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In this paper, we first introduce two new notions of uniform convexity on a geodesic space, and we prove their properties.
Moreover, we reintroduce a concept of the set-convergence in complete geodesic spaces, and we prove a relation between the

metric projections and the convergence of a sequence of sets.

1. Introduction

There are a lot of works dealing with the relation between
convergence of a sequence of sets and convergence of a
sequence of projections corresponding to it. In particular,
the following theorem on a reflexive and strictly convex real
Banach space is one of the important results.

Theorem 1 (Tsukada [1]). Let E be a strictly convex and
reflexive real Banach space satisfying the Kadec-Klee prop-
erty. Let {C,} C 2F be a sequence of nonempty closed convex
sets and C, CE a nonempty closed convex subset such that
{C,} converges to C, in the sense of Mosco. Then {P¢ x}
converges strongly to P x € E for any x € X, where Py : E

— K is the metric projection of E onto a nonempty closed
convex subset K of X.

Since a uniformly convex real Banach space is strictly
convex, reflexive, and satisfying the Kadec-Klee property,
this theorem is true in uniformly convex real Banach spaces.
Moreover, since a real Hilbert space is a uniformly convex
real Banach space, it is also true in real Hilbert spaces.

On the other hand, we know that a Hadamard space is
another generalization of Hilbert spaces. It is defined as a
complete metric space having a particular convexity struc-

ture and it also has various useful properties that Hilbert
spaces have. Kimura [2] introduced A-Mosco convergence
in complete geodesic spaces using a notion of asymptotic
centre instead of weak convergence.

Theorem 2 (Kimura [2]). Let X be a complete CAT(0) space.
Let {C,} ¢ 2X be a sequence of nonempty closed convex sets
and CyC X a nonempty closed convex subset such that {C,}
converges to C, in the sense of A -Mosco. Then {P x} con-
verges to P x € X for any x € X, where Py : X — K is the

metric projection of X onto a nonempty closed convex subset
Kof X.

Moreover, Kimura and Satd [3] introduced A, -Mosco
convergence in complete CAT(k) spaces and obtain the fol-
lowing result:

Theorem 3 (Kimura and Sat6 [3]). Let X be a complete
admissible CAT(x) space for x>0. Let {C,} c2X be a
sequence of nonempty closed convex sets and C,CX a
nonempty closed convex subset such that {C,} converges to
Cy in the sense of A, -Mosco. Then {P¢ x} converges to
P xeX for any x € X, where Py : X — K is the metric
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projection of X onto a nonempty closed convex subset K
of X.

In this work, we introduce a new concept of the set-
convergence and we obtain a similar result as above under
the assumptions that both uniformly convex real Banach
spaces and complete CAT(0) spaces have.

2. Preliminaries

A function g : [0,00[ — [0,00[ is said to be a gauge if g is
strictly increasing, continuous, and g(0) = 0. We know that
if {a,} is a real sequence of [0, o] such that g(a,) — 0
for some gauge function g, then «,, — 0.

Let E be a real Banach space. Then the following propo-
sitions are equivalent:

(i) E is uniformly convex

(ii) For r>0, z€E, and {x,},{y,} CE, it holds that

lim, . |lx, —,|l =0 whenever

=r

(1)

. . . 1 1
lim r, —z] = lim [y, —z| = lim |(Jx,+ >y, ) -2

(iii) For any K > 0, there exists a convex gauge function
9yt [0,00[ — [0,00] such that

lex+ (1= eyl < el + (1= O lyll” = £(1 = g, (IIx = y])
(2)

for any ¢t € [0, 1], where ||x|| <K and ||y|| <K for x,y € E

For more details about the properties of uniformly con-
vex real Banach spaces, see [4].

Let (X, d) be a metric space and let x,y € X. A geodesic
path from x to y is a mapping y : [0, d(x, y)] — X such that
Y(0) =, y(d(x,)) =y and d(y(s), y(£)) = ls—¢| for any s
t€[0,d(x,y)]. Let D€]0,00]. If for any x,y € X such that
d(x,y) <D, a geodesic path from x to y exists, then we
say that X is D -geodesic. Moreover, if such a geodesic path
is unique for each pair of points, then X is said to be
D -uniquely geodesic. In a D-uniquely geodesic space, the
image of a geodesic path from x to y is called a geodesic
segment joining x and y and it is denoted by [x,y]. For
x,y€X and t€]0,1], there exists a unique point z € [x, y]
such that d(x,z) = (1-1t)d(x,y) and d(y,z) =td(x,y). We
denote it by z = tx & (1 — t)y. A geodesic triangle with vertices
X, 9,z € X is the union of geodesic segments [x, ], [y, z] and
[z, x]. We denote it by A(x, y, z).

To define a CAT(x) space, we use the following notation
called a model space. For « =0, the two-dimensional model
space M2 =M} is the two-dimensional Euclidean space E*
with the metric induced from the Euclidean norm. For
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k>0, M? is the two-dimensional sphere (1/1/x)S* whose
metric is a length of a minimal great arc joining each two
points. For x < 0, M? is the two-dimensional hyperbolic space
(1/4/=x)H? with the metric defined by a usual hyperbolic
distance.

The diameter of M? is denoted by D,, defined by

00 (k<0),
D, = (3)
<7I/\/E )

We know that M2 is a D,-uniquely geodesic space for
each x e R.

Let x € R. For A(x, y,z) in a geodesic space X satisfying
that d(x, y) + d(y, z) + d(z, x) < 2D, there exist points X, y,
zeM; such that d(x, y) = dye (%, 7), d(y, 2) = dy2 (7, 2), d(2,
x) =dyp (2, X). We call the triangle having vertices X, y and z
in M2 a comparison triangle of A(x, y,z). Notice that it is
unique up to an isometry of M2. For a specific choice of com-
parison triangles, we denote it by A(%, 3, ). A point p € [X, ¥] is
called a comparison point for p € [x, y| if d(x, p) = dpp (%, p).

Let « € R and X a D,-geodesic space. If for any x, y,z € X
with d(x, y) + d(y, z) + d(z, x) < 2D,, for any p, q € A(x, y, z),
and for their comparison points p, g € A(%, y, z), the CAT(x)
inequality

d(p,q) <dpe(p:9) (4)

holds, then we call X a CAT (k) space. It is well known that any
CAT(x) space is also a CAT(«") space whenever « < «'. There-
fore, a CAT(k) space is a CAT(0) space for any « < 0.

Let X be a CAT(x) space for xk € R. If

d(u,v) < % (5)

for any u, v € X, then we say that X is admissible. A CAT(x)
space is always admissible when x < 0.

A subset C of a D-uniquely geodesic space X is said to be
convex if tx® (1 —t)y € C for every x,y € Cand ¢ € [0, 1]. For
a subset S of D-uniquely geodesic space X, a closed convex
hull of S is defined as the intersection of all closed convex
sets including S, and we denote it by clco S.

Let X be a complete admissible CAT(x) space for x € R
and C a nonempty closed convex subset of X. Then for x
€ X, there exists a unique point y_ € C such that

d(x,y,) =d(x, C). (6)

We call such a mapping defined by P.x =y, the metric
projection of X onto C.
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Let X be a CAT(0) space. From the CAT(0) inequality, it
is easy to see that

d(tx® (1-t)y, 2)> <td(x,2)> + (1 - )d(y, 2)* = t(1 - )d(x, y)*
(7)

for every x,y,z€ X and t € [0, 1].
The following lemma shows that a CAT(0) space has a
similar property to the uniform convexity of Banach spaces.

Lemma 4. Let X be a CAT(0) space. For r>0, a point
zeX and two sequences {x,},{y,} cX, it holds that
lim, . d(x,,y,) =0 whenever

1
lim d(x,, z)— 11m d(yn, )— hm d( X, ® S >—r.
(8)

Proof. For {x,},{y,} cX, zeX and re€]0,00, if

lim d(x,,z)= lim d(y,, z)— hm d( X, ® 1yn, )—r,

©)
then
1 1 2 , 1
d 2% ® S Y2 Sid(xn,z) +Ed(y”’ ) = =d(x,y,)
(10)
which implies
2 2 2 1 1 ’
d(x,,y,)" <2d(x,,2)"+2d(y,, z)" —4d 3 ® Vw2 -
(11)
Letting n — 00, we have
lim d(x,,y,) = (12)
n—~oo
This is the desired result. O

Let X be a metric space. For a point x € X and a non-
empty subset C C X, the distance between them is defined
by d(x, C) = inf,cd(x.).

Let X be a metric space. A function f : X — ]—00, 00] is
said to be lower semicontinuous if for x, € X and {x,} c X,

f(x) <lim inf f(x,,) (13)

n—=00

whenever x, — x,. Moreover, a function f : X — ]-o00,
00| is said to be proper if there exists a point z, € X such that
f(z,) < 00 and the domain of f defined by

dom f={xeX]|f(x)<co}. (14)

Let X be a uniquely geodesic space. A function f : X
— |-00, 00] is said to be convex if for x,y € X and €]
0,1[, f satisfies

fltxe (1-t)y) <tf(x)+ (1 -1)f (y)- (15)

3. Uniform Convexity of a Complete
Geodesic Space

In the following, we always suppose that for any x, y in geo-
desic space X, a geodesic joining x to y is unique.
A geodesic space X is said to satisfy the condition (D) if:

d(txe (1-t)y,z)> <td(x,z)* + (1 -t)d(y,2)*>  (16)

for x,y,z€ X and t € [0, 1].

We introduce two new concepts of uniform convexity on
a geodesic space.

Let X be a geodesic space. X is said to be sequentially
uniformly convex if X satisfies the condition (D) and, for
r>0, a point z€ X and two sequences {x,},{y,} cX, it
holds that

lim d(x,,y,)=0 (17)

n—=oo

whenever

1
lim d(x,,z)= lim d(y,,z)= lim d(zx ® w )—r.

n—=~0 n—~oo n—~oo
(18)

Let X be a geodesic space. X is said to be uniformly
convex if for any K >0 there exists a convex gauge func-
tion g, : [0,00[ — [0,00[ such that for any ¢ € [0, 1],

d(txe (1-1)y,2)* <td(x,2)* + (1 - 1)d(y,2)* - t(1 - H)g, (d(x ),

(19)

where x,y,z € X with d(x,z) <K and d(y,z) <K
Uniformly convex real Banach spaces and CAT(0)
spaces are uniformly convex in this sense.

Theorem 5. Let X be a uniformly convex geodesic space.
Then, X is sequentially uniformly convex.

Proof. Let x,y,z € X and let K = max {d(x,z),d(y,z)} < co.
Then there exists a convex gauge function g, : [0,00[— [0,

00|, satisfying that
d(tx® (1-t)y,z)’ <td(x,z)” +

(1-1)d(y2)* = t(1-t)g, (d(x.y))

(20)



for any ¢ € [0, 1] and hence
ditxe (1-t)yy,z)> <td(x,z)" + (1 -t)d(y,2)*.  (21)

That is, X satisfies the condition (D).
Moreover, for r >0, z€ X and {x,}, {y,} ¢ X, if

1 1
lim d(x,,z) = n@l@d@n, z)= nknmd<5xn ® > Vw z) =1,

n—-=00

(22)
then there exists #, € N such that
d(x,,2)<r+1L,d(y,z)<r+1 (23)

for any n > n,. From uniform convexity of X, there exists a
convex gauge function g, satisfying that

1 1 | 1 1
d(zxn & Eyn,z) < Ed(xn,z)2 + Ed(y”’ z)2 _ Zﬂwl(d(x”’y”))'

(24)
It follows that

0<g,, (d(x,,) <2d(x,2)" +2d(y, 2)’

11 2 s . (25)
—4d(=x,®-y,z| —2r +2r —4r"=0.
2 2

Therefore, we obtain gm(d(xn, ¥,)) — 0 and hence

lim, . d(x,,y,) =0, that is, X is sequentially uniformly
convex. O

Theorem 6. Let X be a sequentially uniformly convex
geodesic space. For >0 and x,y,z€ X with x+y , if d(x, 2)
=d(y,z)=r, then d(1/2x® 1/2y,z) <.

Proof. For r>0 and x, y, z € X with x # y, we suppose that
d(x,2z)=d(y,z) =r. If r<d(1/2x ® 1/2y, z), then, since

2 1 o1 Pl 2,1 2_ 2
- PYe] =3 bl - > = > 2
r Sd(zxeazyz <2d(x z) +2d(y z)*=r%, (26)

we have d(1/2x ® 1/2y,z) = r. From the sequential uniform
convexity of X, we have d(x, y) =0. This is a contradiction.
Therefore, we have d(1/2x ® 1/2y,z) < r. This is the desired
result. |

Theorem 7. Let X be a sequentially uniformly convex
complete geodesic space and let C be a nonempty closed con-
vex subset of X. Then, for x € X, there exists a unique point
¥, € C such that d(x,y,) = d(x, C).
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Proof. For x € X, let d = d(x, C). Then, for n € N, we can take
a sequence {y,} ¢ C such that

1
d<d(x,y,)<d+—. (27)
n

Then, we have d(x, y,) — d. Suppose that {y,} is not a
Cauchy sequence. That is, there exists € > 0 such that for any
i €N, there exist m;, n; >i such that d(y,,,y,)>¢ In this

way, we take two subsequences {y,, },{y, } < {y,}. Then,

1—>00

lim d(x,ym[) = ik%od(x, )’n,) =d (28)

and we have

#sa(n oo, ) < o) Sa(m) —
(29)

Hence, from the sequential uniform convexity of X,
we have

iirgod (ymi,yni> =0. (30)

This is a contradiction and thus {y,} is a Cauchy
sequence. Since X is complete and C is closed, there
exists y, € C such that y, — y,. Therefore, we have

d(x.y5) = lim d(xy,)=d=d(xC).  (31)

Next, we show the uniqueness of y,. Suppose that
Yo» 2o € C satisfy y,#2, and d(x,y,) =d(x,z,) =d(x, C).
Then, from Theorem 6, we have

1 1
d(x, 790 ® 220> <d(x,C). (32)

This is a contradiction. Therefore, for x € X, there exists a
unique point y, € C such that d(x, y,) = d(x, C). O

Let X be a sequentially uniformly convex complete
uniquely geodesic space and let C be a nonempty closed con-
vex subset of X. Then for x € X, there exists a unique point
v, € C such that

d(x,y.)=d(x,C). (33)

We call such a mapping P, : X — C defined by
Pex=y,, the metric projection of X onto C.

Theorem 8. Let X be a sequentially uniformly convex com-
plete geodesic space and {C,} c 2X a sequence of nonempty
bounded closed convex subsets which is decreasing with
respect to inclusion, that is, C,,; C C, for any n € N. Then,
Moo, C,, is nonempty.
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Proof. Since C,, is nonempty bounded closed convex subset
for ne N, for x € X, we can take a sequence {x,} c X by
x, =P x, where Py is the metric projection of X onto a

nonempty closed convex subset K of X. Then {d(x,x,)} isa
bounded increasing real sequence and hence {d(x,x,)} has
a limit ¢ € [0,00[. That is, we have

lim d(x,x,)=c. (34)

n—aoo

First, we show that {x, } converges to some point x, € X. If
¢ =0, then, since d(x, P x) — 0, we havex, — x, asxy = x.
Hence, we may suppose that ¢ > 0. Suppose that {x, } is not a
Cauchy sequence. That is, there exists € > 0 such that for any
i €N, there exist m;, n; > i such that d(x,, , x, ) > &. Without
loss of generality, we can suppose that m; > n,. In this way,
we take two subsequences {x,, }, {x, } ¢ {x,}. Then,

lim d(x,x,,) = lim d(x,x,) =c. (35)

1—>00 1—>00

Since x,, , x, € C, , we have

2
d(x,x,) :d(x, PCn,-x) < d<x, %xmi o ;xni> < Ed(x’ xmi)Z

1
+ Ed(x,xnl)2

and thus

1 1
lim d<x, 2%m, ® 2xni> =c. (37)

i—00

From the sequential uniform convexity of X, we have
lim;_,,d(x,,,x,)=0. This is a contradiction. Therefore,
{x,} is a Cauchy sequence and thus there exists x,€ X
such that x, — x,.

We show that x, €()2,C,. For n €N, x,€C, for
n>n, and thus x, € C, . Therefore, x, €(,2,C, and it
completes the proof. O

4. A-Convergence

Let X be a metric space and {x,} ¢ X a bounded sequence.
An asymptotic centre AC({x,}) of {x,} is defined by

n—:ao00 n—-s:ao0

AC({x,}) = {u € X |lim supd(u, x,) = in){ lim supd(x, xn)}.
X€
(38)

Lemma 9. Let X be a sequentially uniformly convex complete
geodesic space and let {x,} C X be a bounded sequence. Then,
there exists a point u € X such that

lim supd(u, x,)) = in)g lim supd(x, x,,). (39)
X€

n—~oo n—~oo

That is, AC({x,}) is nonempty. Moreover, AC({x,}) is
bounded, closed and convex.

Proof. Let M =inf, y lim sup,_, d(x,x,) and define {C,}
c2X by

C,= {u € X | M <lim supd(u, x,) <M + ]i} (40)

n—~oo

for any ke N. Then, for any k€N, C; is nonempty and
bounded. If {u,,} c C, and u,, — u,, then

M <lim supd(uy, x,) < d(uy, u,,) + lim supd(u,,, x,,)

n—00 n—0o
1 (a)
<d(ug, u,,) +M+ T
Letting m — 00, we have
) 1
M <lim supd(uy, x,,) <M + % (42)

n—~oo

and hence u, € C,. Moreover, for u,veC, and t€|0,1],
we have

M? <lim supd(tu® (1 - t)v, x,,)* < tlim supd(u, x,,)*

n—~oo n—=a~oo

2
+ (1 - t)lim supd(v, x,,)* < (M + 1) .

n—00 k
(43)
It implies tu® (1 —t)v e C,. Therefore, C, is closed

and convex for any k € N. Moreover, {C} is decreasing
with respect to inclusion. Hence, we have

(o] (o]
ﬂCkz ﬂ{ueXlMslimsupd(u,xn)sM+ %} +O
k=1 k=1

(44)
and thus
AC({x,}) = ﬂ{u € X | M <lim supd(u, x,) <M + Ilc} +d.
k=1 n—~aoo

(45)
Also, we know that AC({x,}) is closed and convex. [J

If we suppose uniform convexity for X, we can prove
that an asymptotic centre is a singleton.

Theorem 10. Let X be a uniformly convex complete geode-
sic space and let {x,} be a bounded sequence of X. Then,
AC({x,}) is a singleton.

Proof. Let M =inf, ylimsup, d(x,x,). If u,veAC
({x,}) with u#v, then, since {x,} C X is bounded, there



exists K > 0 such that d(u, x,) <K and d(v, x,,) <K for all n
€ IN. Then, there exists a convex gauge function g, , and

we have

d(tuo tux ) < L)+ Ldmr ) - L (d
JUS VX, | <5 (ux,) 2 (v x,) ZQK( (7))

(46)

and hence

11 *
lim supd(zu ® 5V, xn> < Elim supd(u, x,,)°
n—~oo n—aoo

+ %lim supd(v, x,)* - %ﬂK(d(”’ v)) < M? (47)

n—-=00

- 19 (dwy)).

Since d(u, v) # 0, we have g _(d(u,v)) >0 and thus

11 :
lim supd(iuea Ev,xn) <M. (48)

n—-=o00

This is a contradiction. Therefore, AC({x,}) is a
singleton. O

Let {x,} ¢ X be a bounded sequence and x, € X. We say
{x,}A -converges to a A-limit x, if x, is the unique asymp-
totic centre of any subsequences of {x, }, and we denote it by
x, —%x,.

Let X be a geodesic space. X is said to satisfy the condition
(AC), if any nonempty closed convex subset CcCX is
A-closed, that is, if {x,} ¢ C and x,, — % x,, then x, € C.

CAT(0) spaces satisty the condition (AC). Let E be a
uniformly convex real Banach space. Then, the following
propositions are equivalent:

(i) For any bounded sequence {x,} CE, {x,}A-con-
verges to x,, € E if and only if {x, } converges weakly
tox, €E

(ii) E satisfies the condition (AC)
(iii) E satisfies Opial’s condition

See [5] for details.
The following two theorems can be proved by the same
method as the corresponding results in [6-8].

Theorem 11 (Bac¢ak [6], Kirk and Panyanak [8]). Let X be a
uniformly convex complete geodesic space. Then, for any
bounded sequence of X has a A -convergent subsequence.

Corollary 12. Let X be a uniformly convex complete geodesic
space satisfying the condition (AC) and let C be a nonempty
bounded closed convex subset of X. Then, for any sequence
in C has a A -convergent subsequence and its A-limit belongs
to C.
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Theorem 13 (Bac¢ék [6], He, Fang, Lopez and Li [7]). Let X
be a uniformly convex complete geodesic space satisfying the
condition (AC). Let f : X —]-00,00] be a proper lower
semicontinuous function and {x,} C X a sequence such that
x, —%x,€dom f. Then,

f(xp) <lim inff(x,,). (49)

n—aoo

Corollary 14 (A-lower semicontinuity of the distance
function). Let X be a uniformly convex complete geodesic
space satisfying the condition (AC) and let z € X be a point.
Let {x,} ¢ X be a sequence such that x,, — * x,. Then,

d(xy,z) <lim infd(x,, z). (50)

n—aoo

Lemma 15. Let X be a uniformly convex complete geodesic
space and let {x,} C X be a sequence such that A-converges
to x, € X. Then,

1 I &
3% ® 5% = Xo. (51)

Proof. Since {x,,} is bounded, so is {1/2x, & 1/2x,}. For any

subsequence {1/2x, & 1/2x,} of {1/2x, ®1/2x,}, if {y,} =
AC({1/2x, ®1/2x,}), then, we have

1 1
lim supd (yy, x,, ) < lim supd (yo, 5%, @ —xo)

—>00 1—>00 2

, 1 1 _ 1 1
+lim supd 7%, ® 7 %0 Xy < lim supd | x,, 7 %n, ® 3%

1—00 1—>00

1 1 1
+lim supd <§xni ® S X0 xnl) < ~lim supd (x, x,, )

i—00 2 i—00

+ Lim supd (xy, x,, ) = lim supd (x, x, ).
2 i—00 ' i—00 '

(52)

Therefore, since AC({x, })={x,}, we have y,=x,.
Hence, x, is the unique asymptotic centre of any subse-
quence of {1/2x, ® 1/2x,} and it completes the proof. [

Theorem 16 (A-Kadec-Klee property). Let X be a uniformly
convex complete geodesic space satisfying the condition (AC)
and {x,} C X a sequence such that x, —*x, and d(x,, p)
—> d(x,, p) for some p € X. Then, x, — x,.

Proof. Let {y,} c X be a sequence such that y, = x, for any
n € N. Since x, — “ x,, From Lemma 15, we have 1/2x, ®
1/2x, — 2 x,. Then, since d(-, p) is A-lower semicontinuous
and d(x,, p) — d(x,, p), we have

11 ? 11 g
d(xy, p)* <lim infd (Ex” ® Exo,p) <lim supd(zxn ® Exo,p)

n—0oo n—s00

< %lim supd(x,,, p)* + %lim supd(x,, p)* = d(xp, p)*

n—oo n—oo

(53)
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and thus lim d(1/2x, ® 1/2xy, p) = d(xy, p). Therefore,

we obtain

n—~oo

n—~oo

lim d(x,,p)= lim d(y,,p)= lim d(%xn@ %yn,p) =d(xp, p)-

(54)

If d(xy,p)=0, then x, — p=x,. If d(x,,p)>0, from
sequential uniform convexity of X, we obtain lim,_, d(x,,,
y,) =0. Since y, = x, for any n € N, we have x, — x,. [

5. Convergence of a Sequence of Sets

Let {C,} c2X be a sequence of nonempty closed convex
subsets of a uniformly convex complete geodesic space X.
A-Mosco convergence is defined by using a notion of
asymptotic centre by Kimura [2]. First, we define subsets
d-Li,C, and A-Ls,C, of X as follows: x € d-Li,C, if and only
if there exists {x, } € X such that x, — x and x,, € C,, for all
nelN; yeA-Ls,C, if and only if there exist a bounded
sequence {y;} X and a subsequence {n;} of N such that
{r}=AC({y;}) and y;€ C, for all ie N. If a subset C; of
X satisfies that C, =d-Li,C, = A-Ls,C,, we say that {C,}
converges to C, in the sense of A-Mosco.

Here, we introduce a new concept of the set-convergence.
We define subsets A-Ls, C, of X as follows: y € A-Ls, C,, if and
only if there exists a bounded sequence {y,} ¢ X and a subse-
quence {n;} of N such thaty, —“yand y, € C, forallieN.

Since a convergent sequence is a A-convergent sequence,
the inclusion

d-Li,C, c A-Ls,C, (55)

is always true. If a subset C, of X satisfies that C, = d-Li,
C, = A-Ls,C,, we say that {C, } converges to C, in the sense

” n-n>
of A-Mosco. Furthermore, the following inclusion holds:

d-Li,C, c A-Ls,C, c A-Ls,C,. (56)

Therefore, if {C,} converges to C, in the sense of
A-Mosco, then {C,} converges to C, in the sense of
A-Mosco.

Lemma 17. Let X be a uniformly convex complete geodesic
space satisfying the condition (AC) and {C,} c 2% a sequence
of nonempty closed convex sets which is decreasing with
respect to inclusion, that is, C, ;cC, for any neN. if
Co=2,C, is nonempty, then {C,} converges to C, in
the sense of A -Mosco.

Proof. We show that A-Ls,C, ¢ C, c d-Li,C,. If xe C,=
No2,C, then x € C, for any n € N. Let {x,} be a sequence
of X such that x, =x for any n € N. Then, x, — x and
x, € C, for any neNN. Therefore, we obtain x € d-Li,C,
and hence C, c d-Li,C,.

Next, we show that A-Ls,C, ¢ C,. If y € A-Ls, C,, then
there exists a sequence {y;} cX and {n;} C N such that

y;€C, foranyieN and y, —4y. For any i, € N, if i > i,
then {y,} c Cmo' Therefore, from the condition (AC) of X,
we have y, —“4ye Cn,o' Since i, € N is arbitrarily, we obtain
ye2,C, = C,. Hence, we have A-Ls,C, c C, ¢ d-11,C,,.

n=1"n =
Since d-Li,C, c A-Ls,C, is always true, we have

A-Ls,C, =C,=d-Li,C,. (57)

That is, {C,} converges to C, in the sense of A-Mosco.
O

Theorem 18. Let X be a uniformly convex complete geodesic
space satisfying the condition (AC). Let {C,} c2X be a
sequence of nonempty closed convex sets and C, a nonempty
closed convex subset of X. If {C, } converges to C, in the sense
of A-Mosco, then {P. x} converges to P x € X for any x € X,
where Py : X — K is the metric projection of X onto a non-
empty closed convex subset K of X.

Proof. Fix x € X arbitrarily. Since P¢ x € C; =d-Li,C,, there

exists a sequence {x,} C X such that x, — P x and x,, €
C, for every n € N. Since d(x, P¢ x) <d(x,x,) for any n €
N and {x, } is bounded, {P( x} is also bounded. Moreover,
letting n — 00, we have

lim supd (x, P x) <d(x, P¢ x). (58)

n—~oo

Here, we take a subsequence {P. x} of {Pc x} arbi-
trarily. Since {P¢, x} is bounded, there exists a subsequence
{Pc_x}of {P; x} and p, € X such that

ij ni

A
Pe, x = py. (59)
7

Let p; =P x for any j € N. Then, since
i

lim supd(x, pj) < d(x, PCox)’ (60)

J7/

for any &> 0 there exists j, € N such that for any j> j,, it
holds that

d(x,pj) <d(x,Pc x) +e. (61)

Let D={yeX|d(x,y) <d(x, P x) + }. Then we have
p; €D for any j=> j,. Since D is closed and convex, from
the condition (AC) of X, we obtain p; — 4 p, € D. Therefore,
we have

d(x, py) <d(x, P, x) +e. (62)



Letting £\.0, we obtain
d(x, py) < d(x, Pc x). (63)

Since p, € A-Ls,C, = C,, we have d(x, P, x) <d(x,p,)
and thus

d(x, Pe,x) = d(x, p,)- (64)

Hence, we obtain p; — APCOx. Since d(x,-) is A-lower

semicontinuous and p; — A P¢, x, we have

d(x,Pc x) < lijrlinfd (x, pj> (65)

(6]

and hence

d(x, P, x) <lim infd (x, pj> <lim supd(x, pj)
e Je0 (66)
<lim supd (x, P¢ x) <d(x, P¢ x).

n—-=00

Therefore, d(x,p;) — d(x,P¢ x). Since p; —\APCOx
and d(x, p;) — d(x, P¢ x), from the A-Kadec-Klee property
of X, we obtain p; — P x. Since for any subsequence
{Pc _x} of {P x}, there exists a subsequence {P; x}

1 n ﬂlj

of {Pc x} such that P, x— P x, we have Pp x —
i n’j n

Pcox. O
Let X be a uniformly convex complete geodesic space. If X
has the condition (AC), we can show that convergence of a
sequence of metric projections from A-Mosco convergence.
If a sequence of sets which is decreasing with respect to inclu-
sion, then we can show it on sequentially uniformly convex
complete geodesic spaces without the condition (AC).

Theorem 19. Let X be a sequentially uniformly convex com-
plete geodesic space and {C,} C 2% a sequence of nonempty
closed convex sets which is decreasing with respect to
inclusion, that is, C,,; CC, for any neN. Suppose that
Co=2;C, is nonempty. Then, {P x} converges to Pc,
x€X for any x € X, where Py : X — K is the metric pro-
jection of X onto a nonempty closed convex subset K of X.

Proof. Fix x € X arbitrarily. Since Cy =2, C, # @, if p € C,,
then for any n € IN, we have

d(x, Pc x) <d(x,p) (67)

and hence {d(x,P¢ x)} is bounded. Furthermore, since
C,41 € C, for any n € N, we have

d(x,Pc x) <d(x,Pc_x) (68)
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and thus {d(x, P x)} is increasing. Therefore, {d(x, P¢ x)}
has a limit
c= lim d(x, P¢ x). (69)
n—:ao0 "
First, we show that {P¢ x} converges to some point
xp € X. Since P x — x if ¢ =0, we may assume that ¢ > 0.

Suppose that {P¢ x} is not a Cauchy sequence. That is, there

exist € > 0 such that for any i € N, there exist m;, n; > i such
that d(P. x,P. x)>e. Without loss of generality, we can

suppose that m; >n,. In this way, we take two sequences
{Pcm_x},{PCn x}C{PCnx}. Then, {Pcmvx} and {Pcn_x}

satisfies

iﬂq&od(x, PCm,.x> = lim d(x, Pcnix) =c. (70)

1—>00

Since P x,P, x€C,, we obtain
i - :

2 1 1 2
d(x, Pcn,x> < d(x, P x® S P x)
i 2 i 2 i (71)

1

2 1 2
< Ed(x, PCm[x) + Ed(x, PCn,.x) .

Letting i — 00, we obtain

1—>00 2

1 1
lim d(x, Epcmvx@ —Pcn,x> =c. (72)

From sequential uniform convexity of X, we have
lim d(PC % P, x) =0. (73)
1—00 mj i

This is contradictory to

d(PCm_x, Pcn‘x> >e>0 (74)

and hence {P;x} is a Cauchy sequence. Therefore,
since X is complete, there exists a point x,€X such
that Pp x — x;.

Next, we show that x,€C,. For any n,€N, since
{Pc x} cC, if n>nyand C, is closed, we have x, € C,
and thus x, € "2, C,..

Finally, we show that x; = P, x. For any n € N, form the
property of the metric projection, we have

d(x, Pc x) <d(x,Pc x) <d(x, ). (75)
Letting n — 00, we obtain
d(x, Pc,x) = d(x, x)) (76)

and hence x, = P¢ x.
Consequently, we have P¢ x — P x for any x € X. []
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6. Convergence of a Sequence of Sets in CAT(x)
Spaces

In this section, we will consider CAT(x) spaces for x € R.

Let X be a metric space and let {x,} be a bounded
sequence of X. The asymptotic radius r({x,}) of {x,}
defined by

r({x,}) = ilg}{ lim supd(x, x,,). (77)

n—00

Let {C,} ¢ 2X be a sequence of nonempty closed convex
subsets of a complete admissible CAT(x) space for k € R. A,-
Mosco convergence is defined by Kimura and Sat6 [3]. First,
we define subsets d-Li,C, and A -Ls,C, of X as follows:
d-Li,C, is the same as in the case of uniformly convex
complete geodesic spaces, that is, x € d-Li,C, if and only
if there exists {x,} cX such that x, — x and x,€C,
for all nelN; yeA,.-Ls,C, if and only if there exist a
sequence {y;} ¢ X and a subsequence {n;} of N such that
r({y;}) <D/2, {y} =AC({y;}) and y,€ C, for all ie N. If
a subset C, of X satisfies that C, =d-Li,C, = A,-Ls,C,, it
is said that {C,} converges to C, in the sense of A,-
Mosco. The notion of A _-Mosco convergence coincides
with A-Mosco convergence in complete CAT(x) spaces
for x<0.

We define a subset A, -Ls,C, of X as follows: y € A -L
s,C, if and only if there exist a sequence {y;} c X and a sub-
sequence {n;} of N such that r({y,}) <D,/2, y;, —*y and
y;€C, forallieN.If x<0, then A-Ls,C,=A,-Ls,C,.

Since a convergent sequence is a A-convergent sequence,
the inclusion

d-Li,C,cA.-Ls,C, (78)

is always true. If a subset C, of X satisfies that C, =d-Li,
C,=ALs,C,, it is said that {C,} converges to C, in the
sense of A -Mosco. Furthermore, the following inclusion
holds:

d-Li,C, c A.-Ls,C, c A.-Ls,C,. (79)

Therefore, if {C,} converges to C, in the sense of
A,-Mosco, then {C,} converges to C, in the sense of
A.-Mosco.

A,-Mosco convergence coincides with A-Mosco conver-
gence in complete CAT(k) spaces for x <0.

Since complete CAT(x) space is uniformly convex and
satisfies the condition (AC) for any k<0, we have the fol-
lowing theorem:

Theorem 20. Let X be a complete CAT(k) space for k < 0. Let
{C,} c 2% be a sequence of nonempty closed convex sets and
C, a nonempty closed convex subset of X. If {C, } is converges
to C, in the sense of A-Mosco, then {P¢ x} converges to P¢,
x € X for any x € X, where Py : X — K is the metric projec-
tion of X onto a nonempty closed convex subset K of X.

We also have the following result [2].

Theorem 21 (Kimura [2]). Let X be a complete CAT(x) space
for k<0 and Py : X — K is the metric projection of X onto
a nonempty closed convex subset K of X. Let {C,} c2X be a
sequence of nonempty closed convex sets and C, a nonempty
closed convex subset of X. If {P¢ x} converges to P¢ x € X for

any x € X, then {C,} converges to C, in the sense of A-Mosco.

Let X be a complete CAT(x) space k<0 and Py : X
— K is the metric projection of X onto a nonempty closed
convex subset K of X. Let {C,} ¢ 2% be a sequence of non-
empty closed convex sets and C, a nonempty closed convex
subset of X. Then, from Theorem 19 and Theorem 21, the
following propositions are equivalent:

(i) {C,} converges to C, in the sense of A-Mosco
(ii) {C,} converges to C, in the sense of A-Mosco

(iii) {Pc x} converges to P¢ x for any x € X

That is, the notion of A ,-Mosco convergence coincides
with A _-Mosco convergence in complete CAT(k) spaces
for k<0.

Since most of the results for CAT(k) spaces for x >0 are
easily deduced from that for CAT(1) spaces, in the following,
we focus on CAT(1) spaces.

We first see the following known results for CAT(1)
spaces.

Theorem 22 (Espinola and Fernddez-Leon [9]). Let X be a
complete CAT(1) space. If a sequence {x,} C X satisfies
r({x,}) <7m/2, then there exists a A-convergent subsequence

of {x,}-

Theorem 23 (Espinola and Fernadez-Leon [9]). Let X be a
complete admissible CAT(1) space and let {x,} cX be a
sequence satisfies r({x,}) < /2. Then,

(o]

AC({xn}> C m clco{xk, Xer 1> Xk } (80)
k=0

Theorem 24 (He, Fang, Lopez, and Li [7]). Let X be a com-
plete CAT(1) space and let {x,} C X be a sequence such that
x, — % x, € X. Then for any p € X with lim sup, . d(p,x,)
< 11/2, the following inequality holds:

d(p, xy) <lim infd(p, x,,). (81)

Theorem 25 (Kimura and Sat6 [3]). Let X be a complete
admissible CAT(1) space and let {x,} C X be a sequence.
Suppose that x, —*x,€ X and d(x,, p) — d(x,, p). Then

X, — X,

Using these results, we obtain the relation between
A,-Mosco convergence of sets and corresponding sequence
of metric projections.
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Theorem 26. Let X be a complete admissible CAT(1) space.
Let {C,} c 2% be a sequence of nonempty closed convex sets
and C, a nonempty closed convex subset of X. If {C,}
converges to C, in the sense of A;-Mosco, then {P¢ x}
converges to P¢ x €X for any x € X, where Py : X — K is

the metric projection of X onto a nonempty closed convex
subset K of X.

n-—'n>

Proof. Fix x € X arbitrarily. Since P, x € C = d-Li,C,, there
exists a sequence {x,} C X such that x, — P, x. Since d(x,
P¢ x) <d(x,x,) for any n € N. Moreover, letting n — oo,
we obtain

lim supd (x, P¢ x) <d(x, P¢ x) < g (82)

n—aoo

Here, we take a subsequence {P, x} of {P(, x} arbitrarily.

From Theorem 22, there exists a subsequence {P x} of
i

{PCn,»x} and p, € X such that
A
P, x = py. (83)
J
Let p; =P x for any j€ N. Then, since
ij

lim supd(x,pj> <d(x, Pe x) < g, (84)

j—00

for any € €10, (7/2)-d(x, P x)| there exists j, € N such that
for any j> j,, it holds that

s
d(x.p;) <d(xPex) +e< 2. (85)
Let D={yeX|d(x,y) <d(x, Pc x) + €}. Then we have
p;€D for any j2j,. Since D is closed and convex, from
Theorem 23, we have p; — 4 p, € D. Therefore, we have
d(x, py) <d(x, P, x) +e (86)
Letting e\0, we obtain

d(x, py) < d(x, P x). (87)

Since p, € A,-Ls,C, = Cy, we have d(x, P, x) <d(x, p,)
and thus

d(x Pe,x) =d(x py). (88)
Hence, we obtain p; — A P¢ x. From Theorem 24, we
have
d(x, P x) <lim infd (x, pj) (89)
j—oo
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and hence

d(x, Pc x) <lim infd (x, pj) <lim supd (x,pj)
e Je0 (90)
<lim supd (x, P x) <d(x, P, x).

n—-00

Therefore, d(x,p;) — d(x, P x). Since p;, — APcox
and d(x,p;) — d(x, P¢ x), from Theorem 25, we have p;
— P¢ x. Since for any subsequence {P. x} of {P¢ x},
there exists a subsequence {Po x} of {ch} such that

’ i

P; x— P x, we have P; x — P x. O
i

We also have the following result [3].

Theorem 27 (Kimura and Satd [3]). Let X be a complete
admissible CAT(1) space and Py : X — K is the metric pro-
jection of X onto a nonempty closed convex subset K of X. Let
{C,} c 2% be a sequence of nonempty closed convex sets and
Cy a nonempty closed convex subset of X. If { P, x} converges
to Pc x € X for any x € X, then {C,} converges to Cy in the
sense of A, -Mosco.

Let X be a complete admissible CAT(1) space and
Py : X — K is the metric projection of X onto a nonempty
closed convex subset K of X. Let {C,} ¢ 2¥ be a sequence of
nonempty closed convex sets and C, a nonempty closed con-
vex subset of X. Then, from Theorem 26 and Theorem 27,
the following propositions are equivalent:

(i) {C,} converges to C, in the sense of A,-Mosco
(ii) {C,} converges to C, in the sense of A,-Mosco

(iii) {Pc x} converges to P¢ x for any x € X

That is, A, -Mosco convergence coincides with A;-Mosco
convergence in complete admissible CAT(1) spaces.

For the case where x > 0, by using standard modification,
we can obtain the same result. That is, A _-Mosco conver-
gence coincides with A _-Mosco convergence in complete
admissible CAT(x) spaces for « > 0.

Consequently, A,.-Mosco convergence coincides with
A,-Mosco convergence for every x € R and we can replace
the definition. That is, if a subset C; of a complete admis-
sible CAT(k) space X for x € R satisfies that

Co = d-Li,C, = A,-Ls,C,, (91)

then we can say that {C,} converges to C, in the sense of
A,.-Mosco.
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