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In this paper, we consider an initial value problem for the 2-D compressible Navier-Stokes equations without heat conductivity.
We prove the global existence of a strong solution when the initial perturbation is small in H2 and its L1 norm is bounded.
Moreover, we derive some decay estimate for such a solution.

1. Introduction

The 2-D compressible Navier-Stokes equations for ðx, tÞ ∈
ℝ2 ×ℝ+ are rewritten as

ρt + div ρuð Þ = 0,
ρuð Þt + div ρu ⊗ uð Þ+∇P ρ, θð Þ = div T ,
ρEð Þt + div ρEu + Puð Þ = div uTð Þ + kΔθ,

8>><
>>: ð1Þ

which govern the motion of gases, where ρ, u, P, θ stand
for the density, velocity, pressure, and absolute temperature
functions, respectively. E = ð1/2Þjuj2 + E is the specific total
energy with E as the specific internal energy, T = μð∇u+∇
uTÞ + λðdiv uÞI is the stress tensor, k is the coefficient of heat
conduction, I is the identity matrix, and μ and λ are the
coefficients of viscosity and second coefficient of viscosity,
respectively, satisfying

μ > 0, λ + μ ≥ 0: ð2Þ

As one of the most important systems in fluid dynamics,
there are lots of results on the well-posedness, blow-up phe-
nomenon, large time or asymptotic behavior, and optimal
decay rates of solutions based on different assumptions in
different cases and function spaces. Among them, for the

case with a positive coefficient of heat conduction k > 0,
Kazhikhov and Shelukhin studied the global existence in
one dimension [1, 2]. The global existence of multidimen-
sional case was established in [3–6]; more results on global
existence for different kinds of solutions can be found in
[3–10]. For the study of the large time behavior, asymptotic
behavior, and optimal decay rates of solutions, one can refer
to [4, 11–15]. The references [15–17] and [10, 18] restricted
the systems under the case of k = 0 and k > 0, respectively.
Danchin [8, 9] proved the existence and uniqueness of
strong solutions to the compressible Navier-Stokes equa-
tions in hybrid Besov spaces, and Tan and Wang [6] studied
the global existence of strong small solutions in Hl, l ≥ 4. For
the case of k = 0, Tan and Wang [5] proved the global solv-
ability in three-dimensional space for the less regular solu-
tions to the compressible Navier-Stokes equations in the
H2-framework; however, they needed to assume that the L1

-norm of the initial perturbation is bounded which is impor-
tant in the proof of global existence. Later, ref. [3] removed
this assumption by using some techniques with regard to the
homogeneous Besov space and the hybrid Besov space.

Compared to the Cauchy problem, the equilibrium state
of pressure increases with time. Xin et al. [16, 17, 19] inves-
tigated the blow-up phenomenon of the compressible
Navier-Stokes equations in inhomogeneous Sobolev space;
they proved that the smooth or strong solutions will blow
up in any positive time if the initial data have an isolated
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mass group, no matter how small they are. On the other
hand, we would like to introduce some research on the
Serrin-type regularity (blow-up) criteria for the incompress-
ible Navier-Stokes system. These criteria are obtained from
[20, 21]; later, many authors successfully extended these
blow-up criteria to the compressible flow (for example,
[22–29] and references therein).

In this paper, we consider this problem in ℝ2 with the
case k = 0 and assume that the gas is ideal and polytropic,
i.e., P = Rρθ, E = cvθ, P = AeS/cvργ, where R > 0 and A > 0
are the universal gas constant, γ > 1 is the adiabatic expo-
nent, S is the entropy, and cv = R/ðγ − 1Þ is a constant
which represents the specific heat at a constant volume.
Furthermore, we also assume that R = A = 1 without loss
of generality. Then, we have

ρ = Pcv/ cv+1ð Þe− S/ cv+1ð Þð Þ, ð3Þ

and system (1) in terms of variables ρ, u,E can be
reformulated in terms of variables P, u, S :

Pt +
1 + cv
cv

P div u + u · ∇P = Ψ u½ �
cv

,

ut + u · ∇ð Þu + ∇P
ρ

= μ

ρ
Δu + μ + λ

ρ
∇ ∇·uð Þ,

S t + u · ∇ð ÞS = Ψ u½ �
P

,

8>>>>>>>><
>>>>>>>>:

ð4Þ

where Ψ½u� = ðμ/2Þj∇u+∇uT j2 + λðdiv uÞ2 is the classi-
cal dissipation function. We are concerned with the initial
value problem to system (4) with initial data satisfying

P, u, Sð Þ 0, xð Þ = P0, u0, S0ð Þ xð Þ⟶ p∞, 0, s∞ð Þ as xj j⟶∞,
ð5Þ

where p∞ > 0 and s∞ are the given constants. For the
global existence and the decay estimate in the case of
two dimensions, we have the following theorem.

Theorem 1. Let p∞ > 0, s∞ be two constants. There exists a
small constant ε0 such that if ðP0 − p∞, u0, S0 − s∞Þ ∈H2

ðℝ2Þ, kP0 − p∞, u0, S0 − s∞k2 < ε0, and kP0 − p∞, u0kL1ðℝ2Þ
are bounded, then there exists a unique global solution
ðP, u, SÞ of the initial value problems (4) and (5) satisfying

P − p∞, uð Þ tð Þk k22 +
ðt
0
∇P τð Þk k21 + ∇u τð Þk k22dτ ≤ C P0 − p∞, u0ð Þk k22,

S − s∞ð Þ tð Þk k2 ≤ C P0 − p∞, u0, S0 − s∞ð Þk k2 exp C P0 − p∞, u0ð Þk k2
À Á

:

ð6Þ

Finally, there is a constant C0 such that for any t ≥ 0, the
solution ðP, u, SÞ has the decay properties

∇ P − p∞, uð Þ tð Þk k1 ≤ C0 1 + tð Þ−1,

P − p∞, uð Þ tð Þk kLq ≤ C0 1 + tð Þ1/q−1, 2 ≤ q ≤ 4,

P − p∞, uð Þ tð Þk kLq ≤ C0 1 + tð Þ− 2+qð Þ/2qð Þ, 4 < q ≤∞,

∂t P, u, Sð Þ tð Þk kL2 ≤ C0 1 + tð Þ− 1/2ð Þ: ð7Þ

Remark 2.

(1) The Lq decay estimates of (7) for 2 ≤ q ≤ 4 are opti-
mal which coincide with the Lq decay of the heat
equation and are much slower than the decay rate

in ℝ3: In [3, 5], they obtain that kuðtÞkL2ðℝ3Þ ≤ C

ð1 + tÞ−ð3/4Þ, which ensures that
Ð∞
0 kuðtÞk2L2ðℝ3Þdt is

bounded. But in ℝ2, we only have kuðtÞkL2ðℝ2Þ ≤ C

ð1 + tÞ−ð1/2Þ, and therefore,
Ð∞
0 kuðtÞk2L2ðℝ2Þdt is

unbounded. This is the main difficulty about the
proof of existence in ℝ2 (see Section 3 below)

(2) Due to k = 0, we cannot gain any diffusion of S , and
the L∞ decay estimate of (7) is slower than the decay
of the heat equation

1.1. Notation. In this paper, we use Lp,Hm to denote the Lp

and Sobolev spaces on ℝ2 with norms k·kLp and k·kHm =
k·km, respectively. We use C to denote the constants depend-
ing only on physical coefficients and C0 to be constants
depending additionally on the initial data.

This paper is organized as follows: In Section 2, we refor-
mulate problems (4) and (5), introduce two main proposi-
tions, and illustrate that we only need to prove Proposition
4. The rest of the paper is devoted to proving Proposition
4. The proof of the energy estimate part is in Section 3,
and the decay rate part is in Section 4.

2. Reformulated System

We reformulate system (4) by setting

α1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cv
1 + cvð Þρ∞p∞

r
, α2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + cvð Þp∞
cvρ∞

s
, α3 =

μ

ρ∞
, α4 =

μ + λ

ρ∞
,

ð8Þ

where ρ∞ = ρðp∞, s∞Þ.
Changing variables as ðP, u, SÞ⟶ ðp + p∞, α1v, s + s∞Þ,

initial value problems (4) and (5) are reformulated as

pt + α2∇·v = f ,
vt + α2∇p − α3Δv − α4∇∇ · v = g,
st + α1 v · ∇ð Þs = h,
p, v, sð Þ 0, xð Þ = p0, v0, s0ð Þ xð Þ⟶ 0, 0, 0ð Þ as xj j⟶∞,

8>>>>><
>>>>>:

ð9Þ
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where the nonlinearities are given by

f p, v, sð Þ = −
1 + cvð Þα1

cv
p∇·v − α1v · ∇p +

Ψ α1vð Þ
cv

,

g p, v, sð Þ = −α1 v · ∇ð Þv − 1
α1

1
ρ
−

1
ρ∞

� �
∇p

+ μ
1
ρ
−

1
ρ∞

� �
Δu + μ + λð Þ 1

ρ
−

1
ρ∞

� �
∇∇ · u,

h p, v, sð Þ = Ψ α1vð Þ
p + p∞

: ð10Þ

For any T > 0, we define the solution space by

X 0, Tð Þ = p, v, sð Þ: p, s ∈ C0 0, T½ Þ ;H2 ℝ2À ÁÀ Á
∩ C1 0, T½ Þ ;ðÈ

ÁH1 ℝ2À ÁÞ, v ∈ C0 0, T½ Þ ;H2 ℝ2À ÁÀ Á
∩ C1 0, T½ Þ ;ð

Á L2 ℝ2À ÁÞ,∇p ∈ L2 0, Tð Þ ;H1 ℝ2À ÁÀ Á
,∇v ∈ L2 0, Tð Þ ;H2 ℝ2À ÁÀ Ág,

ð11Þ

and the solution norm by

X Tð Þ = sup
0≤t≤T

p, v, sð Þ tð Þk k22 +
ðT
0

∇p τð Þk k21 + ∇v τð Þk k22dτ:

ð12Þ

Taking a standard contraction mapping argument, we
have the following propositions for the local existence
(see [30]).

Proposition 3 (see [3]). Suppose that the initial data satisfy
ðp0, v0, s0Þ ∈H2ðℝ2Þ and inf

x∈ℝ2
fp0 + p∞g > 0. Then, there

exists a positive constant T0 depending on Xð0Þ such that
Cauchy problem (9) has a unique solution ðp, v, sÞ ∈ Xð0,
T0Þ satisfying

inf
t∈ 0,T0½ �,x∈ℝ2

p t, xð Þ + p∞f g > 0,X T0ð Þ ≤ 2X 0ð Þ: ð13Þ

This, together with the proposition below, is sufficient to
derive Theorem 1; the proof is based on the standard
continuity argument.

Proposition 4. Let ðp0, v0, s0Þ ∈H2ðℝ2Þ and ðp0, v0Þ ∈ L1
ðℝ2Þ; for any T > 0, there exists ε > 0 such that the solution
ðp, v, sÞ of the initial value problem (9) in ½0, T� satisfies

p, v, sð Þk k2 < ε, ∀t ∈ 0, T½ �: ð14Þ

Then, this solution is unique with the energy estimates

p, vð Þ tð Þk k22 +
ðt
0
∇p τð Þk k21 + ∇v τð Þk k22dτ ≤ C p0, v0ð Þk k22, ð15Þ

s tð Þk k2 ≤ C p0, v0, s0ð Þk k2 exp C p0, v0ð Þk k2
À Á

, ð16Þ
and the decay properties

∇ p, vð Þ tð Þk k1 ≤ C0 1 + tð Þ−1, ð17Þ

p, vð Þ tð Þk kLq ≤ C0 1 + tð Þ1/q−1, 2 ≤ q ≤ 4, ð18Þ

p, vð Þ tð Þk kLq ≤ C0 1 + tð Þ− 2+qð Þ/2qð Þ, 4 < q ≤∞, ð19Þ

∂t p, v, sð Þ tð Þk kL2 ≤ C0 1 + tð Þ− 1/2ð Þ: ð20Þ

The rest of paper is used to prove Proposition 4.

3. Energy Estimate

For later use, we introduce some useful analytic results.

Lemma 5. Let f ∈H2ðℝ2Þ; then, we have the following
Sobolev inequalities:

fk kL∞ ≤ fk kH1+ε ≤ fk k2, ∀ε > 0,

fk kL4 ≤ fk k1/2L2 ∇fk k1/2L2 ≤ fk k1,
fk kLq ≤ fk k1, 2 ≤ q ≤ 4:

ð21Þ

Lemma 6 (lower-order energy estimate for ðp, vÞ). Under
the assumption of Proposition 4, there exists a δ1 > 0 arbi-
trarily small and independent of ε, such that

1
2
d
dt

p, vð Þ tð Þk k2L2 + 2δ1 ∇p, vh i tð ÞÀ Á
+ C ∇v tð Þk k2L2 + Cδ1 ∇p tð Þk k2L2

≤ Cε v, ∇2v
À Á

tð Þ 2
L2
+ Cδ1 ∇2v tð Þ 2

L2
, ∀0 ≤ t ≤ T:

ð22Þ

Proof. Multiplying ð2:1Þ1, ð2:1Þ2 by p, v, respectively, integrat-
ing them over ℝ2 and then adding them together, we obtain

1
2
d
dt

p, vð Þk k2L2 + α3 ∇vk k2L2 + α4 ∇·vk k2L2 = p, fh i + v, gh i:
ð23Þ

hp, f i and hv, gi can be estimated as follows. For the
first term, Lemma 5 together with (14) and the Hölder
inequality implies

p, fh i = −
1 + cvð Þα1

cv
p, p∇·vh i − α1 p, v · ∇ph i + 1

cv
p,Ψ α1vð Þh i

= −
1 + cvð Þα1

cv
+ α1

2

� �
p2,∇ · v

 �

+ α21
cv

p,Ψ vð Þh i

≤ C pk k2L4 ∇vk kL2 + pk kL∞ ∇vk k2L2
À Á

≤ C pk kL2 ∇pk kL2 ∇vk kL2 + pk k2 ∇vk k2L2
À Á

≤ Cε ∇pk k2L2 + ∇vk k2L2
À Á

:

ð24Þ
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For the second term,

v, gh ij j ≤ C v, v · ∇ð Þvh ij j + v, 1
ρ
−

1
ρ∞

� �
∇p

� �����
����

�

+ v, 1
ρ
−

1
ρ∞

� �
Δv

� �����
���� + v, 1

ρ
−

1
ρ∞

� �
∇∇ · v

� �����
����
�
:

ð25Þ

Similar to the proof of (24), by Lemma 5, (14), the
Hölder inequality, and the fact that

1
ρ
−

1
ρ∞

~O 1ð Þ p + sð Þ, ð26Þ

which is derived from (3) and (14), we have

v, v · ∇ð Þvh ij j ≤ C vk k2L4 ∇vk kL2 ≤ Cε ∇vk k2L2 ,

v, 1
ρ
−

1
ρ∞

� �
∇p

� �����
���� ≤ vk kL2

1
ρ
−

1
ρ∞



L∞

∇pk kL2

≤ C vk kL2 p, sð Þk k2 ∇pk kL2
≤ Cε vk k2L2 + ∇pk k2L2

À Á
,

v, 1
ρ
−

1
ρ∞

� �
Δv

� �����
���� ≤ 1

ρ
−

1
ρ∞



L∞

v, Δvh ij j

≤ Cε ∇vk k2L2 ,

v, 1
ρ
−

1
ρ∞

� �
∇∇ · v

� �����
���� ≤ Cε ∇vk k2L2 : ð27Þ

Therefore,

v, gh ij j ≤ Cε v,∇vð Þk k2L2 + ∇pk k2L2
À Á

: ð28Þ

Hence, combining (23), (24), and (28) yields

1
2
d
dt

p, vk k2L2 + C ∇vk k2L2 ≤ Cε vk k2L2 + ∇pk k2L2
À Á

: ð29Þ

Next, we shall estimate k∇pk2L2 . Multiplying ð2:1Þ2 by
∇p and integrating them over ℝ2, we get

α2 ∇pk k2L2 = −vt ,∇ph i + α3 Δv,∇ph i+α4 ∇∇ · v,∇ph i + g,∇ph i
= −

d
dt

v,∇ph i + v,∇pth i + α3 Δv,∇ph i
+α4 ∇∇ · v,∇ph i + g,∇ph i

= −
d
dt

v,∇ph i − ∇·v, pth i + α3 Δv,∇ph i
+α4 ∇∇ · v,∇ph i + g,∇ph i

= −
d
dt

v,∇ph i + α2∇·v − f ,∇ · vh i + α3 Δv,∇ph i
+α4 ∇∇ · v,∇ph i + g,∇ph i,

ð30Þ

where

−f ,∇ · vh ij j ≤ Cε v,∇vð Þk k2L2 ,

g,∇ph ij j ≤ Cε v,∇v, ∇2v
À Á 2

L2
+ ∇pk k2L2

� �
:

ð31Þ

which are based on the similar calculation and Young’s
inequality. In brief, we obtain

α2
2 ∇pk k2L2 +

d
dt

v,∇ph i ≤ C ∇v, ∇2v
À Á 2

L2
+ Cε vk k2L2 : ð32Þ

Finally, multiplying (32) by δ1 that is small but fixed
and adding it to (29), we can derive (22). This completes
the proof of the lemma.

Next, we turn to estimate the higher-order energy for
ðp, vÞ.

Lemma 7 (higher-order energy estimate for ðp, vÞ). Under
the assumption of Lemma 6, there is a small enough but fixed
δ2 > 0, which is independent of ε, such that

1
2
d
dt

∇p, ∇2p
À Á

tð Þ 2
L2
+ ∇v, ∇2v
À Á 2

L2
+ 2δ2 ∇2p,∇v


 �
tð Þ

� �
+ C ∇2v, ∇3v

À Á
tð Þ 2

L2
+ Cδ2 ∇2p tð Þ 2

L2

≤ Cε 1 + δ2ð Þ ∇v tð Þk k2L2 + Cε ∇p tð Þk k2L2 , ∀0 ≤ t ≤ T:

ð33Þ

Proof. Applying ∇ to ð2:1Þ1, ð2:1Þ2 and multiplying by ∇p,
∇v, respectively, integrating them over ℝ2 and using the
same calculation technique as before, we get

1
2
d
dt

∇p,∇vð Þk k2L2 + α3 ∇2v
 2

L2

≤ ∇p,∇fh i + ∇v,∇gh i ≤ ∇p,∇fh i + Δv, gh i
≤ Cε ∇v, ∇2v

À Á 2
L2
+ ∇pk k2L2

� �
:

ð34Þ

Next, applying ∇2 to ð2:1Þ1, ð2:1Þ2 and multiplying by
∇2p, ∇2v, respectively, we can deduce

1
2
d
dt

∇2p, ∇2v
À Á 2

L2
+ α3 ∇3v

 2
L2

≤ ∇2p, ∇2 f

 �

+ ∇2v, ∇2g

 �

≤ ∇2p, ∇2 f

 �

+ ΔΔv, gh i,
ð35Þ
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where

∇2p, ∇2 f

 ��� �� ≤ Cε ∇2v, ∇3v

À Á 2
L2
+ ∇2p
 2

L2

� �
,

ΔΔv, gh ij j ≤ C ΔΔv, v · ∇ð Þvh ij j + ΔΔv, 1
ρ
−

1
ρ∞

� �
∇p

� �����
����

�

+ ΔΔv, 1
ρ
−

1
ρ∞

� �
Δv

� �����
����

+ ΔΔv, 1
ρ
−

1
ρ∞

� �
∇∇ · v

� �����
����
�
:

ð36Þ

The terms on the right-hand side are estimated as below:

ΔΔv, v · ∇ð Þvh ij j ≤ C ∇vk k2L4 ∇3v
 

L2

+ C ∇3v
 

L2
∇2v
 

L2
vk kL∞

≤ Cε ∇2v, ∇3v
À Á 2

L2
,

ΔΔv, 1
ρ
−

1
ρ∞

� �
∇p

� �����
���� ≤ 1

ρ
−

1
ρ∞

� �

L∞

∇Δv, ∇2p

 ��� ��

≤ Cε ∇3v
 2

L2
+ ∇2p
 2

L2

� �
,

ΔΔv, 1
ρ
−

1
ρ∞

� �
Δv

� �����
���� ≤ Cε ∇3v

 2
L2
,

ΔΔv, 1
ρ
−

1
ρ∞

� �
∇∇ · v

� �����
���� ≤ Cε ∇3v

 2
L2
: ð37Þ

Thus,

ΔΔv, gh ij j ≤ Cε ∇2v, ∇3v
À Á 2

L2
+ ∇2p
 2

L2

� �
, ð38Þ

1
2
d
dt

∇2p, ∇2v
À Á 2

L2
+ C ∇3v
 2

L2

≤ Cε ∇2v
 2

L2
+ ∇2p
 2

L2

� �
:

ð39Þ

Now applying ∇ to ð2:1Þ2 and multiplying by ∇2p,
we have

α2 ∇2p
 2

L2
= −∇vt , ∇2p

 �

+ α3 ∇Δv, ∇2p

 �

+ α4 ∇2∇·v, ∇2p

 �

+ ∇g, ∇2p

 �

:
ð40Þ

Similar to the estimate of k∇pk2L2 , we transform the
formula h−∇vt , ∇2pi as below:

−∇vt , ∇2p

 �

= −
d
dt

∇v, ∇2p

 �

+ ∇·Δv, pth i

= −
d
dt

∇v, ∇2p

 �

+ −α2∇·v + f ,∇ · Δvh i,
ð41Þ

and derive

α2
2 ∇2p
 2

L2
+ d
dt

∇v, ∇2p

 �

≤ C ∇2v, ∇3v
À Á 2

L2
+ Cε ∇vk k2L2 :

ð42Þ

Multiplying (42) by δ2 that is small but fixed, and
combining it with (34) and (39), we finally obtain
(33). This completes the proof of the lemma.

The lemma below gives the energy estimate for the
entropy s.

Lemma 8. For 0 ≤ t ≤ T , it holds that

d
dt

s tð Þk k22 ≤ C ∇v tð Þk k2 s tð Þk k22 + Cε ∇v tð Þk k22: ð43Þ

Proof. For each multi-index α with 0 ≤ jαj ≤ 2, we apply ∂αx to
ð2:1Þ3, multiply it by ∂αxs, integrate it on ℝ2, and then sum
them up to deduce

1
2
d
dt

sk k22 = −α1 〠
0≤ αj j≤2

∂αx v · ∇sð Þ, ∂αxsh i + 〠
0≤ αj j≤2

∂αxh, ∂αxsh i =W1 +W2:

ð44Þ

For W1, one has

W1 = −α1 〠
0≤ αj j≤2

v · ∇∂αxs, ∂αxsh i − α1 〠

1≤ αj j≤2
0≤ βj j≤ αj j−1

∂α−βx v · ∇∂βx s, ∂αxs
D E

,

ð45Þ

where, for each α with 0 ≤ jαj ≤ 2, one can infer that

v · ∇∂αxs, ∂αxsh i ≤ ∇·vk kL∞ ∂αxsk k2L2 ≤ ∇vk k2 ∂αxsk k2L2 , ð46Þ

and for each α, β with 0 ≤ jβj ≤ jαj − 1, 1 ≤ jαj ≤ 2, and
β ≤ α, it holds that

∂α−βx v · ∇∂βx s, ∂αxs
D E

≤ C ∇vk k2 ∇sk k21: ð47Þ

Therefore, we have

W1 ≤ C ∇vk k2 sk k22: ð48Þ
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Now, we turn to estimate W2; using (14), we obtain

W2 ≤ 〠
0≤ αj j≤2

∂αxhk kL2 ∂αxsk kL2 ≤ ε 〠
0≤ αj j≤2

∂αx
Ψ α1vð Þ
p + p∞

� �


≤ ε 〠

0≤ αj j≤2
β≤α

Cβ
α ∂α−βx

1
p + p∞

� �
∂βxΨ α1vð Þ


 ≤ Cε ∇vk k22:

ð49Þ

Combining (44) with (48) and (49) yields (43).

Now, we are in the position to prove the energy estimate
in Proposition 4.

Proof of (15) and (16). The first step is to prove (15),
energy estimate for ðp, vÞ. By defining

E tð Þ≔ p, vð Þk k22 + 2δ1 ∇p, vh i + 2δ2 ∇2p,∇v

 �

~ p, vð Þk k22,

F tð Þ≔ p, vð Þk k22 +
ðt
0
∇pk k21 + ∇vk k22dτ,

ð50Þ

and adding (22) and (33) together, one has

1
2
d
dt

E tð Þ + C ∇vk k22 + Cδ1 ∇pk k21 ≤ Cε 1 + δ1ð Þ vk k2L2 : ð51Þ

Integrating the above equation directly in time gives

F tð Þ ≤ C p0, v0ð Þk k22 + Cε 1 + δ1ð Þ
ðt
0
vk k2L2dτ

≤ C p0, v0ð Þk k22 + CεT 1 + δ1ð Þ sup
τ∈ 0,t½ �

vk k2L2 :
ð52Þ

Hence,

sup
τ∈ 0,t½ �

vk k2L2 + sup
τ∈ 0,t½ �

F tð Þ − vk k2L2
À Á

≤ C p0, v0ð Þk k22 + CεT 1 + δ1ð Þ sup
τ∈ 0,t½ �

vk k2L2 ,

ð53Þ

which implies

F tð Þ ≤ C p0, v0ð Þk k22, ð54Þ

when ε is small enough. In other words, (15) is valid.
The second step is to prove (16), the energy estimate for

s. Summing up (22), (33), and (43) gives

d
dt

y tð Þ ≤ C ∇vk k2 sk k22 + Cε vk k2L2 , ð55Þ

where

y tð Þ = p, v, sð Þk k22 + δ1 v,∇ph i + ∇v, ∇2p

 �À Á

~ p, v, sð Þk k22:
ð56Þ

Therefore,

d
dt

y tð Þ ≤ C ∇vk k2 + Cεð Þy tð Þ: ð57Þ

By Grönwall’s inequality and (15), we obtain

y tð Þ ≤ y 0ð Þ exp
ðt
0
C ∇vk k2 + Cεð Þdτ

� �

≤ y 0ð Þ exp
ðt
0

C ∇vk k22
2ε + 3Cε

2

� �
dτ

� �

≤ y 0ð Þ exp CTε + C p0, v0ð Þk k22
ε

( )

≤ Cy 0ð Þ exp C p0, v0ð Þk k2
È É

,

ð58Þ

which implies (16).

4. Decay Rates

In this section, we prove the decay rates in Proposition 4.

Proof of (17)–(20). Letting

G tð Þ≔ ∇p, ∇2p
À Á

tð Þ 2
L2
+ ∇v, ∇2v
À Á

tð Þ 2
L2

+ 2δ2 ∇2p,∇v

 �

tð Þ ~ ∇ p, vð Þk k21,
ð59Þ

we rewrite (33) as follows:

1
2
d
dt

G tð Þ + C ∇2v, ∇3v
À Á

tð Þ 2
L2
+ Cδ2 ∇2p tð Þ 2

L2

≤ Cε 1 + δ2ð Þ ∇v tð Þk k2L2 + Cε ∇p tð Þk k2L2 , ∀0 ≤ t ≤ T:

ð60Þ

Next, by adding k∇ðp, vÞk2L2 to both sides of the above
inequality, we deduce that for some constant α > 0,

d
dt

G tð Þ + αG tð Þ ≤ C ∇ p, vð Þk k2L2 : ð61Þ

Therefore,

G tð Þ ≤G 0ð Þe−αt + C
ðt
0
e−α t−τð Þ ∇ p, vð Þk k2L2dτ: ð62Þ

To deal with k∇ðp, vÞk2L2 , we rewrite the solution of
system (9) as

H tð Þ = e−tAH 0ð Þ +
ðt
0
e− t−τð ÞA f , gð Þ τð Þdτ, ð63Þ

where HðtÞ = ðpðtÞ, vðtÞÞ and A is a matrix-valued differ-
ential operator given by
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A =
0 α2 div

α2∇ −α3Δ − α4∇div

 !
, ð64Þ

and the solution semigroup e−tA has the following prop-
erty (see [31, 32]).

Lemma 9. Let k > 0 be an integer; then, ∀t ≥ 0,

∇ke−tAH 0ð Þ
 

L2
≤ C 1 + tð Þ− 1+kð Þ/2ð Þ H 0ð Þk kL1 + H 0ð Þk k1

À Á
:

ð65Þ

Then, gathering (63) and (65), one has

∇ p, vð Þk kL2 ≤ CK0 1 + tð Þ−1 + C
ðt
0
1 + t − τð Þ−1 f , gð Þ τð Þk kL1∩H1dτ,

ð66Þ

where K0 = kðp0, v0ÞkH2∩L1 and the nonlinear source can
be estimated as follows:

f , gð Þ tð Þk kL1 ≤ Cε ∇p tð Þk kL2 + ∇v tð Þk k1
À Á

,

f , gð Þ tð Þk k1 ≤ Cε ∇ p, vð Þ tð Þk k1 + ∇3v tð Þ 
L2

� �
:

ð67Þ

Hence,

∇ p, vð Þk kL2 ≤ CK0 1 + tð Þ−1 + C
ðt
0
1 + t − τð Þ−1 ∇ p, vð Þk k1 + ∇3v

 
L2

� �
dτ:

ð68Þ

Now, if we define MðtÞ = sup
0≤τ≤t

ð1 + τÞ2GðτÞ, then

∇ p, vð Þ τð Þk k1 ≤ C
ffiffiffiffiffiffiffiffiffiffi
G τð Þ

p
≤ C 1 + τð Þ−1

ffiffiffiffiffiffiffiffiffiffi
M tð Þ

p
, 0 ≤ τ ≤ t,

ð69Þ

which implies that

∇ p, vð Þ tð Þk k1 ≤ C 1 + tð Þ−1
ffiffiffiffiffiffiffiffiffiffi
M tð Þ

p
, 0 ≤ t ≤ T: ð70Þ

Combining (68) and (70) and letting ε be small enough,
we can deduce that

∇ p, vð Þk kL2 ≤ CK0 1 + tð Þ−1 + Cε
ðt
0
1 + t − τð Þ−1 1 + τð Þ−1

ffiffiffiffiffiffiffiffiffiffiffi
M τð Þ

p
dτ

+ Cε
ðt
0
1 + t − τð Þ−1 ∇3v

 
L2
dτ ≤ CK0 1 + tð Þ−1

+ C
ffiffi
ε

p ffiffiffiffiffiffiffiffiffiffi
M tð Þ

p ffiffi
ε

p ln 1 + Tð Þ
1 + t

� �

+ Cε
ðt
0
1 + t − τð Þ−2dτ

� �1/2 ðt
0
∇3v
 2

L2
dτ

� �1/2

≤ C 1 + tð Þ−1 K0 +
ffiffi
ε

p ffiffiffiffiffiffiffiffiffiffi
M tð Þ

p� �
+ Cε 1 + tð Þ−1:

ð71Þ

Substituting (71) into (62), one has

G tð Þ ≤ G 0ð Þe−αt + C K2
0 + εM tð Þ + ε2

À Áðt
0
e−α t−τð Þ 1 + τð Þ−2 dτ

≤ C 1 + tð Þ−2 G 0ð Þ + K2
0 + εM tð Þ + ε2

À Á
:

ð72Þ

Now by the definition of MðtÞ, we obtain

M tð Þ ≤ C G 0ð Þ + K2
0 + εM tð Þ + ε2

À Á
, for any 0 ≤ t ≤ T:

ð73Þ

Letting ε > 0 be small enough, the inequality above gives
us

M tð Þ ≤ C G 0ð Þ + K2
0

À Á
≤ CK2

0: ð74Þ

Thus, (70) gives

∇ p, vð Þk k1 ≤ C0 1 + tð Þ−1, 0 ≤ t ≤ T: ð75Þ

Meanwhile, applying (65) with k = 0 to (14), by (15) and
(17), one can infer that

p, vð Þk kL2 ≤ CK0 1 + tð Þ− 1/2ð Þ + C
ðt
0
1 + t − τð Þ− 1/2ð Þ f , gð Þk kL1∩H1dτ

≤ CK0 1 + tð Þ− 1/2ð Þ + CεK0

ðt
0
1 + t − τð Þ−1 1 + τð Þ−1dτ

+ Cε
ðt
0
1 + t − τð Þ− 1/2ð Þ ∇3v

 
L2
dτ

≤ C0 1 + tð Þ− 1/2ð Þ, 0 ≤ t ≤ T:

ð76Þ

Then, by Sobolev’s inequality, (75), and (76), we get

p, vð Þk kL∞ ≤ p, vð Þk k2 ≤ C0 1 + tð Þ− 1/2ð Þ, 0 ≤ t ≤ T ,

p, vð Þk kL4 ≤ p, vð Þk k1/2L2 ∇ p, vð Þk k1/2L2 ≤ C0 1 + tð Þ− 3/4ð Þ, 0 ≤ t ≤ T:

ð77Þ

Thus, by interpolation inequality, one has

p, vð Þk kLq ≤ p, vð Þk k 4−qð Þ/q
L2 p, vð Þk k 2q−4ð Þ/q

L4 ≤ C0 1 + tð Þ1/q−1,
ð78Þ

for any 2 ≤ q ≤ 4, 0 ≤ t ≤ T , and

p, vð Þk kLq ≤ p, vð Þk k1−4/qL∞ p, vð Þk k4/qL4 ≤ C0 1 + tð Þ− 2+qð Þ/2qð Þ,
ð79Þ

for any 4 < q ≤∞, 0 ≤ t ≤ T . Therefore, the optimal
decay rates (17)–(19) have been proven.
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We use the estimates above and (9) to deduce that

∂t p, v, sð Þk kL2 ≤ α2∇·vk kL2 + fk kL2 + α2∇p − α3Δv − α4∇∇ · vk kL2
+ gk kL2 + α1 v · ∇sð Þk kL2 + hk kL2

≤ C0 1 + tð Þ− 1/2ð Þ, 0 ≤ t ≤ T:

ð80Þ

Therefore, (20) is finally proven.

5. Conclusion

The motivation of this paper is to refine the previous works
of [3, 5]. As mentioned above, to prove the global existence
of the compressible Navier-Stokes equations, ref. [3] needs
to use some complicated techniques based on the notions
of the homogeneous Besov space and the hybrid Besov space
to remove a condition in [5]. However, in this paper, we use
a much simpler method to achieve this, to complete a prior
estimate on entropy S which is important to prove the
global existence of the compressible Navier-Stokes equations
by some simple analysis.

The results are in the H2-framework; it is possible to
consider similar problems in functional space with lower
regularity.
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