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This paper introduces a novel category of nonlinearmappings and provides several theorems on their existence and convergence in Banach
spaces, subject to various assumptions. Moreover, we obtain convergence theorems concerning iterates of α-Krasnosel’skiĭ mapping
associated with the newly defined class of mappings. Further, we present that α-Krasnosel’skiĭ mapping associated with b-enriched
quasinonexpansive mapping is asymptotically regular. Furthermore, some new convergence theorems concerning b-enriched quasino-
nexpansive mappings have been proved.

1. Introduction

Consider a Banach space ðX; k:jjÞ and a nonempty subset
B⊆X. A mapping Ψ :B→B is nonexpansive if kΨ ðϑÞ−
Ψ ðϱÞjj≤ kϑ− ϱjj for all ϑ; ϱ2B. A point z 2B is a fixed
point of Ψ if Ψ ðzÞ¼ z. While nonexpansive mappings may
not have fixed points in a general Banach space. Browder [1],
Göhde [2], and Kirk [3] independently proved fixed point
theorems for nonexpansive mappings with certain geometric
properties, such as uniform convexity or normal structure.
Since then, numerous authors have obtained various exten-
sions and generalizations of nonexpansive mappings and their
results. Some of these notable extensions and generalizations
are summarized in Pant et al.’s [4] study.

In 2008, Suzuki [5] introduced a novel category of non-
expansive mappings called mappings that fulfill condition
(C) and derived significant fixed point results for this cate-
gory. García-Falset et al. [6] further generalized condition
(C) into the class of mappings satisfying condition (E).

Definition 1 [6]. Let B be a nonempty subset of a Banach
space X: A mapping Ψ :B→B is said to satisfy condition
ðEμÞ on B if there exists μ≥ 1 such that for all ϑ; ϱ2B :

ϑ − Ψ ϱð Þk k ≤ μ ϑ − Ψ ϑð Þk k þ ϑ − ϱk k: ð1Þ

We say that Ψ satisfies condition ðEÞ on B whenever Ψ
satisfies ðEμÞ for some μ≥ 1:

This class of mappings properly contains many impor-
tant classes of generalized nonexpansive mappings, see Pant
et al’s [7] study.

A novel category of nonlinear mappings was introduced
by Berinde [8] in a recent publication.

Definition 2 [8]. Let ðX; k:jjÞ be a Banach space. A mapping
Ψ :X→X is said to be b-enriched nonexpansive mapping if
9 b2 ½0;1Þ such that:

b ζ − ϱð Þ þ Ψ ϑð Þ − Ψ ϱð Þk k ≤ bþ 1ð Þ ϑ − ϱk k 8 ϑ; ϱ 2X:

ð2Þ

In the recent years, a number of papers have appeared in
the literature dealing with the fixed point theorems for
enriched nonexpansive type mappings [9–11]. It was proven
that any enriched contraction mapping defined on a Banach
space has a unique fixed point, which can be approximated
by means of the Krasnoselskij iterative scheme. In Berinde’s
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[12] study (also [13]), it was demonstrated that every non-
expansive mapping Ψ is a zero-enriched mapping. Building
in this work, Shukla and Pant [14] recently extended the
category of enriched nonexpansive mappings in the vein of
Suzuki and introduced the subsequent class of mappings.

Definition 3. Let ðX; k:jjÞ be a Banach space and B a non-
empty subset of X: A mapping Ψ :B→B is said to be
Suzuki-enriched nonexpansive mapping if there exists b2
½0;1Þ such that for all ϑ; ϱ2B:

1
2 bþ 1ð Þ ϑ − Ψ ϑð Þk k ≤ ϑ − ϱk k implies

b ζ − ϱð Þ þ Ψ ϑð Þ − Ψ ϱð Þk k ≤ bþ 1ð Þ ϑ − ϱk k:
ð3Þ

It can be seen that every Suzuki-nonexpansive mapping
Ψ is a Suzuki-enriched nonexpansive mapping with b¼ 0:
Motivated by García-Falset et al. [6], we generalize Suzuki-
enriched nonexpansive mappings and consider a new class of
mappings known as (E)-enriched nonexpansive mappings.
In fact, we introduce a class of mapping, which contains both
the Suzuki-enriched nonexpansive mappings and the class
of mappings satisfying condition (E). Indeed the class of
b-enriched nonexpansive mappings and that of mappings
satisfying condition (E) are independent in nature. A couple
of examples below illustrate these facts.

Example 1 [4]. Consider the mapping Ψ :B→B defined by
Ψ ðϑÞ¼ 1

ϑ, whereB¼ ½12 ; 2�⊂R. The set of fixed point of Ψ is
f1g, and we can say that FðΨÞ¼ f1g. Moreover, Ψ is a
nonexpansive mapping that satisfies the 3

2-enriched condi-
tion. However, at ϑ¼ 1 and ϱ¼ 1

2, Ψ fails to satisfy condition
(E).

Example 2 [5]. Let B¼ ½0; 3�⊂R with the usual norm.
Define Ψ :B→B by the following equation:

Ψ ϑð Þ ¼ 0; if ζ ≠ 3;

1; if ζ ¼ 3:

(
ð4Þ

Then, Ψ satisfies condition (E). However at ϑ¼ 2:5 and
ϱ¼ 3; Ψ is not b-enriched nonexpansive mapping for any
b2 ½0;1Þ:

This paper is organized as follows: Section 2 deals with
some preliminary results which are utilized throughout this
paper. In Section 3, we coined a new class of mappings,
namely, (E)-enriched nonexpansive mapping. We show
that (E)-enriched nonexpansive mapping properly contains
some nonlinear mappings and present an illustrative exam-
ple. Section 4 is devoted to some existence and convergence
theorems concerning (E)-enriched nonexpansive mapping.
In Section 5, we present some new developments of enriched
quasinonexpansive mapping. Particularly, an (E)-enriched
nonexpansive mapping with fixed point is an enriched qua-
sinonexpansive mapping. We discuss convergence of the

iterates of α-Krasnosel’skiĭmapping associated with enriched
quasinonexpansive mapping.

2. Preliminaries

We denote FðΨ Þ the set of all fixed points of mapping Ψ , i.e.,
FðΨ Þ¼ fz 2B :  ΨðzÞ¼ zg: A Banach space X is said to be
uniformly convex if for each ε2 ð0; 2�, 9 δ>0 such that kζþϱ

2 jj
≤ 1− δ for all ζ; ϱ2X with kζjj ¼ kϱjj ¼ 1 and kζ− ϱjj>ε:
A Banach space X is strictly convex if:

ζ þ ϱ

2










<1; ð5Þ

whenever ζ; ϱ2X with kζjj ¼ kϱjj ¼ 1; ζ ≠ ϱ [15].

Theorem 1 [15]. Let X be a uniformly convex Banach space.
Then for any d>0, ε>0, and ζ; ϱ2X with kζjj≤ d; kϱjj≤ d;
kζ− ϱjj≥ ε, there exists a δ>0 such that:

1
2

ζ þ ϱð Þ










 ≤ 1 − δ
ε

d

� �h i
d: ð6Þ

Definition 4 [16]. A Banach space X satisfies Opial property
if for every weakly convergent sequence fζng with weak limit
ζ 2X, it holds:

lim inf
n→1 ζn − ζk k< lim inf

n→1 ζn − ϱk k; ð7Þ

for all ϱ2X with ζ ≠ ϱ:

Definition 5 [17]. Suppose B is a nonempty subset of a
Banach space X. Let ζ be an element in X such that there
exists a point ϱ in B satisfying the following condition: for
any z 2B, kϱ− ζjj≤ kz− ζjj. In this case, we refer to ϱ as a
metric projection of ζ onto B and denote it by PBðζÞ. If
PBðζÞ exists and is uniquely determined for all x2X,
then we call the mapping PB :X→B, the metric projection
onto B.

Definition 6 [17]. A mapping Ψ :B→B is said to be qua-
sinonexpansive if:

Ψ ζð Þ − zk k ≤ ζ − zk k; ð8Þ

for all ζ 2B and z2 FðΨÞ:

The fact that a nonexpansive mapping with a fixed point
is quasinonexpansive is widely recognized. However, it
should be noted that the converse may not hold.

Proposition 1 [6]. Let B be a nonempty subset of a Banach
space X: If Ψ :B→B is a mapping satisfying condition ðEÞ
with FðΨ Þ≠ ; then Ψ is quasinonexpansive.
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Definition 7 [18]. Let B be a nonempty convex subset of a
Banach space X and Ψ :B→B be a mapping. A mapping
Ψα :B→B is said to be an α-Krasnosel’skiĭ mapping asso-
ciated with Ψ if there exists α2 ð0; 1Þ such that:

Ψα ζð Þ ¼ 1 − αð Þζ þ αΨ ζð Þ; ð9Þ

for all ζ 2B:

Definition 8 [19]. Let B be a nonempty subset of a Banach
space X: A mapping Ψ :B→B is called asymptotically
regular if:

lim
n→1 Ψ n ζð Þ − Ψnþ1 ζð Þk k ¼ 0: ð10Þ

Lemma 1 (Browder [20]; demiclosedness principle). Suppose
B is a nonempty subset of a Banach spaceX that satisfies the
Opial property. Let Ψ :B→B be a mapping that satisfies
condition (E). Consider a sequence ζn in B such that ζn
weakly converges to ζ, and limn→1 kζn −Ψ ðζnÞjj ¼ 0: Then,
we have ΨðζÞ¼ ζ, which implies that I −Ψ is demiclosed at
zero.

Proof. The proof directly follows from [6, Theorem 1]. □

Lemma 2 (Berinde [8]). Let B be a nonempty convex subset
of a Banach space X, and Ψ :B→B be a mapping. Define
S :B→B as follows:

S ζð Þ ¼ 1 − λð Þζ þ λΨ ζð Þ; ð11Þ

for all ζ 2B and λ2 ð0; 1Þ: Then, FðSÞ¼ FðΨ Þ:

3. (E)-Enriched Nonexpansive Mapping

This section presents a novel category of mappings, which we
describe as follows.

Definition 9. Let ðX; k:jjÞ be a Banach space and B be a
nonempty subset of X: We define a mapping Ψ :B→X
an (E)-enriched nonexpansive mapping if 9 b2 ½0;1Þ and

M 2 ½1;1Þ such that:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ≤M ζ − Ψ ζð Þk k
þ bþ 1ð Þ ζ − ϱk k 8 ζ; ϱ 2B:

ð12Þ

It can be seen that every mapping Ψ satisfying condition
(E) is an (E)-enriched nonexpansive mapping with b¼ 0:

Remark 1. IfB is a nonempty subset ofX and Ψ :B→X is
(E)-enriched nonexpansive, and there exists a sequence fζng
in B such that kζn −Ψ ðζnÞjj→ 0. Such a sequence is called
almost fixed point sequence (a.f.p.s.) for Ψ .

Proposition 2. Let Ψ :B→X be a Suzuki-enriched nonex-
pansive mapping with any b2 ½0;1Þ: Then, Ψ is an (E)-
enriched nonexpansive mapping for any b2 ½0;1Þ and
M¼ 2bþ 3:

Proof. We assume that Ψ is a Suzuki-enriched nonexpansive
mapping. Then, 1

2ðbþ1Þ kζ−ΨðζÞjj≤ kζ−Ψ ðζÞjj implies the
following equation:

b ζ − Ψ ζð Þð Þ þ Ψ ζð Þ − Ψ 2 ζð Þk k ≤ bþ 1ð Þ ζ − Ψ ζð Þk k:
ð13Þ

Now, we show that either:

1
2 bþ 1ð Þ ζ − Ψ ζð Þk k ≤ ζ − ϱk k or 1

2 bþ 1ð Þ Ψ ζð Þk
− Ψ 2 ζð Þk ≤ Ψ ζð Þ − ϱk k:

ð14Þ

Arguing by contradiction, we suppose that:

1
2 bþ 1ð Þ ζ − Ψ ζð Þk k> ζ − ϱk k and  1

2 bþ 1ð Þ Ψ ζð Þk
− Ψ 2 ζð Þk> Ψ ζð Þ − ϱk k:

ð15Þ

By the triangle inequality, we get the following equation:

ζ − Ψ ζð Þk k ≤ ζ − ϱk k þ Ψ ζð Þ − ϱk k
<

1
2 bþ 1ð Þ ζ − Ψ ζð Þk k þ 1

2 bþ 1ð Þ Ψ ζð Þ − Ψ 2 ζð Þk k

¼ 1
2 bþ 1ð Þ ζ − Ψ ζð Þk k þ 1

2 bþ 1ð Þ bζ − bζ þ bΨ ζð Þk½
− bΨ ζð Þ þ Ψ ζð Þ − Ψ 2 ζð Þk�

≤
1

2 bþ 1ð Þ ζ − Ψ ζð Þk k þ 1
2 bþ 1ð Þ bζ − bΨ ζð Þ þ Ψ ζð Þ − Ψ 2 ζð Þk k

þ 1
2 bþ 1ð Þ bζ − bΨ ζð Þk k:

ð16Þ

By Equation (13), we get the following equation:
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ζ − Ψ ζð Þk k <
1

2 bþ 1ð Þ ζ − Ψ ζð Þk k þ 1
2 bþ 1ð Þ bþ 1ð Þ ζ − Ψ ζð Þk k

þ 1
2 bþ 1ð Þ b ζ − Ψ ζð Þk k

¼ ζ − Ψ ζð Þk k;

ð17Þ

which is a contradiction. Consequently, Equation (14) holds.
Therefore, from Equation (14), we have either:

b ζ − ϱð Þ þ Ψ ζð Þ − Ψ ϱð Þk k ≤ bþ 1ð Þ ζ − ϱk k;
or

b Ψ ζð Þ − ϱð Þ þ Ψ 2 ζð Þ − Ψ ϱð Þk k≤ bþ 1ð Þ Ψ ζð Þ − ϱk k:
ð18Þ

In the first case, we have the following equation:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ≤ b ζ − ϱð Þ þ Ψ ζð Þ − Ψ ϱð Þk k
þ ζ − Ψ ζð Þk k
≤ ζ − Ψ ζð Þk k þ bþ 1ð Þ ζ − ϱk k:

ð19Þ

In the other case, we have the following equation:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ≤ b Ψ ζð Þ − ϱð Þ þ Ψ 2 ζð Þ − Ψ ϱð Þ þ bζ − bΨ ζð Þ þ ζ − Ψ 2 ζð Þk k
≤ b Ψ ζð Þ − ϱð Þ þ Ψ 2 ζð Þ − Ψ ϱð Þk k þ bζ − bΨ ζð Þ þ ζ − Ψ 2 ζð Þk k
≤ b Ψ ζð Þ − ϱð Þ þ Ψ 2 ζð Þ − Ψ ϱð Þk k þ b ζ − Ψ ζð Þð Þ þ Ψ ζð Þ − Ψ 2 ζð Þk k

þ ζ − Ψ ζð Þk k
≤ bþ 1ð Þ Ψ ζð Þ − ϱk k þ bþ 1ð Þ ζ − Ψ ζð Þk k þ ζ − Ψ ζð Þk k
≤ bþ 1ð Þ ζ − Ψ ζð Þk k þ bþ 1ð Þ ζ − ϱk k þ bþ 1ð Þ ζ − Ψ ζð Þk k

þ ζ − Ψ ζð Þk k
¼ 2bþ 3ð Þ ζ − Ψ ζð Þk k þ bþ 1ð Þ ζ − ϱk k:

ð20Þ

Therefore in both the cases, we get the following equation:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ≤ 2bþ 3ð Þ ζ − Ψ ζð Þk k þ bþ 1ð Þ ζ − ϱk k:
ð21Þ

□

The following example shows that (E)-enriched nonex-
pansive mapping properly contains the class of Suzuki-
enriched nonexpansive mappings.

Example 3. LetR be the set of real numbers equipped with the
standard norm and B¼ ½0; 4� a subset of R. Let Ψ :B→B

be a mapping defined by the following equation:

Ψ ζð Þ ¼ 0; if ζ ≠ 4;

3; if ζ ¼ 4:

(
ð22Þ

First, we show that Ψ is (E)-enriched nonexpansive map-
ping. For this, we consider the following nontrivial cases:

Case (1). If ζ≤ 3 and ϱ¼ 4, then the following equation
is obtained:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ¼ b ζ − 4ð Þ þ ζ − 3ð Þk k ≤ b ζ − 4ð Þk k þ ζ − 3k k
≤ ζk k þ bþ 1ð Þ 4 − ζk k
¼ ζ − Ψ ζð Þk k þ bþ 1ð Þ ϱ − ζk k:

ð23Þ

Case (2). If ζ>3 and ϱ¼ 4, then the following equation
is obtained:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ¼ b ζ − 4ð Þ þ ζ − 3ð Þk k ≤ b ζ − 4k k þ ζ − 3k k
≤ ζk k þ bþ 1ð Þ 4 − ζk k
≤ ζ − Ψ ζð Þk k þ bþ 1ð Þ ϱ − ζk k:

ð24Þ
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Case (3). If ζ¼ 4 and ϱ ≠ 4, then the following equation
is obtained:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ¼ b 4 − ϱð Þ þ 4k k ≤ 4þ b 4k
− ϱk ≤ 4 ζ − Ψ ζð Þk k þ bþ 1ð Þ ϱ − ζk k:

ð25Þ

Moreover, for ζ¼ 3 and ϱ¼ 4, we get the following
equations:

1
2 bþ 1ð Þ 4 − Ψ 4ð Þk k ¼ 1

2 bþ 1ð Þ ≤ 1¼ ζ − ϱk k; ð26Þ

and

b ζ − ϱð Þ þ Ψ ζð Þ − Ψ ϱð Þk k ¼ b 3 − 4ð Þ þ 0 − 3ð Þj ¼ −bj
− 3j ¼ bþ 3> bþ 1ð Þ ¼ bþ 1ð Þ ζ − ϱk k:

ð27Þ

Thus, Ψ is not a Suzuki-enriched nonexpansive mapping
with any b2 ½0;1Þ:

4. Some Fixed Point Theorems

In this section, we present some new fixed point theorems for
(E)-enriched nonexpansive mappings.

Theorem 2. Let ðX; k:jjÞ be a Banach space and B a non-
empty subset of X: Let Ψ :B→X be a mapping. If:

(a) Ψ is an (E)-enriched nonexpansive mapping on B;
(b) there exists an a.f.p.s. fζng for Ψ inB such that fζng

converges weakly to a point z in B, and
(c) ðX; k:jjÞ satisfies the Opial property.
Then, ΨðzÞ¼ z:

Proof. By the definition of mapping Ψ , we have the following
equation:

b ζ − ϱð Þ þ ζ − Ψ ϱð Þk k ≤M ζ − Ψ ζð Þk k þ bþ 1ð Þ ζ − ϱk k;
ð28Þ

for all ζ; ϱ2B. Take, μ¼ 1
bþ1 2 ð0; 1Þ and put b¼ 1−μ

μ in
Equation (28), then the above inequality is equivalent to the
following equations:

1 − μð Þ ζ − ϱð Þ þ μ ζ − Ψ ϱð Þð Þk k ≤Mμ ζ − Ψ ζð Þk k þ ζ − ϱk k;
ð29Þ

and

ζ − 1 − μð Þϱþ μΨ ϱð Þð Þk k ≤Mμ ζ − Ψ ζð Þk k þ ζ − ϱk k:
ð30Þ

Define the mapping S as follows:

S ζð Þ ¼ 1 − μð Þζ þ μΨ ζð Þ for all ζ 2B: ð31Þ

Thus, the following equation is obtained:

S ζð Þ − ζk k ¼ μ Ψ ζð Þ − ζk k: ð32Þ

Then, from Equation (30), we get the following equation:

ζ − S ϱð Þk k ≤M ζ − S ζð Þk k þ ζ − ϱk k; ð33Þ

for all ζ; ϱ2B: Thus, S is a mapping satisfying condition
(E). From Equation (32), it follows that if fζng is an a.f.p.s.
for Ψ then fζng is an a.f.p.s. for S: Thus, all the assumptions
of [6, Theorem 1] are satisfied and S has a fixed point in B,
that is, z2 FðSÞ: From Lemma 2, FðSÞ¼ FðΨ Þ≠ ;: This
completes the proof. □

Corollary 1. Let ðX; k:jjÞ be a Banach space and B a non-
empty weakly compact subset of a Banach space X: Suppose
that ðX; k:jjÞ satisfies the Opial property. Let Ψ :B→X be
an (E)-enriched nonexpansive mapping on B: Then, Ψ has a
fixed point in B if and only if Ψ admits an a.f.p.s.

Theorem 3. Let ðX; k:jjÞ be a Banach space and B a non-
empty compact subset of a Banach space X: Let Ψ :B→X
be an (E)-enriched nonexpansive mapping onB: Then, Ψ has
a fixed point in B if and only if Ψ admits an a.f.p.s.

Proof. By following the proof of Theorem 1, we can construct
a mapping S that satisfies condition (E). Therefore, all the
conditions of [6, Theorem 2] are satisfied, and we can guar-
antee that S has at least one fixed point. Using Lemma 2,
we can conclude that FðSÞ¼ FðΨ Þ≠ ;. This completes the
proof. □

Theorem 4. Let ðX; k:jjÞ be a uniformly convex in every
direction (or UCED) Banach space and B a nonempty
weakly compact convex subset of X: Let Ψ :B→X be a
mapping. If:

Abstract and Applied Analysis 5



(a) Ψ is an (E)-enriched nonexpansive mapping on B;
and

(b) inffkζ − Ψ ðζÞjj : ζ 2Bg¼ 0,

then Ψ admits a fixed point.

Proof. In view of Theorem 1 and [6, Theorem 3], one can
complete the proof. □

In the next theorem, we present the convergence of iter-
ates of α-Krasnosel’skiĭmapping associated with (E)-enriched
nonexpansive mapping.

Theorem 5. Let X be a Banach space and Ψ :X→X be an
(E)-enriched nonexpansive mapping. For a given ζ0 2X and
α2 ð0; 1

bþ1Þ, if the sequence of iterates fΨn
αðζ0Þg converges

strongly to ζ†, where Ψα is the α-Krasnosel’skiĭ mapping asso-
ciated with Ψ , then ζ† 2 FðΨ Þ.

Proof. Using the same technique as in Theorem 1, one can
define a mapping S :X→X as follows:

S ζð Þ ¼ 1 −
1

bþ 1

� �
ζ þ 1

bþ 1
Ψ ζð Þ for all ζ 2X; ð34Þ

and S is a mapping satisfying condition (E). For a given ζ0 2
X and γ 2 ð0; 1Þ, one can define a sequence fζng as follows:

ζn ¼ Snγ ζ0ð Þ ¼ 1 − γð Þζn−1 þ γS ζn−1ð Þ for all n 2 N:

ð35Þ

Using the definition of S, we have the following equation

ζn ¼ 1 − γð Þζn−1 þ γS ζn−1ð Þ ¼ 1 − γ
1

bþ 1

� �
ζn−1

þ γ
1

bþ 1
Ψ ζn−1ð Þ:

ð36Þ

Take α¼ γ
bþ1 2 ð0; 1

bþ1Þ, then:

ζn ¼ 1 − αð Þζn−1 þ αΨ ζn−1ð Þ: ð37Þ

Since fζng¼fΨn
αðζ0Þg strongly converges to a point ζ† in

X: Thus, all assumptions of [21, Theorem 1] are satisfied, and
ζ† 2 FðSÞ: But FðSÞ¼ FðΨ Þ. This completes the proof. □

Theorem 6. Let B be a nonempty closed convex subset of a
uniformly convex Banach space X and Ψ :B→B an (E)-
enriched nonexpansive mapping with FðΨ Þ¼ fζ†g: Assume
that the mapping I −Ψ is demiclosed at zero. Then for each
ζ0 2B, the sequence of iterates fΨ n

αðζ0Þg converges weakly to
ζ†; where Ψα is the α-Krasnosel’skiĭ mapping associated with
Ψ and α2 ð0; 1

bþ1Þ:

Proof. Using the same technique as in Theorem 1, one can
define a mapping S :B→B such that S is a mapping satis-
fying condition (E). In fact, the demiclosedness of I −Ψ and
I −Ψα at zeros are equivalent. Further, demiclosedness of
I −Ψ and I − S at zeros are equivalent. Keeping [21, Theo-
rem 2.2] in mind, one can complete the proof. □

Theorem 7. Let B be a nonempty closed convex subset of a
uniformly convex Banach space X which has the Opial prop-
erty. Let Ψ :B→B be an (E)-enriched nonexpansive map-
ping with FðΨÞ ≠ ;: Then for each ζ0 2B and α2 ð0; 1

bþ1Þ,
the sequence of iterates fΨ n

αðζ0Þg converges weakly to a fixed
point of Ψ :

Proof. From [21, Theorem 2.2] and Theorem 6, one can
complete the proof. □

5. Enriched Quasinonexpansive Mapping

In this section, we present some new convergence results for
b-enriched quasinonexpansive mapping. Shukla and Pant
[14] introduced the following new class of mappings.

Definition 10. Let ðX; k:jjÞ be a Banach space and B a non-
empty subset of X. A mapping Ψ :B→B is said to be
b-enriched quasinonexpansive mapping if there exists b2
½0;1Þ such that for all ζ 2B and ϱ2 FðΨ Þ≠ ;:

b ζ − ϱð Þ þ Ψ ζð Þ − ϱk k ≤ bþ 1ð Þ ζ − ϱk k: ð38Þ

It is noted that every quasinonexpansive mapping is
a zero-enriched quasinonexpansive mapping and every
b-enriched nonexpansive mapping with a fixed point is
b-enriched quasinonexpansive mapping.

Proposition 3. Let Ψ :B→B be an (E)-enriched nonexpan-
sive mapping with any b2 ½0;1Þ;M 2 ½1;1Þ, and FðΨÞ≠ ;:
Then, Ψ is a b-enriched quasinonexpansive mapping for any
b2 ½0;1Þ:

Proof. Let ϱ2 FðΨÞ and ζ 2B; we have the following
equation:

b ζ − ϱð Þ þ Ψ ζð Þ − ϱk k ¼ − b ϱ − ζð Þ þ ϱ − Ψ ζð Þf gk k
¼ b ϱ − ζð Þ þ ϱ − Ψ ζð Þk k
≤ M ϱ − Ψ ϱð Þk k þ bþ 1ð Þ ϱ − ζk k
¼ bþ 1ð Þ ϱ − ζk k:

ð39Þ

Thus, Ψ is a b-enriched quasinonexpansive mapping. □

The following example demonstrates that converse of the
above proposition does not hold.

Example 4 [6]. LetB¼ ½− 1; 1� be a subset of R. Let Ψ :B→
B be a mapping defined by the following equation:
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Ψ ζð Þ ¼
ζ

1þ ζj j sin
1
ζ

� �
; if ζ ≠ 0;

0; if ζ ¼ 0:

8<
: ð40Þ

Clearly, FðΨ Þ¼ f0g≠ ;: It can be seen that:

Ψ ζð Þj j ≤ ζj j; ð41Þ

for all ζ 2 ½− 1; 1� and Ψ is a b-enriched quasinonexpansive
mapping with b¼ 0:

On the other hand, let ζn ¼ 1
2nπþπ

2
and ϱn ¼ 1

2nπ for all n2
N; we get the following equation:

b ζn − ϱnð Þ þ ζn − Ψ ϱnð Þj j − bþ 1ð Þ ζn − ϱnj j
ζn − Ψ ζnð Þj j

¼ bþ 1ð Þζn − bϱnj j − bþ 1ð Þ ϱn − ζnð Þ
ζn − Ψ ζnð Þj j

¼ bþ 1ð Þζn − bϱnj j − bþ 1ð Þ ϱn − ζnð Þ
ζ2n

1þζn

¼ 1þ ζnð Þ
ζn

bþ 1ð Þ − b
ϱn
ζn

����
���� − bþ 1ð Þ ϱn

ζn
− 1

� �� �
→1;

ð42Þ

as n→1: Hence, Ψ is not an (E)-enriched nonexpansive
mapping for any b2 ½0;1Þ:

Theorem 8. Let B be a nonempty convex subset of a
uniformly convex Banach space X: If Ψ :B→B is a
b-enriched quasinonexpansive mapping with FðΨ Þ≠ ;; Then,
the α-Krasnosel’skiĭ mapping Ψα for α2 ð0; 1

bþ1Þ is asymptoti-
cally regular.

Proof. By the definition of b-enriched quasinonexpansivemap-
ping, we have the following equation:

b ζ − ϱð Þ þ Ψ ζð Þ − ϱk k ≤ bþ 1ð Þ ζ − ϱk k ; ð43Þ

for all ζ2B and ϱ2 FðΨ Þ: Take μ¼ 1
bþ1 2 ð0; 1Þ and put

b¼ 1−μ
μ in Equation (43), then the above inequality is equiv-

alent to the following equation:

1 − μð Þ ζ − ϱð Þ þ μ Ψ ζð Þ − ϱð Þk k ≤ ζ − ϱk k: ð44Þ

Define the mapping S as follows:

S ζð Þ ¼ 1 − μð Þζ þ μΨ ζð Þ for all ζ 2B: ð45Þ

From Lemma 2, FðSÞ¼ FðΨ Þ. Then, from Equation (44),
we get the following equation:

S ζð Þ − ϱk k ≤ ζ − ϱk k; ð46Þ

for all ζ 2B and ϱ2 FðSÞ: Thus, S :B→B is a quasinonex-
pansive mapping. And, we obtain the following equation:

S ζð Þ − ζk k ¼ μ Ψ ζð Þ − ζk k: ð47Þ

Let ϱ0 2B: For each n2N ∪ f0g; define ϱnþ1 ¼ΨαðϱnÞ:
Thus, the following equations are obtained:

Ψα ϱnð Þ ¼ ϱnþ1 ¼ 1 − αð Þϱn þ αΨ ϱnð Þ; ð48Þ

and

Ψα ϱnð Þ − ϱn ¼ Ψα ϱnð Þ − Ψα ϱn−1ð Þ ¼ α Ψ ϱnð Þ − ϱnð Þ: ð49Þ

In order to prove that Ψα is asymptotically regular, it
suffices to prove that limn→1 kΨ ðϱnÞ− ϱnjj ¼ 0: Since
FðΨ Þ≠ ;, let ζ0 2 FðΨ Þ: Since S is a quasinonexpansive map-
ping and FðSÞ¼ FðΨ Þ:

ζ0 − S ϱnð Þk k ≤ ζ0 − ϱnk k; ð50Þ

for all n2N ∪ f0g: From Equation (45), the following equations
are obtained:

ζ0 − S ϱnð Þ ¼ 1 − μð Þ ζ0 − ϱnð Þ þ μ ζ0 − Ψ ϱnð Þð Þ ; ð51Þ

and

ζ0 − Ψ ϱnð Þ ¼ 1
μ

ζ0 − S ϱnð Þð Þ − 1 − μð Þ
μ

ζ0 − ϱnð Þ: ð52Þ

Now:

ζ0 − ϱnþ1k k ¼ ζ0 − Ψα ϱnð Þk k
¼ 1 − αð Þ ζ0 − ϱnð Þ þ α ζ0 − Ψ ϱnð Þð Þk k:

ð53Þ
From Equation (52), the following equation is obtained:

ζ0 − ϱnþ1k k ¼ 1 − αð Þ ζ0 − ϱnð Þ þ α

μ
ζ0 − S ϱnð Þð Þ − α 1 − μð Þ

μ
ζ0 − ϱnð Þ












¼ 1 −
α

μ

� �
ζ0 − ϱnð Þ þ α

μ
ζ0 − S ϱnð Þð Þ










:

ð54Þ
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Take β¼ α
μ, then β2 ð0; 1Þ: From Equation (50), the fol-

lowing equation is obtained:

ζ0 − ϱnþ1k k ¼ 1 − βð Þ ζ0 − ϱnð Þ þ β ζ0 − S ϱnð Þð Þk k; ð55Þ

≤ 1 − βð Þ ζ0 − ϱnk k þ β ζ0 − S ϱnð Þk k ¼ ζ0 − ϱnk k: ð56Þ

Therefore, the sequence fkζ0 − ϱnjjg is bounded by u0 ¼
kζ0 − ϱ0jj: If ϱn0 ¼ ζ0 for any n0 2N then from Equation (56),

ϱn → ζ0 as n→1: If ϱn ≠ ζ0 for all n2N; take the following
conditions:

zn ¼
ζ0 − ϱn
ζ0 − ϱnk k and z0n ¼

ζ0 − S ϱnð Þ
ζ0 − ϱnk k : ð57Þ

If β≤ 1
2 and from Equation (55), we have the following

equation:

ζ0 − ϱnþ1k k ¼ 1 − βð Þ ζ0 − ϱnð Þ þ β ζ0 − S ϱnð Þð Þk k
¼ ζ0 − 1 − βð Þϱn − βS ϱnð Þk k
¼ ζ0 − ϱn þ βϱn − βS ϱnð Þ − 2βζ0 þ 2βζ0 þ βϱn − βϱnk k
¼ ζ0 1 − 2βð Þ − ϱn 1 − 2βð Þ þ 2βζ0 − βϱn − βS ϱnð Þð Þk k
≤ 1 − 2βð Þ ζ0 − ϱnk k þ β 2ζ0 − ϱn − S ϱnð Þk k
¼ 2β ζ0 − ϱnk k zn þ z0nk k

2
þ 1 − 2βð Þ ζ0 − ϱnk k:

ð58Þ

SinceX is a uniformly convex Banach space, by using the
definition of uniformly convex space with kznjj≤ 1; kz0njj≤ 1,
and the following equation:

zn − z0nk k ¼ ϱn − Sϱnk k
ζ0 − ϱnk k ≥

ϱn − Sϱnk k
u0

¼ ε ðsayÞ: ð59Þ

Noting that modulus of convexity δðεÞ is a nondecreas-
ing function of ε, we obtain the following equation:

zn þ z0nk k
2

≤ 1 − δ
ϱn − S ϱnð Þk k

u0

� �
: ð60Þ

From Equations (60) and (62), the following equation is
obtained:

ζ0 − ϱnþ1k k ≤ 2β 1 − δ
ϱn − S ϱnð Þk k

u0

� �� �
þ 1 − 2βð Þ

� �
ζ0 − ϱnk k

¼ 1 − 2βδ
ϱn − S ϱnð Þk k

u0

� �� �
ζ0 − ϱnk k:

ð61Þ

Using induction in the above inequality, it follows that:

ζ0 − ϱnþ1k k ≤ ∏
n

j¼0
1 − 2βδ

ϱj − S ϱj
À Á

 



u0

 ! !
u0: ð62Þ

We shall prove that limn→1 kSðϱnÞ− ϱnjj ¼ 0: Arguing
by contradiction, consider that kSðϱnÞ− ϱnjj does not con-
verge to zero. Then, there exists a subsequence fϱnkg of fϱng
such that kSðϱnkÞ− ϱnk jj converges to η>0: Since δð⋅Þ 2 ½0; 1�
is nondecreasing and β≤ 1

2 ; we have 1− 2βδðkϱk−SðϱkÞjju0
Þ 2 ½0; 1�

for all k2N: From Equation (63) and for sufficiently large k;
we have the following equation:

ζ0 − ϱnkþ1



 

 ≤ 1 − 2βδ
η

2u0

� �� �
nkþ1ð Þ

u0: ð63Þ

Making k→1, it follows that ϱnk → ζ0: By Equation (46),
we get SðϱnkÞ→ ζ0 and kϱnk − SðϱnkÞjj→ 0 as k→1; which
is a contradiction.

If β> 1
2 then 1− β< 1

2 because β2 ð0; 1Þ: Now:
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ζ0 − ϱnþ1k k ¼ ζ0 − 1 − βð Þϱn − βS ϱnð Þk k
¼ ζ0 − ϱn þ βϱn − βS ϱnð Þ þ 2 − 2βð Þζ0 − 2 − 2βð Þζ0k

þS ϱnð Þ − S ϱnð Þ þ βS ϱnð Þ − βS ϱnð Þk
¼ 2ζ0 − ϱn − S ϱnð Þð Þ − β 2ζ0 − ϱn − S ϱnð Þð Þ þ 2β ζ0 − S ϱnð Þð Þk ;

− ζ0 − S ϱnð Þð Þk
≤ 1 − βð Þ 2ζ0 − ϱn − S ϱnð Þk k þ 2β − 1ð Þ ζ0 − ϱnk k
≤ 2 1 − βð Þ ζ0 − ϱnk k zn þ z0nk k

2
þ 2β − 1ð Þ ζ0 − ϱnk k

ð64Þ

and by the uniform convexity of X; we get the following
equation:

ζ0 − ϱnþ1k k ≤ 2 1 − βð Þ − 2 1 − βð Þδ ϱn − S ϱnð Þk k
u0

� ��
þ 2β − 1ð ÞÞ ζ0 − ϱnk k:

ð65Þ

Using induction in the above inequality, we get the fol-
lowing equation:

ζ0 − ϱnþ1k k ≤ ∏
n

j¼0
1 − 2 1 − βð Þδ ϱj − S ϱj

À Á

 


u0

 ! !
u0:

ð66Þ

Using the similar argument as in the previous case, it can
be easily shown that kSðϱnÞ− ϱnjj→ 0 as n→1: Therefore,
in both cases, kSðϱnÞ− ϱnjj→ 0 asn→1: FromEquation (47),
kΨ ðϱnÞ− ϱnjj→ 0 as n→1, Ψα is asymptotically regular and
this completes the proof. □

Remark 2. The above theorem is a generalization of [18,
Theorem 1] for a more general class of mappings.

Theorem 9. Let B be a nonempty closed subset of a Banach
space X and S :B→B a quasinonexpansive mapping.
Assume that X is strictly convex and B is a convex compact
subset ofX: If S is continuous then for any ζ0 2B; α2 ð0; 1Þ;
the α-Krasnosel’skiĭ process fSnαðζ0Þg converges to some ζ∗ 2
FðSÞ:

Proof. Following the same line of proof of [7, Theorem 5],
one can complete the proof. □

Theorem 10. Let B and X be the same as in Theorem 6. Let
Ψ :B→B be a b-enriched quasinonexpansive mapping with
FðΨ Þ≠ ;: If Ψ is continuous then for any ζ0 2B; α2 ð0;
1

bþ1Þ; the α-Krasnosel’skiĭ process fΨn
αðζ0Þg converges to some

ζ∗ 2 FðΨ Þ:

Proof. Following the same proof technique as in Theorem 4,
we can define a mapping S :B→B as follows:

S ζð Þ ¼ 1 −
1

bþ 1

� �
ζ þ 1

bþ 1
Ψ ζð Þ for all ζ 2B; ð67Þ

and S is a quasinonexpansive mapping. For given ζ0 2B,
β2 ð0; 1Þ, we can define a sequence fζng as follows:

ζn ¼ Snβ ζ1ð Þ ¼ 1 − βð Þζn−1 þ βS ζn−1ð Þ: ð68Þ

From Theorem 6, the sequence fζng converges to some
ζ∗ 2 FðSÞ: Using the definition of S, we have the following
equation:

ζn ¼ 1 − βð Þζn−1 þ βS ζn−1ð Þ ¼ 1 − β
1

bþ 1

� �
ζn−1

þ β
1

bþ 1
Ψ ζn−1ð Þ:

ð69Þ

Take α¼ β
bþ1 2 0;½ 1

bþ1Þ, then, we obtain the following
equation:

ζn ¼ 1 − αð Þζn−1 þ αΨ ζn−1ð Þ: ð70Þ

Hence, fζng¼fΨ n
αðζ0Þg strongly converges to a fixed

point of S. But FðSÞ¼ FðΨÞ. This completes the proof. □

Theorem 11. Let B be a nonempty closed convex subset of a
uniformly convex Banach space X: Let S :B→B be a qua-
sinonexpansive mapping with FðSÞ ≠ ; and P the metric pro-
jection from X into FðSÞ: Then for each ζ 2B, the sequence
fPSnðζÞg converges to some ϱ2 FðSÞ:

Proof. Following the same line of proof of [7, Theorem 6],
one can complete the proof. □

Theorem 12. Let B;X, and P be same as in Theorem 8. Let
Ψ :B→B be a b-enriched quasinonexpansive mapping with
FðΨ Þ≠ ;: Then for each ζ 2B, α¼ 1

bþ1 ; the α-Krasnosel’skiĭ
process fΨ n

αðζÞg converges to some ϱ2 FðΨÞ:

Proof. In view of Theorems 4 and 8, one can complete the
proof. □
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