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In this paper, we consider an initial value problem for the 2-D compressible Navier-Stokes equations without heat conductivity.
We prove the global existence of a strong solution when the initial perturbation is small in H* and its L' norm is bounded.

Moreover, we derive some decay estimate for such a solution.

1. Introduction

The 2-D compressible Navier-Stokes equations for (x,t) €
R% x R* are rewritten as

p, +div (pu) =0,
(pu), +div (pu® u)+VP(p,0) = div 7, (1)
(p&), +div (p&u + Pu) =div (uT") + kA0,

which govern the motion of gases, where p, u, P, 8 stand
for the density, velocity, pressure, and absolute temperature
functions, respectively. & = (1/2)|u|* + E is the specific total
energy with E as the specific internal energy, 7 = u(Vu+V
ul) + A(div u)I is the stress tensor, k is the coefficient of heat
conduction, I is the identity matrix, and y and A are the
coefficients of viscosity and second coeflicient of viscosity,
respectively, satisfying

u>0,A+u>0. (2)

As one of the most important systems in fluid dynamics,
there are lots of results on the well-posedness, blow-up phe-
nomenon, large time or asymptotic behavior, and optimal
decay rates of solutions based on different assumptions in
different cases and function spaces. Among them, for the

case with a positive coefficient of heat conduction k>0,
Kazhikhov and Shelukhin studied the global existence in
one dimension [1, 2]. The global existence of multidimen-
sional case was established in [3-6]; more results on global
existence for different kinds of solutions can be found in
[3-10]. For the study of the large time behavior, asymptotic
behavior, and optimal decay rates of solutions, one can refer
to [4, 11-15]. The references [15-17] and [10, 18] restricted
the systems under the case of k=0 and k > 0, respectively.
Danchin [8, 9] proved the existence and uniqueness of
strong solutions to the compressible Navier-Stokes equa-
tions in hybrid Besov spaces, and Tan and Wang [6] studied
the global existence of strong small solutions in H’, I > 4. For
the case of k =0, Tan and Wang [5] proved the global solv-
ability in three-dimensional space for the less regular solu-
tions to the compressible Navier-Stokes equations in the
H?-framework; however, they needed to assume that the L'
-norm of the initial perturbation is bounded which is impor-
tant in the proof of global existence. Later, ref. [3] removed
this assumption by using some techniques with regard to the
homogeneous Besov space and the hybrid Besov space.
Compared to the Cauchy problem, the equilibrium state
of pressure increases with time. Xin et al. [16, 17, 19] inves-
tigated the blow-up phenomenon of the compressible
Navier-Stokes equations in inhomogeneous Sobolev space;
they proved that the smooth or strong solutions will blow
up in any positive time if the initial data have an isolated
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mass group, no matter how small they are. On the other
hand, we would like to introduce some research on the
Serrin-type regularity (blow-up) criteria for the incompress-
ible Navier-Stokes system. These criteria are obtained from
[20, 21]; later, many authors successfully extended these
blow-up criteria to the compressible flow (for example,
[22-29] and references therein).

In this paper, we consider this problem in R? with the
case k=0 and assume that the gas is ideal and polytropic,
ie, P=Rp0,E=c,0,P=Ae’“p", where R>0 and A>0
are the universal gas constant, y > 1 is the adiabatic expo-
nent, & is the entropy, and ¢, =R/(y—1) is a constant
which represents the specific heat at a constant volume.
Furthermore, we also assume that R=A =1 without loss
of generality. Then, we have

p= Pcv/(cv+l)e_(§/<cv+l)), (3)

and system (1) in terms of variables p,u, & can be
reformulated in terms of variables P, u, §:

l+c, .. ¥u]
P, + Pd1vu+u-VP=C—,
VP A
U+ u-Vyu+ — = “au+ &V(V-u), (4)
p P p
b4
S+ u-V)§= %,

where W[u] = (u/2)|Vu+VuT|* + A(div u)? is the classi-
cal dissipation function. We are concerned with the initial
value problem to system (4) with initial data satisfying

(Pt 8)(0,) = (Poy yy 5)(X) — (Paoy 0:500) a5 x| — 00,

()

where p_ >0 and s, are the given constants. For the
global existence and the decay estimate in the case of
two dimensions, we have the following theorem.

Theorem 1. Let p_ > 0,5, be two constants. There exists a
small constant €, such that if (Py—p..,tp Sy—So) € H?
(R?), [Py = ooy thg S = Seoll < &> and [Py = oy Ul o)
are bounded, then there exists a unique global solution
(P,u,8) of the initial value problems (4) and (5) satisfying

rt
1P = pe> ) ()15 + JOIIVP(T)Hf +[IVu(7) 137 < €| (Po = P o) 12
(S = 500) (£)]1 < Cll(Po = P> o> So = 500 )| &XP (Cl[(Po = Py th0) 1) -

(6)

Finally, there is a constant C;, such that for any ¢ > 0, the
solution (P, u, &) has the decay properties
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IV(P = Poo ) (D), < Co(1+ 1),

[l(P = poos ) (t)|| 4 < Co(1+ t)l/q—l’

1P = Pog> 1) (1) |4 < Co (1 -+ 1) 020, 4 < g <00,

2<qg<4,

10, (P, u, ) ()| 2 < Co(1+£) 2. (7)

Remark 2.

(1) The L1 decay estimates of (7) for 2 < g <4 are opti-
mal which coincide with the L? decay of the heat
equation and are much slower than the decay rate
in R*. In [3, 5], they obtain that [[u(t)|| gy < C
(1+1)"®Y, which ensures that fg°||u(t)||iz(R3)dt is
bounded. But in R?, we only have [u(O)ll 2wy < C

(1+1) "9, and therefore, f§°||u(t)||iz(]R2>dt is
unbounded. This is the main difficulty about the
proof of existence in R* (see Section 3 below)

(2) Due to k=0, we cannot gain any diffusion of &, and
the L™ decay estimate of (7) is slower than the decay
of the heat equation

L.1. Notation. In this paper, we use L?, H™ to denote the L?
and Sobolev spaces on R?* with norms ||||;, and |||z~ =
IIIl,,,» respectively. We use C to denote the constants depend-
ing only on physical coefficients and C, to be constants
depending additionally on the initial data.

This paper is organized as follows: In Section 2, we refor-
mulate problems (4) and (5), introduce two main proposi-
tions, and illustrate that we only need to prove Proposition
4. The rest of the paper is devoted to proving Proposition
4. The proof of the energy estimate part is in Section 3,
and the decay rate part is in Section 4.

2. Reformulated System

We reformulate system (4) by setting
1
o = c, - ( +Cv)poo’ %:i’ “4:;4+/\’
V(1+6)PooPos €Poo Peo Poo

where Poo = p(poo’ Soo)‘
Changing variables as (P, u, &) — (P + Poo» %1 V5 S + So )
initial value problems (4) and (5) are reformulated as

P+ a,Vv=f,

v+ o, Vp— oz Av —a,VV - v =g,
s;+a(v-V)s=h,

(p,¥:5)(0,%) = (P Vo» 50)(x) — (0,0,0)  as x| — oo,

©)
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where the nonlinearities are given by

f(p’v’s)z_MPV'V—dlv-Vp+lf/(;xlv)’
1/1 1
,V,S) =—« v.Vlv— — [ — — |V
9(pv,5) = —ay(v-Y) al(p pm> »
1 1 11
+ul———)Au+(pu+A)[- - —|VV-u
Pl(” Poo) (M )<P Poo)
¥ (a,v)
h(p:v>s) = 10
B = e, (10)

For any T > 0, we define the solution space by

X(0,T) = {(p,v,5): p,s€ C°([0, T) s H*(R*)) N C'([0, T) 5
-H'(R?)),veC’([0, T); H* (R*)) nC'([0, T);
L2 (R?)),Vp e L*((0, T); H' (R?)),Vv € L*((0, T) s H* (R?) ) },

(11)

and the solution norm by

Z(T)= sup (2. )OI + | [V} + [9() e
(12)

Taking a standard contraction mapping argument, we
have the following propositions for the local existence
(see [30]).

Proposition 3 (see [3]). Suppose that the initial data satisfy
Py Vor So) € HA(R?) and inf {p,+p.,} >0. Then, there
xeR?

exists a positive constant T, depending on X (0) such that
Cauchy problem (9) has a unique solution (p,v,s) € X(0,
T,) satisfying

inf  {p(6,x) +po} >0, 2(T)) <27(0).  (13)

t€[0,T ], xeR?
This, together with the proposition below, is sufficient to

derive Theorem 1; the proof is based on the standard
continuity argument.

Proposition 4. Let (p,, vy, s,) € H*(R?) and (p,, v,) € L'

(R?); for any T > 0, there exists € > 0 such that the solution

(p,v,s) of the initial value problem (9) in [0, T] satisfies
I w9l <6 Vie(oT] (14)

Then, this solution is unique with the energy estimates

2, (15)

(e V) ()15 + J;HVP(T)IIT +[IVv(2) 347 < Cl (P> vo)

1511, < Cll(Po> Vo> $0) > &P (ClI (Bo> Vo)) (16)

and the decay properties

3
IV V()] < Co(1+8)7 (17)
1 v) (D)l < Co(1+ )T, 22q<4, (18)

1G> V) (£) 10 < Co (1 +1)~(2024),
10,(p v, ) (£) | 2 < Co (1 + 1)) (20)
The rest of paper is used to prove Proposition 4.

3. Energy Estimate

For later use, we introduce some useful analytic results.

Lemma 5. Let f € H*(R?); then, we have the following
Sobolev inequalities:

1Al < Mfllggre < f1l > VE>0,

/12 2
e < WA IV < 11 (21)
1Al <fll;2<q<4

Lemma 6 (lower-order energy estimate for (p,v)). Under
the assumption of Proposition 4, there exists a 8, > 0 arbi-
trarily small and independent of €, such that

1d 5
EEO'( V) (B)]|72 +28,(Vp, v)(t))
+C||Vy(t)|| 7. + C8, || V(1) -

< Ce|| (v, V) (1) |2, + C8, || V(1) |7

||L2 ||L2, Vo<t<T.

(22)

Proof. Multiplying (2.1);, (2.1), by p, v, respectively, integrat-
ing them over R? and then adding them together, we obtain

1d
57 1@V + sVl + o [VV 7 = (. f) + (v, g).
(23)

(p.f) and (v, g) can be estimated as follows. For the
first term, Lemma 5 together with (14) and the Holder
inequality implies

(I+c,)o

(o) == T g0 — (v )+ o W)

1/

<£ ﬁ)<p2,v.v>+f—§<p,‘f’(V)>
\ g

(IPIZ 1V ¥I]z2 + 1ol s V711 22)
< C(Ilpllz 1l V¥ + e[V vIIZ:)
< Ce(||Vpllz + | V7II72)-

IN



For the second term,

o <c{im -9t |(n (5 - )9

GG Gl

(25)
Similar to the proof of (24), by Lemma 5, (14), the
Holder inequality, and the fact that

+

% - é ~0(1)(p+5), (26)

which is derived from (3) and (14), we have

V)v)| < CIvlzl V¥l 2 < Cel| V| 72,

(> (v

- Gan)®)

<l == Vel

Po L*

< Clvli 1@ )M Vel 2
< Ce(|IvIlz + IVPII72),

<v, (1 - 1>Av> < Hl - i [(v, Av)|
p poo P Poo L
< Ce||Vv||%,
‘<v <1 I)VV v> < Ce||Vv||? (27)
P Poo - v
Therefore,
(v, g) < Ce([|(mVV) I + IVIIT:)- (28)

Hence, combining (23), (24), and (28) yields

33 IIP» VI + CIVVlIE < Ce(lvIlE + I VPI) - (29)

Next, we shall estimate ||Vpl|?.. Multiplying (2.1), by
Vp and integrating them over R?, we get

|| VP[22 = (—v,.Vp) + a3 (Av,Vp)+a, (VV - v,Vp)
d

=5 (v,Vp) +

+o, (VV - v,Vp)

—% {v.Vp) -

+o, (VV - v,Vp)

d
T (v,Vp) +
+oy (VV - v,Vp)

+(g:Vp)
(v,;Vp,) + a3 (Av,Vp)

+(g:Vp)

(Vv, p,) + a3 (Av, V)

+(g:Vp)

(Vv = £,V - v) + a3 (Av,VDp)

+(g,Vp)s
(30)
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where

|(=fV - v)| < Cel| (W) 2
o i (31)
(.99 = Ce([| (9w V) |1, + 9113 )

which are based on the similar calculation and Young’s
inequality. In brief, we obtain

d
||Vp|\L2+ - (wVp) ) < C||(Vv, Vv )Hiz+CSHV||%2. (32)

Finally, multiplying (32) by §, that is small but fixed
and adding it to (29), we can derive (22). This completes
the proof of the lemma. O

Next, we turn to estimate the higher-order energy for

(V).

Lemma 7 (higher-order energy estimate for (p,v)). Under
the assumption of Lemma 6, there is a small enough but fixed
8, > 0, which is independent of e, such that

L (1 VD) O] + [ (75 7)1+ 28,(vp ) (1)
+C|| (V2 Vo) (1) |2, + C8,||V2p (1) ||
< Ce(1+8,)||Vv(t)||%. + Ce||Vp(t)||7, YO<t<T.

(33)

Proof. Applying V to (2.1), (2.1), and multiplying by Vp,
Vv, respectively, integrating them over R* and using the
same calculation technique as before, we get

L ) s+ a7
<(Vp,Vf) +(Vv.Vg) < (Vp,Vf) +
< CS(H (Vv, Vzv) Hiz + ||VPHL2).

(Av, g) (34)

Next, applying V* to (2.1),,(2.1), and multiplying by
V2p, Vv, respectively, we can deduce

il (7270 [+ [P
< (V2p, Vf) + (V?v, V2g) (35)

< (Vip, V’f) + (adv, g),
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where
(v, V)| = Ce([| (70 P0) 12 + V222
(oo (5= 50))
P Poo
<AAV, (l - i) Av>
P Po
<AAV, (l - L)VV-V> }
P Po

The terms on the right-hand side are estimated as below:

[(AAv, g)| < C{\(AAV, (v-V)v)| +

+

+

(36)

[(Adw, (v-V)v)| < C| V||| |[V*Y]| .
+ | [V 1Vl
< CsH(Vzv, V3v)

G7)
P poo L™

2 2
< Ce(||V*3: + 11977

2
HLZ’

<

(Vo 7))

(G =5.)7)
o (= 50))

<ce| v

1 1 2
AAv, [ = — — | VV v )| < Ce||VPv]]7,. 37
‘< V(P Poo> V> vl G7)
Thus,
(Adv, g)| < Cs(H (P, V) |2, + Hvzpujz), (38)

1d 2 2 2 3 (12
e AR A

< Ce(|| 73 + 192117

Now applying V to (2.1), and multiplying by V?*p,

we have

o, ||V2p||2: = (~Vv,, V2p) + a3 (VAV, V2p)
(40)
+a,(V’V, V2p) + (Vg, Vp).

Similar to the estimate of ||[Vp|2, we transform the
formula (-Vv,, V?p) as below:

d
(=Vv,, V2p) = = —(Vv, V?p) + (V-Av, p,)

= —% (Vv, V2p) + (o, Vov + £,V - Av),

and derive

d
% 192072 + = (V9. V2p) < C|| (Vv V20) [, + Cel| 9 .
(42)

Multiplying (42) by &, that is small but fixed, and
combining it with (34) and (39), we finally obtain
(33). This completes the proof of the lemma. O

The lemma below gives the energy estimate for the
entropy s.

Lemma 8. For 0<t < T, it holds that

% IsIZ < Vv LlIsOlz + Cell Vv 5 (43)

Proof. For each multi-index o with 0 < || < 2, we apply 05 to
(2.1),, multiply it by 0%, integrate it on R?, and then sum
them up to deduce

1d o (4 o (4
SolslE=ma Y (@) + Y {3k ) = W+ W,

0<|a|<2 0<|al<2

(44)

For W, one has

W, =-a, Z (v-V05s, 05s) — z
0<|a]<2 0<|B|<|al-1
1<|a]<2

<a;“;ﬁv -Vbs, Bi‘s>,
(45)

where, for each o with 0 < |a| <2, one can infer that

(v Vs, 075) < ||V o | 05II72 < VI, [0S (46)

and for each a, $ with 0<|f|<|a| -1, 1 <|a| <2, and
B <a, it holds that

(9Pv-vols,3s) <CIWV, Vsl (47)

Therefore, we have

Wy < Cl[Vv|l,Is]l3. (48)



Now, we turn to estimate W,; using (14), we obtain

¥ (ayv)
W, < |0%h]|21|0%s],2 <€ ag( )H
’ % S % P+ Poo
1
< Chllav P ——— |ofw < Ce||Vv|2.
s 3 ot (5o )2 ta| s celmol
0<|a|<2
(49)
Combining (44) with (48) and (49) yields (43). O

Now, we are in the position to prove the energy estimate
in Proposition 4.

Proof of (15) and (16). The first step is to prove (15),
energy estimate for (p, v). By defining

E(t)=|(p: v)II5 + 20, (Vp, v) + 26,(Vip.Vv) ~ || (P> V) I3,
2 ' 2 2
E(t)=/(p:v)ll; + LIlVPIll +[|Vv]f3dr,
(50)

and adding (22) and (33) together, one has

1d
S () + CI[VV|E + €8, [Vp < Ce(1+8) V|3 (51)

Integrating the above equation directly in time gives

t
F(t)scn@o,vaniwe(lwl)j v][2de
, 0 , (52)
< C(pos vo) | + CeT(1+8,) sup ||
T€[0,¢]

Hence,

sup [[V][7: + sup (F(t) = [[v]}32) < Cll (P vo) 3 + CeT (1 + 1) sup [v][=»
7€[0,t] 7€[0,t] 7€[0,t]
(53)

which implies

F(t) < C||(po> vo)ll3» (54)

when ¢ is small enough. In other words, (15) is valid.
The second step is to prove (16), the energy estimate for
s. Summing up (22), (33), and (43) gives

d
2O < CIVYIL[Is]; + Cellv][72, (55)

where

y() =12 v )3 + 81 (Vp) + (V% V2p)) ~ [| (P v> 9) 13-
(56)
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Therefore,

2 3(0) < (Cv, + Cop). (57)

By Gronwall’s inequality and (15), we obtain

t

¥() <(0) exp {j

<(0) exp {J; (%;H; ' 37&) dT} (58)

2
<y(0) exp {CT5+ C”@O;VO)”Z}

< Cy(0) exp {C||(p0, Vo)”z}’

(C||Vv||, + Ce)d‘r}

which implies (16).
4. Decay Rates

In this section, we prove the decay rates in Proposition 4.

Proof of (17)-(20). Letting

G() = (V. V’p) ()2 + || (V. P*v) () -

, , (59)
"’282<V P’VV>(t) ~ V(P V)7
we rewrite (33) as follows:
1d 2, vl 2 2 2
EEG(t) +C|[(V*», V v)(t)]] . + C8, ||V p(t)HLZ
< Ce(1+8,)||Vv(t)||% + Ce||Vp(t) |7, VO<t<T.
(60)

Next, by adding ||V (p, v)||?. to both sides of the above
inequality, we deduce that for some constant a > 0,

d
= G(t) + aG() < CI|V(p, V)| - (61)
Therefore,
t
G(t) < G(0)e™ + cJ e |V (p, v)||7.dx. (62)
0

To deal with ||V(p,v)|?., we rewrite the solution of
system (9) as

t

H(t)= e’”\H(O) + J e’(H)A(f, g)(1)dr, (63)

0

where H(t) = (p(t), v(t)) and A is a matrix-valued differ-
ential operator given by
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0
A =
a,V

and the solution semigroup e~ has the following prop-
erty (see [31, 32]).

a, div
) ) (64)

—a;A — o, Vdiv

Lemma 9. Let k > 0 be an integer; then, YVt >0,

Hvke-“\H(O)H < C(1+ ) D H(0) | + |H(O)]],)-

L (65)

Then, gathering (63) and (65), one has
t
V(. v)ll2 < CKp(1+1)™" + CL(I +t =) (f 9) (D) |y A
(66)

where K = [|(pys Vo) || g2y and the nonlinear source can
be estimated as follows:
15 9) Ol < Ce(lVRO) |2 + [IVv(D)]],)»
15 @)1, = Ce (19O, + [ r(0)]2)-

(67)

Hence,

[V, v)[| 2 < CKo(1+1)" + CL(I +t-1)" (HV(p |, + HV%HLZ)

(68)
Now, if we define M(t) = sup (1 +7)°G(7), then
O<r<t
[V(p,v)(7)||, <C\/G(r) <C(1+7)'\/M(t), O<T<t,
(69)

which implies that

V(e v)(t)], <C(1+1)™ 0<t<T.  (70)

M(t),
Combining (68) and (70) and letting & be small enough,
we can deduce that

t
V(. v)|| 2 SCKp(1+1)" + CsJ A+t-1) N (1+7)
0

'/ M(r)dr
+C8J.;(1 +t-1)7Y|VPy|| LT < CKy(1+1)!
+c\[\/“( %tT))
e

<C(1+1t)” (K +veyM )+Cel+t
(71)

Substituting (71) into (62), one has

G(t) < G(0)e™ + C(Kg +eM(t) + sz)Jt e 1+ 1) 2 dr
<SC(1+1)2(G(0) + Kg +eM(t) + ).

(72)
Now by the definition of M(t), we obtain

M(t) < C(G(0) + Kg +eM(t) + %), forany0<t<T.

(73)

Letting € > 0 be small enough, the inequality above gives
us

M(t) < C(G(0) + K3) < CKg. (74)
Thus, (70) gives

Vel < Go(1+8)™, 0<t<T. (75)

Meanwhile, applying (65) with k =0 to (14), by (15) and
(17), one can infer that

t
(P, V)|l 2 < CKo(1+ 1)) + CJ 1+ =) DN, @)l T

0
t

< CKy(1+1)" 1 + CsKOJ (1+t-7) ' (1+7)"dr
0

t
+ CsJ (I+t- T)'(m) HV3VHL2dT
0

<Cy(1+t) M, 0<t<T.

(76)
Then, by Sobolev’s inequality, (75), and (76), we get

12> V)l < 112 V)], < Co(1+5)7H, 0<t<T,

12 V)l < 12 VIV (P v) 12 < Co(1+ )7,

0<t<T.
(77)

Thus, by interpolation inequality, one has

1> ¥) 1 < 12 IS 1o v) |37 < Co(1 4 1),
(78)

for any 2<g<4,0<t<T, and

i (B ) [1515 Co(1 4 ) (@10,
(79)

12> ) llgs = {12 v)]

for any 4<g<00,0<t<T. Therefore, the optimal
decay rates (17)-(19) have been proven.



We use the estimates above and (9) to deduce that

10:(P v>9)ll 2 < Vvl 2 + ([ £l 2 + o2 VP — a3 Av = ay VV - v
gl + o (v- Vsl 2+ [[A]] 2
<Co(1+t) M, o0<t<T.
(80)

Therefore, (20) is finally proven.

5. Conclusion

The motivation of this paper is to refine the previous works
of [3, 5]. As mentioned above, to prove the global existence
of the compressible Navier-Stokes equations, ref. [3] needs
to use some complicated techniques based on the notions
of the homogeneous Besov space and the hybrid Besov space
to remove a condition in [5]. However, in this paper, we use
a much simpler method to achieve this, to complete a prior
estimate on entropy & which is important to prove the
global existence of the compressible Navier-Stokes equations
by some simple analysis.

The results are in the H?-framework; it is possible to
consider similar problems in functional space with lower
regularity.
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