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The primary aim of this work is to introduce a new class of functions called μ-ðω, cÞ-pseudo-almost periodic functions. Using the
measure theory, we generalize in a natural way some recent works and study some properties of those μ-ðω, cÞ-pseudo-almost
periodic functions including two new composition results which play a crucial role for the existence of some μ-ðω, cÞ-pseudo-
almost periodic solutions of certain semilinear differential equations and partial differential equations. We also investigate the
existence and uniqueness of the μ-ðω, cÞ-pseudo-almost periodic solutions for some models of Lasota-Wazewska equation with
measure ðω, cÞ-pseudo-almost periodic coefficient and mixed delays.

1. Introduction

Most of the natural phenomena we consider as periodic are
in fact almost periodic; in other words, they are periodic up
to epsilon. The concept of almost periodic functions was
introduced in the literature in the mid-1920s by the Danish
mathematician Harald Bohr [1]. It was later generalized in
various directions by many researchers [2–12]. As we all
know, many phenomena in nature have oscillatory charac-
ter, and their mathematical models have led to the introduc-
tion of certain classes of functions to describe them. Such a
class form pseudo-almost periodic functions which is a nat-
ural generalization of the concept of almost periodicity (in
Bohr’s sense). In this work, we introduce the notion of mea-
sure ðω, cÞ-pseudo-almost periodic functions (or μ-ðω, cÞ
-pseudo-almost periodic functions) with values in a complex
Banach space and enlighten their applications throughout
the study of a biological model. This work generalizes the
concept of μ-pseudo-almost periodic functions introduced
by Blot et al. [4] which already generalizes the class of
weighted pseudo-almost periodic functions of Diagana [6,

13]. Here, we investigate many interesting properties of this
new class of functions and present new and more general
results based on measure theory that extend the existing
ones.

The concept of ðω, cÞ-periodicity was introduced by
Alvarez et al. [2] motivated by the qualitative properties of
solutions to the Mathieu linear second-order differential
equation

y′′ tð Þ + a − 2q cos 2tð Þ½ �y tð Þ = 0, ð1Þ

arising in seasonally forced population dynamics. Fur-
ther on, Alvarez et al. proposed a new concept of ðω, cÞ
-pseudoperiodicity and proved the existence of positive ðω,
cÞ-pseudo-periodic solutions to the Lasota-Wazewska equa-
tion with ðω, cÞ-pseudoperiodic coefficients

y′ tð Þ = −δy tð Þ + h tð Þe−a tð Þy t−τð Þ, t ≥ 0: ð2Þ

This equation describes the survival of red blood cells in
the blood of an animal. The works of Khalladi et al. [14]
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have shown that ðω, cÞ-pseudoperiodic functions can be also
solutions time varying impulsive differential equations and
linear delayed equations.

The concept of pseudo-almost periodicity was intro-
duced in the literature in the early nineties by Zhang
[11, 12, 15], as a natural generalization of the classical
almost periodicity in the sense of Bohr. Then, Diagana
[6, 13] introduced the concept of weighted pseudo-
almost periodicity which generalizes the latter, and the
author gave some properties of the space of weighted
pseudo-almost periodic functions such as the completeness
and a composition theorem. The concept of weighted
pseudo-almost periodic functions became an interesting
field of dynamical systems that attracted many authors.
A few years later, Blot et al. [4] came up with a new con-
cept of weighted pseudo-almost periodic functions under
the light of measure theory. Giving a positive measure μ
on ℝ, they defined the concept of μ-pseudo-almost peri-
odic functions as follows: it is said that a function f is μ
pseudo-almost periodic if

f = g + φ, ð3Þ

where g is almost periodic and φ is μ-ergodic in the
sense that

lim
r⟶∞

1
μ −r, r½ �ð Þ

ð
−r,r½ �

φ tð Þk kdμ tð Þ = 0: ð4Þ

Here, the classical theory of weighted pseudo-almost
periodicity became a particular case of Blot et al.
approach. Indeed, one can observe that a weighted
pseudo-almost periodic function of weight ρ is μ-pseudo-
almost periodic where the measure μ is absolutely contin-
uous with respect to the Lebesgue measure, and its Radon-
Nikodym derivative is ρ:

dμ tð Þ = ρ tð Þdt: ð5Þ

In their work, Blot et al. have investigated many
important results on the theory of μ-pseudo-almost peri-
odicity; they studied the completeness and provided a
composition theorem on the functional space of μ
-pseudo-almost periodic functions. They also gave some
applications for evolution equations which include
reaction-diffusion systems and partial differential
equations.

In this work, we introduce a new class of μ-ðω, cÞ-ergo-
dic components, and we investigate many important results
on the new theory of μ-ðω, cÞ-pseudo-almost periodic func-
tions. We study the completeness and the composition the-
orem on the functional space of μ-ðω, cÞ-pseudo-almost
periodic functions.

The organization of this work is as follows: in the next
section, we recall the basic definitions and properties of μ
-pseudo-almost periodic functions. In Section 3, we give
the new concept of μ-ðω, cÞ-pseudo-almost periodicity and
study the convolution product on the spaces of c-bounded

functions, μ-ðω, cÞ-ergodic functions, and μ-ðω, cÞ-pseudo-
almost periodic functions. In Section 4, we introduce the
concept of ðω, cÞ-type compactness, and then we study a
composition theorem which plays a crucial role to study
the existence of μ-ðω, cÞ-pseudo-almost periodic solution
for a perturbed semilinear system. In Section 5, we propose
a more realistic Lasota-Wazewska model than the existing
ones due to ðω, cÞ-periodicity, and then we study the exis-
tence and uniqueness of μ-ðω, cÞ-pseudo-almost periodic
solutions for the model, using the completeness and compo-
sition results.

2. Terminology and Definitions

In this section, we review a few notations, definitions, and
lemmas which will be utilized throughout this paper.

Let ðX, k·kÞ and ðY , k·kÞ be complex Banach spaces.
Throughout this work, Cðℝ,XÞ and BCðℝ,XÞ (respectively,
Cðℝ × Y ,XÞ and BCðℝ × Y ,XÞÞ denote the Banach spaces
consisting of all continuous functions and all bounded con-
tinuous functions from ℝ to X (respectively, from ℝ × Y to
X) equipped with the supremum norm

fk k∞ = sup
t∈ℝ

fk k: ð6Þ

Let us first recall the notion of ðω, cÞ-periodicity.

Definition 1. (see [2]). Let ω > 0 and c ∈ℂ \ f0g. A function
f ∈ Cðℝ,XÞ is said to be ðω, cÞ-periodic if

f t + ωð Þ = cf tð Þ, for each t ∈ℝ: ð7Þ

In this case, ω is called a c-period of the function f .
We denote by Pðω,cÞðℝ,XÞ the vector space of all ðω, cÞ

-periodic functions from ℝ to X. One can note that the
space Pðω,cÞðℝ,XÞ contains the spaces of periodic, antiperio-
dic, and Bloch periodic functions among others (respec-
tively, taking c = 1, c = −1, and c = eikt) (see [16] for more
details).

Proposition 2. (see [2]). Let f ∈ Cðℝ,XÞ. Then, f ∈ Pðω,cÞð
ℝ,XÞ if and only if

f tð Þ = ct/ωu tð Þ, u tð Þ ∈ Pω,1 ℝ,Xð Þ: ð8Þ

Using the principal branch of the complex Logarithm, ct/ω

is defined as

ct/ω ≔ exp t
ω
Log cð Þ

� �
= c∧ tð Þ, ð9Þ

and we will use the notation jcj∧ðtÞ≔ jc∧ðtÞj = jcjt/ω.

Now, we recall some properties of almost periodic and
ðω, cÞ-pseudo-almost periodic functions.
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Definition 3. A function f ∈ Cðℝ,XÞ is called (Bohr) almost
periodic if for each ε > 0, there exists l > 0, such that for all
α ∈ℝ, there exists τ ∈ ½α, α + l� with

sup
t∈ℝ

f t + τð Þ − f tð Þk k < ε: ð10Þ

The vector space consisting of all (Bohr) almost periodic
functions is denoted by APðXÞ.

It is well known that a continuous function f : ℝ⟶X

is almost periodic if and only if the set

f τ : τ ∈ℝf g ð11Þ

is relatively compact in BCðℝ,XÞ, where the function f τ
is defined by

f τ tð Þ = f t + τð Þ, t ∈ℝ: ð12Þ

Such number τ in (10) is called ε-translation number of
f ðtÞ, and we denote by T εð f Þ the set of all ε-translation
numbers of f . This set has the following property:

Given any f ∈APðXÞ,

(1) If τ ∈T εð f Þ, then −τ ∈T εð f Þ.
This concept has been extended by Khalladi et al. [17] as

follows:

Definition 4. (see [17]). A function f ∈ Cðℝ,XÞ is called ðω
, cÞ-almost periodic if and only if the function

f ω,cð Þ tð Þ≔ c−t/ω f tð Þ, t ∈ℝ ð13Þ

belongs to APðXÞ.
The vector space consisting of all ðω, cÞ-almost periodic

functions is denoted by APω,cðXÞ.

Unless specified otherwise, in the remainder of the
paper, we will always assume that c ∈ℂ \ f0g and ω ∈ℝ⋆

+
∩T εð f Þ. Furthermore, the principal branches are always
used for taking powers of complex numbers.

In the following, we will keep the notation: f ðω,cÞðtÞ≔
c−t/wf ðtÞ.

Remark 5. When c = 1, APω,cðXÞ = APðXÞ.

Remark 6. One can note that in our paper, contrary to the
paper [17], ω is not only positive but it belongs also to the
set of all ε-translation number of f . This condition yields
APω,1ðXÞ≔APωðXÞ = APðXÞ.

In order to conserve the periodic structure of ðω, cÞ
-periodic type functions, we need to use an ðω, cÞ-norm
which can be defined as

fk k ω,cð Þ ≔ sup
t∈ℝ

c∧ −tð Þf tð Þ�� ��: ð14Þ

ðω, cÞ-norms were introduced in the literature by Alva-
rez et al. taking the supremum norm not on the whole ℝ
but on the principal c-period interval ½0, ω� of the ðω, cÞ
-periodic considered function in order to handle the ðω, cÞ
-periodicity properties of f (see in [2, 3, 16] for more
details). We have the following completeness result.

Remark 7. We say that f is c-bounded when k f kðω,cÞ <∞.

Proposition 8. (see [14]). ðAPω,cðXÞ, k·kðω,cÞÞ is a Banach
space.

Proposition 9. (see [18]). APω,cðXÞ is translation invariant
and closed under the multiplication with complex scalars.

Now, we recall the concept of μ-pseudo-almost periodic
functions introduced by Blot et al. [4].

We denote byB the Lebesgue σ-field of ℝ and byM the
set of all positive measures μ on B satisfying μðℝÞ = +∞
and μð½a, b�Þ < +∞, for all a, b ∈ℝða ≤ bÞ:

Definition 10. (see [4]). Let μ ∈M. A function f ∈ BCðℝ,XÞ
is said to be μ-ergodic if

lim
r⟶∞

1
μ −r, r½ �ð Þ

ð
−r,r½ �

f tð Þk kdμ tð Þ = 0: ð15Þ

We denote the space of all such functions by Eðℝ,X, μÞ.

Definition 11. (see [4]). Let μ ∈M. A function f ∈ Cðℝ,XÞ is
said to be μ-pseudo-almost periodic if f is written in the
form

f = g + φ, ð16Þ

where g ∈APðXÞ and φ ∈Eðℝ,X, μÞ.
We denote the space of all such functions by PAPðℝ,

X, μÞ.

Proposition 12. (see [4]). Let μ ∈M. Then, ðEðℝ,X, μÞ,
k·k∞Þ is a Banach space.

In the last section of this work, the following result will
be required.

Lemma 13. If f , g ∈ PAPðℝ,ℂ, μÞ, then fg ∈ PAPðℝ,ℂ, μÞ.

Proof. Since f , g ∈ PAPðℝ,ℂ, μÞ, then they have following
decompositions f = f1 + f2 and g = g1 + g2 where f1, g1 ∈
APðℂÞ and f2, g2 ∈Eðℝ,ℂ, μÞ. Then, we have

f g = f1g1 + f1g2 + g1 f2 + f2g2: ð17Þ

First, we show that the product f1g1 ∈APðℂÞ. If we take
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f1 = g1, we have

f1ð Þ2 t + τð Þ − f1ð Þ2 tð Þ�� �� =k k f1ð Þ t + τð Þ
+ f1ð Þ tð Þ ×k k f1ð Þ t + τð Þ − f1ð Þ tð Þk:

ð18Þ

It can be easily seen that since f1 is bounded, then there
exists M ∈ℝ+ such that

f1k k ≤M: ð19Þ

Thus, it comes the following

f1ð Þ2 t + τð Þ − f1ð Þ2 tð Þ�� �� ≤ 2Mε ≤ ε′: ð20Þ

Then, ð f1Þ2 ∈APðℂÞ. Now, one can note that f1g1 = 1/
4ðð f1 + g1Þ2 − ð f1 − g1Þ2Þ. Since ð f1 + g1Þ2 ∈APðℂÞ and
ð f1 − g1Þ2 ∈APðℂÞ, then f1g1 ∈APðℂÞ.

Now, for ð f1g2 + g1 f2 + f2g2Þ one has that

1
μ −r, r½ �ð Þ

ðr
−r

f1ð Þ g2ð Þ + g1ð Þ f2ð Þ + f2ð Þ g2ð Þð Þ tð Þj jð Þdμ tð Þ

≤
1

μ −r, r½ �ð Þ
ðr
−r

f1k k∞ g2ð Þ tð Þj j + g1k k∞ f2ð Þ tð Þj j�
+ f2k k∞ g2ð Þ tð Þj j�dμ tð Þ:

ð21Þ

And consequently, since f2, g2 ∈Eðℝ,ℂ, μÞ, we have

lim
r⟶+∞

1
μ −r, r½ �ð Þ

ðr
−r

f1ð Þ g2ð Þ + g1ð Þ f2ð Þ + f2ð Þ g2ð Þð Þ tð Þj jð Þdμ tð Þ = 0:

ð22Þ

The proof is complete.

We end this section recalling the following lemma due to
Schwartz [19].

Lemma 14. IfΨ ∈ CðX, Y Þ, then for each compact setK inX

and all ε > 0, there exists δ > 0 such that for any x1, x2 ∈X,
one has

x1 ∈K and x1 − x2k k ≤ δ⇒ Ψ x1ð Þ −Ψ x2ð Þk k ≤ ε: ð23Þ

3. Measure ðω, cÞ-Pseudo-Almost Periodic
Functions

In this section, we introduce the new concepts of μ-ðω, cÞ
-ergodic functions and the μ-ðω, cÞ-pseudo-almost periodic
functions. The notion of μ-ðω, cÞ-pseudo-almost periodic
functions is a generalization of μ-pseudo-almost periodic
functions introduced by Blot et al. [4] which now becomes
the particular case c = 1 of our work. It is also a generaliza-
tion of the concept of weighted pseudo-almost periodicity
given by Diagana [6, 13] and consequently, this work gener-
alizes that of Zhang [11, 12, 15] on the classical pseudo-
almost periodicity.

Here, we introduce the space BCðℝ,X, cÞ
ðresp:,BCðℝ × Y ,X, cÞÞ, where BCðℝ,X, cÞ (resp., BCðℝ ×
Y ,X, cÞ) denotes the Banach space consisting of all c
-bounded continuous functions from ℝ to X (resp., from
ℝ × Y to X) equipped with the ðω, cÞ-norm k·kðω,cÞ defined
in Section 2.

Remark 15. One can note that in the case c = 1,

BC ℝ,X, cð Þ, ·k k ω,cð Þ
� �

= BC ℝ,Xð Þ, ·k k∞
� �

,

BC ℝ × Y ,X, cð Þ, ·k k ω,cð Þ
� �

= BC ℝ × Y ,Xð Þ, ·k k∞
� �

:

ð24Þ

Moreover, we have the following result.

Theorem 16. Let c, c′ ∈ℂ \ f0g and f ∈ BCðℝ,X, cÞ. Then,
f ∈ BCðℝ,X, c′Þ is and only if jcj = jc′j.

Remark 17. It can be easily seen that when c ≠ 1, the space
BCðℝ,X, cÞ does not contain the space of constant
functions.

We begin this part with the following helpful convolu-
tion theorem for c-bounded functions.

Let LðXÞ be the space of bounded linear maps from the
complex Banach space X into itself. We denote L1ðℝ,LðX
ÞÞ the Lebesgue space with respect to the Lebesgue measure
on ℝ.

Remark 18. One can note that if h ∈ L1ðℝ,LðXÞÞ, then ϕ

ð·Þ≔ c∧ð·Þhð·Þ∈L1ðℝ,LðXÞÞ but eϕ≔ ðc∧ð−·Þϕð·ÞÞ ∈ L1ðℝ,
LðXÞÞ.

Theorem 19. Let f ∈ BCðℝ,X, cÞ and eϕ≔ ðc∧ð−·Þϕð·ÞÞ ∈ L1ð
ℝ,LðXÞÞ, and then the convolution product of f åϕ defined
by

f⋆ϕð Þ tð Þ =
ð+∞
−∞

ϕ sð Þf t − sð Þds, for t ∈ℝ ð25Þ

is c-bounded.

Proof. Let f ∈ BCðℝ,X, cÞ. In order to state that ð f⋆ϕÞ ∈
BCðℝ,X, cÞ, we consider the function ρn : ℝ⟶X

ðn ∈N , n ≥ 1Þ defined by

ρn tð Þ =
ðn
−n
ϕ sð Þf t − sð Þds: ð26Þ

Observing that

c∧ −tð Þρn tð Þ =
ðn
−n
c∧ −sð Þϕ sð Þc∧ −t + sð Þf t − sð Þds: ð27Þ

it is clear that ρn is c-bounded on ℝ. We deduce that

4 Abstract and Applied Analysis



ρnðtÞ is continuous by using the uniform continuity of f on
all compact subsets of ℝ. Consequently, ρnðtÞ ∈ BCðℝ,X, cÞ,
which means that c∧ð−tÞρnðtÞ ∈ BCðℝ,XÞ, and from the fol-
lowing inequality:

c∧ −tð Þ f⋆ϕð Þ tð Þ − ρn tð Þð Þ�� ��
≤ fk k ω,cð Þ

ð−n
−∞

c∧ −sð Þϕ sð Þ�� ��ds+ð+∞
n

c∧ −sð Þϕ sð Þ�� ��ds� �
:

ð28Þ

We deduce that limn⟶+∞c∧ð−tÞρnðtÞ = c∧ð−tÞð f⋆ϕÞðtÞ
uniformly on ℝ. Therefore, f⋆ϕ ∈ BCðℝ,X, cÞ.
3.1. On μ-ðω, cÞ-Ergodicity. First, we introduce the new con-
cept of μ-ðω, cÞ-ergodic functions.

Definition 20. Let μ ∈M. A function f ∈ BCðℝ,X, cÞ is said
to be μ-ðω, cÞ-ergodic if

lim
r⟶∞

1
μ −r, r½ �ð Þ

ð
−r,r½ �

f ω,cð Þ tð Þ
��� ���dμ tð Þ = 0: ð29Þ

We denote the space of all such functions by Eðω,cÞ
ðℝ,X, μÞ.

We establish a completeness result for μ-ðω, cÞ-ergodic
functions.

Proposition 21. Let μ ∈M. Then, ðEðω,cÞðℝ,X, μÞ, k·kðω,cÞÞ
is a Banach space.

Proof. It is clear that Eðω,cÞðℝ,X, μÞ is a vector subspace of
BCðℝ,X, cÞ. We show that Eðω,cÞðℝ,X, μÞ is closed in
BCðℝ,X, cÞ. Let ð f nÞ ⊂Eðω,cÞðℝ,X, μÞ be a Cauchy
sequence converging to f uniformly in ℝ. From μðℝÞ =
+∞, it follows that μð½−r, r�Þ > 0 for r sufficiently large.
We have that

1
μ −r, r½ �ð Þ

ð
−r,r½ �

f ω,cð Þ tð Þ
��� ���dμ tð Þ ≤ f − f nk k ω,cð Þ

+ 1
μ −r, r½ �ð Þ

ð
−r,r½ �

f nð Þ ω,cð Þ tð Þ
��� ���dμ tð Þ:

ð30Þ

Then,

lim sup
r⟶∞

1
μ −r, r½ �ð Þ

ð
−r,r½ �

f ω,cð Þ tð Þ
��� ���dμ tð Þ

≤ f − f nk k ω,cð Þ, for all n ∈ℕ:

ð31Þ

Since limn⟶+∞k f − f nkðω,cÞ = 0, we deduce that

lim
r⟶∞

1
μ −r, r½ �ð Þ

ð
−r,r½ �

f ω,cð Þ tð Þ
��� ���dμ tð Þ = 0: ð32Þ

Now, we characterize the space of μ-ðω, cÞ-ergodic
functions with the following theorem.

Theorem 22. Let μ ∈M and I be an interval such that μðIÞ
<∞.

Let f ∈ BCðℝ,X, cÞ, and then following assertions are
equivalent:

(1) f ∈Eðω,cÞðℝ,X, μÞ,
(2) limr⟶∞1/μð½−r, r� \ IÞÐ ½−r,r�\Ik f ðω,cÞðtÞkdμðtÞ = 0,

(3) For any ε > 0, μðft ∈ ½−r, r� \ I : k f ðω,cÞðtÞk > εgÞ/μð½
−r, r� \ IÞ = 0.

Proof. First, note that since f ∈ BCðℝ,X, cÞ, then Λ≔
Ð
Ik

f ðω,cÞkdμðtÞ <∞. Setting I r = ½−r, r� for any r > 0 and tak-
ing r such that I ⊂I r and μðI r \ IÞ > 0, it comes that

1
μ I r \ Ið Þ

ð
I r\I

f ω,cð Þ tð Þ
��� ���dμ tð Þ

= μ I rð Þ
μ I rð Þ − μ Ið Þ

1
μ I rð Þ

ð
I r

f ω,cð Þ tð Þ
��� ���dμ tð Þ − Λ

μ I rð Þ

 !
:

ð33Þ

Since μðℝÞ =∞, we deduce that assertions 3:6 and 3:6
are equivalent.

Now, we set the following:

Γε
r ≔ t ∈I r \ I : f ω,cð Þ tð Þ

��� ��� > ε
n o

andΛε
r

≔ t ∈I r \ I : f ω,cð Þ tð Þ
��� ��� ≤ ε

n o
:

ð34Þ

If 3 holds, from the following equality

ð
I r

f ω,cð Þ tð Þ
��� ���dμ tð Þ =

ð
Γε
r

f ω,cð Þ tð Þ
��� ���dμ tð Þ +

ð
Λε

r

f ω,cð Þ tð Þ
��� ���dμ tð Þ,

ð35Þ

we deduce for r large enough that

1
μ I r \ Ið Þ

ð
I r\I

f ω,cð Þ tð Þ
��� ���dμ tð Þ ≤ fk k ω,cð Þ

μ Γε
rð Þ

μ I r \ Ið Þ + ε:

ð36Þ

Then, from previous inequality, we have that for all ε > 0,

lim
r⟶∞

1
μ I r \ Ið Þ

ð
I r\I

f ω,cð Þ tð Þ
��� ���dμ tð Þ ≤ ε, ð37Þ

and consequently, assertion 2 holds.
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The last implication is deduced using the following
inequality

1
μ I r \ Ið Þ

ð
I r\I

f ω,cð Þ tð Þ
��� ���dμ tð Þ

≥
1

μ I r \ Ið Þ
ð
Γε
r

f ω,cð Þ tð Þ
��� ���dμ tð Þ ≥ ε

μ Γε
rð Þ

μ I r \ Ið Þ :
ð38Þ

Assume that assumption 2 holds, we obtain assumption
3 when making r⟶ +∞.

The proof is complete.

Now, we intend to prove that Eðω,cÞðℝ,X, μÞ is transla-
tion invariant.

For μ ∈M and τ ∈ℝ, we denote μτ the positive measure
on ðℝ,BÞ defined by

μτ Að Þ = μ a + τ : a ∈ Af gð Þ, forA ∈B: ð39Þ

We need to formulate the following hypothesis for μ ∈
M (see [4] for more details), and we also recall two impor-
tant lemmas.

(H1). For all ∈ℝ, there exists β > 0 and a bounded inter-
val I such that

μ a + τ : a ∈ Af gð Þ ≤ βμ Að Þ, whenA ∈B satisfiesA ∩ I =∅:

ð40Þ

Lemma 23. (see [4]). Let μ ∈MB. Then, the measures μ and
μτ are equivalent for all τ ∈ℝ:

Lemma 24. (see [4]). ðH1Þ implies that for all α > 0,

lim sup
r⟶+∞

μ −r − α, r + α½ �ð Þ
μ −r, r½ �ð Þ

� �
< +∞: ð41Þ

In the following, we denote byMB the collection of mea-
sures in M satisfying ðH1Þ.

We can prove the following result.

Theorem 25. Let μ ∈MB. Then, Eðω,cÞðℝ,X, μÞ is translation
invariant.

Proof. Let f ∈Eðω,cÞðℝ,X, μÞ and τ ∈ℝ. We recall that
according to relation (39)

μτ Að Þ≔ μ a + τ : a ∈ Af gð Þ, forA ∈B: ð42Þ

We recall that according to Lemma 23 it follows that μ
and μτ are equivalent.

It comes that

1
μ −r, r½ �ð Þ

ð
−r,r½ �

f ω,cð Þ t + τð Þ
��� ���dμ tð Þ = μ −r − τj j, r + τj j½ �ð Þ

μ −r, r½ �ð Þ
· 1
μ −r − τj j, r + τj j½ �ð Þ

ð
−r,r½ �

f ω,cð Þ t + τð Þ
��� ���dμ tð Þ

= μ −r − τj j, r + τj j½ �ð Þ
μ −r, r½ �ð Þ

· 1
μ −r − τj j, r + τj j½ �ð Þ

ð
−r− τj j,r+ τj j½ �

f ω,cð Þ tð Þ
��� ���dμ−τ tð Þ

≤
μ −r − τj j, r + τj j½ �ð Þ

μ −r, r½ �ð Þ
· β

μ −r − τj j, r + τj j½ �ð Þ
ð

−r− τj j,r+ τj j½ �
f ω,cð Þ tð Þ
��� ���dμ tð Þ,

ð43Þ

where β > 0 is a constant insuring the equivalence
between μ and μτ.

Since f ∈Eðω,cÞðℝ,X, μÞ, the proof is complete.

We end this section by giving a convolution theorem for
μ-ðω, cÞ-ergodic functions.

Theorem 26. Let μ ∈MB. If f ∈Eðω,cÞðℝ,X, μÞ and eϕð·Þ≔ ð
c∧ð−·Þϕð·ÞÞ ∈ L1ðℝ,LðXÞÞ, then the convolution product of
f åϕ defined by

f⋆ϕð Þ tð Þ =
ð+∞
−∞

ϕ sð Þf t − sð Þds, for t ∈ℝ ð44Þ

is μ-ðω, cÞ-ergodic.

Proof. Let f ∈Eðω,cÞðℝ,X, μÞ. By Theorem 19, ð f⋆ϕÞ ∈ BCð
ℝ,X, cÞ. Now, we set I r = ½−r, r� for any r ≥ 0.

One can note that there exists γ ≥ 0 such that μðI rÞ > 0
for all r ≥ γ. In the other hand, one has

1
μ I rð Þ

ð
I r

f⋆ϕð Þ ω,cð Þ tð Þ
��� ���dμ tð Þ

≤
1

μ I rð Þ
ð
I r

ð+∞
−∞

eϕ sð Þ
��� ��� c∧ −t + sð Þf t − sð Þ�� ��dsdμ tð Þ,

ð45Þ

where eϕ≔ ϕðω,cÞ ∈ L1ðℝ,LðXÞÞ.
Applying Fubini’s Theorem, it comes that

1
μ I rð Þ

ð
I r

f⋆ϕð Þ ω,cð Þ tð Þ
��� ���dμ tð Þ

≤
ð+∞
−∞

eϕ sð Þ
��� ���
μ I rð Þ

ð
I r

f ω,cð Þ t − sð Þ
��� ���dμ tð Þds:

ð46Þ
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Invoking Theorem 25, we have that limr⟶+∞1/μðI rÞÐ
I r
k f ðω,cÞðt − sÞkdμðtÞ = 0, for all s ∈ℝ:

Since

0 ≤
eϕ sð Þ
��� ���
μ I rð Þ

ð
I r

f ω,cð Þ t − sð Þ
��� ���dμ tð Þ ≤ eϕ sð Þ

��� ��� fk k ω,cð Þ ð47Þ

by the Lebesgue Dominated Convergence Theorem, we
conclude that

lim
r⟶+∞

1
μ I rð Þ

ð
I r

f⋆ϕð Þ ω,cð Þ tð Þ
��� ���dμ tð Þ = 0: ð48Þ

Now, we are ready to define measure ðω, cÞ-pseudo-
almost periodic functions.

3.2. Measure ðω, cÞ-Pseudo-Almost Periodic Function. In this
subsection, we introduce the new class of measure ðω, cÞ
-pseudo-almost periodic function, and we study some prop-
erties of such functions. Let us define this new notion.

Definition 27. Let μ ∈M. A function f ∈ Cðℝ,XÞ is said to be
measure ðω, cÞ-pseudo-almost periodic (or μ-ðω, cÞ-pseudo-
almost periodic) if f can be written in the form

f = g + φ, ð49Þ

where g ∈APω,cðXÞ and φ ∈Eðω,cÞðℝ,X, μÞ.
We denote the space of all such functions by PAPðω,cÞð

ℝ,X, μÞ.
We will say that g is the ðω, cÞ-almost periodic part of f

and φ the μ-ðω, cÞ-pseudoergodic perturbation of f .

We have the following space inclusions:

P ω,cð Þ ℝ,Xð Þ ⊂APω,c Xð Þ ⊂ PAP ω,cð Þ ℝ,X, μð Þ ⊂ BC ℝ,X, cð Þ:
ð50Þ

Remark 28. Observe that APω,cðXÞ is a proper subspace of
PAPðω,cÞðℝ,X, μÞ since the function

ϕ tð Þ = 0:2ð Þt sin2 πtð Þ + sin2
ffiffiffi
5

p
t

� �
+ e−t

t cos2 tð Þ
� �

∈ PAP 1,0:2ð Þ ℝ,X, μð Þ,
ð51Þ

but ϕ ∉APð1,0:2ÞðXÞ since ½t↦ sin2ðπtÞ + sin2ð ffiffiffi
5

p
tÞ +

e−t
t cos2ðtÞ� ∉APðXÞ:

The following theorem gives a characterization of the
measure ðω, cÞ-pseudo-almost periodic functions.

Theorem 29. Let f ∈ Cðℝ,XÞ. Then, f ∈ PAPðω,cÞðℝ,X, μÞ if
and only if

f tð Þ ≡ c∧ tð Þu tð Þ,with c∧ tð Þ≔ ct/ω and u ∈ PAP ℝ,X, μð Þ:
ð52Þ

Proof. Obviously, if f ðtÞ = c∧ðtÞuðtÞ with u ∈ PAPðℝ,X, μÞ
then f ∈ PAPðω,cÞðℝ,X, μÞ.

Conversely, let f ∈ PAPðω,cÞðℝ,X, μÞ. Then, ∃ðg, φÞ ∈A
Pω,cðXÞ ×Eðω,cÞðℝ,X, μÞ such that f = g + φ. Therefore, tak-
ing uðtÞ≔ c∧ð−tÞf ðtÞ, it comes that u ∈ PAPðℝ,X, μÞ.

In view of Definition 27, for any f ∈ PAPðω,cÞðℝ,X, μÞ,
we say that c∧ðtÞuðtÞ is the c-factorization of f .

We give the first basic result.

Proposition 30. Let μ ∈M. Then, PAPðω,cÞðℝ,X, μÞ is a vec-
tor space.

Proof. Obvious.

Now, we intend to show that PAPðω,cÞðℝ,X, μÞ = APω,cð
XÞ ⊕Eðω,cÞðℝ,X, μÞ. In order to prove Proposition 30, we
will need following lemma.

Lemma 31. Assume f ∈ APω,cðXÞ, write

Bε ≔ τ ∈ℝ : f ω,cð Þ t0 + τð Þ − f ω,cð Þ t0ð Þ
��� ��� < ε

n o
, ð53Þ

where ε > 0 and t0 ∈ℝ is fixed. Then, there exists s1, s2,
⋯, sm ∈ℝ such that

[m
i=1

si + Bεð Þ =ℝ: ð54Þ

We have following result.

Proposition 32. Let μ ∈MB and f ∈ PAPðω,cÞðℝ,X, μÞ be
such that

f = g + φ, ð55Þ

where g is its ðω, cÞ-almost periodic component, and then
we have

g ℝð Þ ⊂ �f ℝð Þ: ð56Þ

Therefore, k f kðω,cÞ ≥ kgkðω,cÞ ≥ inf t∈ℝjgðω,cÞðtÞj ≥ inf t∈ℝj
f ðω,cÞðtÞj:

Proof. Suppose that (56) is not true, then there exists t0 ∈ℝ,
ε > 0 such that

g ω,cð Þ t0ð Þ − f ω,cð Þ tð Þ
��� ��� ≥ 2ε, t ∈ℝ: ð57Þ
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Let s1, s2,⋯, sm be as in Lemma 31 and write

τi = si − t0, i = 1, 2,⋯,m, η = max
1≤i≤m

τij j: ð58Þ

For r ∈ℝ with jrj > η, we let

B ið Þ
ε,r ≔ −r + η − τi, r − η − τi½ � ∩ t0 + Bεð Þ, i = 1, 2,⋯,m,

ð59Þ

where Bε is as in Lemma 31. It is clear that

[m
i=1

τi + B ið Þ
ε,r

� �
= −r + η, r − η½ �: ð60Þ

Thus, we obtain

2 r − ηð Þ = μ −r + η, r − η½ �ð Þ ≤ 〠
m

i=1
μ τi + B ið Þ

ε,r

� �
= 〠

m

i=1
μ B ið Þ

ε,r

� �
≤m · max

1≤i≤m
μ B ið Þ

ε,r

� �n o
≤m · μ −r, r½ � ∩ t0 + Bεð Þð Þ,

ð61Þ

since for each i = 1, 2,⋯,m,

B ið Þ
ε,r ⊂ −r, r½ � ∩ t0 + Bεð Þð Þ: ð62Þ

Using inequality (57), we have

ϕ ω,cð Þ tð Þ
��� ��� = f ω,cð Þ tð Þ − g ω,cð Þ tð Þ

��� ��� ≥ g ω,cð Þ t0ð Þ − f ω,cð Þ tð Þ
��� ���

− g ω,cð Þ tð Þ − g ω,cð Þ t0ð Þ
��� ��� > ε,

ð63Þ

any t ∈ t0 + Bε.
This and inequality (61) together give

1
μ −r, r½ �ð Þ

ð
−r,r½ �

ϕ ω,cð Þ tð Þ
��� ���dμ tð Þ ≥ r − η

mr
ε⟶

ε

m
, as r⟶∞:

ð64Þ

This is a contradiction since h ∈Eðω,cÞðℝ,X, μÞ and
establishes our claim (56).

We can now establish the uniqueness of the decomposi-
tion in Definition 27.

Theorem 33. Let μ ∈MB. Then, the decomposition (49) is
unique.

Proof. Let f ∈ PAPðω,cÞðℝ,X, μÞ.
Assume that f admits both decomposition f = g1 + φ1

and f = g2 + φ2, then 0 = ðg1 − g2Þ + ðφ1 − φ2Þ:
Since g1 − g2 ∈APω,cðXÞ and φ1 − φ2 ∈ PAPðω,cÞðℝ,X, μÞ

, in view of Proposition 32, we deduce that g1 − g2 = 0 and

consequently, φ1 = φ2 which proves the uniqueness of the
decomposition.

From above, it is clear that

APω,c Xð Þ ∩E ω,cð Þ ℝ,X, μð Þ = 0f g: ð65Þ

Furthermore, we have following results.

Theorem 34. The space PAPðω,cÞðℝ,X, μÞ is a translation
invariant.

Proof. This is a direct consequence of Proposition 9, Theo-
rem 25, and Theorem 33.

Theorem 35. The space PAPðω,cÞðℝ,X, μÞ is a translation
invariant C∗-subalgebra of BCðℝ,X, cÞ. Furthermore,

PAP ω,cð Þ ℝ,X, μð Þ
E ω,cð Þ ℝ,X, μð Þ ≅ APω,c Xð Þ: ð66Þ

Proof. We show that PAPðω,cÞðℝ,X, μÞ is a closed subspace
of BCðℝ,X, cÞ.

Let ð f nÞ ⊂ PAPðω,cÞðℝ,X, μÞ be Cauchy. By proposition
32, the sequence ðgnÞ ⊂APω,cðXÞ is Cauchy too and so is ð
φnÞ ⊂Eðω,cÞðℝ,X, μÞ. Since APω,cðXÞ and Eðω,cÞðℝ,X, μÞ
are closed in BCðℝ,X, cÞ, there are g ∈APω,cðXÞ and φ ∈
Eðω,cÞðℝ,X, μÞ such that kðgnÞðω,cÞ − gðω,cÞ k⟶ 0 and k
ðφnÞðω,cÞ − φðω,cÞk⟶ 0 as n⟶∞: Set f = g + φ, then f ∈
PAPðω,cÞðℝ,X, μÞ and kð f nÞðω,cÞ − f ðω,cÞk⟶ 0 as n⟶ 0.

The rest of the proof is clear.

Now, we show the completeness of PAPðω,cÞðℝ,X, μÞ
with the following result.

Theorem 36. Let μ ∈MB. Then, ðPAPðω,cÞðℝ,X, μÞ, k·kðω,cÞÞ
is a Banach space.

Proof. Let ð f nÞ be a Cauchy sequence in PAPðω,cÞðℝ,X, μÞ.
Then, given ε > 0∃n0 ∈ℕ such that for all p, q ≥ n0,

f p
� �

tð Þ − f q
� �

tð Þ
��� ���

ω,cð Þ
< ε: ð67Þ

Invoking Theorem 29, ∃ðup, uqÞ ∈ ðPAPðℝ,X, μÞÞ2 such
that f pðtÞ = c∧ðtÞupðtÞ and f qðtÞ = c∧ðtÞuqðtÞ for all t ∈ℝ
and since p, q ≥ n0, we have

up tð Þ − uq tð Þ�� �� ≤ f p tð Þ − f q tð Þ
��� ���

ω,cð Þ
< ε: ð68Þ

Consequently, let ðunÞ be a Cauchy sequence in PAPðℝ,
X, μÞ. Using the completeness of PAPðℝ,X, μÞ, we know that
∃u ∈ PAPðℝ,X, μÞ such that kun − uk⟶ 0 as n⟶∞.
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We take f ðtÞ≔ c∧ðtÞuðtÞ. We claim that kun − uk⟶ 0
as n⟶∞. And it can be easily seen that

f n − fk k ω,cð Þ = sup
t∈ℝ

un − uk k⟶ 0 n⟶∞ð Þ, ð69Þ

which completes the proof.

We end this subsection giving a general convolution the-
orem for our new class of functions.

Theorem 37. Let μ ∈MB. If f ∈ PAPðω,cÞðℝ,X, μÞ and eϕ≔
ðc∧ð−·Þϕð·ÞÞ ∈ L1ðℝ,LðXÞÞ, then the convolution product of
f⋆ϕ defined by

f⋆ϕð Þ tð Þ =
ð+∞
−∞

ϕ sð Þf t − sð Þds, for t ∈ℝ ð70Þ

is μ-ðω, cÞ-pseudo-almost periodic.

Proof. Let f ∈ PAPðω,cÞðℝ,X, μÞ and eϕ≔ ðc∧ð−·Þϕð·ÞÞ ∈ L1ðℝ
,LðXÞÞ.

First, note that using Theorem 19, ð f⋆ϕÞ ∈ BCðℝ,X, cÞ.
Furthermore, according to Theorem 29, there exists a u ∈
PAPðℝ,X, μÞ such that f ðtÞ≔ c∧ðtÞuðtÞ, for any t ∈ℝ. It
comes that

f⋆ϕð Þ tð Þ =
ð+∞
−∞

ϕ sð Þf t − sð Þds = c∧ tð Þ
ð+∞
−∞

c∧ −sð Þϕ sð Þc∧ −t + sð Þf t − sð Þds

= c∧ tð Þ
ð+∞
−∞

eϕ sð Þu t − sð Þds:

ð71Þ

Invoking successively [[4], Theorem 22, pp. 511], and
our Theorem 29, we have that (71) is μ-ðω, cÞ-pseudo-
almost periodic. The proof is complete.

Example 38. The unique solution of the heat equation

ut x, tð Þ = uxx x, tð Þ, x ∈ℝ, t ≥ 0, ð72Þ

with the initial condition uðx, 0Þ = f ðxÞ is given by

u x, tð Þ = 1
2
ffiffiffiffiffi
πt

p
ð+∞
−∞

e− x−sð Þ2/4t f sð Þds, x ∈ℝ, t ≥ 0: ð73Þ

If c∧ð−·Þe−ð·Þ2/4t0 ∈ L1ðℝÞ and f ∈ PAPðω,cÞðℝ,ℝ, μÞ, then
by Theorem 26, the solution

x↦ u x, t0ð Þ, x ∈ℝ½ � ∈ PAP ω,cð Þ ℝ,ℝ, μð Þ: ð74Þ

4. Jointly Continuous Case

This section is devoted to the study of a composition result
well suited for the introduced ðω, cÞ-periodicity concept.
The main results of this section are Theorems 45 and 51.
But first, let us define some new notions.

First of all, reader should be aware that the already
known concept of compactness for subsets seems to be irrel-
evant when it comes to deal with ðω, cÞ-periodicity where c
≠ 1 since ðω, cÞ periodic type functions are not bounded
on ℝ (i.e., 1-bounded on ℝ) but c-bounded on ℝ.

With the following definition, we propose a new concept
of compactness for subset well suited for ðω, cÞ-periodic
calculus.

Definition 39. LetK be a nonempty set. We say thatK is an
ðω, cÞ-type compact subset of Y if and only if following
assumptions are satisfied:

(1) K is compact

(2) Every k ∈K admits following decomposition k≔ c∧

ð−·Þy ∈K where y ∈ Y

One can note that a compact subset of APðXÞ is in fact
an ðω, cÞ-type subset of APω,cðXÞ since if K is a compact
subset of APðXÞ, we have the following equality:

Σ≔ u tð Þ: t ∈ℝ, u ∈Kf g
= c∧ tð Þu tð Þ� �

ω,cð Þ : t ∈ℝ, c∧ tð Þu tð Þ� �
∈APω,c Xð Þ, u ∈K

n o
,

ð75Þ

for any c ∈ℂ − f0g.
4.1. On ðω, cÞ-Almost Periodic Functions Depending on a
Parameter. Throughout this section, we introduce a new
concept of ðω, cÞ-almost periodic function in the jointly con-
tinuous case. Then, we study some properties and establish
some results as the continuity of Nemytskii’s superposition
operator.

Definition 40 (see [20]). A function F ∈ Cðℝ × Y ,XÞ is called
(Yoshizawa) almost periodic in t ∈ℝ uniformly in y ∈ Y if
for each ε > 0 and any compact K ⊂ Y , and there exists L >
0, such that for all β ∈ℝ, there exists τ ∈ ½β, β + L� with

sup
t∈ℝ

sup
y∈K

F t + τ, yð Þ − F t, yð Þk k < ε, ð76Þ

for all t ∈ℝ and all y ∈ K .
The collection of such functions will be denoted by AP

ðY ,XÞ.

Such number τ in (76) is called ε-translation number of
Fðt, yÞ, and we denote by T εðF, KÞ the set of all ε-transla-
tion numbers of F for y ∈ K . This set has the following
properties:

For a fixed compact set K ,

(1) An ε-translation number is also an ε′-translation
number if ε′ > ε, and hence we have the inclusion
T εðF, KÞ ⊂T ε′ðF, KÞ

(2) If τ ∈T εðF, KÞ, then −τ ∈T εðF, KÞ
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(3) If ðτ1, τ2Þ ∈T ε1
ðF, KÞ ×T ε2

ðF, KÞ, then τ1 + τ2 ∈
T ε1+ε2ðF, KÞ

In what follows, we assume that ω ∈ℝ⋆
+ ∩T εðF, KÞ.

In [17], authors have introduced two concepts of ðω, cÞ
-almost periodic functions in the case of jointly continuous
functions, but in this paper, it uses a novel approach.

Definition 41. A function F ∈ Cðℝ × Y ,XÞ is called ðω, cÞ
-almost periodic in t ∈ℝ uniformly in y ∈ Y if for each ε >
0 and any ðω, cÞ-type compact subset K of Y , there exists
L > 0, such that for all β ∈ℝ, there exists τ ∈ ½β, β + L� with

sup
t∈ℝ

sup
y∈K

c∧ −t − τð ÞF t + τ, yð Þ − c∧ −tð ÞF t, yð Þ�� �� < ε,

⇔sup
t∈ℝ

sup
y∈K

F ω,cð Þ t + τ, yð Þ − F ω,cð Þ t, yð Þ
��� ��� < ε,

ð77Þ

for all t ∈ℝ and all y ∈ K , where Fðω,cÞðt, ·Þ≔ c−t/ωFðt, ·Þ.
The space of all such functions will be denoted by A

Pω,cðY ,XÞ.

In the following, we use the notation: Fðω,cÞðt, ·Þ≔ c−t/w

Fðt, ·Þ.

Remark 42. When c = 1, APω,cðY ,XÞ = APðY ,XÞ.

Proposition 43. ðAPω,cðY ,XÞ, k·kðω,cÞÞ is a Banach space.

We need to develop some tools in order to propose a
composition theorem for measure ðω, cÞ-pseudo-almost
periodic functions.

We give the following results.

Lemma 44. IfK is an ðω, cÞ-type compact subset of APω,cðY Þ
, then

Σ≔ u ω,cð Þ tð Þ: t ∈ℝ, u ∈ APω,c Yð Þ, u ω,cð Þ ∈K
n o

ð78Þ

is a relatively compact subset of Y .

Proof. Let ε > 0:
Since K is compact, it is also precompact; thus, there

exists fðu1Þðω,cÞ,⋯, ðumÞðω,cÞg a finite ðω, cÞ-type subset of
APω,cðY Þ (i.e., a finite subset of APðY Þ) such that

K ⊂
[

1≤i≤m
z ∈APω,c Yð Þ: z − uik k ω,cð Þ ≤

ε

2
n o

: ð79Þ

Since, ðuiÞðω,cÞðℝÞ is relatively compact in X for all i = 1
,⋯,m, then S1≤i≤mðuiÞðω,cÞðℝÞ is also relatively compact
and consequently, there exists a finite subset of ℝ

ft1,⋯, tkg such that

[
1≤i≤m

uið Þ ω,cð Þ ℝð Þ ⊂
[

1≤i≤m

[
1≤j≤k

y ∈ Y : y − uið Þ ω,cð Þ t j
� ���� ��� ≤ ε

2
n o

:

ð80Þ

If y ∈ Y , there exists z ∈K and t ∈ℝ such that y = zðtÞ,
and there exists i ∈ f1,⋯,mg such that kz − ðuiÞðω,cÞk ≤ ε/2
and consequently ky − ðuiÞðω,cÞðtÞk ≤ ε/2:

Now, using the previous inclusion, there exists p ∈ f1,
⋯,mg and j ∈ f1,⋯, kg such that

uið Þ ω,cð Þ tð Þ − up
� �

ω,cð Þ t j
� ���� ��� ≤ ε

2 : ð81Þ

It comes that

y − uið Þ ω,cð Þ t j
� ���� ��� ≤ y − uið Þ ω,cð Þ tð Þ

��� ���
+ uið Þ ω,cð Þ tð Þ − up

� �
ω,cð Þ t j
� ���� ��� ≤ 2ε

2 = ε:
ð82Þ

This proves that Σ ⊂
S

1≤i≤m
S

1≤j≤kfy ∈ Y : ky − ðuiÞðω,cÞð
t jÞk ≤ ε/2g or in other words, Σ is precompact, and since Y
is complete, we obtain that Σ is relatively compact.

Now, for a given function F ∈APω,cðY ,XÞ, we define
Nemytskii’s superposition operator N F : APω,cðY Þ⟶A
Pω,cðXÞ such that ½t↦ uðtÞ�↦N FðuÞ≔ ½t↦ Fðt, uðtÞÞ�:

The first main result of this section is the following
theorem.

Theorem 45. Let F ∈ APω,cðY ,XÞ. Then, the Nemytskii
superposition operator N F is continuous from APω,cðY Þ into
APω,cðXÞ.

Proof. Let K be an ðω, cÞ-type compact subset of APω,cðY Þ
let ~u ∈K and ε > 0:

We set Σ≔ fuðω,cÞðtÞ: t ∈ℝ, u ∈APω,cðY Þ, uðω,cÞ ∈Kg.
According to Lemma 44, the closure �Σ is compact.

Since F ∈APω,cðY ,XÞ, there exists l > 0 such that for α
∈ℝ, there exists −τ ∈ ½α, α + l� satisfying

F ω,cð Þ t + τ, yð Þ − F ω,cð Þ t, yð Þ
��� ��� ≤ ε

3 , for all y, tð Þ ∈ Σ ×ℝ:

ð83Þ

Since �Σ × ½0, l� is compact, then Fðω,cÞ is uniformly con-
tinuous on it and consequently, there exists δ > 0 such that,
for all t1, t2 ∈ ½0, l� and for all y1, y2 ∈ �Σ

y1 − y2k k ≤ δ, t1 − t2j j ≤ δð Þ⇒ F ω,cð Þ t1, y1ð Þ − F ω,cð Þ t2, y2ð Þ
��� ��� ≤ ε

3 :

ð84Þ

10 Abstract and Applied Analysis



And this implies that

y1 − y2k k ≤ δ⇒ F ω,cð Þ t, y1ð Þ − F ω,cð Þ t, y2ð Þ
��� ��� ≤ ε

3 , for all t ∈ 0, l½ �,
ð85Þ

if ~v ∈K satisfies k~v − ~uk∞ ≤ δ⇔
kc∧ðtÞ~vðtÞ − c∧ðtÞ~uðtÞkðω,cÞ ≤ δ.

We set uðtÞ≔ c∧ðtÞ~uðtÞ and vðtÞ≔ c∧ðtÞ~vðtÞ for all t ∈ℝ.
Then, we have u, v ∈APω,cðY Þ, and using (83) and (85),

we obtain, for all t ∈ℝ

F ω,cð Þ t, u tð Þð Þ − F ω,cð Þ t, v tð Þð Þ
��� ���

≤ F ω,cð Þ t, u tð Þð Þ − F ω,cð Þ t − τ, u tð Þð Þ
��� ���
+ F ω,cð Þ t − τ, u tð Þð Þ − F ω,cð Þ t − τ, v tð Þð Þ
��� ���

+ F ω,cð Þ t − τ, v tð Þð Þ − F ω,cð Þ t, v tð Þð Þ
��� ��� ≤ 3 ε3 = ε:

ð86Þ

And so, by taking the supremum on the t ∈ℝ, we obtain
kN FðuÞ −N FðvÞkðω,cÞ ≤ ε:

This proves that the restriction of J f toK is continuous
for all ðω, cÞ-type compact subset K of APω,cðY Þ. And since
ðAPω,cðY Þ, k·kðω,cÞÞ and ðAPω,cðXÞ, k·kðω,cÞÞ are Banach
Spaces, this proves the continuity of J F on APω,cðY Þ.

The following proposition is a generalization of Cieutat,
Fatajou, and N’Gu´er´ekata´s Theorem in [21] which
becomes the particular case c = 1 of our result.

Proposition 46. Let F : ℝ × Y ⟶X be a continuous func-
tion. Then, F ∈ APω,cðY ,XÞ if and only if the following condi-
tions hold:

(1) For all y ∈ Y , Fðω,cÞð·, yÞ ∈ APðXÞ
(2) Fðω,cÞ is uniformly continuous on each ðω, cÞ-type

compact set K in Y with respect to the second vari-
able, namely, for each ðω, cÞ-type compact set K in
Y , for all ε > 0, there exists δ > 0 such that for all y1
, y2 ∈K , one has

y1 − y2k k ≤ δ⇒ sup
t∈ℝ

F ω,cð Þ t, y1ð Þ − F ω,cð Þ t, y2ð Þ
��� ��� ≤ ε: ð87Þ

4.2. Measure ðω, cÞ-Pseudo-Almost Periodic Functions
Depending on a Parameter and Composition Principle. In
this section, we extend our new concept of measure ðω, cÞ
-pseudo-almost periodic functions to that of measure ðω, cÞ
-pseudo-almost periodic functions depending on a
parameter.

Here, we propose a concept of μ-ðω, cÞ-ergodicity for the
jointly continuous functions case.

Definition 47. Let μ ∈M. A function F ∈ BCðℝ × Y ,X, cÞ is
said to be μ-ðω, cÞ-ergodic in t uniformly with respect to y
∈ Y if the two following conditions are true:

(1) For all y ∈ Y , Fðω,cÞð·, yÞ ∈Eðℝ,X, μÞ
(2) Fðω,cÞ is uniformly continuous on each ðω, cÞ-type

compact set K in Y with respect to the second var-
iable, namely, for each ðω, cÞ-type compact set K
in Y , for all ε > 0, there exists δ > 0 such that for all
y1, y2 ∈K , one has

y1 − y2k k ≤ δ⇒ sup
t∈ℝ

F ω,cð Þ t, y1ð Þ − F ω,cð Þ t, y2ð Þ
��� ��� ≤ ε: ð88Þ

We denote the space of all such functions by Eω,c,3ðℝ
× Y ,X, μÞ.

Remark 48. When c = 1, we write Eðℝ × Y ,X, μÞ instead of
Eω,1,3ðℝ × Y ,X, μÞ.

Now, we are able to introduce the new concept of
measure ðω, cÞ-pseudo-almost periodic functions depending
on a parameter.

Definition 49. Let μ ∈M. A function F ∈ Cðℝ × Y ,XÞ is said
to be μ-ðω, cÞ-pseudo-almost periodic in t uniformly with
respect to y ∈ Y if F is written in the form

F =G +Φ, ð89Þ

where G ∈APω,cðY ,XÞ and Φ ∈Eω,c,3ðℝ × Y ,X, μÞ.

PAPω,cðℝ × Y ,X, μÞ denotes the set of such that
functions.

The following inclusion hold

APω,c Y ,Xð Þ ⊂ PAPω,c ℝ × Y ,X, μð Þ ⊂ BC ℝ × Y ,X, cð Þ:
ð90Þ

Remark 50. When c = 1, we write PAPðℝ × Y ,X, μÞ instead
of PAPω,1ðℝ × Y ,X, μÞ.

As in the previous section, we propose a characterization
result which holds for ðω, cÞ-almost periodic, μ-ðω, cÞ-ergo-
dic and μ-ðω, cÞ-pseudo-almost periodic functions in t uni-
formly with respect to y ∈ Y .

Theorem 51. Let F ∈ Cðℝ × Y ,XÞ.
Then, F ∈ PAPω,cðℝ × Y ,X, μÞ (resp., APω,cðY ,XÞ or

Eω,c,3ðℝ × Y ,X, μÞÞ if and only if

F t, yð Þ ≡ c∧ tð Þu t, yð Þ, ð91Þ

with c∧ðtÞ≔ ct/ω and u ∈ PAPðℝ × Y ,X, μÞ (resp., APðY
,XÞ or Eðℝ × Y ,X, μÞ).

Proof. The proof is similar to the one of Theorem 29.
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Using Proposition 46 and Definition 47, one can obtain
following.

Theorem 52. Let μ ∈M and F : ℝ × Y ⟶ be μ-ðω, cÞ
-ergodic in t uniformly with respect to y ∈ Y . Then,

(1) For all y ∈ Y , Fðω,cÞð·, yÞ ∈ PAPðℝ,X, μÞ
(2) Fðω,cÞ is uniformly continuous on each ðω, cÞ-type

compact set K in Y with respect to the second
variable

We are now in a position to give a composition theorem
for measure ðω, cÞ-pseudo-almost periodic functions. We
have the following theorem.

Theorem 53. Let μ ∈M, F ∈ PAPω,cðℝ × Y ,X, μÞ and y ∈
PAPðω,cÞðℝ, Y , μÞ. Assume that the following hypothesis
holds.

For all bounded subset Ω of Y , F is c-bounded on ℝ ×Ω
(i.e., Fðω,cÞ is bounded on ℝ ×Ω).

Then, ½t↦ Fðt, yðω,cÞðtÞÞ� ∈ PAPω,cðℝ × Y ,X, μÞ.

Proof. First note that the function ½t↦ Fðt, yðω,cÞðtÞÞ� is con-
tinuous and by Hypothesis (10), it is c-bounded. Since F ∈
PAPω,cðℝ × Y ,X, μÞ by Theorem 5, there exists

~F ∈ PAP ℝ × Y ,X, μð Þ such that F t, y tð Þð Þ
≔ c∧ tð Þ~F t, y tð Þð Þ,∀t ∈ℝ:

ð92Þ

Now since yðω,cÞ ∈ PAPðℝ, Y , μÞ, and using Theorem
4.10 in [4], we deduce that the function

t↦ ~F t, y ω,cð Þ tð Þ
� �h i

∈ PAP ℝ × Y ,X, μð Þ: ð93Þ

In conclusion, invoking again Theorem 51, we showed
that

t↦ F t, y ω,cð Þ tð Þ
� �h i

∈ PAPω,c ℝ × Y ,X, μð Þ: ð94Þ

The proof is complete.

The following theorem will be very useful in the sequel.

Corollary 54. Let μ ∈M, Ψ ∈ CðX, Y Þ, ω > 0, and c ∈ℂ − f
0g.

Assume that for all bounded subset B of X, Ψ is c
-bounded on B, then if x ∈ PAPðω,cÞðℝ,X, μÞ,

t↦Ψ x ω,cð Þ tð Þ
� �

≔ c∧ tð Þ~Ψ x ω,cð Þ tð Þ
� �h i

∈ PAP ω,cð Þ ℝ,X, μð Þ:
ð95Þ

Proof. This is direct consequence of Theorem 5 with Fðt,
xðω,cÞðtÞÞ =Ψðxðω,cÞðtÞÞ.

5. Application: Measure ðω, cÞ-Pseudo-Almost
Periodic Solutions to a Lasota-Wazewska
Model

First, Wazewska-Czyzewska and Lasota [22] proposed in
1976 the delay logistic equations with one constant concen-
trated delay

N ′ tð Þ = −μN tð Þ + pe−rN t−τð Þ, ð96Þ

in order to describe the survival of red blood cells in an
animal. Here, NðtÞ denotes the number of red blood cells
at time t, μ is the probability of death of a red blood cell, p
and r are positive constants related to the production of
red blood cells per unit time, and τ is the time required to
produce a red blood cell. Few years later, Gopalsamy and
Trofimchuk [23] obtained that the Lasota-Wazewska model
with one discrete delay

x′ tð Þ = −α tð Þx tð Þ + β tð Þe−νx t−τð Þ ð97Þ

has a globally attractive almost periodic solution under
some additional assumptions.

Recently, Cherif and Miraoui [24] investigate the exis-
tence, the uniqueness, the global attractivity, and the expo-
nential stability of the measure pseudo-almost periodic
solutions for the following Lasota-Wazewska model with
measure pseudo-almost periodic coefficients and mixed
delays

y′ tð Þ = −α tð Þy tð Þ + 〠
m

j=1
aj tð Þe−ω j tð Þ

Ð t

−∞
K j t−sð Þy sð Þds

+ 〠
n

i=1
bi tð Þe

−βi tð Þ〠
p

j=1
y t−τij
� �

, t ∈ℝ:

ð98Þ

The aim here is to study the existence and uniqueness of
a generalized Lasota-Wazewska model with μ-ðω, cÞ
-pseudo-almost periodic coefficients and with mixed delay
which is in the form:

y′ tð Þ = −α tð Þy tð Þ + 〠
m

j=1
aj tð Þe−c

∧ −tð Þω j tð Þ
Ð t

−∞
K j t−sð Þy sð Þds

+ 〠
n

i=1
bi tð Þe

−c∧ −tð Þβi tð Þ〠
p

j=1
y t−τij
� �

, t ∈ℝ,

ð99Þ

where yðtÞ stands for the number of red blood cells at
time t, and αðtÞ is the average part of red blood cells pop-
ulation being destroyed in time t. For all 1 ≤ j ≤m and 1
≤ i ≤ n, ajðtÞ and biðtÞ are the connected with demand
for oxygen at time t, ωjðtÞ and βiðtÞ characterize excitabil-
ity of haematopoietic system at time t, Kj is the probabil-
ity kernel of the distributed delays, and τij is the time
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required to produce a red blood cell. One can note that we
consider in our new approach the μ-ðω, cÞ-pseudo-almost
periodic for the connected with demand for oxygen at
time t and the μ-pseudo-almost periodic for the excitabil-
ity of haematopoietic system at time t since it is more
realistic for the description of the physical and biological
phenomena.

The method consists to reduce the existence of the
unique solution for the Lasota-Wazewska model (99) to
the search for the existence of the unique fixed point of
an appropriate operator on the Banach space PAPðω,cÞðℝ,
ℝ+, μÞ.

Notice that we restrict ourselves to ℝ+-valued functions
since only nonnegative solutions are biologically meaningful.

5.1. Existence and Uniqueness of μ-ðω, cÞ-Pseudo-Almost
Periodic Solution to the Model. In what follows, given a c
-bounded continuous function f defined on ℝ, �f ðω,cÞ and
f ðω,cÞ are defined by

�f ω,cð Þ = sup
t∈ℝ

f ω,cð Þ tð Þ = sup
t∈ℝ

c∧ −tð Þf tð Þ, and f ω,cð Þ = inf
t∈ℝ

f ω,cð Þ tð Þ

= inf
t∈ℝ

c∧ −tð Þf tð Þ:
ð100Þ

Remark 55. If c = 1, we use the notations

�f ≔ �f ω,1ð Þ = sup
t∈ℝ

f tð Þ and f ≔ f ω,1ð Þ = inf
t∈ℝ

f tð Þ: ð101Þ

First, we give sufficient conditions which ensures exis-
tence and uniqueness of μ-ðω, cÞ-pseudo-almost periodic
solution of (99).

ðC1Þ0 < c ≤ 1
ðC2Þα ∈APðℝ+Þ
ðC3Þβi, ωj ∈ PAPðℝ,ℝ+, μÞ, for all ði, jÞ ∈ ½½1, n�� × ½½1,m

��
ðC4Þaj, bi ∈ PAPðω,cÞðℝ,ℝ+, μÞ, for all ði, jÞ ∈ ½½1, n�� × ½½1

,m��
ðC5Þ∑m

j=1
�ðajÞðω,cÞωj + pξ∑n

i=1
�ðbiÞðω,cÞβi/α < 1

ðC6Þ For all 1 ≤ j ≤m, ðK jÞðω,cÞ : ½0,+∞Þ⟶ℝ+ are

continuous, integrable, and

ð∞
0

K j

� �
ω,cð Þ uð Þdu = 1, and

ð∞
0

K j

� �
ω,cð Þ uð Þeλudu < +∞,

ð102Þ

where λ is a sufficiently non negative small constant.

Lemma 56. Let f ∈ PAPðω,cÞðℝ,ℝ+, μÞ and g ∈ PAPðℝ,ℝ+,
μÞ. If c > 0, then fg ∈ PAPðω,cÞðℝ,ℝ+, μÞ.

Proof. According to Theorem 29, there exists a unique u ∈
PAPðℝ,ℝ+, μÞ such that

f tð Þ≔ c∧ tð Þu tð Þ, ð103Þ

for all t ∈ℝ. Using Lemma 13, it is clear that u × g ∈
PAPðℝ,ℝ+, μÞ. Then,

f gð Þ tð Þ≔ c∧ tð Þ u tð Þg tð Þð Þ, where ug ∈ PAP ℝ,ℝ+, μð Þ:
ð104Þ

Invoking Theorem 29, we complete the proof.

Now, we can establish following lemma.

Lemma 57. Let μ ∈MB. For all xð·Þ ∈ PAPðω,cÞðℝ,ℝ+, μÞ, the
function

ψi : t↦ ψi x ω,cð Þ tð Þ
� �

= a tð Þe
−c∧ −tð Þωi tð Þ〠

p

j=1
x t−τij
� �

= c∧ tð Þa ω,cð Þ tð Þe
−ωi tð Þ〠

p

j=1
c∧ −τij
� �

x ω,cð Þ t−τij
� �
ð105Þ

belongs to PAPðω,cÞðℝ,ℝ+, μÞ for all 1 ≤ i ≤ n.

Proof. First, we can say that the function

t↦ x t − τij
� �

∈ PAP ω,cð Þ ℝ,ℝ+, μð Þ, ð106Þ

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then, according to
Proposition 30

t↦ 〠
p

j=1
x t − τij
� �

∈ PAP ω,cð Þ ℝ,ℝ+, μð Þ: ð107Þ

Furthermore, by Lemma 5,

t↦ ωi tð Þ〠
p

j=1
x t − τij
� �

∈ PAP ω,cð Þ ℝ,ℝ+, μð Þ: ð108Þ

for all 1 ≤ i ≤ n. Now, using the fact that the function ð
x↦ e−xÞ is Lipschitzian and bounded, and aðω,cÞ ∈ PAPðℝ,
ℝ+, μÞ is also bounded then invoking the Corollary 54, it is
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clear that

ψi : t↦ c∧ tð Þa ω,cð Þ tð Þe
−c∧ −tð Þωi tð Þ〠

p

j=1
x t−τij
� �

∈ PAP ω,cð Þ ℝ,ℝ+, μð Þ,
ð109Þ

for all 1 ≤ i ≤ n:

By using condition ðC6Þ and Theorem 37, we can deduce
the following Lemma.

Lemma 58. Suppose that ðH1Þ and ðC6Þ hold, if x ∈ PA
Pðω,cÞðℝ,ℝ+, μÞ, then the function defined by

t↦
ðt
−∞

K j t − sð Þx sð Þds ∈ PAP ω,cð Þ ℝ,ℝ+, μð Þ, ð110Þ

for all 1 ≤ j ≤m:

Theorem 59. Suppose that ðH1Þ and ðC1Þ – ðC4Þ are satis-
fied. Then, the nonlinear operator Γ defined for each x ∈ PA
Pðω,cÞðℝ,ℝ+, μÞ by

Γxð Þ tð Þ =
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
aj sð Þe−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þx σð Þdσ

"

+ 〠
n

i=1
bi sð Þe

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �#

ds

ð111Þ

maps PAPðω,cÞðℝ,ℝ+, μÞ into itself.

Proof. Using Lemmas 13, 5, 5, and 5 and Corollary 54, then
the function χ defined by

χ sð Þ = 〠
m

j=1
aj sð Þe−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þx σð Þdσ + 〠

n

i=1
bi sð Þe

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �

= c∧ sð Þ 〠
m

j=1
aj
� �

ω,cð Þ sð Þe
−c∧ −sð Þω j sð Þ

Ð s

−∞
K j s−σð Þx σð Þdσ

 

+ 〠
n

i=1
bið Þ ω,cð Þ sð Þe

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �!

ð112Þ

is measure ðω, cÞ-pseudo-almost periodic.

Consequently, we can write χ = χ1 + χ2 where χ1 ∈A
Pω,cðℝ+Þ and χ2 ∈Eðω,cÞðℝ,ℝ+, μÞ. It follows that

Γχð Þ tð Þ≔
ðt
−∞

e−
Ð t

s
α ξð Þdξχ sð Þds = Γχ1ð Þ tð Þ + Γχ2ð Þ tð Þ:

ð113Þ

Let us show that ðΓχ1Þ ∈APω,cðℝ+Þ:
We recall that by applying condition ðC1Þ to the model

(99), α is almost periodic (i.e., ðω, cÞ-almost periodic with
constant c = 1Þ. Now, in the view of the almost periodicity
of the function α and the ðω, cÞ-almost periodicity of the
function χ1, there exists a number lε such that in any interval
½δ, δ + lε� one finds a number η, such that

sup
ξ∈ℝ

α ξ + ηð Þ − α ξð Þj j < ε and sup
ξ∈ℝ

χ1ð Þ ω,cð Þ ξ + ηð Þ − χ1ð Þ ω,cð Þ ξð Þ



 


 < ε:

ð114Þ

It comes that

Γχ1ð Þ t + ηð Þ − Γχ1ð Þ tð Þ =
ðt+η
−∞

e−
Ð t+η

s
α ξð Þdξχ1 sð Þds

−
ðt
−∞

e−
Ð t

s
α ξð Þdξχ1 sð Þds =

ðt+η
−∞

e
−
Ð t

s−η
α ξ+ηð Þdξ

χ1 sð Þds

−
ðt
−∞

e−
Ð t

s
α ξð Þdξχ1 sð Þds =

ðt
−∞

e−
Ð t

s
α ξ+ηð Þdξχ1 s + ηð Þds

−
ðt
−∞

e−
Ð t

s
α ξð Þdξχ1 sð Þds =

ðt
−∞

e−
Ð t

s
α ξ+ηð Þdξχ1 s + ηð Þds

−
ðt
−∞

e−
Ð t

s
α ξð Þdξχ1 s + ηð Þds+

ðt
−∞

e−
Ð t

s
α ξð Þdξχ1 s + ηð Þds

−
ðt
−∞

e−
Ð t

s
α ξð Þdξχ1 sð Þds:

ð115Þ

So, there exists δ ∈ ð0, 1Þ such that

Γχ1ð Þ ω,cð Þ t + ηð Þ − Γχ1ð Þ ω,cð Þ tð Þ



 


 ≤ χ1j j ω,cð Þ

ðt
−∞

e−
Ð t

s
α ξ+ηð Þdξ − e−

Ð t

s
α ξð Þdξ





 



ds+
�
ðt
−∞

e−
Ð t

s
α ξð Þdξ χ1ð Þ ω,cð Þ s + ηð Þ − χ1ð Þ ω,cð Þ sð Þ




 


ds
≤ χ1j j ω,cð Þ

ðt
−∞

e−
Ð t

s
α ξ+ηð Þdξ − e−

Ð t

s
α ξð Þdξ





 



ds+ε
�
ðt
−∞

e−
Ð t

s
α ξð Þdξds ≤ χ1j j ω,cð Þ

ðt
−∞

e−
Ð t

s
α ξ+ηð Þdξ − e−

Ð t

s
α ξð Þdξ





 



ds+ε
�
ðt
−∞

e− t−sð Þαds ≤ χ1j j ω,cð Þ

ðt
−∞

� e
−
Ð t

s
α ξ+ηð Þdξ+δ

Ð t

s
α ξð Þdξ−

Ð t

s
α ξ+ηð Þdξ

� �h i
×
ðt
s
α ξ + ηð Þ − α ξð Þdξ





 



ds
8<:

9=;+ε

�
ðt
−∞

e− t−sð Þαds ≤ χ1j j ω,cð Þ

ðt
−∞

� e−
Ð t

s
α ξ+ηð Þdξe

−δ
Ð t

s
α ξð Þdξ−

Ð t

s
α ξ+ηð Þdξ

� �ðt
s
α ξ + ηð Þ − α ξð Þj jdξds

8<:
9=;

+ε
ðt
−∞

e− t−sð Þαds,
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≤ε χ1j j ω,cð Þ

ðt
−∞

e− t−sð Þαe
−δ
Ð t

s
α ξð Þdξ−

Ð t

s
α ξ+ηð Þdξ

� �
t − sð Þ

24 35ds+ε
�
ðt
−∞

e− t−sð Þαds ≤ ε χ1j j ω,cð Þ

ðt
−∞

e− t−sð Þα t − sð Þ
h i

ds+ε

�
ðt
−∞

e− t−sð Þαds ≤
ε χ1j j ω,cð Þ

α2 +ε
ðt
−∞

e− t−sð Þαds ≤
ε χ1j j ω,cð Þ

α2

+ ε

α
=

χ1j j ω,cð Þ
α2 + 1

α

 !
ε:

ð116Þ

This proves that ðΓχ1Þ ∈APω,cðℝ+Þ: Now, let us show
that ðΓχ2Þ ∈Eðω,cÞðℝ,ℝ+, μÞ: We have that

lim
r⟶+∞

1
μ −r,r½ �ð Þ

ðr
−r

ðt
−∞

e−
Ð t

s
α ξð Þdξχ2 sð Þds





 




ω,cð Þ

dμ tð Þ

≤ lim
r⟶+∞

1
μ −r,r½ �ð Þ

ðr
−r

ðt
−∞

e− t−sð Þα χ2 sð Þj j ω,cð Þdsdμ tð Þ

≤ lim
r⟶+∞

1
μ −r, r½ �ð Þ

ðr
−r

ð∞
0
e−αξ χ2 t − ξð Þj j ω,cð Þdξdμ tð Þ

= lim
r⟶+∞

ð∞
0
e−αξ

1
μ −r, r½ �ð Þ

ðr
−r

χ2 t − ξð Þj j ω,cð Þdμ tð Þ
� �

dξ:

ð117Þ

By the Lebesgue Dominated Convergence Theorem and
ðH1Þ, we obtain that

lim
r⟶+∞

1
μ −r,r½ �ð Þ

ðr
−r

ðt
−∞

e−
Ð t

s
α ξð Þdξχ2 sð Þds





 




ω,cð Þ

dμ tð Þ = 0:

ð118Þ

Then, ðΓχ2Þ ∈Eðω,cÞðℝ,ℝ+, μÞ and consequently, Γ ∈
PAPðω,cÞðℝ,ℝ+, μÞ:

Theorem 60. Assume that ðH1Þ and ðC1Þ–ðC6Þ hold, then
the Lasota-Wazewska model with mixed delays (99) possesses
a unique measure ðω, cÞ-pseudo-almost periodic solution y,
and we have yðω,cÞ in the region

R = ψ ∈ PAP ω,cð Þ ℝ,ℝ+, μð Þ,LB ≤ ψ ω,cð Þ



 


 ≤UB

n o
, ð119Þ

where

UB =
∑m

j=1
�aj

� �
ω,cð Þ +∑n

i=1
�bið Þ ω,cð Þ

α
andLB

=
∑m

j=1 aj
� �

ω,cð Þe
− �ωjUB +∑n

i=1 bið Þ ω,cð Þe
−pξ �βiUB

�α
:

ð120Þ

Proof. First, we proves that the operator Γ is a mapping from
R to R. We set

γj sð Þ = aj sð Þe−c
∧ −sð Þω j sð Þ

Ð s

−∞
K j s−σð Þx σð Þdσ,

θi sð Þ = bi sð Þe
−c∧ −sð Þβi sð Þ〠

p

j=1
x s−τij
� �

:

ð121Þ

In fact, we have

Γx tð Þj j ω,cð Þ ≤
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
γj sð Þ + 〠

n

i=1
θi sð Þ

" #











ω,cð Þ

ds

=
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
γj sð Þ + 〠

n

i=1
θi sð Þ













ω,cð Þ

24 35ds
≤
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1

�aj
� �

ω,cð Þ + 〠
n

i=1
�bið Þ ω,cð Þ

" #
ds

≤
ðt
−∞

e−α t−sð Þ 〠
m

j=1

�aj
� �

ω,cð Þ + 〠
n

i=1

�bið Þ ω,cð Þ

" #
ds

=
∑m

j=1
�aj

� �
ω,cð Þ +∑n

i=1
�bið Þ ω,cð Þ

α
:

ð122Þ

In the other hand, if we set

ξ =max c∧ τi,j
� �� �

for i, jð Þ ∈ 1, n½ �½ � × 1, p½ �½ �,

δj sð Þ = c∧ −sð Þωj sð Þ
ðs
−∞

Kj s − σð Þx σð Þdσ, for j ∈ 1,m½ �½ �,

ϕi sð Þ = c∧ −sð Þβi sð Þ〠
p

j=1
x s − τij
� �

for i ∈ 1, n½ �½ �,

ð123Þ

then, we have for x ∈ R

Γx tð Þj j ω,cð Þ =
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
aj sð Þe−δ j sð Þ + 〠

n

i=1
bi sð Þe−ϕi sð Þ

" #
ds













ω,cð Þ

≥ c∧ −tð Þ
ðt
−∞

e−
Ð t

s
α ξð Þdξ

� 〠
m

j=1
aj sð Þe

− �ωj
Ð s

−∞
K jð Þ

ω,cð Þ s−σð Þx ω,cð Þ σð Þdσ + 〠
n

i=1
bi sð Þe

"

− �βi 〠
p

j=1
c∧ −τij
� �

x ω,cð Þ s−τij
� �#Þds ≥ c∧ −tð Þ

ðt
−∞

e−
Ð t

s
α ξð Þdξ

� 〠
m

j=1
aj sð Þe

− �ω jUB
Ð s

−∞
K jð Þ

ω,cð Þ s−σð Þdσ + 〠
n

i=1
bi sð Þe

− �βiUB〠
p

j=1
c∧ −τij
� �26664

37775
1CCCAds

≥ c∧ −tð Þ
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
aj sð Þe−

�ωjUB + 〠
n

i=1
bi sð Þe−pξ

�βiUB

" #
ds

≥
ðt
−∞

c∧ −sð Þe−
Ð t

s
α ξð Þdξ 〠

m

j=1
aj sð Þe−

�ωjUB + 〠
n

i=1
bi sð Þe−pξ

�βiUB

" #
ds

=
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
aj
� �

ω,cð Þ sð Þe
− �ωjUB + 〠

n

i=1
bið Þ ω,cð Þ sð Þe−pξ

�βiUB

" #
ds

≥
ðt
−∞

e−�α t−sð Þ 〠
m

j=1
aj
� �

ω,cð Þe
− �ωjUB + 〠

n

i=1
bið Þ ω,cð Þe

−pξ �βiUB

" #
ds

=
∑m

j=1 aj
� �

ω,cð Þe
− �ωjUB +∑n

i=1 bið Þ ω,cð Þe
−pξ �βiUB

�α
,

ð124Þ

which implies that the operator Γ is a mapping from R
to itself. To end the proof, it suffices to prove that Γ is a con-
traction mapping. Let x, y ∈ R. Then,
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Γx tð Þ − Γy tð Þj j ω,cð Þ =
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1
aj sð Þ e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þx σð Þdσ−e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þy σð Þdσ

� �
+ 〠

n

i=1
bi sð Þ

"





� e

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �

− e

−c∧ −sð Þβi sð Þ〠
p

j=1
y s−τij
� �0BBB@

1CCCA
37775dsj

ω,cð Þ

≤
ðt
−∞

e−
Ð t

s
α ξð Þdξ






� 〠

m

j=1
aj sð Þ e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þx σð Þdσ−e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þy σð Þdσ

� �
+ 〠

n

i=1
bi sð Þ

"

� e

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �

− e

−c∧ −sð Þβi sð Þ〠
p

j=1
y s−τij
� �0BBB@

1CCCA
37775j

ω,cð Þ

ds =
ðt
−∞

e−
Ð t

s
α ξð Þdξj

� 〠
m

j=1
aj
� �

ω,cð Þ sð Þ e−c
∧ −sð Þω j sð Þ

Ð s

−∞
K j s−σð Þx σð Þdσ−e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þy σð Þdσ

� �
+ 〠

n

i=1
bið Þ ω,cð Þ sð Þ

"

� e

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �

− e

−c∧ −sð Þβi sð Þ〠
p

j=1
y s−τij
� �0BBB@

1CCCA
37775jds ≤

ðt
−∞

e−
Ð t

s
α ξð Þdξj

� 〠
m

j=1

�aj
� �

ω,cð Þ e−c
∧ −sð Þω j sð Þ

Ð s

−∞
K j s−σð Þx σð Þdσ−e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þy σð Þdσ

� �
+ 〠

n

i=1
�bið Þ ω,cð Þ

"

� e

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �

− e

−c∧ −sð Þβi sð Þ〠
p

j=1
y s−τij
� �0BBB@

1CCCA
37775jds ≤

ðt
−∞

e−
Ð t

s
α ξð Þdξ

� 〠
m

j=1

�aj
� �

ω,cð Þ e
−c∧ −sð Þω j sð Þ

Ð s

−∞
K j s−σð Þx σð Þdσ−e−c

∧ −sð Þω j sð Þ
Ð s

−∞
K j s−σð Þy σð Þdσ





 



 + 〠
n

i=1
�bið Þ ω,cð Þ

"

� e

−c∧ −sð Þβi sð Þ〠
p

j=1
x s−τij
� �

− e

−c∧ −sð Þβi sð Þ〠
p

j=1
y s−τij
� �





















37775ds:

ð125Þ
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Obviously, for u, v ∈ ½0,+∞Þ,

e−u − e−vj j ≤ u − vj j: ð126Þ

Then it comes that

Γx tð Þ − Γy tð Þj j ω,cð Þ ≤
ðt
−∞

e−
Ð t

s
α ξð Þdξ

〠
m

j=1

�aj
� �

ω,cð Þ c
∧ −sð Þωj sð Þ

ðs
−∞

Kj s − σð Þ x σð Þ − y σð Þð Þdσ




 





"

+ 〠
n

i=1
�bið Þ ω,cð Þ c

∧ −sð Þβi sð Þ〠
p

j=1
x s − τij
� �

− y s − τij
� �� �












#
ds

≤
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1

�aj
� �

ω,cð Þωj

ðs
−∞

K j

� �
ω,cð Þ s − σð Þdσ xj

"

− yj ω,cð Þ + pξ x − yj j ω,cð Þ〠
n

i=1
�bið Þ ω,cð Þβi

#
ds

=
ðt
−∞

e−
Ð t

s
α ξð Þdξ 〠

m

j=1

�aj
� �

ω,cð Þωj + pξ〠
n

i=1
�bið Þ ω,cð Þβi

" #
ds xj

− yj ω,cð Þ ≤
∑m

j=1
�aj

� �
ω,cð Þωj + pξ∑n

i=1
�bið Þ ω,cð Þβi

α
x − yj j ω,cð Þ,

ð127Þ

which implies (invoking ðC5Þ) that the mapping Γ is a
contraction mapping of R. Consequently, Γ possesses a
unique fixed point x⋆ ∈ R. Hence, x⋆ is the unique measure
ðω, cÞ-pseudo-almost periodic solution of Equation (99) in
R.

5.2. Example. In order to illustrate some features of our the-
oretical study, we will apply our main results to a special sys-
tem and demonstrate the efficiencies of our criteria.

We consider the following Lasota-Wazewska model with
mixed delays

y′ tð Þ = −α tð Þy tð Þ + 〠
3

j=1
aj tð Þe−c

∧ −tð Þω j tð Þ
Ð t

−∞
K j t−sð Þy sð Þds

+ 〠
3

i=1
bi tð Þe−c

∧ −tð Þβi tð Þy t−τið Þ,
ð128Þ

where αðtÞ = 8 + cos2ð ffiffiffi
5

p
tÞ + cos2ðtÞ, c = 0:9, and ω = 1,

a1 tð Þ
a2 tð Þ
a3 tð Þ

0BB@
1CCA =

0:9ð Þ∧ tð Þ 1 + 0:25 cos2
ffiffiffi
2

p
t

� �
+ 0:25 cos2 πtð Þ + 0:5

1 + t2

� �
0:9ð Þ∧ tð Þ 0:5 + 0:25 cos2

ffiffiffi
3

p
t

� �
+ 0:25 cos2 πtð Þ + 1

1 + t2

� �
0:9ð Þ∧ tð Þ 0:5 + 0:25 cos2

ffiffiffi
5

p
t

� �
+ 0:25 cos2

ffiffiffi
2

p
t

� �
+ e−t

2 cos2 tð Þ
� �

0BBBBBBB@

1CCCCCCCA
,

ω1 tð Þ
ω2 tð Þ
ω3 tð Þ

0BB@
1CCA =

0:125 cos2
ffiffiffi
2

p
t

� �
+ 0:125 cos2 πtð Þ + 0:25

1 + t2

0:125 cos2
ffiffiffi
2

p
t

� �
+ 0:125 cos2 πtð Þ + 0:25

1 + t2

0:250 cos2
ffiffiffi
2

p
t

� �
+ 0:25e−t2 cos2 tð Þ

0BBBBBB@

1CCCCCCA,

b1 tð Þ
b2 tð Þ
b3 tð Þ

0BB@
1CCA =

0:9ð Þ∧ tð Þ 1 + 0:25 cos2
ffiffiffi
5

p
t

� �
+ 0:25 cos2 πtð Þ + 0:5e−t2 cos2 tð Þ

� �
0:9ð Þ∧ tð Þ 1 + 0:25 cos2

ffiffiffi
5

p
t

� �
+ 0:25 cos2 πtð Þ + 0:5e−t2 cos2 tð Þ

� �
0:9ð Þ∧ tð Þ 1 + 0:25 cos2

ffiffiffi
5

p
t

� �
+ 0:25 cos2 πtð Þ + 0:5e−t2 cos2 tð Þ

� �

0BBBBB@

1CCCCCA,

β1 tð Þ
β2 tð Þ
β3 tð Þ

0BB@
1CCA =

0:125 cos2
ffiffiffi
2

p
t

� �
+ 0:125 cos2 πtð Þ + 0:25

1 + t2

0:125 cos2
ffiffiffi
2

p
t

� �
+ 0:125 cos2 πtð Þ + 0:25

1 + t2

0:125 cos2
ffiffiffi
2

p
t

� �
+ 0:125 cos2 πtð Þ + 0:25e−t2 cos2 tð Þ

0BBBBBB@

1CCCCCCA:

ð129Þ

τ1 = τ2 = τ3 = 1, Kj = ð0:9Þ∧ðtÞe−t . Then,

∑m
j=1

�aj
� �

ω,cð Þωj + pξ∑n
i=1

�bið Þ ω,cð Þβi

α
≤
3
4 < 1: ð130Þ

If the Radon-Nikodym derivative ρ of the measure μ is
ρðtÞ = esin t with respect to the Lebesgue measure on ℝ (i.e.
dμ = ρðtÞdt), then μ ∈MB, since

μ −r, r½ �ð Þ =
ðr
−r
esin tð Þ ⟶ +∞,if r⟶ +∞, ð131Þ

μ τ + að Þ ≤ e2μ Að Þ,∀τ ∈ℝ and a ∈ A: ð132Þ
Hence, conditions ðC1Þ – ðC6Þ and ðH1Þ are satisfied

then according to the Theorem 60, the Lasota-Wazewska
model with a mixed delays (14) has a unique μ-ðω, cÞ
-pseudo-almost periodic solution in the region R = fy ∈ PA
Pðω,cÞðℝ,ℝ+, μÞ,LB ≤ jyðω,cÞj ≤UBg where

UB =
∑m

j=1
�aj

� �
ω,cð Þ +∑n

i=1
�bið Þ ω,cð Þ

α
= 3
2 ,

ð133Þ

LB =
∑m

j=1 aj
� �

ω,cð Þ
e−

�ωjUB +∑n
i=1 bi
� �

ω,cð Þ
e−pξ

�βiUB

�α

≤
e−1/23/2 + 0:5e−1/23/2 + 0:5e−1/23/2 + e−0:91/23/2 + e−0:91/23/2 + e−0:91/23/2

10

= e−3/4

5 + 3e−0:9/4
10 ≈ 0:246:

ð134Þ
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