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In this article, a singularly perturbed convection-diffusion problem with a small time lag is examined. Because of the appearance of
a small perturbation parameter, a boundary layer is observed in the solution of the problem. A hybrid scheme has been
constructed, which is a combination of the cubic spline method in the boundary layer region and the midpoint upwind scheme
in the outer layer region on a piecewise Shishkin mesh in the spatial direction. For the discretization of the time derivative, the
Crank-Nicolson method is used. Error analysis of the proposed method has been performed. We found that the proposed
scheme is second-order convergent. Numerical examples are given, and the numerical results are in agreement with the
theoretical results. Comparisons are made, and the results of the proposed scheme give more accurate solutions and a higher
rate of convergence as compared to some previous findings available in the literature.

1. Introduction

The delay differential equations are versatile in mathematical
modeling of processes where they provide a realistic simula-
tion of the real-world phenomena. The real-world opera-
tions/interactions that take time to complete can be
utilized to simulate the time lag experience such as gestation
time, incubation period, and transportation delays. In the
model, if a small parameter multiplies the highest order
derivative term, involving at least one shift term in the tem-
poral variable, we call it singularly perturbed time delay dif-
ferential equations (SPTDDE). These problems arise in the
varied area of science and engineering models, for instance,
in population dynamics, in epidemiology, in respiratory sys-
tem, and in tumor growth [1–6]. For more additional
models, one can refer [7, 8]. Due to the appearance of the
boundary layer in the solution of a singularly perturbed dif-
ferential equation, classical numerical methods on equidis-
tant grids are inadequate and fail to provide a reliable
approximation, when the perturbation parameter tends to
zero, unless otherwise, if one uses an unacceptably large

number of grid points. Several articles have been written
on the solution method for singularly perturbed delay differ-
ential equations, to cite a few [9–13]. Among the recently
conducted studies on SPTDDE of the convection-diffusion
type, having a right end boundary layer, in [14], the authors
used an implicit-trapezoidal scheme on uniform mesh for
temporal discretization, and for spatial discretization, a
hybrid scheme, which is a combination of the midpoint
upwind scheme and the central difference scheme on Shish-
kin type meshes, is applied. In [8], the scheme is constructed
using the Crank-Nicolson method for temporal discretiza-
tion, and a midpoint upwind finite difference scheme on a
fitted piecewise-uniform mesh in spatial discretization is
applied. In [15], the scheme is devised using backward
Euler’s scheme on uniform mesh for temporal discretization
and a new stable finite difference scheme on Shishkin mesh
for spatial discretization. In [16], the problem is solved using
the Crank-Nicolson method in temporal discretization, and
in the spatial discretization, an exponentially fitted operator
finite difference method on uniform mesh is used. All these
developed schemes can work for both small and large time
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delays. However, except [14], the results of the above studies
are first-order convergent, and there are some exceptional
properties which work only for a small time delay ðδ < εÞ
that cannot be assessed by these authors.

So, when we come to a singularly perturbed convection-
diffusion problem of small time lag, the following researchers
address the case which works only for small time lag. In
[17], the authors used the backward Euler scheme for tempo-
ral discretization and a central difference scheme with an
adaptive mesh selection strategy for spatial discretization. In
[18], the authors used the Euler method to discretize the time
derivative and a B-spline collocation scheme for the spatial
discretization on a uniform mesh. In this paper, both small
and large time delays are considered, and the developed
scheme is first-order convergent. In [19], the scheme is devel-
oped using the backward Euler method in the discretization of
the time derivative, and a higher-order finite difference
method is employed for the approximation of the spatial
derivative. In this scheme, an exponential fitting factor is
introduced, and the resulting scheme is first-order convergent.

From these, we are motivated to construct and analyze a
higher order ε-uniform numerical scheme, for the problem
considered in [17]. The proposed hybrid scheme is a combi-
nation of the cubic spline method and the midpoint upwind
scheme on piecewise Shishkin mesh in the spatial direction
and the Crank-Nicolson method in the temporal direction.
The advantage of the present method over the other
methods in [17–19] is that it is a second-order accurate in
both time and space variables, as well as its accuracy. In
addition, in the paper [17–19], Taylor’s series expansion is
applied at the beginning without any restriction on the
domain. In such a case, the advantage of the interval condi-
tion for the delay term in the approximation is meaningless.
So we incorporate the condition where Taylor’s series
expansion is applied without losing the interval condition.

Notations: all through this paper, C and its subscripts
denote generic positive constants independent of the pertur-
bation parameter ε and mesh sizes. Also, k∙k denotes the
standard supremum norm, defined as k f k = Sup

ðx,tÞ∈ �D
j f ðx, tÞj,

for a function f defined on some domain �D.

2. Problem Formulation

Consider the following singularly perturbed delay parabolic
problem [17, 19]:

∂u
∂t

− ε
∂2u
∂x2

+ α x, tð Þ ∂u∂x + β x, tð Þu x, tð Þ
+ γ x, tð Þu x, t − δð Þ = f x, tð Þ, x, tð Þ ∈D,

ð1Þ

subject to

u 0, tð Þ = ψl tð Þ, 0, tð Þ ∈ Γl = 0, tð Þ: 0 ≤ t ≤ Tf g,
u 1, tð Þ = ψr tð Þ, 1, tð Þ ∈ Γr = 1, tð Þ: 0 ≤ t ≤ Tf g,
u x, tð Þ = ψb x, tð Þ, x, tð Þ ∈ Γb

= x, tð Þ: 0 ≤ x ≤ 1 and − δ ≤ t ≤ 0f g,

ð2aÞ

where 0 < ε < <1 is the perturbation parameter, δ > 0 is the
delay parameter, δ < ε, D =Ωx ×Ωt , Ωx = ð0, 1Þ, Ωt = ð0, T�
, and �D = ½0, 1� × ½0, T�; the functions αðx, tÞ, βðx, tÞ, γðx, tÞ,
and f ðx, tÞ on �D and ψlðtÞ, ψrðtÞ, ψbðx, tÞ on Γ are assumed
to be smooth and bounded functions that satisfy the condi-
tions αðx, tÞ ≤ α0 < 0, and βðx, tÞ + γðx, tÞ ≥ 0 on �D: Under
the above assumption, problem (1) exhibits a boundary layer
along x = 0. The existence and uniqueness of the solution for
problem (1) can be guaranteed by the sufficient smoothness
of ψlðtÞ, ψrðtÞ, and ψbðx, tÞ, along with the following com-
patibility conditions:

ψb 0, 0ð Þ = ψl 0ð Þ, ψb 1, 0ð Þ = ψr 0ð Þ,
∂ψl 0ð Þ
∂t

− ε
∂2ψb 0, 0ð Þ

∂x2
+ α 0, 0ð Þ ∂ψb 0, 0ð Þ

∂x
+ β 0, 0ð Þψb 0, 0ð Þ + γ 0, 0ð Þψb 0,−δð Þ = f 0, 0ð Þ,

∂ψr 0ð Þ
∂t

− ε
∂2ψb 1, 0ð Þ

∂x2
+ α 1, 0ð Þ ∂ψb 1, 0ð Þ

∂x
+ β 1, 0ð Þψb 1, 0ð Þ + γ 1, 0ð Þψb 1,−δð Þ = f 1, 0ð Þ:

ð3Þ

The problem (1) has a unique solution with the above
conditions and assumptions [20]. Let us use the notation

Lεu =
∂u
∂t

− ε
∂2u
∂x2

+ α x, tð Þ ∂u∂x + β x, tð Þu x, tð Þ: ð4Þ

3. Bounds on the Solution and Its Derivatives

Lemma 1. Suppose ξðx, tÞ ∈ C0ð�DÞ ∩ C2ðDÞ. Assume that
ξð0, tÞ ≥ 0, ξð1, tÞ ≥ 0, and Lεξðx, tÞ ≥ 0, ∀ðx, tÞ ∈D. Then,
ξðx, tÞ ≥ 0, ∀ðx, tÞ ∈ �D.

Proof. Suppose ðx⋆, t⋆Þ ∈ �D such that ξðx⋆, t⋆Þ = min
ðx,tÞ∈ �D

ξðx, tÞ
and ξðx⋆, t⋆Þ < 0: It is visible that ðx⋆, t⋆Þ ∉ Γ and ðx⋆, t⋆Þ
∈D. At the point ðx⋆, t⋆Þ, ξx = 0, ξt = 0 and ξxx ≥ 0: Then,
Lεðx⋆, t⋆Þ < 0, which contradicts Lεðx, tÞ ≥ 0, ∀ðx, tÞ ∈D.
Therefore, ξðx, tÞ ≥ 0, ∀ðx, tÞ ∈ �D:

Lemma 2. The solution uðx, tÞ of problem (1) is bounded and
satisfies the following estimate:

uk k ≤ 1
α0j j fk k +max ψl tð Þj j, ψr tð Þj j, ψb x, tð Þj jf g, for all x ∈ 0, 1½ �:

ð5Þ

Proof. Please refer [21].

Lemma 3. The solution to the problem (1) satisfies the follow-
ing bound:

u x, tð Þ − ψb x, tð Þj j ≤ Ct, x, tð Þ ∈D: ð6Þ

Proof. Please refer [22].
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Lemma 4. The solution uðx, tÞ of (1) satisfies the bound

u x, tð Þj j ≤ C, on �D: ð7Þ

Proof. Let us take juðx, tÞj = juðx, tÞ − ψbðx, tÞ + ψbðx, tÞj ≤ j
uðx, tÞ − ψbðx, tÞj + jψbðx, tÞj: Using Lemma 3, juðx, tÞj ≤ Ct
+ jψbðx, tÞj and the fact that ψbðx, tÞ is bounded and t ∈ ð0
, 2�. Hence, we get the required result.

Lemma 5. Let u be the solution of problem (1), then

∂r+yu
∂xr∂ty

����
���� ≤ C 1 + ε−r exp −

α0x
ε

� �� �
, for x, tð Þ ∈ 0 ≤ r + 2y ≤ 4,

ð8Þ

where r and y are nonnegative integers.

Proof. The reader can follow the procedure in [21, 23, 24].

4. Numerical Scheme

The problem defined in (1) can be rewritten as

Lεu x, tð Þ = F x, tð Þ, ð9Þ

where

with initial and boundary conditions, D1 = ð0, 1Þ × ð0, δÞ and
D2 = ð0, 1Þ × ðδ, T�. Since the delay parameter (δ) is smaller
than the singular perturbation parameter (ε), it is possible
to apply Taylor’s series expansion as follows:

u x, t − δð Þ ≈ u x, tð Þ − δut x, tð Þ +O δ2
À Á

: ð11Þ

Substituting (11) into (9), we obtain

A x, tð Þ ∂u∂t − ε
∂2u
∂x2

+ α x, tð Þ ∂u∂x + B x, tð Þu x, tð Þ = F x, tð Þ,
ð12Þ

where

A x, tð Þ =
1, for x, tð Þ ∈D1,
1 − δγ x, tð Þ, for x, tð Þ ∈D2,

(

B x, tð Þ =
β x, tð Þ, for x, tð Þ ∈D1,
β x, tð Þ + γ x, tð Þ, for x, tð Þ ∈D2:

( ð13Þ

4.1. Temporal Discretization. This section is devoted to the
discretization of the temporal variable. So on the time
domain ½0, T�, we use uniform mesh ΩM

t = ft j : t j = jΔt, for
j = 0, 1,⋯,M, Δt = T/Mg, where M is the number of mesh
intervals and Δt is the time step. On ΩM

t , problem (12) is
discretized by using the Crank-Nicolson method as follows:

Aj+1/2 xð ÞU
j+1 xð Þ −Uj xð Þ

Δt
− ε

d2U j+1/2 xð Þ
dx2

+ αj+1/2 xð Þ dU
j+1/2 xð Þ
dx

+ Bj+1/2 xð ÞU j+1/2 xð Þ = Fj+1/2 xð Þ:
ð14Þ

After some rearrangement, (14) is written in the form

LM
ε U

j+1 xð Þ = −
1
2 ε

d2Uj+1 xð Þ
dx2

+ 1
2 α

j+1/2 xð Þ dU
j+1 xð Þ
dx

+ 1
2B

j+1/2 xð Þ + 1
Δt

Aj+1/2 xð Þ
� �

U j+1

= Gj xð Þ, x ∈Ωx,

subject to :Uj+1 0ð Þ = ψl t j+1
À Á

,
Uj+1 1ð Þ = ψr t j+1

À Á
, 0 ≤ j ≤M,

ð15Þ

where

Gj xð Þ = 1
2 ε

d2Uj xð Þ
dx2

−
1
2 α

j+1/2 xð Þ dU
j xð Þ
dx

−
1
2B

j+1/2 xð Þ − 1
Δt

Aj+1/2 xð Þ
� �

U j + Fj+1/2 xð Þ,

Fj+1/2 xð Þ = F x, t j+1
À Á

+ F x, t j
À Á

2 ,

ð16Þ

Lεu x, tð Þ ≡
∂u
∂t

− ε
∂2u
∂x2

+ α x, tð Þ ∂u∂x + β x, tð Þu x, tð Þ, for x, tð Þ ∈D1,

∂u
∂t

− ε
∂2u
∂x2

+ α x, tð Þ ∂u∂x + β x, tð Þu x, tð Þ + γ x, tð Þu x, t − δð Þ, for x, tð Þ ∈D2,

8>>><
>>>:

ð10aÞ

F x, tð Þ =
f x, tð Þ − γ x, tð Þψ x, t − δð Þ, for x, tð Þ ∈D1,
f x, tð Þ, for x, tð Þ ∈D2,

(
ð10bÞ

3Abstract and Applied Analysis



and Uj+1ðxÞ =Uðx, t j+1Þ is the semidiscrete approximation

to the exact solution uðx, tÞ of (1) at the ðj + 1Þth time level.

Lemma 6. Suppose that jð∂v/∂tvÞuðx, tÞj ≤ C, ðx, tÞ ∈ �Ω, v =
0, 1, 2, 3. The local truncation error associated to scheme
(15) satisfies

~ej+1


 



∞
≤ C0 Δtð Þ3, j = 1, 2,⋯,M: ð17Þ

Proof. Using Taylor’s series expansion, expanding Uðx, t j+1Þ
and Uðx, t jÞ centered at t j+1/2, we get

U x, t j+1
À Á

−U x, t j
À Á

Δt
=Ut x, t j+1/2

À Á
+O Δtð Þ2À Á

: ð18Þ

Substituting (18) in to (1), we obtain

U x, t j+1
À Á

−U x, t j
À Á

Δt

= ε
d
dx2

U x, t j+1/2
À Á

− αj+1/2 xð Þ d
dx

U x, t j+1/2
À Á

− βj+1/2 xð ÞU x, t j+1/2
À Á

− γj+1/2 xð ÞU x, t j+1/2 − δ
À Á

+ f x, t j+1/2
À Á

+O Δtð Þ2À Á
,

ð19Þ
where

f x, t j+1/2
À Á

=
f x, t j+1
À Á

+ f x, t j
À Á

2 +O Δtð Þ2À Á
,

U x, t j+1/2
À Á

=
U x, t j+1
À Á

+U x, t j
À Á

2 +O Δtð Þ2À Á
:

ð20Þ

From (19), the local truncation error k~ej+1k is the solu-

tion of the following BVP: LM
ε ~ej+1 =OððΔtÞ3Þ, ~ej+1ð0Þ = 0,

~ej+1ð1Þ = 0:

Theorem 7 (global error estimate). The global error estimate
in the time direction at ðj + 1Þth time level is given by

Ej+1


 



∞
≤ C Δtð Þ2, ∀j ≤

T
Δt

: ð21Þ

Proof. Using the local error estimate in Lemma 6, we obtain

Ej+1


 



∞
= 〠

j

ρ=1
~eρ












 ≤ ~e1k k + ~e2k k+⋯+ ~ej



 


≤C0 j Δtð Þ3, by Lemma 6

≤C1 jΔtð Þ Δtð Þ2,

≤C1T Δtð Þ2, since jΔt ≤ T

≤C Δtð Þ2, C1T = C:

ð22Þ

Lemma 8 (discrete maximum principle). Suppose ξj+1ðxÞ ∈
C0ð�DÞ ∩ C2ðDÞ. Assume that ξj+1ð0Þ ≥ 0, ξj+1ð1Þ ≥ 0, and
Lεξ

j+1ðxÞ ≥ 0, ∀ðxÞ ∈Ωx. Then, ξ
j+1ðxÞ ≥ 0, ∀ðxÞ ∈Ω.

Proof. Suppose ðx⋆, t j+1Þ ∈ fðx, t j+1Þ: x ∈ �Ωxg such that ðx⋆,
t j+1Þ =min

x∈ �Ω
ðx, t j+1Þ; let ξðx⋆, t j+1Þ < 0. This gives ðx⋆, t j+1Þ ∉

fð0, t j+1Þ, ð1, t j+1Þg, which implies that the point ðx⋆, t j+1Þ
∈Ωx. Also, we have ðξj+1Þx = 0 and ðξj+1Þxx ≥ 0.

LM
ε ξ

j+1 x⋆ð Þ = −
1
2 ε ξj+1
� �

xx
+ 1
2 α

j+1/2 xð Þ ξj+1
� �

x

+ 1
2B

j+1/2 x⋆ð Þ + 1
Δt

Aj+1/2 x⋆ð Þ
� �

Á ξj+1 x⋆ð Þ ≤ 0,

ð23Þ

which is a contradiction. Hence, the minimum of ξj+1ðxÞ is
nonnegative.

To prove that the approach is ε-uniform, more specific
information on the behavior of the exact solution is
required. This is done by decomposing the solution uðx, tÞ
into a smooth component vε and a singular component wε
as follows: u = vε +wε; for more detail on the decomposition,
one can refer [25].

Lemma 9. The regular and the singular components of the
solution of the discrete scheme (15) satisfy the following
bounds:

drV j+1

dxr

����
���� ≤ C 1 + ε3−r exp −

α0x
ε

� �� �
, for r = 1, 2, 3,

drWj+1

dxr

����
���� ≤ C ε−r exp −

α0x
ε

� �� �
, for r = 1, 2, 3:

ð24Þ

Proof. Follow the approach given in [21, 23, 24].

4.2. Discretization in the Spatial Direction

4.2.1. Shishkin Mesh. The piecewise-uniform mesh having
N ≥ 4 mesh intervals on ½0, 1� is generated by dividing the
interval ½0, 1� into two subintervals as ½0, τ� and ½1 − τ, 1�,
where the transition parameter τ separates the coarse and
fine region and is given by

τ =min 1
2 , τ0ε ln Nð Þ
� �

, ð25Þ

where τ0 is a constant satisfying τ0 ≥ 1/jα0j. Hence, the
piecewise-uniform mesh is given by

xi =
0, i = 0,
xi−1 + hi, i = 1, 2,⋯,N ,

(
ð26Þ
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where

hi =

2τ
N

, i = 1,⋯, N2 ,

2 1 − τð Þ
N

, i = N
2 + 1, N2 + 2,⋯,N:

8>><
>>: ð27Þ

4.3. Cubic Spline Difference Scheme. In this subsection, we
derive the cubic spline scheme on the meshes, ΩN = f0 =
x0, x1,⋯, xN = 1g and hi = xi − xi−1. Assume Qj+1ðxÞ is an
interpolating cubic spline function corresponding to the
values U j+1ðxiÞ of a function Uj+1ðx0Þ, Uj+1ðx1Þ, …, Uj+1ð
xNÞ of a function U j+1ðxÞ at the nodal points x0, x1,⋯, xN ,
satisfying the following properties:

(i) Qj+1ðxÞ coincides with a polynomial of degree three
on each subintervals ½xi−1, xi�, i = 1,⋯,N

(ii) Qj+1ðxÞ ∈ C2ð�ΩÞ
(iii) QðxiÞ =UðxiÞ, i = 0, 1,⋯,N

Then, the cubic spline function can be written as

Qj+1 xð Þ = xi − xð Þ3
6hi

Mi−1 +
x − xi−1ð Þ3

6hi
Mi

+ U j+1 xi−1ð Þ − h2i
6 Mi−1

 !
xi − x
hi

� �

+ U j+1 xið Þ − h2i
6 Mi

 !
x − xi
hi

� �
,

x ∈ xi−1, xi½ �, i = 1, 2,⋯,N ,

ð28Þ

where Mi = d2Qj+1ðxiÞ/dx2, i = 1, 2,⋯,N .
From the properties of spline [26],

hi
6 Mi−1 +

hi + hi+1
3 Mi +

hi+1
6 Mi+1

=
Ui+1,j −Ui,j+1

hi+1
−
Ui,j+1 −Ui−1,j+1

hi
,

i = 1, 2⋯ ,N − 1, j = 1, 2,⋯,M − 1:

ð29Þ

For the approximation of dU j+1ðxÞ/dx and d2U j+1ðxÞ/dx2,
we use the Taylor series approximations as follows:

Uj+1 xi+1ð Þ ≈Uj+1 xið Þ + hi+1
dU j+1 xið Þ

dx + h2i+1
2

d2Uj+1 xið Þ
dx2 ,

ð30Þ

U j+1 xi−1ð Þ ≈Uj+1 xið Þ − hi
dU j+1 xið Þ

dx
+ h2i

2
d2Uj+1 xið Þ

dx2 :

ð31Þ
Multiplying (31) by h2i+1/h2i and then subtracting the

resulting equation from (30), we get

dU j+1 xið Þ
dx

= 1
hihi+1 hi + hi+1ð Þ −h2i+1U

j+1 xi−1ð ÞÀ
+ h2i+1 − h2i
À Á

Uj+1 xið ÞÁ
+ 1
hihi+1 hi + hi+1ð Þ h2i U

j+1 xi+1ð ÞÀ Á
:

ð32Þ

In the same fashion multiplying (30) by h2i+1/h2i and then
adding the resulting equation into (31), we get

d2U j+1 xið Þ
dx2

= 2
hihi+1 hi + hi+1ð Þ hi+1U

j+1 xi−1ð ÞÀ
− hi + hi+1ð ÞUj+1 xið ÞÁ
+ 2
hihi+1 hi + hi+1ð Þ hiU

j+1 xi+1ð ÞÀ Á
:

ð33Þ

Using (32) and (33), in

dU j+1 xi+1ð Þ
dx

≈
dU j+1 xið Þ

dx
+ hi+1

d2Uj+1 xið Þ
dx2

,

dU j+1 xi−1ð Þ
dx

≈
dU j+1 xið Þ

dx
− hi

d2U j+1 xið Þ
dx2

,
ð34Þ

we obtain the following approximation:

dU j+1 xi+1ð Þ
dx

= 1
hihi+1 hi + hi+1ð Þ h2i+1U

j+1 xi−1ð ÞÀ
− hi+1 + hið Þ2Uj+1 xið ÞÁ
+ 1
hihi+1 hi + hi+1ð Þ h2i + 2hihi+1

À Á
U j+1 xi+1ð ÞÀ Á

,

ð35Þ

dU j+1 xi−1ð Þ
dx

= 1
hihi+1 hi + hi+1ð Þ − h2i+1 + 2hihi+1

À Á
Uj+1 xi−1ð ÞÀ Á

+ 1
hihi+1 hi + hi+1ð Þ hi + hi+1ð Þ2U j+1 xið ÞÀ Á

−
1

hihi+1 hi + hi+1ð Þ h2i U
j+1 xi+1ð ÞÀ Á

:

ð36Þ
Then, express (14) at x = xk in the form

1
2 ε Mj+1

k +Mj
k

� �
= 1
2 α

j+1/2 xkð Þ dU
j+1 xkð Þ
dx

+ 1
2B

j+1/2 xkð Þ + 1
Δt

Aj+1/2 xkð Þ
� �

U j+1 xkð Þ

+ 1
2 α

j+1/2 xkð Þ dU
j xkð Þ
dx

+ 1
2B

j+1/2 xkð Þ − 1
Δt

Aj+1/2 xkð Þ
� �

Uj xkð Þ − Fj+1/2 xkð Þ, for k = i, i+1:
ð37Þ
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Insert (32), (35), and (36) at ðj + 1Þth and jth time level
into (37), and substitute the resulting equation into (29).
After some simplification, we obtain

LN ,M
cs ≡ s−i,jU

j+1
i−1 + sci,jU

j+1
i + s+i,jU

j+1
i+1

= r−i,jU
j
i−1 + rci,jU

j
i + r+i,jU

j
i+1 + ~F

j+1/2
xð Þ, 

i = 1, 2,⋯,N − 1, j = 1, 2,⋯,M − 1,

ð38Þ

where ĥi = hi + hi+1,

4.4. Midpoint Upwind Scheme. For any mesh function ϕj+1ð
xiÞ ≈ ϕj+1

i , let us define the backward D−
x , forward D+

x , and
central difference D+

xD
−
x operators as follows:

D−
xϕ

j+1
i = ϕj+1

i − ϕj+1
i−1

hi
,

D+
xϕ

j+1
i = ϕj+1

i+1 − ϕj+1
i

hi+1
,

D+
xD

−
xϕ

j+1
i =

2 D+
xϕ

j+1
i −D−

xϕ
j+1
i

� �
ĥi

= 2
ĥi

ϕj+1
i+1 − ϕj+1

i

hi+1
−
ϕj+1
i − ϕj+1

i−1
hi

 !
:

ð40Þ

Using the midpoint upwind scheme, (15) can be discre-
tized as

−
1
2 εD

+
xD

−
xU

j+1
i + 1

2 α
j+1/2
i+1/2D

+
xU

j+1
i

+ 1
2B

j+1/2
i+1/2 +

1
Δt

Aj+1/2
i+1/2

� �
U j+1

i+1/2

=G∗j
i+1/2, 0 ≤ i ≤N , 0 ≤ j ≤M,

ð41Þ

where

G∗j
i+1/2 =

1
2 εD

+
xD

−
xU

j
i −

1
2 α

j+1/2
i+1/2D

+
xU

j
i

−
1
2B

j+1/2
i+1/2 −

1
Δt

Aj+1/2
i+1/2

� �
U j

i+1/2 + ~F
j+1/2
i+1/2 ,

ϕj+1
i+1/2 =

ϕj+1
i+1 + ϕj+1

i

2 :

ð42Þ

After some simplification, we obtain the following three-
term recurrence relation:

s−i,j = −
hi+1 + 2hið Þ

4ĥi
αj+1/2 xi−1ð Þ − hi+1

2hi
αj+1/2 xið Þ + h2i+1

4hiĥi
αj+1/2 xi+1ð Þ + hi

2
1
2B

j+1/2 xi−1ð Þ + 1
Δt

Aj+1/2 xi−1ð Þ
� �

−
3ε
2hi

,

sci,j =
ĥi

4hi+1
αj+1/2 xi−1ð Þ + h2i+1 − h2i

À Á
2hihi+1

αj+1/2 xið Þ − ĥi
4hi

αj+1/2 xi+1ð Þ + ĥi
� � 1

2B
j+1/2 xið Þ + 1

Δt
Aj+1/2 xið Þ

� �
+ 3εĥi
2hihi+1

,

s+i,j = −
h2i

4hi+1ĥi
αj+1/2 xi−1ð Þ + hi

2hi+1
αj+1/2 xið Þ + 2hi+1 + hið Þ

4ĥi
αj+1/2 xi+1ð Þ + hi+1

2
1
2B

j+1/2 xi+1ð Þ + 1
Δt

Aj+1/2 xi+1ð Þ
� �

−
3ε

2hi+1
,

r−i,j =
hi+1 + 2hið Þ

4ĥi
αj+1/2 xi−1ð Þ + hi+1

2hi
αj+1/2 xið Þ − h2i+1

4hiĥi
αj+1/2 xi+1ð Þ − hi

2
1
2B

j+1/2 xi−1ð Þ − 1
Δt

Aj+1/2 xi−1ð Þ
� �

+ 3ε
2hi

,

rci,j = −
ĥi

4hi+1
αj+1/2 xi−1ð Þ − h2i+1 − h2i

À Á
2hihi+1

αj+1/2 xið Þ + ĥi
4hi

αj+1/2 xi+1ð Þ − ĥi
� � 1

2B
j+1/2 xið Þ − 1

Δt
Aj+1/2 xið Þ

� �
−

3εĥi
2hihi+1

,

r+i,j =
h2i

4hi+1ĥi
αj+1/2 xi−1ð Þ − hi

2hi+1
αj+1/2 xið Þ − 2hi+1 + hið Þ

4ĥi
αj+1/2 xi+1ð Þ − hi+1

2
1
2B

j+1/2 xi+1ð Þ − 1
Δt

Aj+1/2 xi+1ð Þ
� �

+ 3ε
2hi+1

,

~F
j+1/2

xð Þ = hi
2 Fj+1/2 xi−1ð Þ + ĥiF

j+1/2 xið Þ + hi+1
2 Fj+1/2 xi+1ð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð39Þ
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LN ,M
mp = s−i,jU

j+1
i−1 + sci,jU

j+1
i + s+i,jU

j+1
i+1

= r−i,jU
j
i−1 + rci,jU

j
i + r+i,jU

j
i+1 + ~F

j+1/2
i+1/2 , 

i = 1, 2,⋯,N − 1, j = 1, 2,⋯,M − 1,

ð43Þ

where

4.4.1. Hybrid Scheme. The upwind scheme is stable and pro-
duces a first-order accurate solution [27–29]. The cubic
spline method satisfies the discrete maximum norm only
in the fine mesh region, whereas in the coarse mesh region,
the solution is unstable [28, 29]. The benefit of constructing
a hybrid scheme is that it gives higher-order parameter uni-

form convergent schemes that are oscillation-free across the
region. So, using a piecewise-uniform Shishkin mesh, we
develop a second-order parameter uniform convergent
scheme that combines the cubic spline approach in the fine
mesh region and the midpoint upwind scheme in the coarse
mesh region. Thus, the discrete problem of (1) is given by

Therefore, we have the following totally discrete scheme:

LN ,M
hy ≡ s−i,jU

j+1
i−1 + sci,jU

j+1
i + s+i,jU

j+1
i+1

= r−i,jU
j
i−1 + rci,jU

j
i + r+i,jU

j
i+1 + ~F

j+1/2,
i = 1, 2,⋯,N − 1, j = 1, 2,⋯,M − 1,

ð46Þ

where the coefficients s−i,j, sci,j, and s+i,j are described in (39);
also, r−i,j, rci,j, and r+i,j are described in (44).

5. Stability and Error Analysis

In this section, we study the stability and ε-uniform conver-
gence of the proposed scheme. For the analysis, we follow

s−i,j = −
ε

ĥihi
,

sci,j =
ε

hihi+1
−
αj+1/2
i+1/2
2hi+1

+ 1
2

1
2B

j+1/2
i+1/2 +

1
Δt

Aj+1/2
i+1/2

� �
,

s+i,j = −
ε

ĥihi+1
+ αj+1/2

i+1/2
2hi+1

+ 1
2

1
2B

j+1/2
i+1/2 +

1
Δt

Aj+1/2
i+1/2

� �
,

r−i,j =
ε

ĥihi
,

rci,j = −
ε

hihi+1
+ αj+1/2

i+1/2
2hi+1

−
1
2

1
2B

j+1/2
i+1/2 −

1
Δt

Aj+1/2
i+1/2

� �
,

r+i,j =
ε

ĥihi+1
−
αj+1/2
i+1/2
2hi+1

−
1
2

1
2B

j+1/2
i+1/2 −

1
Δt

Aj+1/2
i+1/2

� �
:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð44Þ

LM,N
hy U j+1

i =

LN ,M
cs U j+1

i = Gj
i , for i = 1, 2,⋯, N2 , j = 1, 2,⋯,M − 1,

LN ,M
mp U j+1

i = G∗j
i , for i =

N
2 + 1, N2 + 2,⋯,N − 1, j = 1, 2,⋯,M − 1,

U j+1
0 = ψj+1 0ð Þ, j = 0, 1,⋯,M − 1,

U j+1
N = ψj+1 1ð Þ, j = 0, 1,⋯,M − 1,

U0
i = ψ0

b xið Þ, i = 0, 1,⋯,N − 1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð45Þ
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the approach given in [23, 25]. The numerical solution UN ,M

on D is decomposed as U =V +W, where V and W are the
numerical solutions of the regular and singular components,
respectively; for detail on the decomposition, please
refer [25].

Lemma 10. Assume that N ≥N0, where N0 is the smallest
positive integer satisfying

N0

ln N0
≥ τ0 αk k∞, ð47Þ

βk k + 1
Δt

Ak k
� �

≤ α0j jN0: ð48Þ

Then, we have

Proof. Divide the interval into two cases.

Case 1. For 1 ≤ i ≤N/2, since the mesh is piecewise uniform,
so that it is possible to fix the mesh size in the inner layer
region by hi = h = 2τ0εlnN/lnN and substitute (47) into
(39) and simply, we get

s−i,j ≤ −
3
4 αk k + h Bk k + 1

Δt
Ak k

� �
−

3ε
2h

≤ −
3
4 αk k − α0j jN0

N

� �
−
3ε
N

< 0,
ð50Þ

since jα0j < kαk, h < 1/N and (48).
Similarly, s+ < 0, and from (39), it is clear that

sc1,j
��� ��� − s+1,j

��� ��� ≥ 0,

sci,j
��� ��� ≥ s−i,j

��� ��� + s+i,j
��� ���: ð51Þ

Case 2. For N/2 < i <N , the mesh size in the outer layer
region is hi = ð2ð1 − τ0ε log NÞ/NÞ < 2/N . Next, using (47)
and (48) into (44), it is easy to see that s− < 0 and s+ < 0. Sim-
ple mathematical calculation gives

scN−1,j

��� ��� > s−N−1,j

��� ���,
sci,j
��� ��� > s−i,j

��� ��� + s+i,j
��� ���: ð52Þ

Hence, the proof is completed.

Note: Lemma 10 confirms that under the hypotheses
given in (47) and (48), the tridiagonal matrix corresponding
to the operator LN ,M

hy defined in (46) is an M-matrix. This

implies that the operator LN ,M
hy satisfies the next discrete

maximum principle.

Lemma 11. Let ζN ,M be any mesh function defined on �DN ,M .
Assume that ζj+10 ≥ 0, ζj+1N ≥ 0. Then, LN ,M

hy ζj+1i ≥ 0, ∀i = 1ð1Þ
N − 1 implies that ζj+1i ≥ 0, ∀i = 1ð1ÞN .

Proof. Assume that there exists a mesh point ði∗, j + 1Þ for
i∗ ∈ f1,⋯,N − 1g such that ζj+1i∗ =min ζj+1i

0≤i≤N
, and assume that

ζj+1i∗ < 0, so it is clear that i∗ ∉ f0,Ng. Then,LM,N
hy ζj+1i∗ ≤ 0 for

i∗ ∈ f1, 2,⋯,N − 1g; this contradicts with the assumption
ζj+1i∗ ≥ 0, i∗ = 1, 2,⋯,N − 1. Hence, the result follows.

The uniform stability estimate of the discrete solution is
provided by the subsequent lemma.

Lemma 12. Let Ui,j+1 be the solution of the discrete problem
(48). Then,

Ui,j+1
�� �� ≤ C max

∂DN ,M
U xi, t j+1
À Á�� ��

+ 1
α0

LM,N
hy Ui,j+1




 


, x, t j+1
À Á

∈DN ,M:
ð53Þ

Proof. Let us construct the barrier function as follows:

Z+ xi, t j+1
À Á

= C max
∂DN ,M

U xi, t j+1
À Á�� �� + 1

α0
LM,N

hy Ui,j+1




 


 ±Ui,j+1,

ð54Þ

and using Lemma 11, we can obtain the required bound.

5.1. Truncation Error.

LN ,M
sp U − uð Þ = Tx = s−i,jU

j+1
i−1 + sci,jU

j+1
i + s+i,jU

j+1
i+1

− r−i,jU
j
i−1 + rci,jU

j
i + r+i,jU

j
i+1 + ~F

j+1/2� �
:

ð55Þ

s−i,j < 0, s+i,j < 0, for i = 1, 2,⋯,N − 1, j = 1, 2,⋯,M,

sc1,j
��� ��� − s+1,j

��� ��� ≥ 0, sci,j
��� ��� − s−i,j

��� ��� − s+i,j
��� ��� ≥ 0, for i = 1, 2,⋯, N2 , j = 1, 2,⋯,M,

scN−1,j

��� ��� − s−N−1,j

��� ��� > 0, sci,j
��� ��� − s−i,j

��� ��� − s+i,j
��� ��� > 0, for i = N

2 + 1, N2 + 1,⋯,N − 1, j = 1, 2,⋯,M:

8>>>>><
>>>>>:

ð49Þ
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Case 1. Truncation error in the inner layer region using (15)
at xk, k = i, i+1 in (46) is given by

Tx =
�

s−i,j −
hi
2 B̂

j+1/2
i−1

� �
Uj+1

i−1 + sci,j − ĥiB̂
j+1/2
i

� �
U j+1

i

+ s+i,j −
hi+1
2 B̂

j+1/2
i+1

� �
Uj+1

i+1 −
hi
2

�
−
1
2 ε Uxxð Þj+1i−1

+ 1
2 α

j+1/2
i−1 Uxð Þj+1i−1

�
− ĥi

�
−
1
2 ε Uxxð Þj+1i

+ 1
2 α

j+1/2
i Uxð Þj+1i

�
−
hi+1
2

�
−
1
2 ε Uxxð Þj+1i+1

+ 1
2 α

j+1/2
i+1 Uxð Þj+1i+1

�
− r−i,j +

hi
2 B̂

∗j+1/2
i−1

� �
U j

i−1

− rci,j + ĥiB̂
∗j+1/2
i

� �
U j

i − r+i,j +
hi+1
2 B̂

∗j+1/2
i+1

� �
Uj

i+1

−
hi
2

�
−
1
2 ε Uxxð Þji−1 +

1
2 α

j+1/2
i−1 Uxð Þji−1

�

− ĥi −
1
2 ε Uxxð Þji +

1
2 α

j+1/2
i Uxð Þji

� �

−
hi+1
2 −

1
2 ε Uxxð Þji+1 +

1
2 α

j+1/2
i+1 Uxð Þji+1

� �
,

ð56Þ

where B̂
j+1/2
i = ð1/2ÞBj+1/2

i + ð1/ΔtÞAj+1/2
i and B̂

∗j+1/2
i = ð1/2Þ

Bj+1/2
i − ð1/ΔtÞAj+1/2

i . Substituting Taylor’s series expansion

in the spatial variable of U j+1
i−1 ,U

j+1
i+1 , ðUxÞj+1i−1 , ðUxÞj+1i+1 ,

ðUxxÞj+1i−1 , ðUxxÞji+1, Uj
i−1,U

j
i+1, ðUxÞji−1, ðUxÞji+1, ðUxxÞji−1,

and ðUxxÞji+1 into (56)

Tx,i = T0,j+1U
j+1
i + T0,jU

j
i

h i
+ T1,j+1 Uxð Þj+1i + T1,j Uxð Þji
h i

+ T2,j+1 Uxxð Þj+1i + T2,j Uxxð Þji
h i

+ T3,j+1 Uxxxð Þj+1i + T3,j Uxxxð Þji
h i

+⋯,

ð57Þ

where

T0,j+1 = s−i,j + sci,j + s+i,j
� �

−
hi
2 Bj+1/2

i−1 − ĥiB
j+1/2
i −

hi+1
2 Bj+1/2

i+1

� �
,

T0,j = − r−i,j + rci,j + r+i,j
� �

−
hi
2 B∗j+1/2

i−1 − ĥiB
∗j+1/2
i −

hi+1
2 B∗j+1/2

i+1

� �
,

T1,j+1 = −hi s−i,j −
hi
2 B̂

j+1/2
i−1

� �
+ hi+1 s+i,j −

hi+1
2 B̂

j+1/2
i+1

� �� �
−

hi
4 αj+1/2

i−1 + ĥi
2 αj+1/2

i + hi+1
4 αj+1/2

i+1

" #
,

T1,j = hi r−i,j +
hi
2 B∗j+1/2

i−1

� �
− hi+1 r+i,j +

hi+1
2 B∗j+1/2

i+1

� �� �
−

hi
4 αj+1/2

i−1 + ĥi
2 αj+1/2

i + hi+1
4 αj+1/2

i+1

" #
,

T2,j+1 =
h2i
2 s−i,j −

hi
2 B̂

j+1/2
i−1

� �
+ h2i+1

2 s+i,j −
hi+1
2 B̂

j+1/2
i+1

� �" #
+ h2i

4 αj+1/2
i−1 −

h2i+1
4 αj+1/2

i+1 + hi
4 ε + ĥi

2 ε + hi+1
4 ε

" #
,

T2,j = −
h2i
2 r−i,j +

hi
2 B∗j+1/2

i−1

� �
−
h2i+1
2 r+i,j +

hi+1
2 B∗j+1/2

i+1

� �" #
+ h2i

4 αj+1/2
i−1 −

h2i+1
4 αj+1/2

i+1 + hi
4 ε + ĥi

2 ε + hi+1
4 ε

" #
,

T3,j+1 =
−h3i
3! s−i,j −

hi
2 B̂

j+1/2
i−1

� �
+ h3i+1

3! s+i,j −
hi+1
2 B̂

j+1/2
i+1

� �" #
+ −h3i

8 αj+1/2
i−1 −

h3i+1
8 αj+1/2

i+1 −
h2i
4 ε + h2i+1

4 ε

" #
,

T3,j =
h3i
3! r−i,j +

hi
2 B∗j+1/2

i−1

� �
−
h3i+1
3! r+i,j +

hi+1
2 B∗j+1/2

i+1

� �" #
+ −h3i

8 αj+1/2
i−1 −

h3i+1
8 αj+1/2

i+1 −
h2i
4 ε + h2i+1

4 ε

" #
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð58Þ
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It can be easily seen that T0,j+1 = T0,j = T1,j+1 = T1,j =
T2,j+1 = T2,j = 0,

T3,j+1 = ð−h2i ðhi + hi+1Þ/24Þαj+1/2
i−1 + ðhihi+1ðhi + hi+1Þ/12Þ

αj+1/2
i + ð−h2i+1ðhi + hi+1Þ/24Þαj+1/2

i+1 . Thus, we get

Txj j ≤ Cℏ3Uxxx , ð59Þ

where ℏ =max ðhiÞ, for i = 1, 2, ::,N .

Case 2. In the outer layer region, applying a similar proce-
dure like the inner layer region, we obtain jTxj ≤ ðð1/3Þεðhi
− 2hi+1Þ − ð1/3Þh2i+1αj+1

i+1ÞUxxx, which is

Txj j ≤ C εℏ + ℏ2
À Á

Uxxx: ð60Þ

Theorem 13. Let uðxi, t j+1Þ and Ui,j+1 be the solution of prob-
lems (1) and (45), respectively; then, the proposed scheme sat-
isfies the following error estimate in the spatial direction:

u xi, t j+1
À Á

−Ui,j+1
�� ��

≤
C N−3 log Nð Þ3À Á

, i = 1, 2,⋯, N
2
,

C N−1 ε +N−1À ÁÀ Á
, i = N

2
+ 1, N

2
+ 2,⋯N:

8>><
>>:

ð61Þ

Proof. The proof is divided into two cases as a singular part
and a regular part.

Case 1. The bound for the regular component of the solution
Ui,j of (1).

From the truncation error of the spatial direction (60),
we have

LN ,M
hy V − vð Þ xi, t j+1

À Á��� ���
≤

C ℏ3Uxxx

À Á
, i = 1, 2,⋯, N2 ,

C εℏ + ℏ2
À Á

Uxxx

À Á
, i = N

2 + 1, N2 + 2,⋯N − 1:

8>><
>>:

ð62Þ
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Figure 1: Surface plot of numerical solution of Example 1 at N =M = 64.
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Figure 2: One-dimensional plot and log-log plot for Example 1.
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Since ℏ ≤ 2/N , for i = 1, 2,⋯,N − 1, using Lemma 9, we
obtain

LN ,M
hy V − vð Þ xi, t j+1

À Á��� ���
≤

C N−3 log Nð Þ3À Á
, i = 1, 2,⋯, N2 ,

C N−1 ε +N−1À ÁÀ Á
, i = N

2 + 1, N2 + 2,⋯N − 1:

8>><
>>:

ð63Þ

Now, construct the barrier function for each interval; let
us take i = ðN/2Þ + 1, ðN/2Þ + 2,⋯,N − 1,

Z+ xi, t j+1
À Á

= C N−1 ε +N−1À ÁÀ Á
+ V − vð Þ xi, t j+1

À Á
: ð64Þ

It is easy to see Z+ðx0, t j+1Þ ≥ 0, Z+ðxN , t j+1Þ ≥ 0, and

LN ,M
hy Z+ðxi, t j+1Þ ≥ 0. As a result, by applying Lemma 11, it

is possible to obtain the required estimate, which is

V − vð Þ xi, t j+1
À Á�� �� ≤ C N−1 ε +N−1À ÁÀ Á

,

for i = N
2 + 1, N2 + 2,⋯N − 1:

ð65Þ

Apply a similar procedure for i = 1, 2,⋯,N/2; then, we
can get

V − vð Þ xi, t j+1
À Á�� ��

≤
C N−3 log Nð Þ3À Á

, i = 1 1ð ÞN2 ,

C N−1 ε +N−1À ÁÀ Á
, i = N

2 + 1 1ð ÞN − 1:

8>><
>>:

ð66Þ

Case 2. The bound for the singular component of the solu-
tion Ui,j of (1). The proof is done separately in ½0, τ� and ½τ
, 1�.

(i) On ½0, τ�

LN ,M
hy W −wð Þ xi, t j+1

À Á��� ��� ≤ C ℏ3 Uxxxð ÞÀ Á
: ð67Þ

In this region, ℏ = 2τ/N = 2τ0εlnN/N , and Lemma 9
gives

LN ,M
hy W −wð Þ xi, t j+1

À Á��� ��� ≤ N−3 ln Nð Þ3À Á
: ð68Þ

Table 1: Computed EN ,M
ε , EN ,M , and RN ,M for Example 1 at M =N , δ = 0:5ε.

Method ε↓ N→32 64 128 256 512

Present

2−4 7.4172e-03 1.6104e-03 3.7310e-04 8.4234e-05 1.9588e-05

2.2034 2.1098 2.1471 2.1044

2−6 1.3309e-02 2.7086e-03 6.6643e-04 1.5562e-04 3.4549e-05

2.2968 2.0230 2.0984 2.1714

2−8 1.3254e-02 2.7249e-03 6.8167e-04 1.6529e-04 3.9616e-05

2.2822 1.9991 2.0440 2.0609

2−10 1.3244e-02 2.7338e-03 6.8823e-04 1.6927e-04 4.1768e-05

2.2763e 1.9899 2.0236 2.0189

2−12 1.3241e-02 2.7364e-03 6.9006e-04 1.7037e-04 4.2365e-05

2.2747 1.9875 2.0180 2.0077

2−14 1.3241e-02 2.7370e-03 6.9055e-04 1.7066e-04 4.2522e-05

2.2743 1.9868 2.0166 2.0048

2−16 1.3240e-02 2.7373e-03 6.9073e-04 1.7077e-04 4.2578e-05

2.2741 1.9865 2.0161 2.0039

2−18 1.3240e-02 2.7375e-03 6.9101e-04 1.7092e-04 4.2656e-05

2.2739 1.9861 2.0154 2.0025

2−20 1.3237e-02 2.7385e-03 6.9201e-04 1.7148e-04 4.2932e-05

2.2731 1.9845 2.0128 1.9979

EN ,M 1.3309e-02 2.7385e-03 6.9201e-04 1.7148e-04 4.2932e-05

RN ,M 2.2968 1.9845e 2.0128 1.9979

[19]
EN ,M 2.9454e-03 1.6032e-03 8.4467e-04 4.3881e-04 —

RN ,M 0.8775 0.9245 0.9448 —
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Now, construct the barrier function for i = 1, 2,⋯,N/2,

Z+ xi, t j+1
À Á

= C N−3 ln Nð Þ3À Á
+ W −wð Þ xi, t j+1

À Á
: ð69Þ

It is easy to see Z+ðx0, t j+1Þ ≥ 0, Z+ðxN , t j+1Þ ≥ 0, and

LN ,M
hy Z+ðxi, t j+1Þ ≥ 0, for i = 1, 2,⋯,N − 1. As a result, by

applying Lemma 11, we obtain the estimate

W −wð Þ xi, t j+1
À Á�� �� ≤ C N−3 ln Nð Þ3À Á

: ð70Þ

(ii) on ½τ, 1�

LN ,M
hy W −wð Þ xi, t j+1

À Á��� ��� ≤ C εℏ + ℏ2
À Á

Uxxx

À Á
: ð71Þ

In this region, ℏ ≤ 2/N , and Lemma 9 gives

LN ,M
hy W −wð Þ xi, t j+1

À Á��� ��� ≤ N−1 ε +N−1À ÁÀ
, ð72Þ

and following the procedure like ½0, τ�, we get

W −wð Þ xi, t j+1
À Á�� ��

≤
C N−3 log Nð Þ3À Á

, i = 1 1ð ÞN2 ,

C N−1 ε +N−1À ÁÀ Á
, i = N

2 + 1 1ð ÞN − 1:

8>><
>>:

ð73Þ

Therefore, combining (66) and (73), we can obtain the
desired result.

Theorem 14. Let uðxi, t jÞ and Ui,j be the solution of problems
(1) and (45), respectively; then, the proposed scheme satisfies
the following bound:

u xi, t j
À Á

−Ui,j


 



≤
C Δtð Þ2 +N−3 log Nð Þ3À Á

, i = 1 1ð ÞN
2
, j = 1 1ð ÞM,

C Δtð Þ2 +N−2À Á
, i = N

2
+ 1 1ð ÞN − 1, j = 1 1ð ÞM:

8>><
>>:

ð74Þ

Proof. Combining Theorems 7 and 13 gives the required
result.

Table 2: Computed EN ,M
ε , EN ,M , and RN ,M for Example 2 at M =N , δ = 0:5ε.

Method ε↓ N→32 64 128 256 512

Present

2−6 7.3197e-02 1.6164e-02 3.9632e-03 1.0028e-03 2.5984e-04

2.1790 2.0280 1.9827 1.9483

2−8 7.0418e-02 1.5592e-02 3.8049e-03 9.5202e-04 2.4123e-04

2.1752 2.0348 1.9988 1.9806

2−10 6.9688e-02 1.5431e-02 3.7564e-03 9.3481e-04 2.3431e-04

2.1751 2.0384 2.0066 1.9962

2−12 6.9502e-02 1.5391e-02 3.7448e-03 9.3075e-04 2.3270e-04

2.1750 2.0392 2.0084 1.9999

2−14 6.9452e-02 1.5387e-02 3.7460e-03 9.3186e-04 2.3336e-04

2.1743 2.0383 2.0072 1.9975

2−16 6.9425e-02 1.5411e-02 3.7629e-03 9.4068e-04 2.3775e-04

2.1715 2.0340 2.0001 1.9843

2−18 6.9360e-02 1.5513e-02 3.8335e-03 9.7707e-04 2.5572e-04

2.1606 2.0168 1.9721 1.9339

2−20 6.9112e-02 1.5927e-02 4.1170e-03 1.1253e-03 3.3204e-04

2.1174 1.9519 1.8712 1.7609

EN ,M 7.3197e-02 1.6164e-02 4.1170e-03 1.1253e-03 3.3204e-04

RN ,M 2.1790 2.0280 1.8712 1.7609

[18]
EN ,M 4.9224e-02 2.6666e-02 1.3880e-02 7.0816e-03 —

RN ,M 0.88436 0.94199 0.97086 —

[19]
EN ,M 2.1953e-02 1.1908e-02 6.1994e-03 3.1627e-03 —

RN ,M 0.88249 0.94173 0.97097 —
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6. Numerical Illustration

In this section, the performance of the proposed scheme is
tested through numerical examples. The exact solution of
the following examples is not known, so to compute the
maximum point-wise errors, we use the double mesh princi-
ple given by the following formula:

EN ,M
ε = max

0≤i,j≤N ,M
UN ,M xi, t j

À Á
−U2M,2N x2i, t2j

À Á�� ��, ð75Þ

where UN ,Mðxi, t jÞ denote the numerical solution. The corre-
sponding rate of convergence is computed by using the fol-
lowing formula:

RN ,M
ε = log2

EN ,M
ε

E2N ,2M
ε

� �
: ð76Þ

In addition, the ε-uniform maximum point-wise error
EN ,M is computed as

EN ,M =max
ε

EN ,M
ε , ð77Þ

and the corresponding ε-uniform rate of convergence RN ,M

is given by

RN ,M = log2
EN ,M

E2N ,2M

� �
: ð78Þ

Example 1. Consider the following problem [19]:

∂u
∂t

− ε
∂2u
∂x2

− 2 + x2
À Á ∂u

∂x
+ xu x, tð Þ + u x, t − τð Þ

= 10t2 exp −tð Þx 1 − xð Þ, x, tð Þ ∈ 0, 1ð Þ × 0, 2ð �,
u x, tð Þ = 0, x, tð Þ ∈ 0, 1½ � × −δ, 0½ �,
u 0, tð Þ = 0 and u 1, tð Þ = 0, t ∈ 0, 2ð �:

ð79Þ

Example 2. Consider the following problem [17]:

∂u
∂t

− ε
∂2u
∂x2

−
∂u
∂x

+ 1 + x2
À Á

2 u x, tð Þ
= −u x, t − δð Þ + t3, x, tð Þ ∈ 0, 1ð Þ × 0, 2ð �,
u x, tð Þ = 0,  x, tð Þ ∈ 0, 1½ � × −δ, 0½ �,
u 0, tð Þ = 0 and u 1, tð Þ = 0, t ∈ 0, 2ð �:

ð80Þ

7. Conclusion

A singularly perturbed convection-diffusion problem of
small time lag is treated, via a hybrid fitted mesh scheme
for the space discretization and the Crank–Nicolson method
on a uniform mesh for time derivative. Due to the presence
of a small perturbation parameter, the problem exhibits the
left side boundary layer at x = 0. Figures 1, 2(b), 3, and
4(b) of the surface plot and one-dimensional plot for the
numerical solution of the problems in Example 1 and Exam-

ple 2 clearly demonstrate the behavior of the boundary layer
as ε⟶ 0. The maximum point-wise error of Example 1 and
Example 2 is plotted in Figures 2(a) and 4(a), respectively, in
the log-log plot. The error analysis of the proposed scheme is
proved, and the proposed scheme is second order ε-uniform
convergent. The numerical results in Tables 1 and 2 of
Example 1 and Example 2, respectively, confirm that the tab-
ulated numerical results are in agreement with the theoreti-
cal error estimates. In addition, we observed that the
proposed scheme is more accurate and gives a higher rate
of convergence as compared to some studies available in
the literature. Since the approach is mesh dependent, when
the number of mesh points increases, the effectiveness of
the proposed scheme also increases. Due to the time limita-
tions, we only discuss small time delays; however, with some
slight adjustments, the scheme can also work for large time
delays.
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