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This paper introduces a novel category of nonlinear mappings and provides several theorems on their existence and convergence in Banach
spaces, subject to various assumptions. Moreover, we obtain convergence theorems concerning iterates of a-Krasnosel'skii mapping
associated with the newly defined class of mappings. Further, we present that a-Krasnosel’skii mapping associated with b-enriched
quasinonexpansive mapping is asymptotically regular. Furthermore, some new convergence theorems concerning b-enriched quasino-

nexpansive mappings have been proved.

1. Introduction

Consider a Banach space (2, ].||) and a nonempty subset
B CX. A mapping ¥ : B — A is nonexpansive if ||¥(9) —
P(o)||<||9—¢|| for all 9,0 € RB. A point z€ B is a fixed
point of ¥ if ¥(z) =z. While nonexpansive mappings may
not have fixed points in a general Banach space. Browder [1],
Gohde [2], and Kirk [3] independently proved fixed point
theorems for nonexpansive mappings with certain geometric
properties, such as uniform convexity or normal structure.
Since then, numerous authors have obtained various exten-
sions and generalizations of nonexpansive mappings and their
results. Some of these notable extensions and generalizations

are summarized in Pant et al’s [4] study.
In 2008, Suzuki [5] introduced a novel category of non-

expansive mappings called mappings that fulfill condition
(C) and derived significant fixed point results for this cate-
gory. Garcia-Falset et al. [6] further generalized condition
(C) into the class of mappings satisfying condition (E).

Definition 1 [6]. Let % be a nonempty subset of a Banach
space &. A mapping ¥': B — & is said to satisty condition
(E,) on BB if there exists > 1 such that for all 9,0 € %

18 = ¥()l < ull9 = #@) + 119 -ell- (1)

We say that ¥ satisfies condition (E) on % whenever ¥
satisfies (E,) for some p> 1.

This class of mappings properly contains many impor-
tant classes of generalized nonexpansive mappings, see Pant
et al’s [7] study.

A novel category of nonlinear mappings was introduced
by Berinde [8] in a recent publication.

Definition 2 [8]. Let (X, ||.||) be a Banach space. A mapping
V. — X is said to be b-enriched nonexpansive mapping if
3 be[0,00) such that:

16 —0) +#(9) =¥l <+ 1)[9-¢l VI 0.
(2)

In the recent years, a number of papers have appeared in
the literature dealing with the fixed point theorems for
enriched nonexpansive type mappings [9-11]. It was proven
that any enriched contraction mapping defined on a Banach
space has a unique fixed point, which can be approximated
by means of the Krasnoselskij iterative scheme. In Berinde’s
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[12] study (also [13]), it was demonstrated that every non-
expansive mapping ¥ is a zero-enriched mapping. Building
in this work, Shukla and Pant [14] recently extended the
category of enriched nonexpansive mappings in the vein of
Suzuki and introduced the subsequent class of mappings.

Definition 3. Let (2, ||.||) be a Banach space and & a non-
empty subset of 2. A mapping ¥: B — & is said to be
Suzuki-enriched nonexpansive mapping if there exists b €
[0, 00) such that for all 9, ¢ € %:

1
B —— — YJ < _ . 1
2(b+1) 19 ()] < |9 - ol| implies

[6(¢—e) +¥(9) - ¥l <(b+1)[9-ell

(3)

It can be seen that every Suzuki-nonexpansive mapping
¥ is a Suzuki-enriched nonexpansive mapping with b=0.
Motivated by Garcia-Falset et al. [6], we generalize Suzuki-
enriched nonexpansive mappings and consider a new class of
mappings known as (E)-enriched nonexpansive mappings.
In fact, we introduce a class of mapping, which contains both
the Suzuki-enriched nonexpansive mappings and the class
of mappings satisfying condition (E). Indeed the class of
b-enriched nonexpansive mappings and that of mappings
satistying condition (E) are independent in nature. A couple
of examples below illustrate these facts.

Example 1 [4]. Consider the mapping ¥ : B — 9B defined by
¥(9) =, where B =[5, 2] C R. The set of fixed point of ¥ is
{1}, and we can say that F(¥)={1}. Moreover, ¥ is a
nonexpansive mapping that satisfies the 3-enriched condi-
tion. However, at 9 =1 and ¢ = %, ¥ fails to satisty condition

(E).

Example 2 [5]. Let 8=]0,3] CR with the usual norm.
Define ¥': % — 9B by the following equation:

¥(9) = (4)

0, if¢#3,
1, if¢=3.

Then, ¥ satisfies condition (E). However at 9 =2.5 and
0=3, ¥ is not b-enriched nonexpansive mapping for any
be[0,00).

This paper is organized as follows: Section 2 deals with
some preliminary results which are utilized throughout this
paper. In Section 3, we coined a new class of mappings,
namely, (E)-enriched nonexpansive mapping. We show
that (E)-enriched nonexpansive mapping properly contains
some nonlinear mappings and present an illustrative exam-
ple. Section 4 is devoted to some existence and convergence
theorems concerning (E)-enriched nonexpansive mapping.
In Section 5, we present some new developments of enriched
quasinonexpansive mapping. Particularly, an (E)-enriched
nonexpansive mapping with fixed point is an enriched qua-
sinonexpansive mapping. We discuss convergence of the
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iterates of a-Krasnosel’skil mapping associated with enriched
quasinonexpansive mapping.

2. Preliminaries

We denote F('¥) the set of all fixed points of mapping ¥, i.e.,
F(¥)={z€%: ¥(z) =z}. A Banach space 2 is said to be
uniformly convex if for each ¢ € (0, 2], 35> 0 such that H%H
<1-6forall ¢, 0 X with ||{]|=]le||=1 and ||{ - ¢||>e.
A Banach space & is strictly convex if:

H€;9<L (5)

whenever £, 0 € 2 with ||{]| = |le|| =1, {#e [15].

Theorem 1 [15]. Let & be a uniformly convex Banach space.
Then for any d>0, >0, and {, 0 € X with ||| <d. ||o|| £ d,
I = o|| > & there exists a 5>0 such that:

ool w

\E@+w

Definition 4 [16]. A Banach space & satisfies Opial property
if for every weakly convergent sequence {{,, } with weak limit
(e X, it holds:

liminf ||, — ¢|| < liminf ||, — o], (7)
n—oo n—-oo

for all o € X with { # o.

Definition 5 [17]. Suppose B is a nonempty subset of a
Banach space 2. Let ¢ be an element in & such that there
exists a point ¢ in A satisfying the following condition: for
any z€ 3B, ||o — {|| < ||z —{||. In this case, we refer to ¢ as a
metric projection of { onto & and denote it by P4({). If
P%({) exists and is uniquely determined for all x€ .,
then we call the mapping Pg : &' — 3B, the metric projection
onto A.

Definition 6 [17]. A mapping ¥ : % — & is said to be qua-
sinonexpansive if:

1¥() -zl <l¢-=

, (8)
for all { € B and z € F(¥).

The fact that a nonexpansive mapping with a fixed point
is quasinonexpansive is widely recognized. However, it
should be noted that the converse may not hold.

Proposition 1 [6]. Let B be a nonempty subset of a Banach
space L. If ¥ : B — B is a mapping satisfying condition (E)
with F(¥) # () then ¥ is quasinonexpansive.
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Definition 7 [18]. Let 9% be a nonempty convex subset of a
Banach space 2 and ¥ : % — 3B be a mapping. A mapping
¥,: 9B — R is said to be an a-Krasnosel’skii mapping asso-
ciated with ¥ if there exists a € (0, 1) such that:

¥.(§) = (1 - a)f +a¥(Q). )
for all { € %.

Definition 8 [19]. Let B be a nonempty subset of a Banach
space &. A mapping ¥:%B — P is called asymptotically
regular if:

lim [|¥7(§) = #"*1({)]| = 0.

n—00

(10)

Lemma 1 (Browder [20]; demiclosedness principle). Suppose
B is a nonempty subset of a Banach space X that satisfies the
Opial property. Let ¥ : B — B be a mapping that satisfies
condition (E). Consider a sequence {, in B such that {,
weakly converges to £, and lim,,_, ||, = ¥({,)|| =0. Then,
we have ¥ ({) = ¢, which implies that I — ¥ is demiclosed at
zero.

Proof. The proof directly follows from [6, Theorem 1]. [

Lemma 2 (Berinde [8]). Let & be a nonempty convex subset
of a Banach space &, and ¥ : B — RB be a mapping. Define
S: B — B as follows:

$(€) = (1 = A+ ¥ (), (11)

for all { € % and 1€ (0,1). Then, F(S) =F(¥).

3. (E)-Enriched Nonexpansive Mapping

This section presents a novel category of mappings, which we
describe as follows.

Definition 9. Let (X, ||.||) be a Banach space and % be a
nonempty subset of 2. We define a mapping ¥: % - &
an (E)-enriched nonexpansive mapping if 3 b € [0, o0) and

1E=FOI < lIE=ell + 1#() - el

1

M €[1,00) such that:

16(¢ - o) +¢ = ¥ (o)l < Mg - ¥(2)]| )
+ b+ ol Ve oeB.

It can be seen that every mapping ¥ satisfying condition
(E) is an (E)-enriched nonexpansive mapping with b=0.

Remark 1. If 98 is a nonempty subset of £ and ¥ : % — ' is
(E)-enriched nonexpansive, and there exists a sequence {{,, }
in % such that ||, — ¥({,)|| = 0. Such a sequence is called
almost fixed point sequence (a.f.p.s.) for ¥.

Proposition 2. Let ¥': 9B — X be a Suzuki-enriched nonex-
pansive mapping with any b€ [0,00). Then, ¥ is an (E)-
enriched nonexpansive mapping for any be[0,00) and
M=2b+3.

Proof. We assume that ¥ is a Suzuki-enriched nonexpansive

mapping. Then, m IE=FOl<IIE-P(L)]|| implies the
following equation:

16(C = ¥(0)) +¥(0) =¥l < (b+ D¢ - # (.

(13)
Now, we show that either:
! ¥ < ! ¥
m”(‘ @I <I¢ - ellor m” ©)
- PO <¥(©) - ell
(14)
Arguing by contradiction, we suppose that:
1 1
m”?- #(O))> I - el and WHT(C)
- P2OI>1¥(0) - ell-
(15)

By the triangle inequality, we get the following equation:

< s 16~ POl 55 1@ - 0]
1 1
= 1) 16 PO+ 5y llie - b+ 0¥(0) .
GRS GRLECI]
< s 16 PO+ 3y 19 - PO + ¥(0) ~ ¥2(0)
e I - O

By Equation (13), we get the following equation:



1€ =¥l < 1§ -
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YOl + 55555 0+ DIE- O

(b+ 2(b+1)
1 (17)
b Y(¢
O (e L]
= 1=l
\
which is a contradiction. Consequently, Equation (14) holds. In the first case, we have the following equation:
Therefore, from Equation (14), we have either:
b(¢ - -¥ b(¢ - Y-
1(C = 0) + ¥(0) - #(e)]| < (b+ 1) - o], [6(S —e) +¢{ = ¥(o)ll <Ib(¢-e)+ ¥ () - ¥l
.. 18) -l (19)
<|IE=POl+ @B+ -0l
6 (0) ~0) + ¥2(0) ~ Y@<+ D) ~el. e Tl e
In the other case, we have the following equation:
|
16(C =) + ¢ =¥l < 16(¥() - @) + #*(0) = ¥(e) + bl = b¥(0) + ¢ = 20|
< [B(F(Q) = o) + ¥2(0) = ¥(o)l + [[b¢ - b¥(8) + ¢ - P2
< 6(#(0) = o) + #2(0) = (o)l + 16(¢ = ¥(£)) + (&) - P2
+g- @)l 0
< (0 +DI¥E) =ell+ b+ DIE = + IS =¥
< (b+DIE=FOl+ @+ 1)[¢ =l + (b + DS =¥l
+IE=-¥Q
= b +3)[¢ =¥l + b+ DS -ell-
\
Therefore in both the cases, we get the following equation: ~ be a mapping defined by the following equation:
b(C-0)+¢ =¥ (I <2b+3)IE =¥l + b+ -ell 0,if £ # 4,
(¢ = @) + ¢ = #(@ < @b+ 3)| = ¥ + b+ DI el wi= | 2)
(21) 3,if { =4.
O

The following example shows that (E)-enriched nonex-
pansive mapping properly contains the class of Suzuki-
enriched nonexpansive mappings.

Example 3. Let R be the set of real numbers equipped with the
standard norm and % = [0, 4] a subset of R. Let ¥ : % - A

16(¢ =) +¢ =¥l =1b(¢ - 4) +

Case (2). If {>3 and ¢ =4, then the following equation
is obtained:

16(¢ =)+ =¥l =1b(¢ -4) +

First, we show that ¥ is (E)-enriched nonexpansive map-
ping. For this, we consider the following nontrivial cases:

Case (1). If £ <3 and ¢ =4, then the following equation
is obtained:

C=3) < b =9I+ 1IE -3

< [lElh+ e+ )4 =< (23)
=€ =#©I+ &+ Dlle =<
|
(€ -3)l <bllE—4f +11¢ -3l
<[+ b+ 1)fj4 =<l (24)

<[E=¥Ol+ b+ 1)lle =<l
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Case (3). If { =4 and ¢ # 4, then the following equation
is obtained:

16(¢=0) +&=¥(o)l = [|b(4 - ) +4]| <4+ b]|4
—ol <4lIE =¥l + @+ Dlle =<
(25)

Moreover, for { =3 and ¢=4, we get the following
equations:

1

and

[6(¢ = 0) +¥() = ¥(o)| = b3 - 4) + (0-3) = |-b
—3|=b+3>(b+1)=(b+1)]¢ -0l
(27)

Thus, ¥ is not a Suzuki-enriched nonexpansive mapping
with any b € [0, c0).

4. Some Fixed Point Theorems

In this section, we present some new fixed point theorems for
(E)-enriched nonexpansive mappings.

Theorem 2. Let (X, ||.||) be a Banach space and & a non-
empty subset of L. Let ¥ : B — X be a mapping. If:

(a) ¥ is an (E)-enriched nonexpansive mapping on A8,

(b) there exists an a.f.p.s. {C,} for ¥ in % such that {{,}
converges weakly to a point z in 9B, and

(c) (X, ]|.|]) satisfies the Opial property.
Then, ¥ (z) =z.

Proof. By the definition of mapping ¥, we have the following
equation:

16§ =0) +{ =¥l M| =¥ (DIl + (b +1)[¢-e
(28)

)

for all {,0€ RB. Take, p=y17 €(0,1) and put b:lﬂ;” in
Equation (28), then the above inequality is equivalent to the
following equations:

5
11 = )€ =) +u( =¥ <Mul|& =¥ + I - e,
(29)
and
1€ = (1 = we +u¥ (o)l < Mulll = () + I - ell
(30)
Define the mapping § as follows:
S(0) = (1 = )¢ + u¥({) forall{ € . (31)
Thus, the following equation is obtained:
[15(8) = ¢l = ull# () = <II. (32)

Then, from Equation (30), we get the following equation:

1€ =S <Ml =S+ -e

, (33)

for all {,0€ 3. Thus, S is a mapping satisfying condition
(E). From Equation (32), it follows that if {{,} is an a.f.p.s.
for ¥ then {¢,} is an a.f.p.s. for S. Thus, all the assumptions
of [6, Theorem 1] are satisfied and S has a fixed point in %,
that is, z€ F(S). From Lemma 2, F(S)=F(¥)#0. This
completes the proof. O

Corollary 1. Let (X, ||.||) be a Banach space and & a non-
empty weakly compact subset of a Banach space &'. Suppose
that (X, ||.||) satisfies the Opial property. Let ¥ : B — X be
an (E)-enriched nonexpansive mapping on &B. Then, ¥ has a
fixed point in B if and only if ¥ admits an a.f.p.s.

Theorem 3. Let (X, ||.||) be a Banach space and & a non-
empty compact subset of a Banach space &. Let ¥ : B — X
be an (E)-enriched nonexpansive mapping on 9. Then, ¥ has
a fixed point in B if and only if ¥ admits an a.fp.s.

Proof. By following the proof of Theorem 1, we can construct
a mapping S that satisfies condition (E). Therefore, all the
conditions of [6, Theorem 2] are satisfied, and we can guar-
antee that S$ has at least one fixed point. Using Lemma 2,
we can conclude that F(S) = F(¥) # (). This completes the
proof. O

Theorem 4. Let (X, ||.||) be a uniformly convex in every
direction (or UCED) Banach space and 9B a nonempty
weakly compact convex subset of L. Let ¥ :B — X be a

mapping. If:



(a) ¥ is an (E)-enriched nonexpansive mapping on 9B,
and

(b) inf{|l¢ - #(0)]:¢ € B} =0,

then ¥ admits a fixed point.

Proof. In view of Theorem 1 and [6, Theorem 3], one can
complete the proof. O

In the next theorem, we present the convergence of iter-
ates of a-Krasnosel’skil mapping associated with (E)-enriched
nonexpansive mapping.

Theorem 5. Let X be a Banach space and ¥ : & — X be an
(E)-enriched nonexpansive mapping. For a given {, € X and
a € (0,557), if the sequence of iterates {¥},({y)} converges
strongly to {, where ¥, is the a-Krasnosel’skil mapping asso-
ciated with ¥, then {* € F(¥).

Proof. Using the same technique as in Theorem 1, one can
define a mapping S: & — & as follows:

1
b1 >C+

and S is a mapping satistying condition (E). For a given ¢, €
Z and y € (0, 1), one can define a sequence {(,} as follows:

S(¢) = (1 w()foralle e X, (34)

$n=8)(Co) = (1 =y)Cu1 +¥S(Ly) forallm € N.
(35)

Using the definition of S, we have the following equation

Z:n = (1 - y)Cn—l + ys(gn—l) = (1 - }/ >Cn 1

+ V17 b (Cn 1)
(36)
Take a =325 € (0,517)> then:
é‘n - (1 - a)é‘n—l + ay’(é‘n—l)' (37)

Since {¢,} = {¥7(¢,)} strongly converges to a point {* in
& . Thus, all assumptions of [21, Theorem 1] are satisfied, and
¢ € F(S). But F(S) = F(¥). This completes the proof. [

Theorem 6. Let B be a nonempty closed convex subset of a
uniformly convex Banach space & and ¥ : B — B an (E)-
enriched nonexpansive mapping with F(¥)={{"}. Assume
that the mapping I — ¥ is demiclosed at zero. Then for each
Lo € B, the sequence of iterates {¥(Ly)} converges weakly to
T, where ¥, is the a-Krasnosel’skii mapping associated with
¥ and a € (0,517).
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Proof. Using the same technique as in Theorem 1, one can
define a mapping S: B — 3B such that S is a mapping satis-
tying condition (E). In fact, the demiclosedness of I — ¥ and
I- ¥, at zeros are equivalent. Further, demiclosedness of
I—¥ and I - S at zeros are equivalent. Keeping [21, Theo-
rem 2.2] in mind, one can complete the proof. O

Theorem 7. Let BB be a nonempty closed convex subset of a
uniformly convex Banach space & which has the Opial prop-
erty. Let ¥ : 9B — 9B be an (E)-enriched nonexpansive map-
ping with F(*¥') # 0. Then for each {y € % and a € (0,317),
the sequence of iterates {¥'1(,)} converges weakly to a fixed
point of .

Proof. From [21, Theorem 2.2] and Theorem 6, one can
complete the proof. O

5. Enriched Quasinonexpansive Mapping

In this section, we present some new convergence results for
b-enriched quasinonexpansive mapping. Shukla and Pant
[14] introduced the following new class of mappings.

Definition 10. Let (2, ||.||) be a Banach space and & a non-
empty subset of 2. A mapping ¥:%B — R is said to be
b-enriched quasinonexpansive mapping if there exists b &
[0, 00) such that for all { € % and ¢ € F(¥) # ()

16(¢ = e) +¥(£)

It is noted that every quasinonexpansive mapping is
a zero-enriched quasinonexpansive mapping and every
b-enriched nonexpansive mapping with a fixed point is
b-enriched quasinonexpansive mapping.

—el <@+ D¢ -el- (38)

Proposition 3. Let ¥ : BB — B be an (E)-enriched nonexpan-
sive mapping with any b € [0, 00), M € [1, o), and F(¥) # ().
Then, ¥ is a b-enriched quasinonexpansive mapping for any
be|0,00).

Proof. Let o€ F(¥) and {€ B, we have the following
equation:

[6(C = 0) + ¥(&) — el = [[-{ble = &) + o = (D)}l
=[[ble=¢) +eo - ¥
< Mlle-¥(o)|l + (b+1)[[e =l
=+ 1e-<ll

(39)

Thus, ¥ is a b-enriched quasinonexpansive mapping. [

The following example demonstrates that converse of the
above proposition does not hold.

Example 4 [6]. Let B=]—1, 1] be a subset of R. Let ¥ : & —
9 be a mapping defined by the following equation:
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¢
w(e) {1+:| ( ) re#0 (40)
,if¢=0.

Clearly, F(¥)={0} # (. It can be seen that:

Ld(9IEN

, (41)

forall {€[—1,1] and ¥ is a b-enriched quasinonexpansive
mapping with b=0.

On the other hand, let {,, = ZM pTaE: and ¢, =
N, we get the following equation:

3 forall n e

|b(€n - Qn) + Cn - 'P(Qn)| B (b + 1)|Cn - Qn'

G0 = ¥(C)]
(b 1)6 = beul = (b4 1)(en - &)
G- PG
(b 1)6 = beal = (b4 1)(en - &)
=

(1+¢,)

— 2 Ten _p
Z H(“) Z

o)~

(42)

as n — 0o. Hence, ¥ is not an (E)-enriched nonexpansive
mapping for any b € [0, c0).

Theorem 8. Let 9B be a nonempty convex subset of a
uniformly convex Banach space X. If V:RB— B is a
b-enriched quasinonexpansive mapping with F(¥) # (), Then,
the a-Krasnosel’skit mapping ¥, for a € (0,41) is asymptoti-
cally regular.

Proof. By the definition of b-enriched quasinonexpansive map-
ping, we have the following equation:

[6(¢—e) +¥() —ell < (b+1)

(43)

for all {€ B and ¢ € F(¥). Take p=115 €(0,1) and put
b="'"#in Equation (43), then the above inequality is equiv-

Define the mapping S as follows:

S =(1-p)+p¥ ) foralll € AB. (45)

From Lemma 2, F(S) = F(¥). Then, from Equation (44),
we get the following equation:

15(6) = el < I¢ = ell, (46)

for all { € % and ¢ € F(S). Thus, S: B — 9 is a quasinonex-
pansive mapping. And, we obtain the following equation:

15(8) = €Il = ull¥(§) = <II- (47)
Let ¢y € &B. Foreachn e NU {0}, define ¢,,,; = ¥, (0,)-
Thus, the following equations are obtained:
¥alen) = enr1 = (1 - a)en + a¥ (), (48)
and
¥o(en) = 0n = ¥alen) = Palen-1) = a(¥(e,) —en)-  (49)

In order to prove that ¥, is asymptotically regular, it
suffices to prove that lim,_ . ||¥(¢,)—0,||=0. Since
F(¥) #0,let £, € F(¥). Since S is a quasinonexpansive map-
ping and F(S) = F(¥):

160 = S(en) I < 11€0 = €ull; (50)

foralln € N U {0}. From Equation (45), the following equations
are obtained:
£o = Slen) = (1= p)(%o

= 0n) +1(lo = ¥(on) . (51)

and

Lo - ¥lo) = ﬁ«:o - -0 (52)

Now:

alent to the following equation: 10 = eneall = 6o = ¥alon)ll
(1= =) +u¥() -l < ¢ -l (44) = 0=l = en) +aleo - ”Qﬂ))'(" )
53
From Equation (52), the following equation is obtained:
|
1-—
o= enall = (1= @G0 - )+ (6o Sten) - = gy -0

(1= - e + 2 6o -sten)|

(54)



Take =2, then € (0,1). From Equation (50), the fol-
lowing equatlon is obtained:

180 = enall = 1(1 =) (Lo = @n) + B(Lo = Sl (55)

< (1 =P)lEo = eull + AlICo = Slea) | = 160 = eull- - (56)

- 0,||} is bounded by u, =
=, for any n, € N then from Equation (56),

Therefore, the sequence {]|{,
||Z:0 - Qo||- IanU
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0, — Coasn — o0o.If g, # {, for all n € N, take the following
conditions:

$o—0n
11Co = eall

o = S(en)

andz, =
o lgo—eall

2y = (57)

If g S% and from Equation (55), we have the following
equation:

160 = @usall = (1 = B) (Lo — en) + (Lo — S(en))l

= HcO - (1 _ﬂ)gn _ﬂs(gn)H
= 1160 = en + Bou = PS(en) = 280 + 2850 + Pou = Peul
= [10(1 = 26) = eu(1 = 28) + (20 = P = FS(en) | (58)
< (1=2)1150 = eull + Al1280 = @n = S(en)
z, + 2,
= 29l - el 22201 (-3, - 0.
\
Since & is a uniformly convex Banach space, by using the Iz, + 2] llew = S(en)|l
definition of uniformly convex space with ||z, || <1, ||z,|| < 1, 2 s1-0 U : (60)

and the following equation:

Hgn SQnH HQn - SQn”
>
”C Qn” B Uy

(59)

120 = zull = = & (say).

Noting that modulus of convexity §(¢) is a nondecreas-
ing function of ¢, we obtain the following equation:

o= enall <(2(1- (1=} ) -
(-l ) g g

Using induction in the above inequality, it follows that:

%= ewnll <II <1 - 2ﬂ5<w>>uo
j=0 Uy

We shall prove that lim,_, . [|S(¢,) — 0,|| =0. Arguing
by contradiction, consider that ||S(¢,) — ¢,|| does not con-
verge to zero. Then, there exists a subsequence {g,, } of {¢,}
such that [|S(e,, ) = 0n, || converges to >0. Since 5(+) € [0, 1]

is nondecreasing and # <, we have 1 — Zﬂé(Hg" Q")H) €10,1]

(62)

From Equations (60) and (62), the following equation is
obtained:

)i -l

for all k € N. From Equation (63) and for sufficiently large k,
we have the following equation:

n (ngs1)
o= eall = (1-205(50) ) ™o

Making k — o0, it follows that ¢, — {,. By Equation (46),
we get S(0y,,) = {o and [|@,, — S(@,,)|| = 0 as k — oo, which
is a contradiction.

If p> 1 then 1 - f< 1 because f € (0,1). Now:

(63)
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160 = @niill = 1160 = (1 = B)en — BS(en)l
= (180 = @n + Bon = BS(en) + (2 =28)C = (2 - 28)¢o
+S(en) = Slen) + BS(en) = BS(en)
= H(2§0 —0Qn— S(Qn)) _ﬂ(2CO —Q0n— S( )) + Zﬁ(C (Qn)) (64)
= (%o = S(en))
< (L=PB)lI28o = 0n = S(en)ll + (28 = IS0 = eull
< 20 -l - el P A g1 - o
\
d by th if ity of X, he followi 1
zguaﬁ)(r)r;c: e uniform convexity o we get the following S(0) = (1 = 1)4, +m&”(¢’) forallc € B, (67)

160 = enall < (2(1 -p)-2(1 —ﬁ)&(W)

+ @6 - 1)l - eull-
(65)

Using induction in the above inequality, we get the fol-
lowing equation:

160 = ewerll <1 (1 P mg(M))

(66)

Using the similar argument as in the previous case, it can
be easily shown that ||S(¢,) — ¢,|| = 0 as n — oo. Therefore,
in both cases, ||S(¢,,) — ¢,|| = 0 asn — co. From Equation (47),
¥ (0,) = 0ul] = 0 as n — oo, ¥, is asymptotically regular and
this completes the proof. O

Remark 2. The above theorem is a generalization of [18,
Theorem 1] for a more general class of mappings.

Theorem 9. Let 5B be a nonempty closed subset of a Banach
space X and S:B — B a quasinonexpansive mapping.
Assume that X is strictly convex and 9B is a convex compact
subset of X. If S is continuous then for any oy € B, a € (0, 1),
the a-Krasnosel’skil process {Si(y)} converges to some {* €
F(S).

Proof. Following the same line of proof of [7, Theorem 5],
one can complete the proof. O

Theorem 10. Let B and X be the same as in Theorem 6. Let
¥ :B— B be a b-enriched quasinonexpansive mapping with
F(¥)#0. If ¥ is continuous then for any {, € %B,ac (0,
741), the a-Krasnosel'skil process {¥}({o)} converges to some

{* e F(Y).

Proof. Following the same proof technique as in Theorem 4,
we can define a mapping S: B — A as follows:

and S is a quasinonexpansive mapping. For given {, € %,
S €(0,1), we can define a sequence {(,} as follows:
G=8)=(1

= B)ur + BS(Cu)- (68)

From Theorem 6, the sequence {{,} converges to some
{* € F(S). Using the definition of S, we have the following
equation:

Co= (1= P)lur + BS(Crt) = (hﬁﬁ)én_l

ﬂ (Cn 1)

b +1
(69)

Take a=32; €[0,71;), then, we obtain the following
equation:
Cn= (1

- a)Cn—l + aY’(Cﬂ—l)' (70)

Hence, {{,} ={¥2({y)} strongly converges to a fixed
point of S. But F(S) = F(¥). This completes the proof. [

Theorem 11. Let & be a nonempty closed convex subset of a
uniformly convex Banach space L. Let S: B — B be a qua-
sinonexpansive mapping with F(S) # () and P the metric pro-
jection from & into F(S). Then for each { € B, the sequence
{PS"({)} converges to some ¢ € F(S).

Proof. Following the same line of proof of [7, Theorem 6],
one can complete the proof. O

Theorem 12. Let B, X, and P be same as in Theorem 8. Let
¥ :B — B beab-enriched quasinonexpansive mapping with
F(¥)#0. Then for each { € B, a =117, the a-Krasnosel’skit
process {¥%({)} converges to some ¢ € F().

Proof. In view of Theorems 4 and 8, one can complete the
proof. 0



10

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Open access funding was enabled and organized by SANLIiC
Gold.

References

[1] F. E. Browder, “Nonexpansive nonlinear operators in a Banach
space,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 54, pp. 1041-1044, 1965.

[2] D. Gohde, “Zum Prinzip der kontraktiven abbildung,”
Mathematische Nachrichten, vol. 30, no. 2-3, pp. 251-258,
1965.

[3] W. A. Kirk, “A fixed point theorem for mappings which do

not increase distances,” The American Mathematical Monthly,

vol. 72, pp. 1004-1006, 1965.

R. Pant, R. Shukla, and P. Patel, “Nonexpansive mappings, their

extensions, and generalizations in Banach spaces,” in Metric

Fixed Point Theory, Forum for Interdisciplinary Mathematics,

pp. 309-343, Springer, Singapore, 2021.

[5] T. Suzuki, “Fixed point theorems and convergence theorems for
some generalized nonexpansive mappings,” Journal of Mathe-
matical Analysis and Applications, vol. 340, no. 2, pp. 1088-1095,
2008.

[6] J. Garcia-Falset, E. Llorens-Fuster, and T. Suzuki, “Fixed point
theory for a class of generalized nonexpansive mappings,”
Journal of Mathematical Analysis and Applications, vol. 375,
pp. 185-195, 2011.

[7] R. Pant, P. Patel, R. Shukla, and M. De la Sen, “Fixed point
theorems for nonexpansive type mappings in Banach spaces,”
Symmetry, vol. 13, no. 4, Article ID 585, 2021.

[8] V. Berinde, “Approximating fixed points of enriched nonexpan-

sive mappings by Krasnoselskij iteration in Hilbert spaces,”

Carpathian Journal of Mathematics, vol. 35, pp. 293-304,

2019.

M. Abbas, R. Anjum, and V. Berinde, “Equivalence of certain

iteration processes obtained by two new classes of operators,”

Mathematics, vol. 9, no. 18, Article ID 2292, 2021.

[10] M. Abbas, R. Anjum, and H. Igbal, “Generalized enriched cyclic
contractions with application to generalized iterated function
system,” Chaos, Solitons & Fractals, vol. 154, Article ID 111591,
2022.

[11] R. Anjum and M. Abbas, “Common fixed point theorem for
modified Kannan enriched contraction pair in Banach spaces
and its applications,” Filomat, vol. 35, no. 8, pp. 2485-2495,
2021.

[12] V. Berinde, “Approximating fixed points of enriched non-
expansive mappings in Banach spaces by using a retraction-
displacement condition,” Carpathian Journal of Mathematics,
vol. 36, pp. 27-34, 2020.

[13] R. Shukla and R. Pant, “Some new fixed point results for
monotone enriched nonexpansive mappings in ordered
Banach spaces,” Advances in the Theory of Nonlinear Analysis
and its Application, vol. 5, no. 4, pp. 559-567, 2021.

=

[9

—

Abstract and Applied Analysis

[14] R. Shukla and R. Pant, “Some fixed point results for enriched
nonexpansive type mappings in Banach spaces,” Applied
General Topology, vol. 23, no. 1, pp. 31-43, 2022.

[15] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory,
vol. 28 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, 1990.

[16] Z. Opial, “Weak convergence of the sequence of successive
approximations for nonexpansive mappings,” Bulletin of the
American Mathematical Society, vol. 73, pp. 591-597, 1967.

[17] A. Cegielski, Iterative Methods for Fixed Point Problems in
Hilbert Spaces, vol. 2057 of Lecture Notes in Mathematics,
Springer, Heidelberg, 2012.

[18] C.S. Wong, “Approximation to fixed points of generalized
nonexpansive mappings,” Proceedings of the American Mathe-
matical Society, vol. 54, no. 1, pp. 93-97, 1976.

[19] F. E. Browder and W. V. Petryshyn, “The solution by iteration
of nonlinear functional equations in Banach spaces,” Bulletin
of the American Mathematical Society, vol. 72, pp. 571-575,
1966.

[20] F. E. Browder, “Convergence theorems for sequences of nonlinear
operators in Banach spaces,” Mathematische Zeitschrift, vol. 100,
pp. 201-225, 1967.

[21] R.Pant, P. Patel, and R. Shukla, “Fixed point results for a class
of nonexpansive type mappings in Banach spaces,” Advances
in the Theory of Nonlinear Analysis and its Application, vol. 5,
no. 3, pp. 368-381, 2021.





