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In this paper, we first introduce two new notions of uniform convexity on a geodesic space, and we prove their properties.
Moreover, we reintroduce a concept of the set-convergence in complete geodesic spaces, and we prove a relation between the
metric projections and the convergence of a sequence of sets.

1. Introduction

There are a lot of works dealing with the relation between
convergence of a sequence of sets and convergence of a
sequence of projections corresponding to it. In particular,
the following theorem on a reflexive and strictly convex real
Banach space is one of the important results.

Theorem 1 (Tsukada [1]). Let E be a strictly convex and
reflexive real Banach space satisfying the Kadec-Klee prop-
erty. Let fCng ⊂ 2E be a sequence of nonempty closed convex
sets and C0 ⊂ E a nonempty closed convex subset such that
fCng converges to C0 in the sense of Mosco. Then fPCn

xg
converges strongly to PC0

x ∈ E for any x ∈ X, where PK : E
⟶ K is the metric projection of E onto a nonempty closed
convex subset K of X.

Since a uniformly convex real Banach space is strictly
convex, reflexive, and satisfying the Kadec-Klee property,
this theorem is true in uniformly convex real Banach spaces.
Moreover, since a real Hilbert space is a uniformly convex
real Banach space, it is also true in real Hilbert spaces.

On the other hand, we know that a Hadamard space is
another generalization of Hilbert spaces. It is defined as a
complete metric space having a particular convexity struc-

ture and it also has various useful properties that Hilbert
spaces have. Kimura [2] introduced Δ-Mosco convergence
in complete geodesic spaces using a notion of asymptotic
centre instead of weak convergence.

Theorem 2 (Kimura [2]). Let X be a complete CAT(0) space.
Let fCng ⊂ 2X be a sequence of nonempty closed convex sets
and C0 ⊂ X a nonempty closed convex subset such that fCng
converges to C0 in the sense of Δ -Mosco. Then fPCn

xg con-
verges to PC0

x ∈ X for any x ∈ X, where PK : X ⟶ K is the
metric projection of X onto a nonempty closed convex subset
K of X.

Moreover, Kimura and Satô [3] introduced Δκ-Mosco
convergence in complete CAT(κ) spaces and obtain the fol-
lowing result:

Theorem 3 (Kimura and Satô [3]). Let X be a complete
admissible CAT(κ) space for κ > 0. Let fCng ⊂ 2X be a
sequence of nonempty closed convex sets and C0 ⊂ X a
nonempty closed convex subset such that fCng converges to
C0 in the sense of Δκ -Mosco. Then fPCn

xg converges to
PC0

x ∈ X for any x ∈ X, where PK : X ⟶ K is the metric
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projection of X onto a nonempty closed convex subset K
of X.

In this work, we introduce a new concept of the set-
convergence and we obtain a similar result as above under
the assumptions that both uniformly convex real Banach
spaces and complete CAT(0) spaces have.

2. Preliminaries

A function g : ½0,∞½⟶ ½0,∞½ is said to be a gauge if g is
strictly increasing, continuous, and gð0Þ = 0. We know that
if fαng is a real sequence of ½0,∞½ such that gðαnÞ⟶ 0
for some gauge function g, then αn ⟶ 0.

Let E be a real Banach space. Then the following propo-
sitions are equivalent:

(i) E is uniformly convex

(ii) For r > 0, z ∈ E, and fxng, fyng ⊂ E, it holds that
limn⟶∞kxn − ynk = 0 whenever

lim
n⟶∞

xn − zk k = lim
n⟶∞

yn − zk k = lim
n⟶∞

1
2 xn +

1
2 yn

� �
− z

����
���� = r

ð1Þ

(iii) For any K > 0, there exists a convex gauge function
g
K
: ½0,∞½⟶ ½0,∞½ such that

tx + 1 − tð Þyk k2 ≤ t xk k2 + 1 − tð Þ yk k2 − t 1 − tð Þg
K

x − yk kð Þ
ð2Þ

for any t ∈ ½0, 1�, where kxk ≤ K and kyk ≤ K for x, y ∈ E
For more details about the properties of uniformly con-

vex real Banach spaces, see [4].
Let ðX, dÞ be a metric space and let x, y ∈ X. A geodesic

path from x to y is a mapping γ : ½0, dðx, yÞ�⟶ X such that
γð0Þ = x, γðdðx, yÞÞ = y and dðγðsÞ, γðtÞÞ = js − tj for any s,
t ∈ ½0, dðx, yÞ�. Let D ∈ �0,∞�. If for any x, y ∈ X such that
dðx, yÞ <D, a geodesic path from x to y exists, then we
say that X is D -geodesic. Moreover, if such a geodesic path
is unique for each pair of points, then X is said to be
D -uniquely geodesic. In a D-uniquely geodesic space, the
image of a geodesic path from x to y is called a geodesic
segment joining x and y and it is denoted by ½x, y�. For
x, y ∈ X and t ∈ ½0, 1�, there exists a unique point z ∈ ½x, y�
such that dðx, zÞ = ð1 − tÞdðx, yÞ and dðy, zÞ = tdðx, yÞ. We
denote it by z = tx ⊕ ð1 − tÞy. A geodesic triangle with vertices
x, y, z ∈ X is the union of geodesic segments ½x, y�, ½y, z� and
½z, x�. We denote it by Δðx, y, zÞ.

To define a CAT(κ) space, we use the following notation
called a model space. For κ = 0, the two-dimensional model
space M2

κ =M2
0 is the two-dimensional Euclidean space E2

with the metric induced from the Euclidean norm. For

κ > 0, M2
κ is the two-dimensional sphere ð1/ ffiffiffi

κ
p ÞS2 whose

metric is a length of a minimal great arc joining each two
points. For κ < 0,M2

κ is the two-dimensional hyperbolic space
ð1/ ffiffiffiffiffiffi

−κ
p Þℍ2 with the metric defined by a usual hyperbolic

distance.
The diameter of M2

κ is denoted by Dκ, defined by

Dκ =
∞ κ ≤ 0ð Þ,
π/

ffiffiffi
κ

p
κ > 0ð Þ:

 
ð3Þ

We know that M2
κ is a Dκ-uniquely geodesic space for

each κ ∈ℝ.
Let κ ∈ℝ. For Δðx, y, zÞ in a geodesic space X satisfying

that dðx, yÞ + dðy, zÞ + dðz, xÞ < 2Dκ, there exist points �x, �y,
�z ∈M2

κ such that dðx, yÞ = dM2
κ
ð�x, �yÞ, dðy, zÞ = dM2

κ
ð�y, �zÞ, dðz,

xÞ = dM2
κ
ð�z, �xÞ. We call the triangle having vertices �x, �y and �z

in M2
κ a comparison triangle of Δðx, y, zÞ. Notice that it is

unique up to an isometry ofM2
κ. For a specific choice of com-

parison triangles, we denote it by �Δð�x, �y, �zÞ. A point �p ∈ ½�x, �y� is
called a comparison point for p ∈ ½x, y� if dðx, pÞ = dM2

κ
ð�x, �pÞ.

Let κ ∈ℝ and X a Dκ-geodesic space. If for any x, y, z ∈ X
with dðx, yÞ + dðy, zÞ + dðz, xÞ < 2Dκ, for any p, q ∈ Δðx, y, zÞ,
and for their comparison points �p, �q ∈ �Δð�x, �y, �zÞ, the CAT(κ)
inequality

d p, qð Þ ≤ dM2
κ
�p, �qð Þ ð4Þ

holds, then we call X a CAT(κ) space. It is well known that any
CAT(κ) space is also a CAT(κ′) space whenever κ < κ′. There-
fore, a CAT(κ) space is a CAT(0) space for any κ < 0.

Let X be a CAT(κ) space for κ ∈ℝ. If

d u, vð Þ < Dκ

2 ð5Þ

for any u, v ∈ X, then we say that X is admissible. A CAT(κ)
space is always admissible when κ ≤ 0.

A subset C of a D-uniquely geodesic space X is said to be
convex if tx ⊕ ð1 − tÞy ∈ C for every x, y ∈ C and t ∈ ½0, 1�. For
a subset S of D-uniquely geodesic space X, a closed convex
hull of S is defined as the intersection of all closed convex
sets including S, and we denote it by clco S.

Let X be a complete admissible CAT(κ) space for κ ∈ℝ
and C a nonempty closed convex subset of X. Then for x
∈ X, there exists a unique point yx ∈ C such that

d x, yxð Þ = d x, Cð Þ: ð6Þ

We call such a mapping defined by PCx = yx , the metric
projection of X onto C.
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Let X be a CAT(0) space. From the CAT(0) inequality, it
is easy to see that

d tx ⊕ 1 − tð Þy, zð Þ2 ≤ td x, zð Þ2 + 1 − tð Þd y, zð Þ2 − t 1 − tð Þd x, yð Þ2
ð7Þ

for every x, y, z ∈ X and t ∈ ½0, 1�.
The following lemma shows that a CAT(0) space has a

similar property to the uniform convexity of Banach spaces.

Lemma 4. Let X be a CAT(0) space. For r > 0, a point
z ∈ X and two sequences fxng, fyng ⊂ X, it holds that
limn⟶∞dðxn, ynÞ = 0 whenever

lim
n⟶∞

d xn, zð Þ = lim
n⟶∞

d yn, zð Þ = lim
n⟶∞

d
1
2
xn ⊕

1
2
yn, z

� �
= r:

ð8Þ

Proof. For fxng, fyng ⊂ X, z ∈ X and r ∈ �0,∞½, if

lim
n⟶∞

d xn, zð Þ = lim
n⟶∞

d yn, zð Þ = lim
n⟶∞

d
1
2 xn ⊕

1
2 yn, z

� �
= r,

ð9Þ

then

d
1
2 xn ⊕

1
2 yn, z

� �2
≤
1
2 d xn, zð Þ2 + 1

2 d yn, zð Þ2 − 1
4 d xn, ynð Þ2,

ð10Þ

which implies

d xn, ynð Þ2 ≤ 2d xn, zð Þ2 + 2d yn, zð Þ2 − 4d 1
2 xn ⊕

1
2 yn, z

� �2
:

ð11Þ

Letting n⟶∞, we have

lim
n⟶∞

d xn, ynð Þ = 0: ð12Þ

This is the desired result.

Let X be a metric space. For a point x ∈ X and a non-
empty subset C ⊂ X, the distance between them is defined
by dðx, CÞ = inf y∈Cdðx, yÞ.

Let X be a metric space. A function f : X ⟶ �−∞,∞� is
said to be lower semicontinuous if for x0 ∈ X and fxng ⊂ X,

f x0ð Þ ≤ lim inf
n⟶∞

f xnð Þ ð13Þ

whenever xn ⟶ x0. Moreover, a function f : X⟶ �−∞,
∞� is said to be proper if there exists a point z0 ∈ X such that
f ðz0Þ <∞ and the domain of f defined by

dom f = x ∈ X ∣ f xð Þ<∞f g: ð14Þ

Let X be a uniquely geodesic space. A function f : X
⟶ �−∞,∞� is said to be convex if for x, y ∈ X and t ∈ �
0, 1½, f satisfies

f tx ⊕ 1 − tð Þyð Þ ≤ t f xð Þ + 1 − tð Þf yð Þ: ð15Þ

3. Uniform Convexity of a Complete
Geodesic Space

In the following, we always suppose that for any x, y in geo-
desic space X, a geodesic joining x to y is unique.

A geodesic space X is said to satisfy the condition (D) if:

d tx ⊕ 1 − tð Þy, zð Þ2 ≤ td x, zð Þ2 + 1 − tð Þd y, zð Þ2 ð16Þ

for x, y, z ∈ X and t ∈ ½0, 1�.
We introduce two new concepts of uniform convexity on

a geodesic space.
Let X be a geodesic space. X is said to be sequentially

uniformly convex if X satisfies the condition (D) and, for
r > 0, a point z ∈ X and two sequences fxng, fyng ⊂ X, it
holds that

lim
n⟶∞

d xn, ynð Þ = 0 ð17Þ

whenever

lim
n⟶∞

d xn, zð Þ = lim
n⟶∞

d yn, zð Þ = lim
n⟶∞

d
1
2 xn ⊕

1
2 yn, z

� �
= r:

ð18Þ

Let X be a geodesic space. X is said to be uniformly
convex if for any K > 0 there exists a convex gauge func-
tion g

K
: ½0,∞½⟶ ½0,∞½ such that for any t ∈ ½0, 1�,

d tx ⊕ 1 − tð Þy, zð Þ2 ≤ td x, zð Þ2 + 1 − tð Þd y, zð Þ2 − t 1 − tð Þg
K
d x, yð Þð Þ,

ð19Þ

where x, y, z ∈ X with dðx, zÞ ≤ K and dðy, zÞ ≤ K .
Uniformly convex real Banach spaces and CAT(0)

spaces are uniformly convex in this sense.

Theorem 5. Let X be a uniformly convex geodesic space.
Then, X is sequentially uniformly convex.

Proof. Let x, y, z ∈ X and let K =max fdðx, zÞ, dðy, zÞg <∞.
Then there exists a convex gauge function g

K
: ½0,∞½⟶ ½0,

∞½, satisfying that

d tx ⊕ 1 − tð Þy, zð Þ2 ≤ td x, zð Þ2 + 1 − tð Þd y, zð Þ2 − t 1 − tð Þg
K
d x, yð Þð Þ

ð20Þ
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for any t ∈ ½0, 1� and hence

d tx ⊕ 1 − tð Þy, zð Þ2 ≤ td x, zð Þ2 + 1 − tð Þd y, zð Þ2: ð21Þ

That is, X satisfies the condition (D).
Moreover, for r > 0, z ∈ X and fxng, fyng ⊂ X, if

lim
n⟶∞

d xn, zð Þ = lim
n⟶∞

d yn, zð Þ = lim
n⟶∞

d
1
2 xn ⊕

1
2 yn, z

� �
= r,

ð22Þ

then there exists n0 ∈ℕ such that

d xn, zð Þ ≤ r + 1, d yn, zð Þ ≤ r + 1 ð23Þ

for any n ≥ n0. From uniform convexity of X, there exists a
convex gauge function g

r+1, satisfying that

d
1
2 xn ⊕

1
2 yn, z

� �2
≤
1
2 d xn, zð Þ2 + 1

2 d yn, zð Þ2 − 1
4gr+1 d xn, ynð Þð Þ:

ð24Þ

It follows that

0 ≤ g
r+1 d xn, ynð Þð Þ ≤ 2d xn, zð Þ2 + 2d yn, zð Þ2

− 4d 1
2 xn ⊕

1
2 yn, z

� �2
⟶ 2r2 + 2r2 − 4r2 = 0:

ð25Þ

Therefore, we obtain g
r+1ðdðxn, ynÞÞ⟶ 0 and hence

limn⟶∞dðxn, ynÞ = 0, that is, X is sequentially uniformly
convex.

Theorem 6. Let X be a sequentially uniformly convex
geodesic space. For r > 0 and x, y, z ∈ X with x ≠ y , if dðx, zÞ
= dðy, zÞ = r, then dð1/2x ⊕ 1/2y, zÞ < r.

Proof. For r > 0 and x, y, z ∈ X with x ≠ y, we suppose that
dðx, zÞ = dðy, zÞ = r. If r ≤ dð1/2x ⊕ 1/2y, zÞ, then, since

r2 ≤ d
1
2 x ⊕

1
2 y, z

� �2
≤
1
2 d x, zð Þ2 + 1

2 d y, zð Þ2 = r2, ð26Þ

we have dð1/2x ⊕ 1/2y, zÞ = r. From the sequential uniform
convexity of X, we have dðx, yÞ = 0. This is a contradiction.
Therefore, we have dð1/2x ⊕ 1/2y, zÞ < r. This is the desired
result.

Theorem 7. Let X be a sequentially uniformly convex
complete geodesic space and let C be a nonempty closed con-
vex subset of X. Then, for x ∈ X, there exists a unique point
y0 ∈ C such that dðx, y0Þ = dðx, CÞ.

Proof. For x ∈ X, let d = dðx, CÞ. Then, for n ∈ℕ, we can take
a sequence fyng ⊂ C such that

d ≤ d x, ynð Þ ≤ d + 1
n
: ð27Þ

Then, we have dðx, ynÞ⟶ d. Suppose that fyng is not a
Cauchy sequence. That is, there exists ε > 0 such that for any
i ∈ℕ, there exist mi, ni ≥ i such that dðymi

, yniÞ ≥ ε. In this
way, we take two subsequences fymi

g, fynig ⊂ fyng. Then,

lim
i⟶∞

d x, ymi

� �
= lim

i⟶∞
d x, yni
� �

= d ð28Þ

and we have

d2 ≤ d x, 12 ymi
⊕
1
2 yni

� �2
≤
1
2 d x, ymi

� �2
+ 1
2 d x, yni
� �2

⟶ d2:

ð29Þ

Hence, from the sequential uniform convexity of X,
we have

lim
i⟶∞

d ymi
, yni

� �
= 0: ð30Þ

This is a contradiction and thus fyng is a Cauchy
sequence. Since X is complete and C is closed, there
exists y0 ∈ C such that yn ⟶ y0. Therefore, we have

d x, y0ð Þ = lim
n⟶∞

d x, ynð Þ = d = d x, Cð Þ: ð31Þ

Next, we show the uniqueness of y0. Suppose that
y0, z0 ∈ C satisfy y0 ≠ z0 and dðx, y0Þ = dðx, z0Þ = dðx, CÞ.
Then, from Theorem 6, we have

d x, 12 y0 ⊕
1
2 z0

� �
< d x, Cð Þ: ð32Þ

This is a contradiction. Therefore, for x ∈ X, there exists a
unique point y0 ∈ C such that dðx, y0Þ = dðx, CÞ.

Let X be a sequentially uniformly convex complete
uniquely geodesic space and let C be a nonempty closed con-
vex subset of X. Then for x ∈ X, there exists a unique point
yx ∈ C such that

d x, yxð Þ = d x, Cð Þ: ð33Þ

We call such a mapping PC : X⟶ C defined by
PCx = yx, the metric projection of X onto C.

Theorem 8. Let X be a sequentially uniformly convex com-
plete geodesic space and fCng ⊂ 2X a sequence of nonempty
bounded closed convex subsets which is decreasing with
respect to inclusion, that is, Cn+1 ⊂ Cn for any n ∈ℕ. Then,T∞

n=1Cn is nonempty.
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Proof. Since Cn is nonempty bounded closed convex subset
for n ∈ℕ, for x ∈ X, we can take a sequence fxng ⊂ X by
xn = PCn

x, where PK is the metric projection of X onto a
nonempty closed convex subset K of X. Then fdðx, xnÞg is a
bounded increasing real sequence and hence fdðx, xnÞg has
a limit c ∈ ½0,∞½. That is, we have

lim
n⟶∞

d x, xnð Þ = c: ð34Þ

First, we show that fxng converges to some point x0 ∈ X. If
c = 0, then, since dðx, PCn

xÞ⟶ 0, we have xn ⟶ x0 as x0 = x.
Hence, we may suppose that c > 0. Suppose that fxng is not a
Cauchy sequence. That is, there exists ε > 0 such that for any
i ∈ℕ, there exist mi, ni ≥ i such that dðxmi

, xniÞ ≥ ε. Without
loss of generality, we can suppose that mi ≥ ni. In this way,
we take two subsequences fxmi

g, fxnig ⊂ fxng. Then,

lim
i⟶∞

d x, xmi

� 	
= lim

i⟶∞
d x, xni
� 	

= c: ð35Þ

Since xmi
, xni ∈ Cni

, we have

d x, xni
� 	

= d x, PCni
x

� �
≤ d x, 12 xmi

⊕
1
2 xni

� �2
≤
1
2 d x, xmi

� 	2

+ 1
2 d x, xni
� 	2

ð36Þ

and thus

lim
i⟶∞

d x, 12 xmi
⊕
1
2 xni

� �
= c: ð37Þ

From the sequential uniform convexity of X, we have
limi⟶∞dðxmi

, xniÞ = 0. This is a contradiction. Therefore,
fxng is a Cauchy sequence and thus there exists x0 ∈ X
such that xn ⟶ x0.

We show that x0 ∈
T∞

n=1Cn. For n0 ∈ℕ, xn ∈ Cn0
for

n ≥ n0 and thus x0 ∈ Cn0
. Therefore, x0 ∈

T∞
n=1Cn and it

completes the proof.

4. Δ-Convergence

Let X be a metric space and fxng ⊂ X a bounded sequence.
An asymptotic centre ACðfxngÞ of fxng is defined by

AC xnf gð Þ = u ∈ X ∣ lim sup
n⟶∞

d u, xnð Þ = inf
x∈X

lim sup
n⟶∞

d x, xnð Þ

 �

:

ð38Þ

Lemma 9. Let X be a sequentially uniformly convex complete
geodesic space and let fxng ⊂ X be a bounded sequence. Then,
there exists a point u ∈ X such that

lim sup
n⟶∞

d u, xnð Þ = inf
x∈X

lim sup
n⟶∞

d x, xnð Þ: ð39Þ

That is, ACðfxngÞ is nonempty. Moreover, ACðfxngÞ is
bounded, closed and convex.

Proof. Let M = inf x∈X lim supn⟶∞ dðx, xnÞ and define fCkg
⊂ 2X by

Ck = u ∈ X ∣M ≤ lim sup
n⟶∞

d u, xnð Þ ≤M + 1
k


 �
ð40Þ

for any k ∈ℕ. Then, for any k ∈ℕ, Ck is nonempty and
bounded. If fumg ⊂ Ck and um ⟶ u0, then

M ≤ lim sup
n⟶∞

d u0, xnð Þ ≤ d u0, umð Þ + lim sup
n⟶∞

d um, xnð Þ

≤ d u0, umð Þ +M + 1
k
:

ð41Þ

Letting m⟶∞, we have

M ≤ lim sup
n⟶∞

d u0, xnð Þ ≤M + 1
k

ð42Þ

and hence u0 ∈ Ck. Moreover, for u, v ∈ Ck and t ∈ ½0, 1�,
we have

M2 ≤ lim sup
n⟶∞

d tu ⊕ 1 − tð Þv, xnð Þ2 ≤ t lim sup
n⟶∞

d u, xnð Þ2

+ 1 − tð Þlim sup
n⟶∞

d v, xnð Þ2 ≤ M + 1
k

� �2
:

ð43Þ

It implies tu ⊕ ð1 − tÞv ∈ Ck. Therefore, Ck is closed
and convex for any k ∈ℕ. Moreover, fCkg is decreasing
with respect to inclusion. Hence, we have

\∞
k=1

Ck =
\∞
k=1

u ∈ X ∣M ≤ lim sup
n⟶∞

d u, xnð Þ ≤M + 1
k


 �
≠∅

ð44Þ

and thus

AC xnf gð Þ =
\∞
k=1

u ∈ X ∣M ≤ lim sup
n⟶∞

d u, xnð Þ ≤M + 1
k


 �
≠∅:

ð45Þ

Also, we know that ACðfxngÞ is closed and convex.

If we suppose uniform convexity for X, we can prove
that an asymptotic centre is a singleton.

Theorem 10. Let X be a uniformly convex complete geode-
sic space and let fxng be a bounded sequence of X. Then,
ACðfxngÞ is a singleton.

Proof. Let M = inf x∈X lim supn⟶∞ dðx, xnÞ. If u, v ∈AC
ðfxngÞ with u ≠ v, then, since fxng ⊂ X is bounded, there

5Abstract and Applied Analysis



exists K > 0 such that dðu, xnÞ ≤ K and dðv, xnÞ ≤ K for all n
∈ℕ. Then, there exists a convex gauge function g

K
, and

we have

d
1
2 u ⊕

1
2 v, xn

� �2
≤
1
2 d u, xnð Þ2 + 1

2 d v, xnð Þ2 − 1
4 gK

d u, vð Þð Þ

ð46Þ

and hence

lim sup
n⟶∞

d
1
2 u ⊕

1
2 v, xn

� �2
≤
1
2 lim sup

n⟶∞
d u, xnð Þ2

+ 1
2 lim sup

n⟶∞
d v, xnð Þ2 − 1

4gK
d u, vð Þð Þ ≤M2

−
1
4gK

d u, vð Þð Þ:

ð47Þ

Since dðu, vÞ ≠ 0, we have g
K
ðdðu, vÞÞ > 0 and thus

lim sup
n⟶∞

d
1
2 u ⊕

1
2 v, xn

� �2
<M2: ð48Þ

This is a contradiction. Therefore, ACðfxngÞ is a
singleton.

Let fxng ⊂ X be a bounded sequence and x0 ∈ X. We say
fxngΔ -converges to a Δ-limit x0 if x0 is the unique asymp-
totic centre of any subsequences of fxng, and we denote it by
xn ⇀ Δ x0.

Let X be a geodesic space. X is said to satisfy the condition
(ΔC), if any nonempty closed convex subset C ⊂ X is
Δ-closed, that is, if fxng ⊂ C and xn ⇀ Δ x0, then x0 ∈ C.

CAT(0) spaces satisfy the condition (ΔC). Let E be a
uniformly convex real Banach space. Then, the following
propositions are equivalent:

(i) For any bounded sequence fxng ⊂ E, fxngΔ-con-
verges to x0 ∈ E if and only if fxng converges weakly
to x0 ∈ E

(ii) E satisfies the condition (ΔC)

(iii) E satisfies Opial’s condition

See [5] for details.
The following two theorems can be proved by the same

method as the corresponding results in [6–8].

Theorem 11 (Bačák [6], Kirk and Panyanak [8]). Let X be a
uniformly convex complete geodesic space. Then, for any
bounded sequence of X has a Δ -convergent subsequence.

Corollary 12. Let X be a uniformly convex complete geodesic
space satisfying the condition (ΔC) and let C be a nonempty
bounded closed convex subset of X. Then, for any sequence
in C has a Δ -convergent subsequence and its Δ-limit belongs
to C.

Theorem 13 (Bačák [6], He, Fang, Lopez and Li [7]). Let X
be a uniformly convex complete geodesic space satisfying the
condition (ΔC). Let f : X⟶ �−∞,∞� be a proper lower
semicontinuous function and fxng ⊂ X a sequence such that
xn ⇀ Δ x0 ∈ dom f . Then,

f x0ð Þ ≤ lim inf
n⟶∞

f xnð Þ: ð49Þ

Corollary 14 (Δ-lower semicontinuity of the distance
function). Let X be a uniformly convex complete geodesic
space satisfying the condition (ΔC) and let z ∈ X be a point.
Let fxng ⊂ X be a sequence such that xn ⇀ Δ x0. Then,

d x0, zð Þ ≤ lim inf
n⟶∞

d xn, zð Þ: ð50Þ

Lemma 15. Let X be a uniformly convex complete geodesic
space and let fxng ⊂ X be a sequence such that Δ-converges
to x0 ∈ X. Then,

1
2
xn ⊕

1
2
x0 ⇀Δ x0: ð51Þ

Proof. Since fxng is bounded, so is f1/2xn ⊕ 1/2x0g. For any
subsequence f1/2xni ⊕ 1/2x0g of f1/2xn ⊕ 1/2x0g, if fy0g =
ACðf1/2xni ⊕ 1/2x0gÞ, then, we have

lim sup
i⟶∞

d y0, xni
� 	

≤ lim sup
i⟶∞

d y0,
1
2 xni ⊕

1
2 x0

� �

+ lim sup
i⟶∞

d
1
2 xni ⊕

1
2 x0, xni

� �
≤ lim sup

i⟶∞
d x0,

1
2 xni ⊕

1
2 x0

� �

+ lim sup
i⟶∞

d
1
2 xni ⊕

1
2 x0, xni

� �
≤
1
2 lim sup

i⟶∞
d x0, xni
� 	

+ 1
2 lim sup

i⟶∞
d x0, xni
� 	

= lim sup
i⟶∞

d x0, xni
� 	

:

ð52Þ

Therefore, since ACðfxnigÞ = fx0g, we have y0 = x0.
Hence, x0 is the unique asymptotic centre of any subse-
quence of f1/2xn ⊕ 1/2x0g and it completes the proof.

Theorem 16 (Δ-Kadec-Klee property). Let X be a uniformly
convex complete geodesic space satisfying the condition (ΔC)
and fxng ⊂ X a sequence such that xn ⇀ Δ x0 and dðxn, pÞ
⟶ dðx0, pÞ for some p ∈ X. Then, xn ⟶ x0.

Proof. Let fyng ⊂ X be a sequence such that yn = x0 for any
n ∈ℕ. Since xn ⇀ Δ x0, From Lemma 15, we have 1/2xn ⊕
1/2x0 ⇀ Δ x0. Then, since dð·, pÞ is Δ-lower semicontinuous
and dðxn, pÞ⟶ dðx0, pÞ, we have

d x0, pð Þ2 ≤ lim inf
n⟶∞

d
1
2 xn ⊕

1
2 x0, p

� �2
≤ lim sup

n⟶∞
d

1
2 xn ⊕

1
2 x0, p

� �2

≤
1
2 lim sup

n⟶∞
d xn, pð Þ2 + 1

2 lim sup
n⟶∞

d x0, pð Þ2 = d x0, pð Þ2

ð53Þ

6 Abstract and Applied Analysis



and thus limn⟶∞dð1/2xn ⊕ 1/2x0, pÞ = dðx0, pÞ. Therefore,
we obtain

lim
n⟶∞

d xn, pð Þ = lim
n⟶∞

d yn, pð Þ = lim
n⟶∞

d
1
2 xn ⊕

1
2 yn, p

� �
= d x0, pð Þ:

ð54Þ

If dðx0, pÞ = 0, then xn ⟶ p = x0. If dðx0, pÞ > 0, from
sequential uniform convexity of X, we obtain limn⟶∞dðxn,
ynÞ = 0. Since yn = x0 for any n ∈ℕ, we have xn ⟶ x0.

5. Convergence of a Sequence of Sets

Let fCng ⊂ 2X be a sequence of nonempty closed convex
subsets of a uniformly convex complete geodesic space X.
Δ-Mosco convergence is defined by using a notion of
asymptotic centre by Kimura [2]. First, we define subsets
d‐LinCn and Δ‐LsnCn of X as follows: x ∈ d‐LinCn if and only
if there exists fxng ⊂ X such that xn ⟶ x and xn ∈ Cn for all
n ∈ℕ; y ∈ Δ‐LsnCn if and only if there exist a bounded
sequence fyig ⊂ X and a subsequence fnig of ℕ such that
fyg = ACðfyigÞ and yi ∈ Cni

for all i ∈ℕ. If a subset C0 of
X satisfies that C0 = d‐LinCn = Δ‐LsnCn, we say that fCng
converges to C0 in the sense of Δ-Mosco.

Here, we introduce a new concept of the set-convergence.
We define subsets �Δ‐LsnCn of X as follows: y ∈ �Δ‐LsnCn if and
only if there exists a bounded sequence fyig ⊂ X and a subse-
quence fnig ofℕ such that yi ⇀ Δ y and yi ∈ Cni

for all i ∈ℕ.
Since a convergent sequence is a Δ-convergent sequence,

the inclusion

d‐LinCn ⊂ �Δ‐LsnCn ð55Þ

is always true. If a subset C0 of X satisfies that C0 = d‐Lin
Cn = �Δ‐LsnCn, we say that fCng converges to C0 in the sense
of �Δ-Mosco. Furthermore, the following inclusion holds:

d‐LinCn ⊂ �Δ‐LsnCn ⊂ Δ‐LsnCn: ð56Þ

Therefore, if fCng converges to C0 in the sense of
Δ-Mosco, then fCng converges to C0 in the sense of
�Δ-Mosco.

Lemma 17. Let X be a uniformly convex complete geodesic
space satisfying the condition (ΔC) and fCng ⊂ 2X a sequence
of nonempty closed convex sets which is decreasing with
respect to inclusion, that is, Cn+1 ⊂ Cn for any n ∈ℕ. if
C0 =

T∞
n=1Cn is nonempty, then fCng converges to C0 in

the sense of �Δ -Mosco.

Proof. We show that �Δ‐LsnCn ⊂ C0 ⊂ d‐LinCn. If x ∈ C0 =T∞
n=1Cn, then x ∈ Cn for any n ∈ℕ. Let fxng be a sequence

of X such that xn = x for any n ∈ℕ. Then, xn ⟶ x and
xn ∈ Cn for any n ∈ℕ. Therefore, we obtain x ∈ d‐LinCn
and hence C0 ⊂ d‐LinCn.

Next, we show that �Δ‐LsnCn ⊂ C0. If y ∈ �Δ‐LsnCn, then
there exists a sequence fyig ⊂ X and fnig ⊂ℕ such that

yi ∈ Cni
for any i ∈ℕ and yi ⇀ Δ y. For any i0 ∈ℕ, if i ≥ i0,

then fyig ⊂ Cni0
. Therefore, from the condition (ΔC) of X,

we have yi ⇀ Δ y ∈ Cni0
. Since i0 ∈ℕ is arbitrarily, we obtain

y ∈
T∞

n=1Cn = C0. Hence, we have �Δ‐LsnCn ⊂ C0 ⊂ d‐LinCn.
Since d‐LinCn ⊂ �Δ‐LsnCn is always true, we have

�Δ‐LsnCn = C0 = d‐LinCn: ð57Þ

That is, fCng converges to C0 in the sense of �Δ-Mosco.

Theorem 18. Let X be a uniformly convex complete geodesic
space satisfying the condition (ΔC). Let fCng ⊂ 2X be a
sequence of nonempty closed convex sets and C0 a nonempty
closed convex subset of X. If fCng converges to C0 in the sense
of �Δ-Mosco, then fPCn

xg converges to PC0
x ∈ X for any x ∈ X,

where PK : X ⟶ K is the metric projection of X onto a non-
empty closed convex subset K of X.

Proof. Fix x ∈ X arbitrarily. Since PC0
x ∈ C0 = d‐LinCn, there

exists a sequence fxng ⊂ X such that xn ⟶ PC0
x and xn ∈

Cn for every n ∈ℕ. Since dðx, PCn
xÞ ≤ dðx, xnÞ for any n ∈

ℕ and fxng is bounded, fPCn
xg is also bounded. Moreover,

letting n⟶∞, we have

lim sup
n⟶∞

d x, PCn
x

� 	
≤ d x, PC0

x
� 	

: ð58Þ

Here, we take a subsequence fPCni
xg of fPCn

xg arbi-

trarily. Since fPCni
xg is bounded, there exists a subsequence

fPCnij

xg of fPCni
xg and p0 ∈ X such that

PCnij

x ⇀Δ p0: ð59Þ

Let pj = PCnij

x for any j ∈ℕ. Then, since

lim sup
j⟶∞

d x, pj
� �

≤ d x, PC0
x

� 	
, ð60Þ

for any ε > 0 there exists j0 ∈ℕ such that for any j ≥ j0, it
holds that

d x, pj
� �

≤ d x, PC0
x

� 	
+ ε: ð61Þ

Let D = fy ∈ X ∣ dðx, yÞ ≤ dðx, PC0
xÞ + εg. Then we have

pj ∈D for any j ≥ j0. Since D is closed and convex, from

the condition (ΔC) of X, we obtain pj ⇀ Δ p0 ∈D. Therefore,
we have

d x, p0ð Þ ≤ d x, PC0
x

� 	
+ ε: ð62Þ
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Letting ε↘0, we obtain

d x, p0ð Þ ≤ d x, PC0
x

� 	
: ð63Þ

Since p0 ∈ �Δ‐LsnCn = C0, we have dðx, PC0
xÞ ≤ dðx, p0Þ

and thus

d x, PC0
x

� 	
= d x, p0ð Þ: ð64Þ

Hence, we obtain pj ⇀ Δ PC0
x. Since dðx, ·Þ is Δ-lower

semicontinuous and pj ⇀ Δ PC0
x, we have

d x, PC0
x

� 	
≤ lim inf

j⟶∞
d x, pj
� �

ð65Þ

and hence

d x, PC0
x

� 	
≤ lim inf

j⟶∞
d x, pj
� �

≤ lim sup
j⟶∞

d x, pj
� �

≤ lim sup
n⟶∞

d x, PCn
x

� 	
≤ d x, PC0

x
� 	

:
ð66Þ

Therefore, dðx, pjÞ⟶ dðx, PC0
xÞ. Since pj ⇀ Δ PC0

x
and dðx, pjÞ⟶ dðx, PC0

xÞ, from the Δ-Kadec-Klee property
of X, we obtain pj ⟶ PC0

x. Since for any subsequence
fPCni

xg of fPCn
xg, there exists a subsequence fPCnij

xg
of fPCni

xg such that PCnij

x⟶ PC0
x, we have PCn

x⟶

PC0
x.

Let X be a uniformly convex complete geodesic space. If X
has the condition (ΔC), we can show that convergence of a
sequence of metric projections from �Δ-Mosco convergence.
If a sequence of sets which is decreasing with respect to inclu-
sion, then we can show it on sequentially uniformly convex
complete geodesic spaces without the condition (ΔC).

Theorem 19. Let X be a sequentially uniformly convex com-
plete geodesic space and fCng ⊂ 2X a sequence of nonempty
closed convex sets which is decreasing with respect to
inclusion, that is, Cn+1 ⊂ Cn for any n ∈ℕ. Suppose that
C0 =

T∞
n=1Cn is nonempty. Then, fPCn

xg converges to PC0

x ∈ X for any x ∈ X, where PK : X ⟶ K is the metric pro-
jection of X onto a nonempty closed convex subset K of X.

Proof. Fix x ∈ X arbitrarily. Since C0 =
T∞

n=1Cn ≠∅, if p ∈ C0,
then for any n ∈ℕ, we have

d x, PCn
x

� 	
≤ d x, pð Þ ð67Þ

and hence fdðx, PCn
xÞg is bounded. Furthermore, since

Cn+1 ⊂ Cn for any n ∈ℕ, we have

d x, PCn
x

� 	
≤ d x, PCn+1

x
� 	 ð68Þ

and thus fdðx, PCn
xÞg is increasing. Therefore, fdðx, PCn

xÞg
has a limit

c = lim
n⟶∞

d x, PCn
x

� 	
: ð69Þ

First, we show that fPCn
xg converges to some point

x0 ∈ X. Since PCn
x⟶ x if c = 0, we may assume that c > 0.

Suppose that fPCn
xg is not a Cauchy sequence. That is, there

exist ε > 0 such that for any i ∈ℕ, there exist mi, ni ≥ i such
that dðPCmi

x, PCni
xÞ ≥ ε. Without loss of generality, we can

suppose that mi ≥ ni. In this way, we take two sequences
fPCmi

xg, fPCni
xg ⊂ fPCn

xg. Then, fPCmi
xg and fPCni

xg
satisfies

lim
i⟶∞

d x, PCmi
x

� �
= lim

i⟶∞
d x, PCni

x
� �

= c: ð70Þ

Since PCmi
x, PCni

x ∈ Cni
, we obtain

d x, PCni
x

� �2
≤ d x, 12 PCmi

x ⊕
1
2 PCni

x
� �2

≤
1
2 d x, PCmi

x
� �2

+ 1
2 d x, PCni

x
� �2

:

ð71Þ

Letting i⟶∞, we obtain

lim
i⟶∞

d x, 12 PCmi
x ⊕

1
2 PCni

x
� �

= c: ð72Þ

From sequential uniform convexity of X, we have

lim
i⟶∞

d PCmi
x, PCni

x
� �

= 0: ð73Þ

This is contradictory to

d PCmi
x, PCni

x
� �

≥ ε > 0 ð74Þ

and hence fPCn
xg is a Cauchy sequence. Therefore,

since X is complete, there exists a point x0 ∈ X such
that PCn

x⟶ x0.
Next, we show that x0 ∈ C0. For any n0 ∈ℕ, since

fPCn
xg ⊂ Cn0

if n ≥ n0 and Cn0
is closed, we have x0 ∈ Cn0

and thus x0 ∈
T∞

n=1Cn.
Finally, we show that x0 = PC0

x. For any n ∈ℕ, form the
property of the metric projection, we have

d x, PCn
x

� 	
≤ d x, PC0

x
� 	

≤ d x, x0ð Þ: ð75Þ

Letting n⟶∞, we obtain

d x, PC0
x

� 	
= d x, x0ð Þ ð76Þ

and hence x0 = PC0
x.

Consequently, we have PCn
x⟶ PC0

x for any x ∈ X.
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6. Convergence of a Sequence of Sets in CAT(κ)
Spaces

In this section, we will consider CAT(κ) spaces for κ ∈ℝ.
Let X be a metric space and let fxng be a bounded

sequence of X. The asymptotic radius rðfxngÞ of fxng
defined by

r xnf gð Þ = inf
x∈X

lim sup
n⟶∞

d x, xnð Þ: ð77Þ

Let fCng ⊂ 2X be a sequence of nonempty closed convex
subsets of a complete admissible CAT(κ) space for κ ∈ℝ. Δκ-
Mosco convergence is defined by Kimura and Satô [3]. First,
we define subsets d‐LinCn and Δκ‐LsnCn of X as follows:
d‐LinCn is the same as in the case of uniformly convex
complete geodesic spaces, that is, x ∈ d‐LinCn if and only
if there exists fxng ⊂ X such that xn ⟶ x and xn ∈ Cn
for all n ∈ℕ; y ∈ Δκ‐LsnCn if and only if there exist a
sequence fyig ⊂ X and a subsequence fnig of ℕ such that
rðfyigÞ <Dκ/2, fyg = ACðfyigÞ and yi ∈ Cni

for all i ∈ℕ. If
a subset C0 of X satisfies that C0 = d‐LinCn = Δκ‐LsnCn, it
is said that fCng converges to C0 in the sense of Δκ-
Mosco. The notion of Δκ-Mosco convergence coincides
with Δ-Mosco convergence in complete CAT(κ) spaces
for κ ≤ 0.

We define a subset �Δκ‐LsnCn of X as follows: y ∈ �Δκ‐L
snCn if and only if there exist a sequence fyig ⊂ X and a sub-
sequence fnig of ℕ such that rðfyigÞ <Dκ/2, yi ⇀ Δ y and
yi ∈ Cni

for all i ∈ℕ. If κ ≤ 0, then �Δ‐LsnCn = �Δκ‐LsnCn.
Since a convergent sequence is a Δ-convergent sequence,

the inclusion

d‐LinCn ⊂ �Δκ‐LsnCn ð78Þ

is always true. If a subset C0 of X satisfies that C0 = d‐Lin
Cn = �Δκ‐LsnCn, it is said that fCng converges to C0 in the
sense of �Δκ-Mosco. Furthermore, the following inclusion
holds:

d‐LinCn ⊂ �Δκ‐LsnCn ⊂ Δκ‐LsnCn: ð79Þ

Therefore, if fCng converges to C0 in the sense of
Δκ-Mosco, then fCng converges to C0 in the sense of
�Δκ-Mosco.

�Δκ-Mosco convergence coincides with �Δ-Mosco conver-
gence in complete CAT(κ) spaces for κ ≤ 0.

Since complete CAT(κ) space is uniformly convex and
satisfies the condition (ΔC) for any κ ≤ 0, we have the fol-
lowing theorem:

Theorem 20. Let X be a complete CAT(κ) space for κ ≤ 0. Let
fCng ⊂ 2X be a sequence of nonempty closed convex sets and
C0 a nonempty closed convex subset of X. If fCng is converges
to C0 in the sense of �Δ-Mosco, then fPCn

xg converges to PC0

x ∈ X for any x ∈ X, where PK : X ⟶ K is the metric projec-
tion of X onto a nonempty closed convex subset K of X.

We also have the following result [2].

Theorem 21 (Kimura [2]). Let X be a complete CAT(κ) space
for κ ≤ 0 and PK : X⟶ K is the metric projection of X onto
a nonempty closed convex subset K of X. Let fCng ⊂ 2X be a
sequence of nonempty closed convex sets and C0 a nonempty
closed convex subset of X. If fPCn

xg converges to PC0
x ∈ X for

any x ∈ X, then fCng converges to C0 in the sense of Δ-Mosco.

Let X be a complete CAT(κ) space κ ≤ 0 and PK : X
⟶ K is the metric projection of X onto a nonempty closed
convex subset K of X. Let fCng ⊂ 2X be a sequence of non-
empty closed convex sets and C0 a nonempty closed convex
subset of X. Then, from Theorem 19 and Theorem 21, the
following propositions are equivalent:

(i) fCng converges to C0 in the sense of Δ-Mosco

(ii) fCng converges to C0 in the sense of �Δ-Mosco

(iii) fPCn
xg converges to PC0

x for any x ∈ X

That is, the notion of Δκ-Mosco convergence coincides
with �Δκ-Mosco convergence in complete CAT(κ) spaces
for κ ≤ 0.

Since most of the results for CAT(κ) spaces for κ > 0 are
easily deduced from that for CAT(1) spaces, in the following,
we focus on CAT(1) spaces.

We first see the following known results for CAT(1)
spaces.

Theorem 22 (Espínola and Fernádez-León [9]). Let X be a
complete CAT(1) space. If a sequence fxng ⊂ X satisfies
rðfxngÞ < π/2, then there exists a Δ-convergent subsequence
of fxng.

Theorem 23 (Espínola and Fernádez-León [9]). Let X be a
complete admissible CAT(1) space and let fxng ⊂ X be a
sequence satisfies rðfxngÞ < π/2. Then,

AC xnf gð Þ ⊂
\∞
k=0

clco xk, xk+1, xk+2,⋯f g: ð80Þ

Theorem 24 (He, Fang, Lopez, and Li [7]). Let X be a com-
plete CAT(1) space and let fxng ⊂ X be a sequence such that
xn ⇀ Δ x0 ∈ X. Then for any p ∈ X with lim supn⟶∞dðp, xnÞ
< π/2, the following inequality holds:

d p, x0ð Þ ≤ lim inf
n⟶∞

d p, xnð Þ: ð81Þ

Theorem 25 (Kimura and Satô [3]). Let X be a complete
admissible CAT(1) space and let fxng ⊂ X be a sequence.
Suppose that xn ⇀ Δ x0 ∈ X and dðxn, pÞ⟶ dðx0, pÞ. Then
xn ⟶ x0.

Using these results, we obtain the relation between
�Δ1-Mosco convergence of sets and corresponding sequence
of metric projections.
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Theorem 26. Let X be a complete admissible CAT(1) space.
Let fCng ⊂ 2X be a sequence of nonempty closed convex sets
and C0 a nonempty closed convex subset of X. If fCng
converges to C0 in the sense of �Δ1-Mosco, then fPCn

xg
converges to PC0

x ∈ X for any x ∈ X, where PK : X ⟶ K is
the metric projection of X onto a nonempty closed convex
subset K of X.

Proof. Fix x ∈ X arbitrarily. Since PC0
x ∈ C0 = d‐LinCn, there

exists a sequence fxng ⊂ X such that xn ⟶ PC0
x. Since dðx,

PCn
xÞ ≤ dðx, xnÞ for any n ∈ℕ. Moreover, letting n⟶∞,

we obtain

lim sup
n⟶∞

d x, PCn
x

� 	
≤ d x, PC0

x
� 	

< π

2 : ð82Þ

Here, we take a subsequence fPCni
xg of fPCn

xg arbitrarily.
From Theorem 22, there exists a subsequence fPCnij

xg of

fPCni
xg and p0 ∈ X such that

PCnij

x ⇀Δ p0: ð83Þ

Let pj = PCnij

x for any j ∈ℕ. Then, since

lim sup
j⟶∞

d x, pj
� �

≤ d x, PC0
x

� 	
< π

2 , ð84Þ

for any ε ∈ �0, ðπ/2Þ‐dðx, PC0
xÞ½ there exists j0 ∈ℕ such that

for any j ≥ j0, it holds that

d x, pj
� �

≤ d x, PC0
x

� 	
+ ε < π

2 : ð85Þ

Let D = fy ∈ X ∣ dðx, yÞ ≤ dðx, PC0
xÞ + εg. Then we have

pj ∈D for any j ≥ j0. Since D is closed and convex, from

Theorem 23, we have pj ⇀ Δ p0 ∈D. Therefore, we have

d x, p0ð Þ ≤ d x, PC0
x

� 	
+ ε: ð86Þ

Letting ε↘0, we obtain

d x, p0ð Þ ≤ d x, PC0
x

� 	
: ð87Þ

Since p0 ∈ �Δ1‐LsnCn = C0, we have dðx, PC0
xÞ ≤ dðx, p0Þ

and thus

d x, PC0
x

� 	
= d x, p0ð Þ: ð88Þ

Hence, we obtain pj ⇀ Δ PC0
x. From Theorem 24, we

have

d x, PC0
x

� 	
≤ lim inf

j⟶∞
d x, pj
� �

ð89Þ

and hence

d x, PC0
x

� 	
≤ lim inf

j⟶∞
d x, pj
� �

≤ lim sup
j⟶∞

d x, pj
� �

≤ lim sup
n⟶∞

d x, PCn
x

� 	
≤ d x, PC0

x
� 	

:
ð90Þ

Therefore, dðx, pjÞ⟶ dðx, PC0
xÞ. Since pj ⇀ Δ PC0

x
and dðx, pjÞ⟶ dðx, PC0

xÞ, from Theorem 25, we have pj
⟶ PC0

x. Since for any subsequence fPCni
xg of fPCn

xg,
there exists a subsequence fPCnij

xg of fPCni
xg such that

PCnij

x⟶ PC0
x, we have PCn

x⟶ PC0
x.

We also have the following result [3].

Theorem 27 (Kimura and Satô [3]). Let X be a complete
admissible CAT(1) space and PK : X⟶ K is the metric pro-
jection of X onto a nonempty closed convex subset K of X. Let
fCng ⊂ 2X be a sequence of nonempty closed convex sets and
C0 a nonempty closed convex subset of X. If fPCn

xg converges
to PC0

x ∈ X for any x ∈ X, then fCng converges to C0 in the
sense of Δκ -Mosco.

Let X be a complete admissible CAT(1) space and
PK : X⟶ K is the metric projection of X onto a nonempty
closed convex subset K of X. Let fCng ⊂ 2X be a sequence of
nonempty closed convex sets and C0 a nonempty closed con-
vex subset of X. Then, from Theorem 26 and Theorem 27,
the following propositions are equivalent:

(i) fCng converges to C0 in the sense of Δ1-Mosco

(ii) fCng converges to C0 in the sense of �Δ1-Mosco

(iii) fPCn
xg converges to PC0

x for any x ∈ X

That is, Δ1-Mosco convergence coincides with �Δ1-Mosco
convergence in complete admissible CAT(1) spaces.

For the case where κ > 0, by using standard modification,
we can obtain the same result. That is, Δκ-Mosco conver-
gence coincides with �Δκ-Mosco convergence in complete
admissible CAT(κ) spaces for κ > 0.

Consequently, Δκ-Mosco convergence coincides with
�Δκ-Mosco convergence for every κ ∈ℝ and we can replace
the definition. That is, if a subset C0 of a complete admis-
sible CAT(κ) space X for κ ∈ℝ satisfies that

C0 = d‐LinCn = �Δκ‐LsnCn, ð91Þ

then we can say that fCng converges to C0 in the sense of
Δκ-Mosco.
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