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In this paper, we are dealing with the ill-posed Cauchy problem for an elliptic operator. This is a follow-up to a previous paper on
the same subject. Indeed, in an earlier publication, we introduced a regularization method, called the controllability method, which
allowed us to propose, on the one hand, a characterization of the existence of a regular solution to the ill-posed Cauchy problem.
On the other hand, we have also succeeded in proposing, via a strong singular optimality system, a characterization of the optimal
solution to the considered control problem, and this, without resorting to the Slater-type assumption, an assumption to which
many analyses had to resort. On occasion, we have dealt with the control problem, with state boundary observation, the problem
initially analyzed by J. L. Lions. The proposed point of view, consisting of the interpretation of the Cauchy system as a system of
two inverse problems, then called naturally for conjectures in favor of which the present manuscript wants to constitute an
argument. Indeed, we conjectured, in view of the first results obtained, that the proposed method could be improved from the point
of view of the initial interpretation that we had made of the problem. In this sense, we analyze here two other variants (observation
of the flow, then distributed observation) of the problem, the results of which confirm the intuition announced in the previous
publication mentioned above. Those results, it seems to us, are of significant relevance in the analysis of the controllability method
previously introduced.

1. Introduction

Let © be a regular bounded open subset of R”, of boundary
I'=IyUTl, where Iy and I} are disjointed, regular, and
with superficial positive measures.

In Q, we consider the state z and the control v = (v,, v;)
linked by

Az=0 inQ,
0 1
z =y, —Z:vl on/l,. (1)
ov

Problem (1) is ill-posed in Hadamard’s sense. This means
that, for v=(v,, v;) given in (L*(I'"y))?, the problem (1) does
not always admit a solution, and there may be an instability

of it when it exists. We refer to (1) as the ill-posed elliptic

Cauchy problem.
We, therefore, consider a priori the pairs (v, z) such as

v=(vy,v,) € (L*(I'y))? and z € L*(Q), (2)

where (v, z) is solution of (1). It is said that such pairs (v, z)
constitute the control-state pairs set.

Remark 1. Note that, when it exists, the solution of the ill-
posed Cauchy problem (1) is unique.

Let %°, and %, be two nonempty convex closed subsets
of L2(I'y). We set
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Usa = Uy X Uy (3)

and

A ={(v,z) € U4 X L*(Q) satisfying (1) withv = (vy, v;)}.
(4)

A control-state pair (v, z) will be said admissible if (v, z)
€ o. We will refer to of as the set of admissible control-state
pairs.

It is then a question of knowing how to characterize, via a
strong singular optimality system, the optimal pair, known as
the optimal control-state pair, the solution to the control
problem

inf{J(v.z); (v,z) € o}, (5)

where the functional ] can be, for example,

1|0z N,
Jwa:{——@ 202,
2 01/ LZ(rl) 2 L (FO) (6)
N,
t= IVillZar,)» 20 € L2(T),

or

1 N,
J(v,z) = 5 |z - Zd”il(g) +7O ”VOH%Z(FO)

N 2 2
By 2a € 12(42).

The following remark is then in order.

Remark 2. If z€L*(Q) with Az=0, we have that z€
HY2(r) and & € H/2(I) (see [1]).

So, the cost Function (6) must therefore be considered on
the sets of admissible control-state pairs such as, in addition,

—| €L} (8)

and it is, therefore, such sets that must be assumed, not
empty, for the problem to make sense. So we necessarily
have, for the problems (1), (6), (5) and (1), (7), (5), that
z€ H¥?(Q).

The original problem analyzed by Lions [1] considered
the cost function

1 No
J(v,z) :EHZ_ZdHIZ,Z(FI) +7||VOH12~2(F0) (9)

Ny 2 2
o il 2 € L3(T).

In order to obtain a singular optimality system where
state and control are independent, Lions [1] uses the
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penalization method that makes it possible to obtain conver-
gence results in particular cases

(1) Uy =L*(Ty) . Uy C L*(Iy).
(2) %gd CLZ(FO) ,%;d:Lz(ro).

In the first case, a strong singular optimality system is
directly obtained. But in the second case, we obtain a weak
singular optimality system, whose strong formulation requires
the additional assumption of Slater type that

The interior of %°, is non empty in L*(I'). (10)

However, Lions [1] conjectures that one should be able to
solve the problem with only the usual assumptions of non-
vacuity, convexity, and closure of the sets of admissible con-
trols %°, and %!,. Conjecture for which this paper is
intended to constitute an argument.

Indeed, in a previous publication (cf. [2]), where we ana-
lyzed the problem initially posed by Lions [1] (the one con-
sidering the cost Function (9)), we managed to verify the
conjecture of Lions [1]. Introducing, to do this, a regulariza-
tion method called the controllability method, which consists
of the interpretation of the Cauchy problem as a system of
inverse problems. We show that, when it exists, the solution
of the Cauchy problem (1) is a common solution of a system
of two (well-posed) mixed problems resulting from the inter-
pretation that we make of the problem, managing in passing
to characterize the existence of a regular solution to the
Cauchy problems itself. The initial control problem is then
approached by a sequence of (classical) control problems
posed on the mixed problems obtained. The novelty with the
proposed method is that it allows, as announced, to know how
to overcome the Slater-type assumption in the characterization
of the optimal control-state pair; the interpretation that we
make of the problem being sufficient to obtain directly the
strong convergence of the process. And it is there, in the inter-
pretation that we make of the problem as a system of inverse
problems, all the originality of the proposed method, this point
of view not having, to the best of our knowledge, been
approached in work prior to Guel and Nakoulima [2], at least
as far as the control of the Cauchy problem is concerned.

The results obtained in favor of these first reflections (cf.
[2]) called for natural conjectures as to the pioneering anal-
ysis of Lions [1] concerning the appearance of the Slater-type
assumption in one of the cases treated rather than in the
other. But also as to ways of improving the method we are
proposing. Indeed, we conjectured that sooner than con-
sidering both systems resulting from the interpretation of
the problem as an inverse problem, we could be satisfied
with only one of these states, according to the following
specifications:

(i) For the boundary observation problem: the nature of
the observation would dictate the adequate system to
be considered.

(ii) For the one with distributed observation: one or the
other of the systems should suffice; the choice then
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being naturally guided by the ease of the difficulty in
observing/controlling one or the other of the Cauchy
data.

The results we present here are intended as an argument
in favor of these conjectures. They certainly do not finish
clarifying the point of view but are already reassured of the
intuition inspired by the first.

Before going any further in this presentation, note that
many authors have studied, mostly in the case of distributed
observation, the control of the ill-posed Cauchy problem.
Indeed, following the work of Lions [1], the first to be inter-
ested in the problem was Nakoulima [3], who obtained, for
the cost Function (7), results already confirming the conjec-
ture of Lions [1], without to end up addressing the problem.
The results in question, using a regularization-penalization
method, managed to do without the Slater-type assumption,
but only for one class of constraints, namely in the case

Uy = Uy = (X)) (11)

The control spaces are then considered being of the
empty interior; the conjecture of Lions [1] is well confirmed
by these results. Nevertheless, the problem remains globally
open because only a particular class of constraints was
considered.

A little later, Nakoulima and Mophou [4] looked again at
the question, proposing this time (still for the problem with
distributed observation (7)) a method of regularization,
without penalization, called elliptic—elliptic regularization,
interpreting the singular system as the limit of a family of
well-posed problems. However, these results resort again to
the Slater-type assumption, still leaving unanswered the con-
jecture of Lions [1].

Still with regard to the distributed observation problem,
one of the latest results dates back to the work of Berhail and
Omrane [5]. The latter then proposed the notion of no/least
regrets controls, through which they succeed in characteriz-
ing the optimal solution through a strong singular optimality
system, and this without recourse to the Slater-type assump-
tion. But the authors then only consider the unconstrained
case

Ung=Uey=L*(I). (12)

This is an opportunity to note that in this particular
unconstrained case, we know how to do well, and this via
various methods, the difficulty remaining in the general case
with constraints.

To finish drawing up the state of the art concerning the
problem in the spotlight, we can cite, in the cases of evolu-
tion, the work of Kernevez [6], Barry et al. [7], and Barry and
Ndiaye [8]. Noting that in these last two references, the
authors adapt to the cases of parabolic evolution, then hyper-
bolic, the penalization method introduced by Lions [1] in the
stationary case.

So that, before [2], the problem of Lions [1] remained.

The paper is organized as follows: Section 2 is devoted to
interpreting the initial problem as an inverse problem. We
then take the liberty of ignoring certain calculation details,
already well explained by Guel and Nakoulima [2]. In
Sections 3 and 4, we return to the main object of the present
paper, analyzing the control problems with boundary observa-
tion of the flow (Section 3), then with distributed observation
(Section 4), starting by regularizing it via the controllability
results previously obtained (Sections 3.1 and 4.1). After estab-
lishing the convergence of the process in Sections 3.2 and 4.2,
then the approached optimality systems in Sections 3.3 and
4.3, we end in Sections 3.4 and 4.4 with the singular optimality
systems for the initial problems.

2. Controllability for the IllI-Posed Elliptic
Cauchy Problem

In this section, we introduce a point of view that seems to us
new concerning the ill-posed Cauchy problem. It consists of
interpreting the problem as an inverse problem and, there-
fore, a controllability problem.

We establish that, when it exists, the solution of the ill-
posed Cauchy problem is a common solution of a system of
two inverse problems. We then succeed in establishing a
necessary and sufficient condition for the existence, not
only of a solution but of a regular solution to the problem.

More precisely, we consider the systems

Ay; =0 inQ,
yl mn (13)
)’1 ="V Onro,
Ay, =0 in£,
0 14
ﬁzvl onl, (14)
ov
and more
0
%:vl and y, = v, on [, (15)
v

Remark 3. If the systems (13)—(15) admit a solution, then this
latter verifies

N =z=) (16)

where (v=(vy, v;), z) constitutes a control-state pair for the
Cauchy problem.

We can then interpret (13)—(15) as a system of inverse
problems, that to say, for which we have a datum and an
observation on the border Iy, but no information on the
border I';.

Then, we consider the following inverse problem: given
(vo, v1) € (L*(I))?, find (w,, w,) € (L*(I'y))? such that, if y;
and y, are respective solutions of
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Ay; =0 in£,

y1=vy only, %:wl onl7, (17)
and

Ay, =0 ing,

aa—);z:vl only, y,=w, only, (18)

then y, and y, further satisty the conditions (15).

Remark 4. The symmetric character of the roles played by y,
and y, in the formulation of the controllability problem is
obvious. Consequently, one could very well be satisfied with
only one of these states in the definition of the problem, thus
considering one or the other of problems (17) and (18) with
the corresponding observation objective in (15). This is evi-
denced by the first part of the proof of Theorem 1.

As far as the present analysis is concerned, it is precisely
this symmetrical nature of the roles of y; and y, that moti-
vates their simultaneous use (which facilitates, perhaps for a
short time, the continuation of the analysis), but also the wish
to remain faithful to the framework of Cauchy’s problem.

Remark 5. (Well-defined nature of the controllability prob-
lem). For z € L?(2) with Az=0, we know that

P
2l € HVA(I) and &| € H2(T). (19)
ov|p

Thus, seeking, within the framework of problems of control-
lability, functions of L?(I";) making it possible to reach, or if
not, approaching, the targets fixed still in L*(Iy), it is neces-
sary that the accessible states y, and y, be in H>2(Q).

Hence, the necessity within the framework of the prob-
lem of optimal control of the elliptic Cauchy problem, to
consider, beyond the assumption of nonvacuity < # (), that
it is the set

{(v.2) e : ze H/*(Q)}, (20)

which is nonempty.
With these notations, conditions (15) become

P
a%,l(”o’wl”ro =" andyz(vl,wz)\ro = Yo- (21)

Finally, and to fix the vocabulary, we will say that the
problems (17), (18), (21) constitute a problem of exact
controllability and that the systems (17) and (18) are
exactly controllable in (v, v,) if it exists w,,w, € L*(I'}),
satisfying (21).
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Remark 6. By linearity of mappings

(vo, wy) — y1(vo, w1) = y1(v,0) + 1 (0, wy), (22)
and
(vi, wy) — 2 (v, wy) = y2(v1,0) + ,(0, w;), (23)

the exact controllability problems (17), (18), and (21) are
equivalent to the following:

Find w;, w, € L*(I';) such that the solutions

1(0,w;) and ,(0,w,) verify (24)
%(0,w1)|r0:0 and  »,(0,w,)|r, =0,

translating the controllability of the system (y,(0,w,), y,(0,
w,)) in (0,0).

A method to solve (24) is the method of approximate
controllability, which consists of an approximation, by
density, of the problem. This is reflecting in the following
proposition:

Proposition 1. (see. [2]). Let us denote by

E, = {%‘ (0,wy)|r,; wy € LZ(FI)} and

E, = {yz(O,w2)|Fo; w, € LZ(FI)}, (25)

the sets of zero and one orders traces, on Iy, of the reachable
states y, and y,, respectively.
Then, we have that

sets E; and E, are dense in L*(I'), (26)

and we then speak of the approximate controllability of the
system (y1(0,w;), y2(0,w,)).

The following result is then immediate:

Corollary 1. For all £>0, there are w,,,w,, € L* (I'}), such
that

Y1s:}’1(0»w15)s y2£:y2(0’w28) EHs/Z(Q)’ (27)

are unique solutions of

Ay, =0 inQ,
oy, 28
Y1e=0 onl, g—;:wlg onl', (28)
A}QE:O inQ,
J 29
%:O only, y,,=w,, only, (29)
%
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Starting from Remark 6, we deduce from the previous
results the following:

aylg
ov

<eand ||y2€||Lz(r0)<s. (30)
L*(Iy)

Corollary 2. For all vy, v, € L* (I'y) and >0, there are w,,.,
w,, € L? (I'y) such that

yl(VO’wIE)’ )’2(V1»wze) € HS/Z(Q)’ (31)

are unique solutions of

Ay, (vo,wy,) =0 in,
oy
y1(vo,wy,) =vy only, E(Vo’wls) =w;, onl,
(32)
Ay, (v wy,) =0 inQ,
9y _ r . r
a_u(vlvaa') =V onfy, yZ(Vl’wZ&') =W, onlfly,
(33)

<eand [|y,(vi, wy.) = volli2(r,) <e-

0
H%(Vo’wle) -
v 1(I)

(34)

Proof. Let >0 and vy, v, € L*(I'y). From Corollary 1 we
have that there are w,,, w,, € L?(I';) such that

Vie =0(0,w1,), y2, = 12(0,wy,.) € HY*(Q), (35)

are, respectively, unique solutions of (28) and (29), with (30).
So, by linearity, it immediately follows that

N1 (Vo,wie) =y1(%5,0) + 1, € HS/Z(Q) and y,(vy, w;,)

=9, (11,0) + y,, € H/(Q),
(36)

are, respectively, unique solutions of (32) and (33), with
%(Vo’ 0)[r,» ¥2(v1,0)|, € L*(T). (37)

Thus, by density of the sets E; and E, in L* (I'y), it follows
that

(_%} (v0,0) |, + vl) € IX(Iy) (38)

implies the existence of w;, =w;, (vy,v;) €L*(I'}) such
that

5
0 0
D 0.w) + 2 (10, 0) - vi||  <e
ov ov 2
L*(Iy) (39)
. ‘a}’l
ie. [|=— (vo,wy,) — W <e.
61/ LZ(ro)
Likewise,
(=220, 011, +w0) € 12(T), (40)

implies the existence of w,, =w,, (vy,v;) €L?(I';) such
that

[y2(0, wy,) + y2(v1.0) = woll 12,y <€

. 41
Le. [ly2(viowae) = voll2(ry) <& 1)

From where the result. O

Then we have the following theorem:

Theorem 1. (see [2]). Given v= (vo,v;) € (L*(I'y))>?, the ill-
posed Cauchy problem
Az=0 ing,

(42)

zZ ="y, =v,onl,

G
ov
admits a regular solution z € H*? (Q) if and only if either of
the sequences (w,), or (w,,), is bounded in L* (I'y).

It follows from Theorem 1 the following corollary:

Corollary 3. (see [2]). z being a regular solution of the Cauchy
problem, then y, =z=1y,.

3. The Flow Observation Problem

Let us start by recalling that we are interested in controlling
the Cauchy problem for the Laplacian. That is to say, more
precisely, we consider the problem

Az=0 inQ,

(43)

z
zZ =", —y:vl onl,

and, for all control-state pair (v, z), the cost function

o0z
=z

NO 2 1 2
o +7”V0||L2(1"U) +7||V1||L2(r0)’

1
](sz)zi

(1)
(44)

being interested in the optimal control problem

inf{J(v.2); (v,z) € o}. (45)



We propose here to use the controllability method (cf. [9,
p. 222]) to characterize the optimal solution (u,y) of the
problem (43)—(45), without any other assumption than the
“sufficient” one of nonvacuity of the set of admissible
control-state pairs (cf. Remark 5). To the best of our knowl-
edge, this method seems new.

3.1. The Controllability Method. Starting therefore from the
assumption o # () and within the framework of Remark 5,
we have, for all

v=(vp,v)) € %qq and >0, (46)

there exists

Wy, Wy € Lz(rl) and)’l(Vo, wlé‘)’ }’2("1»”’25) € HS/Z(‘Q)’
(47)

such that

Ay, (vg.wy,) =0 in2,

dy
Mo, wy,) =vy only, a—;(Vmwle) =wy.only,

(48)
Ay, (vi,wy) =0 inQ,
0
alyz(vl’wk) =wv onlY, )’2(V17wze> =w,, onl,

(49)

k)
%(Vmwle) -V

2 2
LZ(I‘O)<8 and ||y, (vy, wy,) - V0|‘L2(ro)<€'

(50)

Then we consider, for 0,,6,€R, :0,+60,=1, the
functional

0y ||9y1 z
Je(vo,v1) =~ || = (vo, wie) — 24
2 ov € LZ(I-I)
0, ||9y2
+= _(VlvaS) —Zy (51)
2 0y LZ(FI)

N, ) N, 5
+ 7 ”VO”LZ(FO) + 7 Hvl ||L2(F0)’

being interested in the control problem

inf{]e(vovvl); V= (VOvvl) E%ud}' (52)

The following result is then immediate

Proposition 2. For all >0, the control problem (52) admits
a unique solution, the optimal control T, = (U, Uy,)-
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3.2. Convergence of the Method. Let €>0. Due to the
existence of the optimal control u,= (u,,u;.) € U qC
(L*(T'y))?% and according to the results of the previous sec-
tion, there exists

wlsa EZS GLZ(FI) andyls’ y2£ € H3/2(‘Q) CLZ(Q)’

(53)
such that
Ay,, =0 inQ,
_ (54)
Vie = tdge only, =w;.onl,
Ay,, =0 in (2,
0y L (55)
%:ulg only, y,, =w,,onl,
e _ _ _
2 g || <eand |75~ Focllpgy <e. (56)
ov 12(ry) !
with, for all ve€ % .4,
]E(ﬁOSsale) SL?(‘VOvV1>' (57)
In particular
Je(toe, 1) < T (g, uy), (58)

where u = (1, u;) is the optimal solution of (43)—(45). We
have in fact that J, (i, u;) is independent of ¢. Indeed, let
(wi,), and (w},), be the constant sequences defined by

P

wi, = 2| €I¥I) andws, =yl € LX(I).  (59)
i,

So we have

Y11, wi,) =y, =y verify:

Ayi, =0 ing,
i 60
yie=uy only, a&:w’l‘gonﬂ, (60)
U
Y2 (u, wie) =3, =y veriy:
Ay;. =0 ing,
5 61
6%:u1 only, y;.=w;5.only, (61)
with
0yiﬁ€—u and y5, = ug on T (62)
R Yae = Uo 0
Consequently,
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0, oy, 2 0 a
Je(ug, uy) =5 o d . +
AL 2 0,0
1_)’_Zd 42 y
2 ()l/ LZ(rl) 2 ()l/
ie.,
1oy Ny
Jo(utg 1) —\—— AF 20 2
N L2 PR (64)
N,

=J(u,y)

b 2
+ 2 ”ul”LZ(rO)

Thus (58) becomes

]E(EOEvﬂl‘e) SIE(“O!”I) :](u7y)? (65)

and it follows there exist constants C; € R* , independent of
€, such that

ay
H e = [wiell2ir,) < G H 22 <G,
X W iz,
||Ll0€||L2 (') SC3’ HulsHLZ(FO) SC47
(66)
since ag“' =w;, onI.

So, we have, on the one hand, the sequence (w,,), belng
bounded in L*(I" 1) and by using Theorem 1, there exist W,
W, € L*(I'y) and ¥}, 7, € H/?(Q) such that

w,, — w, weaklyinL*(I'}),

w,, — w, weaklyinL*(I")), (67)
V. — ¥y, weaklyin H/2(Q),

Ve — ¥, weaklyin HY/?(Q).

On the other hand, we immediately deduce, from (66),
that there exist #, 4y € L*(I'y) such that

Uy, — Uy weaklyin L*(I'),

68
U, — u; weaklyin L(I). (68)
Then it follows, on the one hand
Ay, =0in €,
~ a0y - 69
y, =ugonly, %:wlonfl, (69)
v

__Zd

7
Ny
+7”u0”i2(r _”ul”L2 (Iy)
LX(Ty)
(63)
L g a2
— |[Uo]|72 — [U1]]72
() 2 (o) 2 L2(Iy)
\
and, on the other hand,
Ay, =0 inQ,
0y, (70)
Y, = U, %zul onl,
Analogously, we get
Ay, =0 inQ,
0, (71)
Yo = U, %:ul onl’,.

Then, by the uniqueness of the solution of the ill-posed
Cauchy problem, we conclude that

o~

V1=V =) (72)

At this stage, we have that there exist

¥ € H¥?(Q) and 6 = (uy, ) € Uug, (73)
such that
EOE e ao Weakly ian(ro),
ﬁl& — /1;1 Weaklyian(Fo), (74)
V. — ¥  weaklyin H?(Q),
¥, — y  weaklyin HY?(),

the control-state pair (i, ) being admissible. So that it fol-
lows

J(u.y) <J(@.y)- (75)
Finally, passing to the limit in (65), we get
J(u.y) <J(u.)- (76)

Hence it follows, by uniqueness of the optimal solution
(u,y) to (43)—(45), that (75), and (76) leads to

J(.y) <J(u.y) <J(u.y) = J(.y) =J(w.y),  (77)

which implies
(,7) = (u,y). (78)

Thereby, we have just proved the following result.



Proposition 3. For all ¢>0, the optimal control (T, U,,),
solution of (52), is such that (u,,y,) verifies

Hy, — Uy weaklyin L*(I),

U, — uy  weaklyin L*(Iy), (79)
Y. — v weaklyin H2(Q),

¥, — y  weaklyin HY?(Q),

where (u,y) is the optimal control-state pair of (43)—(45).

Moreover, we establish, as follows, the strong conver-
gence of the optimal control-state pair (i,,7,) toward the
other one (u, y).

Theorem 2. The optimal control (uy,,u,,) solution of (52)
and the associate optimal states y,, and ¥y,, are such that,
when € — 0,

Uy, — Uy stronglyin L*(Iy), (30)
U, — u; stronglyinL*(I),

and
Jie =y stronglyin H*2(Q), (81)
¥y — y  stronglyin H/?(Q),

where (u,y) is the optimal control-state pair of (43)—(45).

Proof. Let us start by noting that, by continuity of the trace
operators y, and 74,

¥,. — yweakly in H3/2(Q), (82)
implies

Yo¥1e — voy weaklyin H'(I'),

83
Y12 — vy weaklyin L*(I'), (83)
and, analogously, that
¥,. — yweakly in H3/2(Q), (84)
implies that
yOyZS — Yoy Weakly in Hl (F)’ (85)
Y12 — v1y  weaklyin L*(I').
Thus, we have, with the previous results,
Uy, — uy weaklyin L2(Iy), (6)
Uy, — u, weaklyinL2(Iy),

Abstract and Applied Analysis

Y1, 0 .
le = f),; . w, :6_Z . weakly in L?(I'}),
2e :7ze|r1 — W, :)’|rl weakly in H' (1),
(87)
Vi =y weaklyin H*(Q), (88)
¥, — ¥ weaklyin HY?(Q),
but also that
0y,,
Dze 4 weakly in L2(I); (89)
ov r r
with
](u7y) S&E%]E(ﬂ()s,ﬁl&‘) S](u,y); (90)
this last result can still be written
6y Zd +No||“o||Lz +N1||”1||
L(Iy)
% %y 2
= hm 91 yle —Zy + 92 yZS —Z4
=0 o 12(ry) dv (1)
+N0||”06H +N1||“1£||L2 )

(o1)

But then, the norms being continuous, a fortiori weakly
lower semicontinuous, we have with (86), (87), and (89), that

oV 2
g—ly/—dez < liminf | 0, Y1 -z
Iy) e—0 ()
10,22 — 2|7 92
2 d L2(I) ’ ( )
o B,y < liminf ([Tl

2 C - 2
H”l”]}(ro) < hlgl_)lglf HulsHLZ(fo)

So that (91) and (92) lead to

, = lim ( )’1&
) e0 LA(ry)

2<r>>’ (93)

Y _
v

+92H—— Z4

e e N

oty = lim 2,
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But then, since and likewise
= 2 = _ 2 W ]2 || 2 0,
o —uOHL;(rU) +Hu182 ulHLz(r‘f > 2 ’%_% (1) _‘%_ iy e
= ||”0£||L2(1"0) + HuO”LZ(rO) + ”ule”LZ(rO) + HuIHLZ(ro) 5 ayzg ()y
_ — 2= -2y, = -2 ,
= 2(toe o) r2(ry) = 2(1es wi)12(ry)s o g ()
(94) (102)
we obtain, passing to the limit with (86), (93), and (93);,  with (89) and (98) imply that
that
ay ay||?
o 2 ) ) lim % - a—y =0, (103)
lim (|10, = woll2y + 11 = 12y ) =0, (95) w=0ll o ovllpaqr,
which leads well to e
= 72 Pae Qt lyin L*(I' (104)
Uy, — Uy stronglyin L*(Iy), o gy Swonglyin ().

96
U, — u; stronglyin L*(I). (56)

Otherwise, let note that we can take, in (93),, successively

Therefore, (54) being well-posed with

Upe — U strongly in L*(I',),

(6, =1, 6, =0) then(6, =0, 6, = 1), (97) 7, = e 0_y’ stronglyin I(I').  (105)
o |, |,
to get that Yie =™ ¥ weakly in H*/?(2),
ling Yy Z 2 _ ? 2, 2 we can deduce that
oo L2(I) v L2(I) _ '
|17, 2 (98) Y1, — y strongly in H/2(Q). (106)
=lim |-=== -z,
e=0]| v (1))

Then we have, on the one hand, that

Otherwise, (56), and (96),, with

”yZe - MOHiz(ro) < ||y25 - ﬁOsHiz(ro) + HﬁOe - “OHiZ(ro)v

‘%_a_yz :‘%_Z 2l (107)
ov ov 2(ry) ov d () ov L2(I)
Y1, 0
_2(%_%7 a_y_zd> ’ lead to
v v LA(I'y)
(99) V. — U strongly in L2(Iy). (108)
. . Thus,
with (87); and (98), imply that
Ay =0inQ,
Wie Y|P _ oy 109
] v I oo v=conrs, Y=tonr, P
ie., being well posed, with ¥,, as solution, for
Phe _, a—ystrongl}’ian(rl) (101) $=Y2elr, € L*(I'y) andf:% € L*(I), (110)
ov ov ’ ’ o I
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it follows from

(111)

Vaelr, — o strongly in L*(I'),
o 0
92e v strongly in L*(I"}),
ov r, ov r
Voe — ¥ weakly in H3/2(£2),

that

V. — y strongly in H>2(Q).

Which ends up proving the announced result.

(112)

O

3.3. Approached Optimality System. We prove the following

result:

Theorem 3. Let &>0. The control u, = (uy,, U,,) is unique

solution of (52) if and only if there exists

Wi, W, € L2(T1), V100 Ve € H/?(R) and p,, € HY?(Q),

such that the quadruplet

{(ﬂOE’ ﬁle)v (wle’ EZE)’ (7167728)’p26}’

(113)

(114)

is a solution of the optimality system defined by systems

dy _ _ —
%zuls only, y,.,=w,, only,
Ap,, =0 inQ,
0ps, 0y,
£=0 Iy, =-0,| =—= -
o0 only, Ppi, 2(01/ Z4

the estimates

Upe

Haylf =

L*(Ty)

<eand [[y,, = Uoell 2, <é

(115)

(116)

onl’,

(117)

(118)
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and the variational inequalities system

Vv = (vy, V1) € U gas
(Notloe: Vo = Uoe)12(ry)
(N\t1, + Paes Vi = 1) 2(ry)

0,

>
>0.

Proof. For all >0, we have existence of

wlsa EZS € Lz(rl) and?ls’ 726‘ € LZ(‘Q)7

such that
Ay, =0 inQ,
_ oy, _
yls:u0e OnFO’ 3)/11/ - le Onrlv

dy _ —_
a;giulg onl’y, Yy, =W, only,
. _
Do <eand =Tl <e
ov L2(Iy)

So let v=(vp, v;) € 4,4 and 1 € R*; posing

1. = 1 (Vo = Uge, Wy,) = 1(0,W,,) and ¢,

=y (V1 = Uy Wy) = ¥2(0,W5,).

let us begin by noting that

and

A¢1€ - 0 inQ,
— a¢15
¢1£‘F0 =Vo — Upe> W r =0,
A¢26 =0 inQ,
a¢28

o |, = Vo = Uges Prelr, = 0.

It therefore follows, on the one hand,

]E(ﬁOS + l(VO - ﬁ0&‘)7 ﬁ16) = k(ﬁOev ﬂlg)
22N,

T

which gives

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

llvo = ﬂOssz}(ro) + ANo(oes Vo = Yoe)r2(ry)

(127)

ETe(Foe + vy — 1), Uye) im0 = No(Hoes Vo = Hoe)12(ry)s

(128)
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and on the other hand,

Je(top, typ + Ay = y,)) = Jo (U, Uy,)
226, 2N,

2 1l + S = Tl
dy O _ _
+ /16’2< gzie -z, aje) e + ANy (U1, V1 = ule)Lz(I“o)v
(129)
and therefore
d/ljf (”Os’ﬁle + )“(Vl uls))lﬂ*O
dy 0
_ 02( yZe -z ¢2&> (130)
()1/ LZ(I—-I)

+ Ny (e, Vi = Uie)r2(ry)-

So that with the first-order Euler-Lagrange conditions, we
obtain that the optimal control #%, = (#,, 1) is the unique
element of %, satisfying.

Vv = (Vo, V1) € g, No(oes Vo = Uoe)12(r,)

dy 0
> 0’ 92 V2e -z ¢2£‘
ov o))

+ N (1o Vi = Ure)z(r,) 20

(131)

Let us then introduce the adjunct state p,, by

APZE =0 an,
a £ a_ £
%:O only, p,=-0, (% - zd> onl.
(132)
We immediately have, with (132),
(p2§’ Ad)Ze)LZ(_Q) = (plgv Vi — ﬁ1e)L2(r0)
(133)

o (D,
2 ov > ov LZ(FI).

Then, the variational inequalities system (131) finally
reduces to

Vv = (vy, V1) € Ua,

(Notoe Vo = toe)12(ry) 20, (134)
(Nitl1e + Pogs Vi = Uie)2(ry) 20,
and we thus end up proving the announced result. O

3.4. Singular Optimality System. From the results of Section 3.2,
we have

11
g, — Uy stronglyin L*(I), (135)
Uy, — u; stronglyin L?(I)
and
V1. — y stronglyinL?(Q), (136)
¥,. —> y stronglyin L*(Q),

where (u, y) is the optimal control-state pair of (43)—(45).

Then it follows, from the fact that the mixed Dirichlet—
Neumann problem (117) is well-posed, there exists p, €
H3/?(Q) such that

P2. — P, strongly in L2(Q). (137)

Then, we easily pass to the limit, in the results of the
previous theorem, to obtain the following characterization
of the optimal pair (u, y).

Theorem 4. The control-state pair (u, y) is unique solution of
(43)—(45) if and only if the triple {u, y. p,} (with p, € H? (2)
given by (137)), is solution of the singular optimality system
defined by systems

Ay=0 in&,
y = Uy, a_i:”I onl, (138)
and
Ap, =0 inQ,
‘;i;: 0 only pr=-6, <Z_i _ Zd> onr,. (139
and the variational inequalities system
Vv = (vo, V1) € U a,s
(Noto, Vo = to) 12(r) >0, (140)

(N1u1 +p2,V1 _”1)L2(r0) ZO

Remark 7. As we indicated earlier, the present analysis
addresses the question of the control of the Cauchy problem
without using any other assumption than the sufficient ones
of nonvacuity, convexity, and closure of the sets of admissi-
ble controls. The density results obtained by the interpreta-
tion made of the initial problem being enough to achieve
convergence of the process. Moreover, the sole intervention
of the adjunct state p, in the optimality system characterizing
the optimal control-state pair confirms the intuition that we
could be satisfied only with the state y, in the interpretation
that we make of the initial system as an inverse problem.
That is to say, just consider the system (18) with the corre-
sponding observation objective in (15).
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4. The Distributed Observation Problem

Let us consider here the cost function

J(v,z) = 5 llz - Zd”iZ(_Q) + By ||V0||]%2(r0) + EY ||V1||22(1-0)7
(141)

being interested in the control problem

inf{J(v,2); (v,z) € &}. (142)

We begin again by noting, as is obvious, that

Theorem 5. The optimal control problem (142) admits a
unique solution, the optimal control-state pair (u, y).

It follows, again by the Euler—Lagrange first-order opti-
mality condition, that the optimal control-state pair (1, y) is
then characterized by the variational inequality

Y = 24, 2= ¥)12() + No(to, Vo — o) 12(r,)

+Ny (U1, vi = 1)y 20, V(v,2) € . (143)

Let us now, by the controllability method, define a sin-
gular optimality system where state and control are indepen-
dent, characterizing the optimal solution (u, y).

4.1. The Controllability Method. We still assume that o # ().
Then, for all

v=(vy, V) € ¥,q and >0, (144)

we have that, there exist

Wye, Whe € Lz(rl) and y; (v, wy,), y2(v1, wy,) € H3/2(g),
(145)

such that
Ay, (vo,wy) =0 inQ,

dy
y1(vo,wy,) =vy only, J(Vo’wls) =w;, onl7,

ov
(146)
Ay, (viswy) =0 in&,
0
%(Vlvwle) =wv; onl, )’2(V1,w2e) =w,, onl7,
(147)

d
H%(%s W) =V <eand |ly,(vi, wye) = voll 2, <

L*(Iy)
(148)

Then, we consider, for 6;,6, € R, : 6, 4+ 0, = 1, the func-
tional
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0
Je(Vo, v1) :?1 lly1(vo, wie) = Zd”il(g)

2w g (149)
T A P
being interested in the control problem
inf{J. (v, v1); v= (v, v1) € Upa}- (150)

We immediately have the following result.

Proposition 4. For all £>0, the control problem (150) admits
a unique solution, the optimal control U, = (Ug,, Uy,).

4.2. Convergence of the Method. Let £>0; we have

Wy, W,, € L*(I'}), and 7,,.7,. € H/*(Q), (151)
such that
Ay,,=0 inQ,
L . (152)
Vie =g, only, 3)/; =w,, only,
Ay,. =0 inQ,
0y B o (153)
%:uu only, y,,=w,. only,
oy _ _ _
H (311/8 “U| <€ and |y,, — o.ll2(r,) <e (154)
L*(Iy)
with
Je(toe, t1e) < Te(vo, v1), Vv = (o, V1) € U (155)
We verify here again that we have
]E(ﬂOS’ﬁle) Sla(”(ﬁ”l) :]<u7y)’ (156)

from where we again deduce the existence of constants C; €
R*, independent of &, such that

Viellz <Cv P26l < G

~ 7 157
ey <Cor el <G )
From which, it follows although there exists
g, U, € L*(I'y) andy, =y =y, € L*(Q), (158)
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such that
?09 — ?0 weakly ?an(ro)’ (159)
Uy, — u;  weaklyin L*(Iy),
and
?18 — 21 weakly %an(_Q), (160)
V2e — ¥, weaklyinL?(£2),
with (#,y) admissible.
Thus, it follows that
J(u,y) <J(4.y). (161)
so, by passing to the limit in (156), that
J(.y) <J(u.y) <J(4.y), (162)
and consequently
(u,y) = (u.y), (163)

ending there to prove the following proposition:

Proposition 5. For all &>0, the optimal control U, = (#,,
Uy,), solution of (150)is such that the control-state pair (u,,

y,) satisfied

Uy, — uy weaklyin L*(Iy),
U, — u, weaklyinL?(I), (164)
Ve — ¥ weaklyin L*(Q),
V.. — vy  weaklyin L?(£),

where (u,y) is the optimal control-state pair of (43), (141),
(142).

Moreover, we have the following theorem:

Theorem 6. The optimal control U, = (., Uu,,) and the

corresponding  state V.= V1, Vye) are such that,
when e — 0,
Uy, — Uy stronglyin L*(I,), (165)
U, — u; stronglyinL*(I),
and
V. — y stronglyinL*(£), (166)
V2. — ¥ stronglyin L*(2),

where (u,y) is the optimal control-state for the control prob-
lem (43), (141), (142).

13
Proof. From the previous results, we have that
Uy, — uy weaklyin L2(Iy), (167)
Uy, — uy  weaklyin L2(Iy),
V1. — y weaklyinL*(Q), (168)
V2. — ¥y weaklyin L*(Q),
and
](”7)’) Slgl_l;% ]s(ﬂOE?ﬁle) 51(”7)’% (169)
this last result can still be written
ly = zallf2 g + NolluollZ ) + NillalZ2
= lim (el 71 = 2all22 gy + O 7 - zdnm) (170)

N 2y + Nl )

But then, the norms being continuous, a fortiori weakly
lower semicontinuous, we have with (167) and (168) that

||”0||i2(r0) < lifgl_)ionf ||ﬁo‘s||i2(ro)’
s,y < T {[yl|7 ). (171)
ly = zallf2(o) < liminf (|7, - z4llf2 g
ly = zallf g < lminf ([, = zall?2 g,
so also
ol 72,y < lim inf oellZ2r,y)-
ol < liminf (7,17 ).
Iy = zall2a gy < liminf (01]71, = z4ll3 g
+ 01y, - ZdH%Z(g))'
(172)

So that, with (170), it follows:

wollZ2 ) = lim [1Zoe 21,

”ulHLZ (Fy) — 151_1;% H”le”]}

o+ 0l72s — Zallg))-
(173)

Iy = 2l g = lim (elm 2l

But then, since
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HaOE - uOHiZ(rO) + Hﬁls - ”1||%2(r0) :HﬁOeH%Z(ro) + ||“0||i2(r0) + Hals‘lil(ro) + ||”1||%2(r0)

= 2(Ho,, uO)LZ(FO) - 2(uy,, ul)LZ(I"O)’

we obtain, to the limit, with (167), (173),, and (173),, that

; = 2 - 2 —
lim (1170 = oy + [T0e = w2 ) =0, (175)

ie.,

Uy, — Uy stronglyin L*(I), (176)

Upe — Uy

strongly in L*(I'y).
Moreover, noting that we deduce from (173), that

lim (171 = zalliz(g) = Iy = 2alli ) =1im (72 = 2all7q).

(177)
it follows well with
1716 _)’”12}(9) =7 - Zd”iz(_()) +[ly - ZdH]Z}(_Q)
=201~z ¥ - Zd)LZ(Q)v
(178)
and
(529 _)’H/z}(g) = [|7e - Zd”iZ(g) +[ly - ZdHiZ(Q)
=202 —2a. ¥~ Za)2(0)»
(179)
that
V. — y stronglyinL*(), (180)
¥y, — ¥ stronglyin L*(£2).
O

4.3. Approached Optimality System. We show here that, for
all £>0, the control @, = (#,, 4,,), optimal solution of the
problem (150), is characterized by the optimality system
defined by the following theorem:

Theorem 7. Let &>0. The control U, = (Hy,, U,,) is unique
solution of the problem (150) if and only if there exists

Wi, Wy, € Lz(rl)7 7187725 € H3/2(_Q), andple’pZE € H3/2(‘Q)’
(181)
such that the quadruplet

{(EOevﬁle)’ (EIS’EZS)’ (yls’yZe‘)’ (ple’pZa‘)}’ (182)
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(174)

\
is a solution of the optimality system defined by systems

Ay,,=0 inQ,
_ ay _ (183)
Vie = Uoe 0nr07 glig:wle Onrlv
Ay, =0 in 2,
Pire - (184)
%:”15 only, ¥, =W,y only,

Ap1. =071 —22) InQ

op1, (185)

plEZOOnro, gll/“‘:OOnrl,

Asz = 92@28 - Zd) in€,

g 186
ngzoonro, ngzoonrl, ( )
ov

the estimates
e _ _
e <eand [y, ~ oy < (187)
ov 12(Iy) 0
and the system of variational inequalities
Vv= (V07 Vl) € %adv

— op;, _

(NouOS + %, Vo = ”08) 20, (188)
v L*(I)
(W16 = Pags V1 = Wie)2(r,) 20.

Proof. Let £>0. We have that there exists a unique control
U, = (Ug,, U1,) € U ,q optimal solution of (150), with

wlesEZE € Lz(rl) and?le’?Ze € H%<Q), (189)
such that

Ay,,=0 inQ,
oy 190
yls:ﬁOS Onrm ;lezwle Onrl’ ( )

v

Ay,., =0 inQ,
ay 191
&:ﬁle only, Y, =W, only, (191)

ov
Yy _
H 01 — Uy, <eand [[y,, = Uoell 2, <e (192)
v 12(Iy)

Soletv= (v, v;) € %, and 1 € R*; one easily checks that the
functional J, is differentiable with respect to 7, and #, ., with
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e (Fop + Avy = o), Ure) 1o = 01 (71 — 2, $1e)r (o)
+ No(Hoes Vo = Hoe) 12(ry)

(193)

where we denote by ¢, =y, (Vo — U, W1,) — ¥ (0, W) the
solution to

A¢le =0

1 = Vo — Ug,

in Q,
(194)

d
onl, flE:O onl,
v

and

%]e (toer Uy + A0y = Ule))hzo =0, — 24, ¢2£)L2((2)
+ Ny (Ures Vi = Ure) 2y

(195)
where ¢,. =y, (v = Uy, W) ~)2 (0,w,,) is given by
Ay, =0 inQ,
0 196
%:Vl_ﬂls Onro, ¢28:0 Onrl. ( )
v

Thus, the Euler-Lagrange first-order optimality conditions
make it possible to obtain that the optimal control #, = (,,
U,) is the unique element of %, satisfying the optimality
condition

Vv= (v, 1) € Uypas
01(V1e = Za- Pre)z(@) + No(Uoes Vo = Uoe) 12(ry)
0 (V2e = 2a- Pae)iz(@) + Ni(Ures Vi = Uie) 2y

Y%
e

—~

197)

Let us then introduce the adjunct states p;, and p,,, respec-
tively, defined by

Aplé‘:gl@le_zd) in€Q,

op,, 198
p1€=00nr0, %:Oonfl, ( )
v
and
Apye = 0,(¥5. —24) in2,
5] 199
&zoonfo, pr.=0o0nTl7. (199)

ov
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Hence, it follows, according to (194) and (198), that

= api,
01(V1e — 2a - ¢16)L2(.Q) = ( 0;

> Vo — ﬁOe) )
LX(Iy)
(200)
and, from (196) to (199), that

0:(V2e = 2ar P2e)i2(0) = (P2 Vi = Uie)i2(ry-  (201)

Which gives that the optimality condition (197) is rewritten

Vv =(vy,v) € Ua,

— aplg —
Notto, + =275 vo — Uoe 20, (202)
v L* ()
(N\T1, = Pags Vi = Ure)2(r) 20.
We thus obtained the announced result. I

Passing to the limit in the last results above and calling
on those of Section 4.2, we succeed, in the last section below,
in defining the singular optimality system characterizing the
control-state pair (u, y), optimal solution of (142).

4.4. Singular Optimality System. From the results of Section
4.2, we have that

Uy, — g stronglyin L*(I'y), (203)
U, — u, stronglyinL?*(I;)

and
Ve — y stronglyinL?(Q), (204)
¥, — ¥ stronglyin L?(Q).

Then, the problems (185) and (186) being well-posed, it
follows that there exists

pr.p2 € H3(Q), (205)

such that

pi. — p1 stronglyin H/?(Q), (206)
pae — P, strongly in HY?(Q).
Thus, the singular optimality system for the optimal

solution (u,y) of (142), is obtained as follows, by passing
to the limit in the results of Theorem 7.

Theorem 8. The control-state pair (u, y) is a unique solution
of (142) if and only if the triple {u,y,p}, with
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p=(p1.p2) € (H%(Q))zv (207)

given by (205) and (206), is a solution of the optimality system
defined by the systems

Ay=0 ingQ,
oy (208)
= s —_ = I—"
y Uy al/ upont g
Apy=06,(y —z;) ing,
0 209
pr=0o0nTl, %:00nr1, (209)
v
Ap, =0,(y —z4) in&,
0 210
ﬂ:OOHFO, p,=0onl", ( )

ov

and the variational inequalities system
Vv = (vo, 1) € % aas

.
oUo + s Vo — U >0,
ov L2(1"0)

(Nlul —pz, vV — ”1)L2(ro) ZO

(211)

We end well here, with this last case of distributed obser-
vation, the analysis of the control of the elliptic Cauchy
problem by the controllability method. The results obtained
above end up consolidating the intuition mentioned in the
introduction and clarifying the point of view proposed here.
This point of view, consisting of interpreting the Cauchy
problem as an inverse problem, makes it possible to dispense
with the Slater-type assumption (10).

Finally, we note, as underlined in the introduction, that
in the case of distributed observation, the interpretation of
the problem could be satisfied, depending on whether it is
easier to observe/control one or the other of the Cauchy data
from only one of the systems (146) and (147), with the
corresponding observation objective in (148).

5. Conclusion

In this work, we succeed in characterizing the optimal
control-state pair of the control problem for the elliptic ill-
posed Cauchy problem, using the controllability concept.
The method consists of interpreting the initial problem as
a system of inverse problems and, therefore, a system of
controllability problems. An approach that allows us to
obtain, in the general case with constraints on the control,
a strong and decoupled singular optimality system. And that,
without using any additional assumption, such as that of
nonvacuity of the interior of the sets of admissible controls,
a Slater-type assumption that many analyses have had to use.
Beyond that, the results obtained here confirm the intuition,
announced in [2], that the analysis by controllability can be
satisfied with a single inverse problem. In sum, therefore,
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(i) for the control problem with boundary observation
of the state, the analysis could be content with the
system (13) with the corresponding observation
objective in (15);

(ii) for the control problem with an observation of the
flow, the analysis could be content with the system
(14) and the corresponding observation objective in
(15);

(iii) finally, for the problem with distributed observation,
either of the systems (13) or (14), with the corre-
sponding observation objective in (15), should suffice.

We think that the difficulty to circumvent will consist in
knowing how to obtain strong convergence of the process.
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