Hindawi

Abstract and Applied Analysis

Volume 2023, Article ID 4382780, 15 pages
https://doi.org/10.1155/2023/4382780

Research Article

Q@) Hindawi

Hybrid Fitted Numerical Scheme for Singularly Perturbed
Convection-Diffusion Problem with a Small Time Lag

Mulunesh Amsalu Ayele

» Awoke Andargie Tiruneh (), and Getachew Adamu Derese

Department of Mathematics, College of Sciences, Bahir Dar University, Bahir Dar, Ethiopia

Correspondence should be addressed to Awoke Andargie Tiruneh; awoke248@yahoo.com

Received 23 August 2022; Revised 2 February 2023; Accepted 27 March 2023; Published 6 April 2023

Academic Editor: Devendra Kumar

Copyright © 2023 Mulunesh Amsalu Ayele et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this article, a singularly perturbed convection-diffusion problem with a small time lag is examined. Because of the appearance of
a small perturbation parameter, a boundary layer is observed in the solution of the problem. A hybrid scheme has been
constructed, which is a combination of the cubic spline method in the boundary layer region and the midpoint upwind scheme
in the outer layer region on a piecewise Shishkin mesh in the spatial direction. For the discretization of the time derivative, the
Crank-Nicolson method is used. Error analysis of the proposed method has been performed. We found that the proposed
scheme is second-order convergent. Numerical examples are given, and the numerical results are in agreement with the
theoretical results. Comparisons are made, and the results of the proposed scheme give more accurate solutions and a higher

rate of convergence as compared to some previous findings available in the literature.

1. Introduction

The delay differential equations are versatile in mathematical
modeling of processes where they provide a realistic simula-
tion of the real-world phenomena. The real-world opera-
tions/interactions that take time to complete can be
utilized to simulate the time lag experience such as gestation
time, incubation period, and transportation delays. In the
model, if a small parameter multiplies the highest order
derivative term, involving at least one shift term in the tem-
poral variable, we call it singularly perturbed time delay dif-
ferential equations (SPTDDE). These problems arise in the
varied area of science and engineering models, for instance,
in population dynamics, in epidemiology, in respiratory sys-
tem, and in tumor growth [1-6]. For more additional
models, one can refer [7, 8]. Due to the appearance of the
boundary layer in the solution of a singularly perturbed dif-
ferential equation, classical numerical methods on equidis-
tant grids are inadequate and fail to provide a reliable
approximation, when the perturbation parameter tends to
zero, unless otherwise, if one uses an unacceptably large

number of grid points. Several articles have been written
on the solution method for singularly perturbed delay differ-
ential equations, to cite a few [9-13]. Among the recently
conducted studies on SPTDDE of the convection-diffusion
type, having a right end boundary layer, in [14], the authors
used an implicit-trapezoidal scheme on uniform mesh for
temporal discretization, and for spatial discretization, a
hybrid scheme, which is a combination of the midpoint
upwind scheme and the central difference scheme on Shish-
kin type meshes, is applied. In [8], the scheme is constructed
using the Crank-Nicolson method for temporal discretiza-
tion, and a midpoint upwind finite difference scheme on a
fitted piecewise-uniform mesh in spatial discretization is
applied. In [15], the scheme is devised using backward
Euler’s scheme on uniform mesh for temporal discretization
and a new stable finite difference scheme on Shishkin mesh
for spatial discretization. In [16], the problem is solved using
the Crank-Nicolson method in temporal discretization, and
in the spatial discretization, an exponentially fitted operator
finite difference method on uniform mesh is used. All these
developed schemes can work for both small and large time
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delays. However, except [14], the results of the above studies
are first-order convergent, and there are some exceptional
properties which work only for a small time delay (8 <¢)
that cannot be assessed by these authors.

So, when we come to a singularly perturbed convection-
diffusion problem of small time lag, the following researchers
address the case which works only for small time lag. In
[17], the authors used the backward Euler scheme for tempo-
ral discretization and a central difference scheme with an
adaptive mesh selection strategy for spatial discretization. In
[18], the authors used the Euler method to discretize the time
derivative and a B-spline collocation scheme for the spatial
discretization on a uniform mesh. In this paper, both small
and large time delays are considered, and the developed
scheme is first-order convergent. In [19], the scheme is devel-
oped using the backward Euler method in the discretization of
the time derivative, and a higher-order finite difference
method is employed for the approximation of the spatial
derivative. In this scheme, an exponential fitting factor is
introduced, and the resulting scheme is first-order convergent.

From these, we are motivated to construct and analyze a
higher order e-uniform numerical scheme, for the problem
considered in [17]. The proposed hybrid scheme is a combi-
nation of the cubic spline method and the midpoint upwind
scheme on piecewise Shishkin mesh in the spatial direction
and the Crank-Nicolson method in the temporal direction.
The advantage of the present method over the other
methods in [17-19] is that it is a second-order accurate in
both time and space variables, as well as its accuracy. In
addition, in the paper [17-19], Taylor’s series expansion is
applied at the beginning without any restriction on the
domain. In such a case, the advantage of the interval condi-
tion for the delay term in the approximation is meaningless.
So we incorporate the condition where Taylor’s series
expansion is applied without losing the interval condition.

Notations: all through this paper, C and its subscripts
denote generic positive constants independent of the pertur-
bation parameter ¢ and mesh sizes. Also, ||| denotes the
standard supremum norm, defined as ||f|| = Sup |f(x,?)],

(xt)eD
for a function f defined on some domain D.

2. Problem Formulation

Consider the following singularly perturbed delay parabolic
problem [17, 19]:

ou  0u ou
5 32t a(x, t)a + B(x, t)u(x, t) (1)

+p(x u(x, t—8) = f(x, 1), (x, t) € D,

subject to
u(0,t) =y,(t), (0,t) eI} ={(0,¢): 0<t< T},
u(l,t)y=vy,(t), (L, t)eI',={(1,1): 0<t< T},

(2a)
u(x,t) =yy(x 1), (x. 1) €T,
={(x,t): 0<x<land-8<t<0},
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where 0 < & < <1 is the perturbation parameter, 6 >0 is the
delay parameter, § <¢, D=Q,xQ,, Q,=(0,1), Q,=(0, T]
,and D=0, 1] x [0, T]; the functions a(x, t), B(x, 1), p(x, 1),
and f(x, t) on D and (), v, (t), v, (x, t) on I are assumed
to be smooth and bounded functions that satisfy the condi-
tions a(x,t) <ay <0, and B(x,t) +p(x,t) >0 on D. Under
the above assumption, problem (1) exhibits a boundary layer
along x = 0. The existence and uniqueness of the solution for
problem (1) can be guaranteed by the sufficient smoothness
of y,(t), v, (t), and y,(x, t), along with the following com-
patibility conditions:

¥3,(0,0) =,(0), ¥4 (1, 0) =, (0),

81/350) B 8821//5)(:2)’ 0) +a(0,0) alllba()(:, 0)

+ B(0,0)y,(0,0) + ¥(0,0)y,(0-8) =(0,0),  (3)
y,(0) _ 9'y,(1,0) 9y, (1,0)

ot o€ §x2 +a(1,0) bax

+B(L )y, (1, 0) +y(1, 0)y, (1,-6) = f(1,0).

The problem (1) has a unique solution with the above
conditions and assumptions [20]. Let us use the notation

ou ’u ou
Lu= = "5 +a(x, 1‘)a +B(x u(x, t).  (4)

3. Bounds on the Solution and Its Derivatives

Lemma 1. Suppose &(x,t) € C°(D) N C?*(D). Assume that
£0,t)>0, &(1,¢) =0, and L&(x,t)>0,V(x,t) e D. Then,
E(x,t) = 0,¥(x, t) € D.

Proof. Suppose (x*,t*) € D such that £(x*, t*) = min &(x, )
(xb)e

and &(x*,1*) <0. It is visible that (x*,t*) ¢ I’ and (x*,t*)

€ D. At the point (x*,t*), £,=0,&,=0 and &, > 0. Then,

L,(x*,t*)<0, which contradicts L,(x,t)>0,V(x,t)e€D.
Therefore, &(x, t) > 0,V(x, t) € D. O

Lemma 2. The solution u(x, t) of problem (1) is bounded and
satisfies the following estimate:

1

[|ul| < Tl 11+ max {[w, ()], [w, ()], [, (x, £) |}, for all x € [0, 1].
(5)
Proof. Please refer [21]. O

Lemma 3. The solution to the problem (1) satisfies the follow-
ing bound:

|u(x,t) =y, (x, t)| < Ct, (x,t) € D. (6)

Proof. Please refer [22]. O
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Lemma 4. The solution u(x, t) of (1) satisfies the bound
|u(x, t)| < C, onD. (7)
Proof. Let us take |u(x, t)| = [u(x, t) —y, (%, 1) + v, (x, 1) <|
u(x,t) — v, (x,t)| + |y, (x t)|. Using Lemma 3, |u(x, t)| < Ct
+ |y, (x,t)| and the fact that y,(x, t) is bounded and ¢ € (0
,2]. Hence, we get the required result. O

Lemma 5. Let u be the solution of problem (1), then

where r and y are nonnegative integers.

Proof. The reader can follow the procedure in [21, 23, 24]. [J

4. Numerical Scheme

The problem defined in (1) can be rewritten as

0™y o oyx Zeu(x, t) = F(x, ), (©)
FNT] SC(I +¢& exp (—T)),for(x, f)e0<r+2y<4,
(8)  where
0 0 0
.g—f§§+qnggﬁ+m%ow%q, for (x, t) €D,
Zou(x, t) = x x (10a)
‘ ou  0u ou
3 32t a(x, t) F B(x, t)u(x, t) +y(x, t)u(x, t = 5), for(x,t)€D,,
X% t) —yp(x, y(x, t =68), for(x,t)eD,
by { TR0 ROV 1=0), for(nn) €D, o
f(x, 1), for (x,t) € D,,

with initial and boundary conditions, D, = (0, 1) x (0, 8) and
D, =(0,1) x (8, T]. Since the delay parameter () is smaller
than the singular perturbation parameter (¢), it is possible
to apply Taylor’s series expansion as follows:

u(x, t —8) = u(x, t) — Su,(x, t) + 0(8). (11)

Substituting (11) into (9), we obtain

ou *u ou
A(x, t)ﬁ - &‘W +a(x, t)a +B(x, t)u(x, t) = F(x, t),
(12)
where
1, for (x, t) € D,
A(x,t)z{ s f (x.1) € Dy
1- x,t), for(x,t)€D,,
y(x: 1) (x,t) €D, (13)
x, t), for (x,t) € D,,
sy B0 (1) €D,
B(x, t) +y(x,t), for(x,t)€D,.

4.1. Temporal Discretization. This section is devoted to the
discretization of the temporal variable. So on the time
domain [0, T], we use uniform mesh Q' = {t; : t; = jAt, for
j=0,1,---, M, At = T/M}, where M is the number of mesh
intervals and At is the time step. On QM, problem (12) is
discretized by using the Crank-Nicolson method as follows:

, Utl(x)-Ul(x)  d*U2(x)
A]+l/2 _
() At T
A j+1/2 ‘ A ‘
N “J+1/2(x) dU. N (x) +B]+1/2(x) U]+1/2(X) _ FJ+”2(x).

(14)

After some rearrangement, (14) is written in the form

, 1 UM (%) 1, dUM (x)
M 7 7j+1 - _ - Z 4 tl2
U™ (x) sidxz + -/ (x) g
1. 1. A
+ (2B (x) + — AT (x) U
2 At (15)
=G(x),x€Q,,
subject to :U7*1(0) = vi(tin)>
Uj+1(1):1//r<tj+1)’ 0<j<M,
where
: 1 dU(x) 1 AU’ (x)
— _ _ aJtl2 o=\
G (x) 38 g T (%) dx
_ (%Bjﬂ/Z(x) _ %Ajn/z(x)) U+ 2 (x),
By = F(x,t;1) + F(xt;)
2 b
(16)



and U/ (x) =
to the exact solution u(x, t) of (1) at the (j + 1)™ time level.

U(x,tj,,) is the semidiscrete approximation

Lemma 6. Suppose that |(3"/0t")u(x,t)| < C, (x,t) € Q,v=
0,1,2,3. The local truncation error associated to scheme
(15) satisfies

|’é]+l||ooSC0(At)3’ J=1’2))M (17)

Proof. Using Taylor’s series expansion, expanding U(x, ¢,,)
and U(x, t;) centered at t;,,,,, we get

U(x, tjﬂ) - U(x, tj)
At

=U,(xtj10) +O((41)%).  (18)
Substituting (18) in to (1), we obtain

U(x,ti) =
At

d , d

€73 U(xti,) - o1 (x) Ix U (% i)

_ [j’f+1/2(x)U(x, tj+1,2) - yj“/z(x)U(x, tirn = 6)
+f(x, tj+1/2> + O((At>2)’

U(x 1))

(19)

where

s tyn) = BTN, oany)

U(x tj+1)2+ Ulst) | o((At)?).

(20)

U(x, tj+1/2) =

From (19), the local truncation error |[¢;,, || is the solu-
tion of the following BVP: #M¢ = =0((At)), e ¢;1(0) =0,
]+1 (1) =0. |

Theorem 7 (global error estimate). The global error estimate

in the time direction at (j+ 1)™ time level is given by

T
[Ejea o, = (A8 Vi< (21)

Proof. Using the local error estimate in Lemma 6, we obtain

2

<Cyj(At)’,

[ <|le ]| + 12| +--+J2|

by Lemma 6
(22)
<C, (jAt)(At)?,

SCIT(At)Z, since jAt<T

<C(At), C,T=C.
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Lemma 8 (discrete maximum principle). Suppose &' (x) €
C%(D) N C*(D). Assume that f]irl(O) >0, (1) =0, and
L (x)20,Y(x) € Q,. Then, ¥ (x) > 0,V(x) € Q.

Proof. Suppose (x*,t;,;) € {(x, 1j,,): x € Q.} such that (x*

tj+1) mln(x’ ]+1) let 6(
xe(2

{(o0, t]H), (Lt} wh@ch implies tha_t the point (x*,t;,)
€ Q,. Also, we have (&) =0and (&*")_>0.

sti,1) <0. This gives (x*,1;,;) ¢

> Pjrl

gi\/{gﬁl(x*) _ _%s<£j+1)xx n %ocj”/z(x) <£j+1)x

+ <;Bj+1/2(x*) + AltAjn/z(x*)) (23)

. Ej+l(x*) < O,

which is a contradiction. Hence, the minimum of &' (x) is
nonnegative. O

To prove that the approach is e-uniform, more specific
information on the behavior of the exact solution is
required. This is done by decomposing the solution u(x, ¢)
into a smooth component v, and a singular component w,
as follows: u = v, + w,; for more detail on the decomposition,
one can refer [25].

Lemma 9. The regular and the singular components of the
solution of the discrete scheme (15) satisfy the following
bounds:

dr j+1
s C(l +&7 exp (—%)),ﬁ)rr: 1,2, 3,
) (24)
er]+1 <C . (XOX f 123
- 7 - X - > =1,4,9.
g <O e (-5) Joforr
Proof. Follow the approach given in [21, 23, 24]. O

4.2. Discretization in the Spatial Direction

4.2.1. Shishkin Mesh. The piecewise-uniform mesh having
N >4 mesh intervals on [0,1] is generated by dividing the
interval [0, 1] into two subintervals as [0,7] and [1 -1, 1],
where the transition parameter 7 separates the coarse and
fine region and is given by

* = min {% 7,eIn (N) } (25)

where 7, is a constant satisfying 7, > 1/|«,|. Hence, the
piecewise-uniform mesh is given by

0, i=0,
xX;= (26)
X +h, i=12,---,N,
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where
2T N
N’ 1=1$ ) E)
h;= (27)
2(1—1) . N N
, i=—+1,—+2,--,N
N 2 2

4.3. Cubic Spline Difference Scheme. In this subsection, we
derive the cubic spline scheme on the meshes, QY = {0 =
Xg»Xps Xy =1} and h;=x; —x, . Assume Q'*'(x) is an
interpolating cubic spline function corresponding to the
values U/t (x;) of a function U (x,), UM (xy), ..., U*Y(
xy) of a function U/*!(x) at the nodal points x,, x,, -+, Xy,
satisfying the following properties:

(i) @*!(x) coincides with a polynomial of degree three
on each subintervals [x;_j,x,],i=1,---,N

(if) Q"' (x) € C*(0)
(iii) Q(x;)=U(x;),i=0,1,---,N
Then, the cubic spline function can be written as

(xi_x)3 (x_xi—1)3
6h. 6h; M;

2 p—
+ | U (i) - EMH (xi x)

. h? X —x;
JHL o, ZiM. i
+ <U (xl) 6 l) ( hi )’

X €[x;i_,x],i=1,2,+-+,N,

Qj+1(x) —

M, +

where M; = d*Q/*!(x;)/dx? i=1,2,---,N.
From the properties of spline [26],

h; h.+h, h,
EIMH + ITMMi + gle
_ Ui+1,] - Ui,j+1 B Ui,j+1 - Ui—l,j+1 (29)
hi+1 hi
i=1,2-,N-1,j=1,2,--,M - 1.

For the approximation of dU/*'®)/dx and d*U7*'¥)/dx?,
we use the Taylor series approximations as follows:

de“(x,-) W d*U (x;)

Uj+1(xi+1) = Uj“("i) +hi, dx gl =
(30)
, . AUl (x) KUt (x,
UJH(XFI) ~ U]“(x,-) _ hi (xz) + L (xl) .

dx 2 dx?
(31)

Multiplying (31) by h7,,/h; and then subtracting the

i+l
resulting equation from (30), we get

5
de”(x) 1 5
h j+1

T ey U )

(h12+1 _hz) JH( 1)) (32)
1 A
-~ (KRU(x,,)).
! hihi+1(h +hz+1) ( l <xl+l))

In the same fashion multiplying (30) by Z,,/h; and then
adding the resulting equation into (31), we get

UM (x;) _ 2 .
T Oy iy (et U G5)
= (h;i+ hi+1)U]+l (xi)) (33)
2 .
= . j+1 )
’ hihi+1(h +hl+l) (hlU (le))-
Using (32) and (33), in
AU () _ AU ) | U ()
dx dx HL gy (34)
AU (x;.1) ~ AU’ (x;) _h.dzUjH(xi)
dx dx Podx2

we obtain the following approximation:

deH (xi+1) 1
dx hzhHl(h + hz+1) (
= (hiy + hi) Uﬁl(xi))

! W+ 2hh

hihi+l(h +hl+1) (( 1 Hl)

2
hi, U7 vt (%i1)

+

(xi+1))’
(35)

dU™ (x,,) 1 5
dx iy (B by (= (e + 2hihi ) U

b L (k) PUM (x,)

hihiy (hi + hiyy)

1 2777+l
_m(hilﬂ (xm)).

ittitl i+1

(xi—l))

(36)

Then, express (14) at x = x; in the form

1 1

dx

1 . 1 . .
+ <§B]+1/2(Xk) + EAJH/Z(xk)) U]+1(xk)

(Xj+1/2 (xk)

1

+2 ]+1/2( )dU](xk)

d

+ B]+1/2

% A]+1/2( k))

U/ (x;) - F’“/z( )fork—z i+1.



Insert (32), (35), and (36) at (j+ 1)th and j" time level
into (37), and substitute the resulting equation into (29).
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N.M _ j+1 j+1 J+1
L =s,;Ui +5,U; +5; Uin

I j j = j+1/2 38
After some simplification, we obtain =rijUia+ riJU +r Ui + F (%), (38)
i=1,2,--,N-1,j= 1,2, e M-1,
where b, = h; + h,,
2
o= (hiyy +2h;) “j+1/2(x. ) - hin ]+1/2(x )+ i+1 (xj+1/2 }i lBJ‘Fl/Z 1 A]+1/2(x )) - E
L] 4Ei i-1 Zh i 4I’llﬁi l+1 2\2 At i-1 Zhi >
h . (B —h) h; 3¢h;
€ = vl oy, i U2 (o i “]+1/2 7B]+”2 A]+1/2 N i
ij 4hi+1 ( 1—1) Zhthl ( l) 4ht t+1 2 ( 1) 2h1h1+1
2
st =— hi ]+1/2(x ) + hi “j+1/2 (.X) + (zhi+1 +h ) J+1/2 (X- ) hi+1 lBj-*—l/Z (x‘ ) + 1 A]+l/2(x ) _ 3e
i,j 4hi+1E i-1 2h,‘+1 i 4Ei i+1 2 2 i+1 At i+1 Zh,‘“ >
2
~_ (hiy +2h) ]+1/2(x )+ 2 hiny ]+1/2( x;) - hin ]+1/2 E B]+1/2 1 A]+1/2(x )) + ﬁ
ij 4% i-1 2h i 4h h 1+1 2 At i-1 2. >
i i !
~ ) ) - -
c _ h; (xj+1/2(x ) - (hz+1 h') j+1/2(x)+ h; ]+1/2 ( )( ]+1/2 1 Aj+1/2(x )> _ 3eh;
= ) =t . 1) ) 1
M 4hi+1 l 2h1h1+1 l 4h1 i At 1 2h1h1+1
h h . 2hy, +hy) By (1 1 3
Z—j — i ]+1/2(xz—1) _ hl a]+1/2(xi) _ ( 1+1A l) a]+1/2(xi+1) _ N+l <B]+l/2( i+1) _ AAJ+1/2(xi+1)> : hS ,
4hi+1h 2h 4h; 2 \2 t 2hi,
Fit112 h; j+1/2 7 mitl2 hi j+1/2
(%) EF (xio1) + B F (x;) + TF (Xis1)-
(39)

4.4. Midpoint Upwind Scheme. For any mesh function ¢/*!(

x;) = ¢{+1, let us define the backward D, forward D}, and
central difference D} D} operators as follows:

j+1 j+1
D ]+1 (/){ i—1 ,
P h
) j+1 _ j+1
D+¢{+l - ¢£+1 (/51‘ ,
* hi+1 ( )
) ) 40
4 2 D+¢J-+1 _ D,gbjfl
D+D_¢-?+1 _ xXTi xXTi
X xXTi ?[1
¢j+1

2 (¢l -
Ei hi+1

Using the midpoint upwind scheme, (15) can be discre-
tized as

¢]+1 ¢]+1>
h; )

1

1 . 1 . .
AR +1/2 J+1
_—SD:Dx Ui + E“LI/ZD; U;
SISV I STV N
(2 Bt A_tA”“Z) Ui

=G/ ,,0<i<N,0<j<M,

(41)

where

1. .

*j +1N—7 7] +1/2 ~+ 777

Giiip= SDxDx Ui - _“.1(+1/2Dx U;
1 1/2
j+1/2 j12 j Foj+1/

- <EBi+1/2 AtA’“/z) Uinp + Fipo (42)
j+1 j+1
j+1 ¢1+1 + (/)
¢l+1/2 2

After some simplification, we obtain the following three-
term recurrence relation:
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NM _ — prj+l j+1 j+1
c?mp —si’jUi71+sf’jUi +SZjUiJr1
I j j = j+1/2
=r; Ui+ rf,jUi + r:ij +Fiips (43)
i=1,2,--,N-1,j=1,2,---,M -1,
where
_ €
S i = =)
I,
j+1/2
c_ & i lBj+1/2 1Aj+1/2
ST hh oh 3\ et i )
ittt i+1
j+1/2
o__ & @ . 1 1Bj+1/2+ 1Aj+1/2
WS 2h,, 5\ 3P T i |
in; i+
i+l (44)
_ 3
r,..= =—,
IR,
j+1/2
o € “54.1/2 _ 1 lBj+1/2_ 1 Aj+1/2
ij Wl 2h,, 5 \ g P2 Tyt |
"1+ 1+
+1/2
4o ¢ a1, 1Bj+1/2_ 1Aj+1/2
i,j Eh 2h. ) E i+1/2 E +1/2 |-
i+l +

4.4.1. Hybrid Scheme. The upwind scheme is stable and pro-
duces a first-order accurate solution [27-29]. The cubic
spline method satisfies the discrete maximum norm only
in the fine mesh region, whereas in the coarse mesh region,
the solution is unstable [28, 29]. The benefit of constructing
a hybrid scheme is that it gives higher-order parameter uni-

M,N 7+l _
FUNyI =

Therefore, we have the following totally discrete scheme:

N.M _ — prj+l c i+l + i+l
ghy =s; Uil +s,;Ui - +5,U5g

P c 77 + 77) = j+1/2 46
= rl.’jUi_1 + ri’jUi + ri)jUi+1 + F R ( )

i=1,2,,N-1,j=1,2,--,M -1,

PIYMUIT = G fori=1,2,
: i N N
LML =Gy fori= FHLg +2 e N-Lj=12

U{)“ =y(0),j=0,1,--, M -1,

form convergent schemes that are oscillation-free across the
region. So, using a piecewise-uniform Shishkin mesh, we
develop a second-order parameter uniform convergent
scheme that combines the cubic spline approach in the fine
mesh region and the midpoint upwind scheme in the coarse
mesh region. Thus, the discrete problem of (1) is given by

> ).21127"')M_1;
5]

(45)

UR' =y (1),j=0,1,--, M -1,
U =y)(x;),i=0,1,---,N - 1.

where the coefficients S s§ j and s;rj are described in (39);

also, 17, r¢ i and r;rj are described in (44).

ij
5. Stability and Error Analysis

In this section, we study the stability and e-uniform conver-
gence of the proposed scheme. For the analysis, we follow



the approach given in [23, 25]. The numerical solution UMM

on D is decomposed as U =V + W, where V and W are the
numerical solutions of the regular and singular components,
respectively; for detail on the decomposition, please
refer [25].

Lemma 10. Assume that N > N,, where
positive integer satisfying

N, is the smallest

$i; < O,SZj <0,fori=1,2,--,N-1,j=1,2,--,
c + c -
S '51,]" >0, sijl = [Sij| —
c - +
)SN—I,] ‘SN—lj ; Sij| ~ .Si,j
Proof. Divide the interval into two cases. O

Case 1. For 1 <i < N/2, since the mesh is piecewise uniform,
so that it is possible to fix the mesh size in the inner layer
region by h;=h=21,elnN/InN and substitute (47) into
(39) and simply, we get

_ 3 1 3e
sij < gl + LB+ 1Al ) = 5
At 2h (50)
|“o| 3¢
- - <o

since o] < ||et||, h < 1/N and (48).
Similarly, s* <0, and from (39), it is clear that

>0,

il = (51)
¢
L]

.
s il

+|$

> ’si"j

Case 2. For N/2 <i< N, the mesh size in the outer layer
region is h; = (2(1 — 1y log N)/N) < 2/N. Next, using (47)
and (48) into (44), it is easy to see that s~ < 0 and s* < 0. Sim-
ple mathematical calculation gives

. _
‘SN—l,j > ’SN—I,j >

C +
Si,j s;

+ il

> s

ij

Hence, the proof is completed.

Note: Lemma 10 confirms that under the hypotheses
given in (47) and (48), the tridiagonal matrix corresponding

to the operator Z%;M defined in (46) is an M-matrix. This
implies that the operator Q%M satisfies the next discrete
maximum principle.

sfj >0,fori=1,2, -,

. N N
>0,fori=—+1, —+1,--,
2 2
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NO
In No 2TOHOCHOQ’ (47)

(181+ 55141 ) <ol (49)

Then, we have

M,
2 )_] >4y T > (49)

N-1,j=1,2,--, M.

Lemma 11. Let ™™ be any mesh function defined on ™M
Assume that (JOH >0,03" > 0. Then, ZhN);M(f” >0,Vi=1(1)

N - 1 implies that £ > 0,Vi=1(I)N.

Proof. Assume that there exists a mesh point (i*,j+ 1) for

i* €{1,:--, N = 1} such that C{fl =min Cf+l, and assume that
0<i<N

C{fl <0, so it is clear that i* ¢ {0, N}. Then, 3%’1\’({31 <0 for
i*€{1,2,---,N —1}; this contradicts with the assumption
Cffl >0,i* =1,2,---, N — 1. Hence, the result follows. O

The uniform stability estimate of the discrete solution is
provided by the subsequent lemma.

Lemma 12. Let U, ., be the solution of the discrete problem

i,j+1
(48). Then,
|Usjor| < € max|U (x;. t,,)]
MN N.M (53)
+_Hg Uz]+1 ( ]+1)€D
Proof. Let us construct the barrier function as follows:
+
Z= (xz’ t]+1) = Xi> ]+1 HgMNUUH * Uz]+1’
(54)

and using Lemma 11, we can obtain the required bound. [

5.1. Truncation Error.

gf;’M(U—u)=T =s; U]+1+s U]+1+s Uﬂll

—(r;jU{_lw Ul Ul + F7).
(55)
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Case 1. Truncation error in the inner layer region using (15)
at x;, k=1,i+1 in (46) is given by

I PR A = 212\ 1 it

x = { <5i,j - 51 i1 i1t (Sf,j - hz‘B:‘ )Ui
hiy sje12\ o1 i1 i+
+ (SZJ‘ - ; By Ui — 51 _Es(Uxx>i—l

1

2

| Y i+1 hit 1
+§“f+ (Ux)f)— g —5¢

1

(B0 (s B 0]

2 2

h’ +1/2 7 j+1/2
T..=|—(r.+75. +7r".) - _’Bfk_ﬁ —]/[.Bi(‘]+ -
0,j 5 5 2 i—1 i

N
+hi, (Si,j_ 5 il

_ h *j+1/2 h‘l #j+1/2
T,;= |:hi <ri,j+ jBi—Jl —hi r:j+ 12+ B\

=

W2 L W2
_ - *j+1/2 1
Tz)f—[‘é(’fﬂﬁf—l )‘ 2 "t B

W b ian h hivy wjr12
Ty;= [3; ("i,j+leij1 )_;1<ij+ ;Bﬁjl

h' j+1/2
(rf'. + _iH1 et

9
~( 1 L i j
R (=3eU ¢ 50
- ;1 (_Es(Uxx)fn"'E i (Us)in >
(56)
where B/'"? = (1/2)B/" + (1/A) A" and B = (172)

B{+1/2 - (1/At)A{+1/2. Substituting Taylor’s series expansion
in the spatial variable of U, U{:: , (Ux){j , (Ux)ﬂll ,
(Uxx) (Uxx)g-f—l’ U{—l’ U{+l> (UX)'I(—I’ (Ux)gﬂ’ (Uxx)?—v

and (U,,)’,, into (56)

- . - .
T,;= [TOJHU{Jr + To,jUﬂ + [Tl,j+1(Ux)]‘+ + Tl,j(Ux)J‘
- .

+ [T (U] + T (U]

+ [Ty (U] + Taj(Uge)l] +--

h, . - B
_ - c + i pjtl/2 Jj+1/2 i+1 pjt+1/2
TOJ+1 = {(s;.+s,.+sv,.) - =B -hB " - B,

hi B2

i+1

)

h2 _ h,A‘+1/2 I’lzl h, 1 5j+172 h2 i+1/2 h21 i+1/2 h, E h, 1
Tyj = [71 (Si,j_jB?—l + 12+ Sij ; B, + Zl‘qu - 2 o +le+515+ 2 €,

2
) fer

B [ hijan N hiv1 5j12
Tsjn = l3—,1 (Si,j_ ElB:—l ) + ;1 (521_ ITHBM ) +

8

h3 j+1/2 h3 j+1/2 h2 hz
1(x¥_1_1+1a1 — eg 1+1€’

g

1 1

(57)
where
hiq wj+12 B san B an R an
LB - Zl“ftl +EI"‘?+ + Zlocﬂl >
h . b hooo.
] _ [j“£+i/2+ E,Od+1/2+ Zl “{:i/2‘|’
(58)

W h.  h  h
Bl Doy ey Ll

4 LT 4T 2" g

) i+1 4 4

3 3 2 2
Lo g ]

) i+1
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FiGurek 1: Surface plot of numerical solution of Example 1 at N =M = 64.
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FIGURE 2: One-dimensional plot and log-log plot for Example 1.

It can be easily seen that T, =Ty;=T,;, =T,

T2,j+1 = T2,j =0,

1,j+1 g

Ts, = (‘h'z(h‘ +hyyp)/24) e JH/Z + (Rihyyy (B + i) 112)

2 g2 ]+1/2
o "+ (-h

w1 (hy+hiyy)24)al;, . Thus, we get

|T,|<CHU (59)

where h = max (h;),fori=1,2,..,N.

Case 2. In the outer layer region, applying a similar proce-
dure like the inner layer region, we obtain |T,| < ((1/3)e(h;
= 2hy,,) - (U3l U

1911 ) U Which is

|T,| < C(eh+R*)U,,,. (60)
Theorem 13. Let u(x;, t;, ;) and U, ;,, be the solution of prob-

lems (1) and (45), respectively; then, the proposed scheme sat-
isfies the following error estimate in the spatial direction:

|u(xiptj1) = U

ij+l |

N
-3 3 _
_ C(N (log N) ), 1—1,2,"‘;3> (61)
CIN(e+N)), i= 3415 42N

Proof. The proof is divided into two cases as a singular part
and a regular part. O

Case 1. The bound for the regular component of the solution
U, of (1).

From the truncation error of the spatial direction (60),
we have

i Y+l

‘EZ,M( =) (%t ))

(62)

IN
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TaBLE 1: Computed Ef'M, ENMand RNM for Example 1 at M =N, § =0.5¢.

Method el N—32 64 128 256 512
2™ 7.4172¢-03 1.6104e-03 3.7310e-04 8.4234¢-05 1.9588e-05
2.2034 2.1098 2.1471 2.1044
2°¢ 1.3309¢-02 2.7086e-03 6.6643¢-04 1.5562e-04 3.4549-05
2.2968 2.0230 2.0984 2.1714
28 1.3254¢-02 2.7249¢-03 6.8167¢-04 1.6529¢-04 3.9616e-05
2.2822 1.9991 2.0440 2.0609
2710 1.3244e-02 2.7338e-03 6.8823¢-04 1.6927e-04 4.1768e-05
2.2763e 1.9899 2.0236 2.0189
272 1.3241e-02 2.7364e-03 6.9006e-04 1.7037e-04 4.2365e-05
2.2747 1.9875 2.0180 2.0077
Present 21 1.3241e-02 2.7370e-03 6.9055¢-04 1.7066e-04 4.2522e-05
2.2743 1.9868 2.0166 2.0048
2716 1.3240e-02 2.7373e-03 6.9073e-04 1.7077e-04 4.2578e-05
2.2741 1.9865 2.0161 2.0039
2718 1.3240e-02 2.7375e-03 6.9101e-04 1.7092e-04 4.2656e-05
2.2739 1.9861 2.0154 2.0025
2720 1.3237e-02 2.7385e-03 6.9201e-04 1.7148e-04 4.2932¢-05
2.2731 1.9845 2.0128 1.9979
ENM 1.3309¢-02 2.7385e-03 6.9201e-04 1.7148e-04 4.2932¢-05
RVM 2.2968 1.9845¢ 2.0128 1.9979
ENM 2.9454e-03 1.6032e-03 8.4467e-04 4.3881e-04 —
9] RNM 0.8775 0.9245 0.9448 —
Since A< 2/N, for i=1,2,---, N — 1, using Lemma 9, we Apply a similar procedure for i=1,2, ---, N/2; then, we
obtain can get

(V=) (x5 tj)

hy L
) N
C(NP(logN)?), i=1,2,--, g C(N(log NY’),i=1(1) 5, (66)
<
. <
< ) N
C(N(e+N)), 1=§+1,§+2,~-N—1. CINT(e+NT))si= + (1N -1.

Case 2. The bound for the singular component of the solu-

Now, construct the barrier function for each interval; let tion UiJ of (1). The proof is done separately in [0, 7] and [z

us take i= (N/2)+1,(N/2)+2,---,N -1, 1.
+ O . (i) On [0, 7]
ZF (x5 t5) =C(N e+ N 7)) (V= v) (x5 ). (64)
: + +
It is easy to see Z*(xo, 1)) 20,Z*(xy,t},1) 20, and Q}IY};M(W— w) (x; tjﬂ)‘ < C(hS(Um)). (67)

L%;Mzi(xi, ti;1) 2 0. As a result, by applying Lemma 11, it

is possible to obtain the required estimate, which is In this region, hi=27/N = 2r,elnN/N, and Lemma 9
gives

[(V =) (x5t | < C(N"'(e+N)),
(65)

N N
fori=3+l,z+2,---N—1, lggy’M(W—w)(xi,th)’s(N’3(lnN)3). (68)



Abstract and Applied Analysis 13
TaBLE 2: Computed Ef'M, ENMand RNM for Example 2 at M =N, § =0.5¢.
Method el N—32 64 128 256 512
26 7.3197¢-02 1.6164e-02 3.9632¢-03 1.0028e-03 2.5984e-04
2.1790 2.0280 1.9827 1.9483
278 7.0418e-02 1.5592¢-02 3.8049¢-03 9.5202e-04 2.4123e-04
2.1752 2.0348 1.9988 1.9806
2710 6.9688¢-02 1.5431e-02 3.7564e-03 9.3481e-04 2.3431e-04
2.1751 2.0384 2.0066 1.9962
2712 6.9502¢-02 1.5391e-02 3.7448e-03 9.3075¢-04 2.3270e-04
2.1750 2.0392 2.0084 1.9999
27 6.9452e-02 1.5387¢-02 3.7460e-03 9.3186e-04 2.3336e-04
Present 2.1743 2.0383 2.0072 1.9975
2716 6.9425e-02 1.5411e-02 3.7629¢-03 9.4068e-04 2.3775e-04
2.1715 2.0340 2.0001 1.9843
2718 6.9360e-02 1.5513¢-02 3.8335¢-03 9.7707¢-04 2.5572e-04
2.1606 2.0168 1.9721 1.9339
270 6.9112e-02 1.5927¢-02 4.1170e-03 1.1253¢-03 3.3204e-04
2.1174 1.9519 1.8712 1.7609
ENM 7.3197¢-02 1.6164e-02 4.1170e-03 1.1253e-03 3.3204¢-04
RVM 2.1790 2.0280 1.8712 1.7609
ENM 4.9224e-02 2.6666€-02 1.3880e-02 7.0816e-03 —
18] RVM 0.88436 0.94199 0.97086 —
ENM 2.1953e-02 1.1908e-02 6.1994e-03 3.1627¢-03 —
[19] .y
RY 0.88249 0.94173 0.97097 —
Now, construct the barrier function fori=1,2,---,N/2, and following the procedure like [0, 7], we get
ZE(x;tj,1) = C(N(In N))+(W —w) (x;, ;). (69) (W= w)(x; t101) | N
C(N(log N)*), i=1(1) (73)
It is easy to see Z*(xy,t;,1) 20, Z5(xy, 1)) 20, and = N
L7t (xp ) 20, for i=1,2,-,N~1. As a result, by CNT(e+NT)), i=— +1(1N-1.

applymg Lemma 11, we obtain the estimate

[(W —w)(x; t;,,)| <C(N*(In N)?).

(i) on [z, 1]

(LMW = w) (50 500) | < C((eh + 1) U )

i Y+l

In this region, /1 <2/N, and Lemma 9 gives

LMW = w) (3 t0) | < (N (e N,

(70)

(71)

Therefore, combining (66) and (73), we can obtain the

desired result.

Theorem 14. Let u(x;, t;) and U, ; be the solution of problems
(1) and (45), respectively, then, the proposed scheme satisfies
the following bound:

[u(xit;) = Uy

C((At)’ +

IN

C((At)* +N7?),

N7 (log N)’), i= 1(1)%

Lj=1(1)M,

i= g +I(I)N - 1,j=1(1)M.

(74)

Proof. Combining Theorems 7 and 13 gives the required

result.

O
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6. Numerical Illustration

In this section, the performance of the proposed scheme is
tested through numerical examples. The exact solution of
the following examples is not known, so to compute the
maximum point-wise errors, we use the double mesh princi-
ple given by the following formula:

ENM

= max ‘UN’M (%

75
0<i,j<N,.M (75)

t;) = UM (xy 1)),

where UNM (x,, t;) denote the numerical solution. The corre-
sponding rate of convergence is computed by using the fol-
lowing formula:

N,.M E;M
.R£ = 10g2 W . ( 76)
&

In addition, the e-uniform maximum point-wise error

ENM is computed as
ENM = m;ainV M, (77)
and the corresponding e-uniform rate of convergence RV
is given by
N M ENM
R =log, (EZNZM) (78)

Example 1. Consider the following problem [19]:

%—e%—(2+x)g—+xu(x, t) +u(x, t — )
~ 107 exp (~£)x(1- ), (55 € (1) x (0.2),(79)
u(xt) =0, (. ) € [0, 1] x [-5, 0},
u(0,t) =0and u(1,£)=0,t € (0,2].

Example 2. Consider the following problem [17]:

ou _862u _ou (1+x%) u(o 1)
ot “ox* Ox 2 ’

=—u(x,t-8)+ 1, (x,t) €(0,1) x (0,2], (80)
u(x,1)=0, (x1t)€[0,1]x[-8,0],
u(0,t) =0and u(1,¢)=0,t € (0,2].

7. Conclusion

A singularly perturbed convection-diffusion problem of
small time lag is treated, via a hybrid fitted mesh scheme
for the space discretization and the Crank-Nicolson method
on a uniform mesh for time derivative. Due to the presence
of a small perturbation parameter, the problem exhibits the
left side boundary layer at x =0. Figures 1, 2(b), 3, and
4(b) of the surface plot and one-dimensional plot for the
numerical solution of the problems in Example 1 and Exam-

Abstract and Applied Analysis

ple 2 clearly demonstrate the behavior of the boundary layer
as ¢ — 0. The maximum point-wise error of Example 1 and
Example 2 is plotted in Figures 2(a) and 4(a), respectively, in
the log-log plot. The error analysis of the proposed scheme is
proved, and the proposed scheme is second order e-uniform
convergent. The numerical results in Tables 1 and 2 of
Example 1 and Example 2, respectively, confirm that the tab-
ulated numerical results are in agreement with the theoreti-
cal error estimates. In addition, we observed that the
proposed scheme is more accurate and gives a higher rate
of convergence as compared to some studies available in
the literature. Since the approach is mesh dependent, when
the number of mesh points increases, the effectiveness of
the proposed scheme also increases. Due to the time limita-
tions, we only discuss small time delays; however, with some
slight adjustments, the scheme can also work for large time
delays.
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