omega \subseteq U \subseteq R(T) \), and \(y_{n'} \in X \) such that \(x_n' = T y_{n'} \) and \(H_{\lambda'}(t_n', x_n') = 0 \) for all \(n'' \geq n', \) i.e., for each \(n' \geq n \), we have

\[t_n'(y_{n'} + \alpha^{-1} Ty_{n'} + n'' Ty_{n'} - n'' f_{\mu}) + (1 - t_n') Ty_{n'} = 0, \]

for all \(n'' \geq n' \). Replacing \(n \) by \(n_0 \), \(n' \) by \(n \), and \(n'' \) by \(n' \) in (16), for each \(n \geq n_0 \), we get

\[t_n(y_n + \alpha^{-1} Ty_n + n Ty_n - n f_{\mu}) + (1 - t_n) Ty_n = 0, \]

for all \(n' \geq n \). Next we choose a sequence of natural numbers \(\{N_n\} \) such that \(t_n \in (1/N_n, 1] \) for all \(n \). Clearly, \(\lambda_n > n \) and \(t_n \in (1/N_n, 1] \) for all \(n \) (i.e., \(t_n \lambda_n > 1 \) for all \(n \)). Since \(\lambda_n > n \) for all \(n \), (17) implies

\[t_n(y_n + \alpha^{-1} Ty_n + \lambda_n Ty_n - \lambda_n f_{\mu}) + (1 - t_n) Ty_n = 0, \]

for all \(n \). Clearly, \(t_n \neq 0 \) for all \(n \). Dividing (18) by \(t_n \) for all \(n \), we arrive at

\[y_n^{-1} y_n + Ty_n = \lambda_n y_n^{-1} f_{\mu}, \]

for all \(n \), where \(y_n = \alpha^{-1} + \lambda_n + (1 - t_n) t_n \). The boundedness of \(\{x_n\} \) and \(T^{-1} \) shows that \(\{y_n\} \) is bounded. Assume without loss of generality that \(t_n \longrightarrow t_0 \in [0, 1] \) as \(n \longrightarrow \infty \). Suppose \(t_0 = 0 \). The sequence \(\{t_n \lambda_n\} \) cannot converge to 0 because \(t_n \lambda_n > 1 \) for all \(n \). Then, we consider either \(\{t_n \lambda_n\} \) is unbounded or bounded. Suppose \(\{t_n \lambda_n\} \) is unbounded, i.e., there exists a subsequence of \(\{t_n \lambda_n\} \), denoted by \(\{t_n \lambda_n\}_n \), such that \(t_n \lambda_n \longrightarrow \infty \) as \(n \longrightarrow \infty \). Since \(t_0 = 0 \), \(\{y_n\} \) and \(\{Ty_n\} \) are bounded, letting \(n \longrightarrow \infty \) in (18) implies

\[t_n \lambda_n Ty_n - t_n \lambda_n f_{\mu} + Ty_n \longrightarrow 0, \]

as \(n \longrightarrow \infty \), i.e., \(c_n Ty_n \longrightarrow f_{\mu} \) as \(n \longrightarrow \infty \), where \(c_n = 1 + t_n \lambda_n / t_n \lambda_n \) for all \(n \). Since \(c_n \longrightarrow 1^+ \) as \(n \longrightarrow \infty \) and \(\{Ty_n\} \) is bounded, we conclude that \(x_n = Ty_n \longrightarrow f_{\mu} \in R(T) = R(T) \) as \(n \longrightarrow \infty \). Letting \(\mu \longrightarrow 1^+ \) gives \(f \in R(T) \).

Next we assume that \(\{t_n \lambda_n\} \) is bounded. Assume without loss of generality that there exists a subsequence, denoted again by \(\{t_n \lambda_n\}_n \), such that \(t_n \lambda_n \longrightarrow a \in [1, \infty) \) as \(n \longrightarrow \infty \). Then, \(c_n \longrightarrow (a + 1)a^{-1} \) and

\[x_n = Ty_n \longrightarrow a(a + 1)^{-1} f_{\mu} \in R(T) = R(T), \]

as \(n \longrightarrow \infty \). Since \(d = a(a + 1)^{-1} \in (0, 1) \), letting \(\mu \longrightarrow d \) gives \(f \in R(T) \).

Next we consider the case \(t_0 \in (0, 1], \) Then, we have \(\mu_n = \alpha^{-1} + (1 - t_n) t_n \longrightarrow \mu_0 = \alpha^{-1} + (1 - t_0) t_0 \in \mathbb{R} \) and

\[\lambda_n y_n^{-1} = \frac{\lambda_n}{\alpha^{-1} + \lambda_n + (1 - t_n) t_n}, \]

\[\mu_n + N_n + (n - 1) \]

\[= \frac{1}{1 + \xi_n \mu_n}, \]

for all \(n \), where \(\xi_n = (N_n + (n - 1))^{-1} \). Since \(\xi_n \longrightarrow 0 \) as \(n \longrightarrow \infty \) and \(\mu_0 \in \mathbb{R} \), it follows that \(\lambda_n y_n^{-1} \longrightarrow 1 \) as \(n \longrightarrow \infty \). Letting \(n \longrightarrow \infty \) in (19) yields \(x_n = Ty_n \longrightarrow f_{\mu} \in R(T) = R(T) \). Letting \(\mu \longrightarrow 1^- \) shows that \(f \in R(T) \). In all cases, each \(f \in X \) satisfying (i) lies in \(R(T) \).

Suppose (ii) holds. Then, there exists a subsequence of \(\{n\} \), denoted again by \(\{n\} \), such that \(0 \in H_n(t, \partial \Omega) \) for all \(t \in [0, 1] \) and \(n \). Then, (iv) of Lemma 6. shows that the family \(\{H_n(t)\}_{t \in [0, 1]} \) is a homotopy of class \((S_n) \) defined from \(\Omega \) into \(X \) such that \(0 \in H_n(t, \partial \Omega) \) for all \(t \in [0, 1] \) and \(n \). Let \(d \) stand for Browder degree mapping. Applying (iii) of Lemma 6., we conclude that \(d(H_n(t), \Omega, 0) \) is independent of \(t \in [0, 1] \), i.e., (i) and (iii) of Lemma 6. give

\[d(S + nI - nf_{\mu}, \Omega, 0) = d(I, \Omega, 0) = 1 \]

for all \(n \). In addition, (ii) of Lemma 6. confirms that \(n f_{\mu} \in (S + nI)(\Omega) \) for all \(n \). Thus, for each positive integer \(n \), there exist \(x_n \in \Omega \) and \(y_n \in X \) such that \(x_n = Ty_n \) for all \(n \) and

\[nf_{\mu} = S\lambda_n + n x_n - T^{-1} x_n + \alpha^{-1} x_n + nx_n \]

\[= (n + \alpha^{-1}) Ty_n + y_n, \]

for all \(n \). Since \(\{x_n\} \) and \(T^{-1} \) are bounded, it follows that \(\{y_n\} \) is bounded. In addition, (24) gives

\[x_n = Ty_n = nt_n f_{\mu} - t_n y_n \longrightarrow f_{\mu} \in \partial \Omega \subseteq U \subseteq R(T), \]

as \(n \longrightarrow \infty \) because \(t_n \longrightarrow 0 \) and \(nt_n \longrightarrow 1 \), where \(t_n = (n + \alpha^{-1})^{-1} \). Thus, letting \(\mu \longrightarrow 1^- \) shows that \(f \in R(T) \). Thus, each \(f \in X \) satisfying (i) or (ii) lies in \(R(T) \). This shows that \(T \) is surjective. The proof is completed.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of the paper.
References

