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We focus on the global existence and Lp − Lq rates of convergence for the compressible magnetohydrodynamic equations in R3. We
prove the global existence of smooth solutions using the standard energy method under the condition that the initial data are close
to a constant equilibrium state in H3. Rates of convergence for the solution in Lq norm with 2 ≤ q ≤ 6 and its first- and second-
order derivatives in L2 norm are obtained, if the initial data belong to Lp with 1 ≤ p ≤ 6

5.

1. Introduction

The study of the interaction between magnetic fields and elec-
trically conducting fluids is of great importance for magneto-
hydrodynamics (MHD). From liquid metals to cosmic
plasmas, involving intensely heated and ionized fluids in astro-
physics, geophysics, high-speed aerodynamics, and plasma
physics—the applications of MHD cover a very broad spec-
trum of physics. The structures of the solar system, including
the outer layers, the solar wind that covers the Earth planets,
and the interstellar magnetic fields are all sources of astrophys-
ical problems. MHD is relevant to many engineering chal-
lenges, including extended plasma confinement for controlled
thermonuclear fusion, liquid metal cooling of nuclear reactors,

MHDpower generation, electromagnetic casting ofmetals, and
plasma accelerators for ion engines for spacecraft propulsion.
Magnetic fields can induce currents to flow through conduct-
ing fluids, producing forces on the fluid and change the mag-
netic field. This is called MHD flows. It is necessary to consider
both hydrodynamics and electrodynamics, as there is a com-
plicated interaction between magnetic and fluid dynamic phe-
nomena. The compressible Navier–Stokes equations of fluid
dynamics and Maxwell’s equations of electromagnetism
together form the set of equations describing the compressible
viscous MHD. The whole system of partial differential equa-
tions for three-dimensional viscous, compressible, MHD flows
in Euler coordinates is considered for 0;ð 1Þ×R3 [1, 2]:

ρt þ div ρuð Þ ¼ 0;

ρuð Þt þ div ρu⨂ uð Þ þ rp ¼ r ×Hð Þ ×Hþ divψ ;

εt þ div u ρeþ 1
2
ρ uj j2 þ p

� �� �
¼ div u ×Hð Þ ×Hþ νH × r ×Hð Þ þ uψ þ κrθð Þ;

Ht −r × u ×Hð Þ ¼ −r × νr ×Hð Þ; divH ¼ 0;

8>>>>>><
>>>>>>:

ð1Þ
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where κ>0 represents the fluid’s heat conductivity and ρ; u;
θ, and H stand for the density, velocity, temperature of the
fluid, and the magnetic field, respectively. The symbol Ψ
denotes the viscous stress tensor and we shall assume that
the Ψ is given through formula:

ψ :¼ μ ruþruTð Þ þ λdiv uI: ð2Þ

The total energy ε has contributions from the kinetic
energy, internal energy, and magnetic energy given by:

ε :¼ ρeþ 1
2
ρ uj j2 þ 1

2
Hj j2: ð3Þ

The coefficients of viscosity μ and λ of the flow satisfy
2μþ 3λ>0 and μ>0; I is the 3× 3 identity matrix,ruT is the
transpose of the matrix ru, and ν>0 is the magnetic diffu-
sivity acting as a magnetic diffusion coefficient of the mag-
netic field. The equations of state p :¼ p ρ;ð θÞ and e :¼ e ρ;ð θÞ
relate the pressure p and the internal energy e to the density
and temperature of the flow. MHD is studied by physicists
and mathematicians likewise because of its physical signifi-
cance, its complexity, its diverse phenomena, and its mathe-
matical challenges. There are many published studies that
have been carried out in this field. Viscous compressible
MHD fluids in the isentropic case have been studied by

Abdallah et al. [3]. Chen and Tan [4] have studied the interac-
tions between the viscous, isentropic, compressible fluid motion
and the magnetic field are modeled by the MHD system. Three-
dimensional viscous compressible MHD flows in Eulerian coor-
dinates were studied by Hu and Wang [5]. The motion of a
compressible viscous heat-conductive gases, isotropic Newto-
nian fluid was studied by Matsumura and Nishida [6]. The flow
of viscous compressible fluids, even under the influence of a
magnetic field in a bounded domain, was described by Ströhmer
[7]. The solvability of the Cauchy problem in a space of smooth
functions is demonstrated for hyperbolic–parabolic composite
systems of nonlinear equations involving a wide class of equa-
tions of mathematical physics discussed by Vol’Pert and
Hudjaev [8]. The motion of a compressible viscous fluid in an
external domain was studied by Kobayashi [9]. Kobayashi and
Shibata [10] studied the motion of compressible viscous and
heat-conductive gases in an exterior domain. Chen and Wang
[11] studied a fundamental problem ofMHD fluid flow inwhich
the pressure, internal energy, and heat conductivity satisfy cer-
tain physical growth conditions of temperature. In this paper, we
think of the global solution to the three-dimensional MHD
problem over large time scales. Our aim is to analyze the unique-
ness of the smooth solutions and global existence under the idea
that the initial data are very near to the constant equilibrium
position. Hence, we rewrite Equation (1) as follows:

ρt þ div ρuð Þ ¼ 0;

ρut þ ρu ⋅ruþrp ¼ r ×Hð Þ ×Hþ μΔuþ μþ λð Þrdiv u;

ρet þ ρu ⋅reþ pdiv u ¼ ν rHj j2 − νrH :rHT þ μ ruj j2 þ μru :ruT þ λ div uj j2 þ κΔθ;

Ht −r × u ×Hð Þ ¼ −νr × r ×Hð Þ; divH ¼ 0;

8>>>><
>>>>:

ð4Þ

where rH :rHT ¼∑1≤i; j≤3 ∂jHi∂iHj. We shall assume that
the fluid is ideal and barotropic, i.e., e :¼ cvθ and p :¼Rρθ
with positive constants cv;R. Moreover, without loss of

generality, we also presume that the constants R; cv, and ν
to be unity, then reformulate the MHD system:

ρt þ ρdiv uþ u ⋅rρ ¼ 0;

ut þ u ⋅ruþrθ þ 1
ρ
θrρ −

1
ρ

μΔþ μþ λð Þrdivð Þu ¼ 1
ρ

H ⋅rH −H ⋅rHTð Þ;

θt þ u ⋅rθ þ θdiv u −
1
ρ
Δθ ¼ 1

ρ
rHj j2 −rH :rHT þ μ ruj j2 þ μru :ruT þ λ div uj j2ð Þ;

Ht − ΔH ¼ H ⋅ru − u ⋅rH − div uð ÞH; divH ¼ 0:

8>>>>>>><
>>>>>>>:

ð5Þ

We complement Equation (5) with the Cauchy data
given as follows:

ρ; u; θ;Hð Þ 0; xð Þ ¼ ρ0 xð Þ; u0 xð Þ; θ0 xð Þ;H0 xð Þð Þx 2 R3:

ð6Þ

Notation. Throughout this paper, the norms in Lebesgue
space Lp and Sobolev spaces Hm R3ð Þ; and Wm:p R3ð Þ are
denoted, respectively, by ∥ ⋅ ∥Lp ; ∥ ⋅ ∥Wm; p and ∥ ⋅ ∥Hm.

Moreover, C denotes a general constant, which may vary in dif-
ferent estimates. If the dependence needs to be explicitly stressed, a
notation such as C1;C2 will be used. As usual ∂x ¼r ¼ ∂1;ð ∂2;
∂3Þ; ∂i ¼ ∂xi ; i ¼ 1; 2; 3; and for any integer k>0;rkf denotes
all derivatives up to k-order of the function f .

Remark 1.Note that the divergence-free magnetic fieldH can
be justified by the initial assumption that divH0 ¼ 0. Indeed,
this can be easily and formally observed by taking div of the
magnetic equation. Hence, the magnetic equation is purely
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parabolic with respect toH. Now, we are in a position to state
our main results of this paper. First, we have the following
existence result of a unique small solution to the Cauchy
problem (5)–(6):

Theorem 2. Assume divH0 ¼ 0 and the initial data are close
enough to the constant situation ρ;ð 0; θ;HÞ with ρ; θ;H>0;
i:e., there exists a sufficiently small constant δ0 such that for
any initial data satisfy.

ρ0 − ρ; u0; θ0 − θ;H0 −H
À Á 

H3 ≤ δ0; ð7Þ

then the MHD (5)–(6) possesses a unique globally smooth
solution ρ;ð u; θ;HÞ such that:

ρ--ρ; u; θ − θ;H −H
À Á

⋅; tð Þ 2
H3

þ
Z

t

0
∂xρ ⋅; sð Þk k2H2 þ ∂xu; ∂xθ; ∂xHð Þ ⋅; sð Þk k2H3ds ≤ Cδ20;

ð8Þ

for any t 2 0;½ 1Þ:
Second, we further have the following decay estimates for

the solution constructed in the theorem above.

Theorem 3. Under the Theorem 2, if in addition, there is
some p 2 1;½ 6

5Þ such that:

ρ0 − ρ; u0; θ0 − θ;H0 −H
À Á 

Lp < þ1; ð9Þ

then the solution constructed in Theorem 2 satisfies the fol-
lowing decay estimates:

ρ − ρ; u; θ − θ;H −H
À Á

tð Þ 
Lq ≤ C 1þ tð Þ−σ p;q;0ð Þ; 8q 2 2; 6½ �;

ð10Þ

and

ρ − ρ; u; θ − θ;H −H
À Á

tð Þ 
L2 ≤ C 1þ tð Þ−σ p;2;1ð Þ;

ð11Þ
where σ p;ð q; kÞ are defined by:

σ p; q; kð Þ ¼ 3
2

1
p
−
1
q

� �
þ k
2
; k ¼ 1; 2; 3: ð12Þ

If the initial data further satisfy ρ0 −ð ρ; u0; θ0 − θ;H0 −

HÞ2H4 R3ð Þ and ρ0 − ρ; u0; θ0 − θ; H0 −H
À Á 

H4 is small,
then the solution has the following high-order estimate:

r2 ρ0 − ρ; u0; θ0 − θ;H0 −H
À Á

tð Þ 
L2 ≤ C 1þ tð Þ−σ p;2;2ð Þ:

ð13Þ

The part which is left from this study is committed to
demonstrate Theorems 2 and 3. In part two of this section,

the priori estimates are carried out for the smooth solution.
The global existence of the smooth solutions has been formu-
lated due to the merging of the local existence and priori
estimates outcomes. The issue in the third section is shaped
using the model of a Laypinov-type energy inequality for all
the derivatives, which are ruled by the first-order derivatives.
Besides that, the decay-in-time estimates for the linearized
system is also used to dominate the first-order derivatives by
the higher-order derivatives. From these two types of esti-
mates, the decay rates of the smooth solutions can be followed.

2. Global Existence

We will prove the existence part of Theorem 2. In outline, we
first derive the uniform-in-time a priori estimates for smooth
solutions. These estimates also hold for our H3 local solu-
tions, which are thoroughly authenticated by the standard
method in [6] utilizing the Mollifier technique. Owing to the
uniform estimates, the global existence is finally proved. To
reduce complicated calculations, we recall the following use-
ful inequalities:

fj j2
Hk ≤ C f ; ∂kx f

�� ��2
L2 ; 8f 2 Hk: ð14Þ

This can be easily proved by combining the inequalities
of Young and Gagliardo–Nirenberg:

∂ix fj jLp ≤ C pð Þ fj jαLq ∂kx f
�� �� 1−αð Þ

Lr ; 8f 2 Hk; ð15Þ

where 1
p −

i
3 ¼ 1

q αþ 1
r −
À

k
3Þ 1−ð αÞ with α 2 0;ð 1Þ; r 2 1;ð 1Þ

and 0 ≤ i ≤ k,

∂kx fgð Þ 
L2 ≤ C fk kL1 ∂kxg

 
L2 þ ∂kx f

 
L2 gk kL1

Â Ã
:

ð16Þ

2.1. A Priori Estimates. For this objective, suppose ρ;ð u; θ;
HÞ is a smooth solution of Equations (5) and (6) on 0;ð TÞ
with ρ>0. We formulate the following theorem:

Theorem 4. There exists a sufficiently small constant δ such
that:

sup

0 ≤ t ≤ T
ρ − ρ; u; θ − θ;H −H
À Á

⋅; tð Þ 
H3 ≤ δ; ð17Þ

then for any t 2 0;½ T�; there exists a constant C1>1 such
that:

ρ − ρ; u; θ − θ;H −H
À Á

⋅; tð Þ 2
H3

þ
Z

t

0
∂xρ ⋅; sð Þk k2H2 þ ∂xu; ∂xθ; ∂xHð Þ ⋅; sð Þk k2H3ds

≤ C1 ρ0 − ρ; u0; θ0 − θ;H0 −H
À Á

tð Þ 2
H3 :

ð18Þ
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For this purpose, we introduce new variables

ϱþ ρ ¼ ρ; u ¼ αβ2v; θ ¼ α2β2ϑþ θ; αβHþH ¼ H; ð19Þ

where α ¼
ffiffiffi
θ

p
; β ¼ 1ffiffi

ρ
p . Then, Equations (5)–(6) are refor-

mulated as:

ϱt þ αdiv v ¼ N1; ð20Þ

vt þ αrϑþ αrϱ − μβ2Δv − β2 μþ λð Þrdiv v − βH ⋅rH
þ βH ⋅rHT ¼ N2;

ð21Þ

ϑt þ αdiv v − β2Δϑ ¼ N3; ð22Þ

Ht þ βH div vð Þ − βH ⋅rv − ΔH ¼ N4; ð23Þ

ϱ; v; ϑ;Hð Þ ¼ ϱ0; v0; ϑ0;H0ð Þ xð Þ À! 0; 0; 0; 0ð Þ as xj j À!1;

ð24Þ

where

N1 ¼ −αβ2 div ϱvð Þ; ð25Þ

N2 ¼ −αβ2 v ⋅rvð Þ − α
ϑ ⋅rϱð Þ

ρ
−

α

β2
1
ρ
−
1
ρ

� �
rϱþ μ

1
ρ
−
1
ρ

� �
Δv þ μþ λð Þ 1

ρ
−
1
ρ

� �
rdiv v

þ α
H ⋅rHð Þ

ρ
þ 1
β

1
ρ
−
1
ρ

� �
H ⋅rH
À Á

− α
H ⋅rHTð Þ

ρ
−
1
β

1
ρ
−
1
ρ

� �
H ⋅rHT
À Á

;
ð26Þ

N3 ¼ −αβ2 v ⋅rϑð Þ − αβ2 ϑdiv vð Þ þ 1
ρ
−
1
ρ

� �
Δϑþ 1

ρ
rHj j2 −rH :rHT þ μβ2 rvj j2 þ μβ2rv :rvT þ λβ2 div vj j2½ �;

ð27Þ

N4 ¼ αβ2 H ⋅rvð Þ − αβ2 v ⋅rHð Þ − αβ2 H ⋅ div vð Þ:
ð28Þ

First, we observe that a priori assumption Equation (17)
with the equation of continuity Equation (19) imply:

sup

0≤ t ≤ T
ϱ;ϱt; ∂xϱ; v; ∂xv;ϑ; ∂xϑ;H; ∂xHð Þ tð Þk k

≤ C
sup

0≤ t ≤ T
ϱ;u; θ − θ;H −H
À Á

⋅; tð ÞÁ 2
H3 ≤ Cδ:

ð29Þ

Because H2↪L1; we can choose δ sufficiently small
that:

ρ
2
≤ ρ ¼ ϱþ ρ ≤ 2ρ;

θ

2
≤ θ ¼ α2β2ϑ

þ θ ≤ 2θ;
H
2
≤H ¼ αβHþH ≤ 2H:

ð30Þ

In the following, we always assume δ is small and use
Equations (29)–(30). The a priori estimates will be made in
four steps.

A: L2 norms of ϱ; v; ϑ;H. Multiplying the equation of
continuity Equation (20) by ϱ and integrate over R3 (by
parts), we obtain:

1
2
d
dt

ϱk k2L2 þ α

Z
R3
ϱdiv vdx ¼ I1; ð31Þ

where I1 ¼ N1;h ϱi.
When momentum Equation (21) is multiplied by v and

integrate over R3, we get:

1
2
d
dt

vk k2L2 þ α

Z
R3

v ⋅rϑð Þdx þ α

Z
R3

v ⋅rϱð Þdx − μβ2Z
R3

v ⋅ Δvð Þdx − β2 μþ λð Þ
Z

R3
v ⋅rdiv vð Þdx − βZ

R3
v ⋅ H ⋅rH

À Á
dx þ β

Z
R3
v ⋅ H ⋅rHT

À Á
dx ¼ I2;

ð32Þ

where I2 ¼ N2;h vi.
Similarly, multiplying the energy Equation (22) by ϑ and

integrate by parts over R3, we get:

1
2
d
dt

ϑk k2L2 þ α

Z
R3
ϑdiv vdx − β2

Z
R3
ϑΔϑdx ¼ I3; ð33Þ

where I3 ¼ N3;h ϑi.
Finally, when the magnetic Equation (23) is multiplied by

H and integrates over R3, we obtain:

4 Abstract and Applied Analysis



1
2
d
dt

Hk k2L2 þ β

Z
R3

H ⋅H
À Á

div vdx − β

Z
R3

H ⋅H
À Á

⋅rvdx

−

Z
R3

H ⋅ ΔHð Þdx ¼ I4;

ð34Þ

where I4 ¼ N4;h Hi.
Now we add Equations (31)–(34) and then by integration

by parts, we obtain the following result:

1
2
d
dt

ϱ; v; ϑHk k2L2 þ μβ2 ∂xvk k2L2

þ β2 μþ λð Þ div vk k2L2 þ β2 ∂xϑk k2L2 þ ∂xHk k2L2 ¼ ∑
4

k¼1
Ik:

ð35Þ

Using Holder’s and Sobolev’s inequalities and Equation
(29), we estimate the right-hand side of Equation (35) as
follows:

I1 ¼ −αβ2
Z

R3
ϱdiv ϱvð Þdx ¼ αβ2

Z
R3
ϱv ⋅ ∂xϱdx

≤ C ϱk kL3 vk kL6 ∂xϱk kL2 ≤ C ϱk kH1 ∂xvk kL2 ∂xϱk kL2
≤ Cδ ∂xv; ∂xϱk k2L2 ;

ð36Þ

I2 ¼ − αβ2
Z

R3
v ⋅ v ⋅rvð Þdx − α

Z
R3

v ⋅ ϑ ⋅rϱð Þ
ρ

dx −
α

β2

Z
R3
v ⋅

1
ρ
−
1
ρ

� �
rϱdx þ μ

Z
R3
v ⋅

1
ρ
−
1
ρ

� �
Δvdx

þ μþ λð Þ
Z

R3
v ⋅

1
ρ
−
1
ρ

� �
rdiv vdx þ α

Z
R3

v ⋅ H ⋅rHð Þ
ρ

dx þ 1
β

Z
R3
v ⋅

1
ρ
−
1
ρ

� �
H ⋅rH
À Á

dx

− α

Z
R3

v ⋅ H ⋅rHTð Þ
ρ

dx −
1
β

Z
R3
v ⋅

1
ρ
−
1
ρ
−

� �
H ⋅rHT
À Á

dx

≤ C vk kH1 ∂xvk kL2 ∂xvk kL2 þ ∂xϑk kL2 ∂xϱk kL2 þ ∂xϱk kL2 ∂xϱk kL2½
þ ∂xϱk kL2 ∂xvk kL2 þ ∂xϱk kL2 ∂xdiv vk kL2 þ ∂xHk kL2 ∂xHk kL2
þ ∂xϱk kL2 ∂xHk kL2 þ ∂xHk kL2 ∂xHTk kL2 þ ∂xϱk kL2 ∂xHTk kL2 � ≤ Cδ ∂xϱ; ∂xv; ∂2xv; ∂xϑ; ∂xHð Þk k2L2 ;

ð37Þ

where we have used the fact that 1
ρ −

1
ρ ∼ ϱ: Similarly, we find

that:

I3 ¼ −αβ2
Z

R3
ϑ v ⋅rϑð Þdx − αβ2

Z
R3
ϑ ϑdiv vð Þdx

þ
Z

R3

1
ρ
−
1
ρ

� �
ϑΔϑð Þdx þ

Z
R3

ϑ

ρ
rHj j2 −rH :rHT½

þ μβ2 rvj j2 þ μβ2rv :rvT

þ λβ2 div vj j2�dx ≤ Cδ ∂xϱ; ∂xv; ∂xϑ; ∂2xϑ; ∂xHð Þk k2L2 ;
ð38Þ

and

I4 ¼ αβ2
Z

R3
H ⋅ H ⋅rvð Þdx − αβ2

Z
R3
H ⋅ v ⋅rHð Þdx

− αβ2
Z

R3
H ⋅ H ⋅ div vð Þdx ≤ Cδ ∂xv; ∂xHð Þk k2L2 :

ð39Þ
Accordingly, from Equation (29) and Equations

(35)–(39), we obtain:

d
dt

ϱ; v; ϑ;Hð Þk k2L2 þ C ∂xv; ∂xϑ; ∂xHð Þk k2L2
≤ Cδ ∂xϱ; ∂2xv; ∂2xϑð Þk k2L2 :

ð40Þ

B: L2 norms of ∂3xϱ; ∂3xv; ∂3xϑ; ∂3xH:

Apply the differential operator ∂ijk to the Equations
(20)–(23), multiply the resulting equations by ∂ijkϱ; ∂ijkv;
∂ijkϑ and ∂ijkH, respectively, and integrating them over R3,
we obtain the following equations:

1
2
d
dt

Z
R3

∂ijkϱ
 2dx þ α

Z
R3
∂ijkϱdiv ∂ijkv

À Á
dx ¼ J1;

ð41Þ

where J1 ¼ ∂ijkN1;



∂ijkϱi:

1
2
d
dt

Z
R3

∂ijkv
 2dx þ α

Z
R3
∂ijkv ⋅r∂ijkϑdx

þ α

Z
R3
∂ijkv ⋅r∂ijkϱdx − μβ2

Z
R3
∂ijkv ⋅ Δ∂ijkvdx

− β2 μþ λð Þ
Z

R3
∂ijkv ⋅rdiv ∂ijkv

À Á
dx

− β

Z
R3
∂ijkv ⋅ ∂ijkH ⋅r∂ijkH

À Á
dx

þ β

Z
R3
∂ijkv ⋅ ∂ijkH ⋅r∂ijkHT

À Á ¼ J2;

ð42Þ

Abstract and Applied Analysis 5



where J2 ¼ ∂ijkN2;



∂ijkvi:
1
2
d
dt

Z
R3

∂ijkϑ
 2dx þ α

Z
R3
∂ijkϑdiv ∂ijkv

À Á
dx − β2Z

R3
∂ijkϑ ⋅ Δ∂ijkϑdx ¼ J3;

ð43Þ

where J3 ¼ ∂ijkN3;



∂ijkϑi:
and

1
2
d
dt

Z
R3

∂ijkH
 2dx þ β

Z
R3

∂ijkH:∂ijkH
À Á

div ∂ijkv
À Á

dx

−

Z
R3

∂ijkH:∂ijkH
À Á

:r∂ijkvdx −
Z

R3
∂ijkH:Δ∂ijkHdx ¼ J4;

ð44Þ

where J4 ¼ ∂ijkN4;



∂ijkHi:
We add Equations (41)–(44), obtaining:

1
2
d
dt

∂i jk ϱ; v; ϑ;Hð Þ 2
L2 þ μβ2 ∂4x vk k2L2 þ β2 ∂4xϑk k2L2

þ ∂4xHk k2L2 ¼ ∑
4

k¼1
Jk:

ð45Þ

Now, we use Equation (16) and Cauchy’s inequality to
estimate the terms in the summation:

J1 ¼ −αβ2
Z

R3
∂ijkϱ ⋅ ∂ijk div ϱvð Þ½ �dx

¼ −αβ2
Z

R3
∂ijk ϱdiv vð Þ ⋅ ∂ijkϱþ ∂ijk v ⋅rϱð Þ ⋅ ∂ijkϱ
Â Ã

dx

≤ C ∂3x ϱdiv vð Þk kL2 ∂3xϱk kL2 þ C ∂2x ∂xv ⋅rϱð Þk kL2 ∂3xϱk kL2
þ C

Z
R3

v ⋅r∂3xϱð Þ ⋅ ∂3xϱdx ≤ C ∂3xϱk kL2 ϱk kL1 ∂4x vk kL2½
þ ∂3xϱk kL2 ∂xvk kL1� þ C ∂3xϱk kL2 × ∂xvk kL1 ∂3xϱk kL2½
þ ∂3x vk kL2 ∂xϱk kL1� þ C

Z
R3

v ⋅r∂3xϱð Þ ⋅ ∂3xϱdx
≤ Cδ ∂3xϱ; ∂3x v; ∂4x vð Þk k2L2 ;

ð46Þ

where v ⋅ ∂3xϱrϱð Þ⋅∂3xϱ ¼ v ⋅r ∂3xϱj j2
2 :

We next estimate J2 in detail:

(i) − αβ2
R
R3∂ijkv ⋅ ∂ijk v ⋅rvð Þdx ≤ C ∥ ∂3x v∥L2 ∥

∂3x v ⋅rvð Þ∥L2 ≤ C ∥ ∂3x v∥L2 ∥v∥L1 ∥ ∂4x v∥L2 þ½
∥∂3x v∥L2 ∥ ∂xv∥L1�≤Cδ ∥ ∂3x v;ð ∂4x vÞ∥2L2 ;

(ii) − α
R
R3∂ijkv ⋅ ∂ijk

ϑ⋅rϱ
ρ

� �
dx ¼ α

R
R3∂ijkkv ⋅ ∂ij

ϑ⋅rϱ
ρ

� �
dx ≤ C∥∂4x v∥L2∥∂2x

ϑ⋅rϱ
ρ

� �
∥L2 ≤ C∥∂4x v∥L2

∥ 1
ρ ∥L1∥∂

2
x ϑ ⋅rϱð Þ∥L2 þ

h
∥∂2x 1

ρ

� �
∥L2∥ ϑ ⋅rϱð Þ∥L1�

≤C∥∂4x v∥L2 ∥∂2x ϑ ⋅rϱð Þ∥L2 þ½ ∥∂2x 1
ρ

� �
∥L2 �

≤C∥∂4x v∥L2 ∥ϑ∥L1∥∂3xϱ∥L2 þ½ ∥∂2xϑ∥L2∥∂xϱ∥L1
þ ∥ 2

ρ3 ∂xϱ ⋅ ∂xϱ∥L2 þ ∥ 1
ρ2 ∂

2
xϱ∥L2 �≤Cδ ∥ ∂xϱ; ∂2xϱ;ð

∂3xϱ; ∂4x v; ∂2xϑÞ∥2L2 ;
(iii) −

α
β2
R
R3∂ijkv ⋅ ∂ijk 1

ρ −
1
ρ

� �
⋅rϱ

h i
dx ¼ α

β2
R
R3∂ijkk

v ⋅ ∂ij 1
ρ −

1
ρ

� �
⋅rϱ

h i
dx ≤ C∥∂4x v∥L2∥∂2x

1
ρ −

1
ρ

� �
⋅rϱ

h i
∥L2 ≤C∥∂4x v∥L2 ∥ 1

ρ −
1
ρ

� �
∥L1∥

h

∂3xϱ ∥L2 þ ∥∂2x 1
ρ −

1
ρ

� �
∥L2∥∂xϱ∥L1�≤Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂4x vð Þ∥2L2 ;
(iv) μ

R
R3∂ijkv ⋅ ∂ijk 1

ρ −
1
ρ

� �
⋅ Δv

h i
dx ¼ − μ

R
R3∂ijkkv ⋅

∂ij 1
ρ −

1
ρ

� �
⋅ Δv

h i
dx ≤ C∥∂4x v∥L2∥∂2x

1
ρ −

1
ρ

� �
⋅ Δv

h i
∥L2 ≤C∥∂4x v∥L2 ∥ 1

ρ −
1
ρ

� �h

∥L1∥∂4x v∥L2 þ ∥∂2x 1
ρ −

1
ρ

� �
∥L2∥∂iiv∥L1�

≤ Cδ∥∂4x v∥L2 ∥∂4x v∥L2 þ½ ∥∂2x 1
ρ −

1
ρ

� �
∥L2∥∂iiv∥H2 �

≤ Cδ ∥ ∂xϱ; ∂2xϱ; ∂2x v; ∂3x v; ∂4x vð Þ∥2L2 ;
(v) μþð λÞR R3∂ijkv ⋅ ∂ijk 1

ρ −
1
ρ

� �
rdiv v

h i
dx ≤ Cδ ∥

∂xϱ; ∂2xϱ; ∂2x v; ∂3x v; ∂4x vð Þ∥2L2 ;
(vi) α

R
R3∂ijkv ⋅ ∂ijk H⋅rH

ρ

� �
dx ≤ Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂3x v; ∂3x H; ∂4x Hð Þ∥2L2 ;
(vii) 1

β

R
R3∂ijkv ⋅ ∂ijk 1

ρ −
1
ρ

� �
H ⋅rH
À Áh i

dx ≤ Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂3x v; ∂4x Hð Þ∥2L2 ;
(viii) − α

R
R3∂ijkv ⋅ ∂ijk H⋅rHT

ρ

� �
dx ≤ Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂3x v; ∂3x H; ∂4x Hð Þ∥2L2 ;
(ix) −

1
β

R
R3∂ijkv ⋅ ∂ijk 1

ρ −
1
ρ

� �
H ⋅rHT
À Áh i

dx ≤ Cδ ∥ ∂xϱ; ∂2xϱ; ∂3xϱ; ∂3x v; ∂4x Hð Þ ∥2L2 :

Combining the above, we conclude that:

J2 ≤ Cδ ∂xϱ; ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂4x v; ∂2xϑ; ∂3x H; ∂4x Hð Þk k2L2 ;
ð47Þ

Similarly, we find that:

J3 ≤ Cδ ∂xϱ; ∂2xϱ; ∂3xϱ; ∂3x v; ∂4x v; ∂2xϑ; ∂3xϑ; ∂4xϑ; ∂3x H; ∂4x Hð Þk k2L2 ;
ð48Þ

and

J4 ≤ Cδ ∂3x v; ∂4x v; ∂3x H; ∂4x Hð Þk k2L2 : ð49Þ

Accordingly, from Equations (45)–(49), we obtain:

d
dt

∂3x ϱ; v; ϑ;Hð Þk k2L2 þ C ∂4x v; ∂4xϑ; ∂4x Hð Þk k2L2
≤ Cδ ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂2xϑ; ∂3xϑ; ∂3x Hð Þk k2L2 :

ð50Þ
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Hence, the lowest and highest estimate inequalities Equa-
tions (40) and (50), with the help of Equation (14), yield:

d
dt

ϱ; ∂3xϱ; v; ∂3x v; ϑ; ∂3xϑ;H; ; ∂3xHð Þk k2L2
þ C ∂xv; ∂4x v; ∂xϑ; ∂4xϑ; ∂xH; ∂4x Hð Þk k2L2 ≤ Cδ ∂xϱ; ∂3xϱð Þk k2L2 :

ð51Þ

C: L2-norms of ∂xϱ; ∂3xϱ:
First, we estimate ∂xϱ. To this purpose, we calculated as

follows:

Z
R3

β rϱj j2 þ αrϱ ⋅ vð Þtdx

¼
Z

R3
2βrϱ ⋅rϱt þ αrϱt ⋅ v þ αrϱ ⋅ vtð Þdx:

ð52Þ

From Equation (20), we estimate the first term on the
right-hand side of Equation (52) as follows:

Z
R3
2βrϱ ⋅rϱtdx ¼

Z
R3
2βrϱ ⋅r N1 − αdiv v½ �dx

¼
Z

R3
2βrϱ ⋅r −αβ2div ϱvð Þ − αdiv v½ �dx

¼ −

Z
R3
2βrϱ ⋅r αβ2 v ⋅rϱþ ϱdiv vð Þ½

− αdiv v�dx ≤ Cδ ∂xϱ; ∂xv; ∂2x vð Þk k2L2
−

Z
R3
2αβrϱ ⋅rdiv vdx ≤ Cδ ∂xϱ; ∂xv; ∂2x vð Þk k2L2

− 2αβ
Z

R3
rϱ ⋅rdiv vdx;

ð53Þ

where we have used:

rϱ ⋅ r2ϱ ⋅ vð Þ ¼ ∂iϱ∂ijϱvj ¼ r rϱj j2
2

⋅ v: ð54Þ

We estimate the second term as follows:

Z
R3
αrϱt ⋅ vdx ¼

Z
R3
αr N1 − αdiv vð Þ ⋅ vdx

¼ −

Z
R3
α N1 − αdiv vð Þdiv vdx ≤ Cδ ∂xϱ; ∂xvk k2L2

þ α2
Z

R3
div vð Þ2dx:

ð55Þ

From Equation (21), we can estimate the last term:

Z
R3
αrϱ ⋅ vtdx ¼

Z
R3
αrϱ ⋅ N2 − αrϑ − αrϱ½

þ μβ2Δv þ β2 μþ λð Þrdiv v þ βH ⋅rH
− βH ⋅rTH

Ã
dx ≤ Cδ

∂xϱ; ∂xv; ∂2x v; ∂xϑ; ∂xHð Þk k2L2
−

Z
R3
α2 rϱj j2 þrϱ ⋅rϑ½ �dx

þ
Z

R3
αβ2 μrϱ ⋅ Δv þ μþ λð Þrϱ½

⋅rdiv v�dx þ
Z

R3
αβrϱ

⋅ H ⋅rH −H ⋅rHT
Â Ã

dx:

ð56Þ

Then, estimate the right-hand side of the above inequal-
ities, the detail of which is the following:

(i) −
R
R3α2 rϱj j2 þ½ rϱ ⋅rϑ�dx ≤ −

R
R3α2 rϱj j2dxþ

1
2

R
R3α2 rϱj j2dxþ 1

2

R
R3α2 rϑj j2dx ≤ −

α2

2 ∥ ∂xϱ ∥2L2
þ α2

2 ∥ ∂xϑ∥2L2 ;
(ii)

R
R3αβ2 μrϱ ⋅ Δvþ½ μþ λð Þrϱ ⋅rdiv v�dx−

2αβ
R
R3rϱ ⋅rdiv vdx ¼ R

R3αβrϱ ⋅ Δv −ð rdiv vÞ
dx ≤ α2

4 ∥ ∂xϱ ∥2L2 þ 4β2 ∥ ∂xv∥2L2 ;
(iii)

R
R3αβrϱ ⋅ H ⋅rH−

Â
H ⋅rHT �

dx ≤ α2

8 ∥ ∂xϱ ∥2L2 þC ∥ ∂xH∥2L2

Hence, from Equations (52)–(56) and with help of Equa-
tion (14), we obtain:

Z
R3

β rϱj j2 þ αrϱ ⋅ vð Þtdx þ
α2

8
∂xϱk k2L2

≤Cδ ∂xv; ∂2x v; ∂xϑ; ∂xHk k2L2 þ α2 div vk k2L2 þ 4β2 ∂2x vk k2L2
þ α2

2
∂xϑk k2L2 þ C ∂xHk k2L2 :

ð57Þ

We now turn to estimate ∂3xϱ.
As in Equation (52), by direct calculation, we have:

Z
R3

β ∂ijkϱ
�� ��2 þ α∂ijkϱ ⋅ ∂ijvk

Â Ã
tdx

¼
Z

R3
2β∂ijkϱ ⋅ ∂ijkϱt þ α∂ijkϱt ⋅ ∂ijvk þ α∂ijkϱ ⋅ ∂ijvkt dx:

ð58Þ

We estimate the first term on the right side of Equation
(58) given as follows:
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Z
R3
2β∂ijkϱ ⋅ ∂ijkϱtdx ¼

Z
R3
2β∂ijkϱ ⋅ ∂ijk N1 − αdiv v½ �dx

¼
Z

R3
2β∂ijkϱ ⋅ ∂ijk −αβ2div ϱvð Þ − αdiv v½ �dx

¼
Z

R3
2β∂ijkϱ ⋅ ∂ijk −αβ2rϱ ⋅ v − αβ2ϱdiv v − αdiv v½ �dx

≤ Cδ ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂4x vð Þk k2L2 −
Z

R3
αβ3r ∂ijkϱ

�� ��2 ⋅ v
þ 2αβ∂ijkϱ∂ijkdiv vdx ≤ Cδ ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂4x vð Þk k2L2
− 2αβ

Z
R3
∂ijkϱ∂ijkdiv vdx:

ð59Þ

Similarly, we estimate the second term:

Z
R3
α∂ijkϱt ⋅ ∂ijvkdx ¼

Z
R3
α∂ijk N1 − αdiv v½ � ⋅ ∂ijvkdx

¼ −

Z
R3
α∂ij N1--αdiv v½ �∂ijdiv vdx

≤Cδ ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x vð Þk k2L2 þ α2
Z

R3
∂ijdiv v
À Á

2dx:

ð60Þ
And we estimate the last term as follows:
First, we detail the estimate of the integral

R
R3α∂ijkϱ ⋅

∂ij Nk
2

Â Ã
dx

(i) −
R
R3α2β2∂ijkϱ ⋅ ∂ij v ⋅rvð Þdx ≤ C ∥ ∂3xϱ∥L2 ∥

v ⋅rvð Þ∥L2 ≤ C ∥ ∂3xϱ∥L2 ∥v∥L1 ∥ ∂3x v∥L2 þ½
∥∂2x v∥L2 ∥ ∂xv∥L1�≤Cδ ∥ ∂3xϱ∥L2 ∥∂3x v∥L2 þ½
∥∂2x v∥L2 �≤Cδ ∥ ∂3xϱ;ð ∂2x v; ∂3x vÞ∥2L2 ;

(ii) −
R
R3α2∂ijkϱ ⋅ ∂ij

ϑ⋅rϱ
ϱ

� �
dx ≤ C∥∂3xϱ∥L2∥∂2x

ϑ⋅rϱ
ϱ

� �
∥L2

≤C∥∂3xϱ∥L2 ∥ 1
ρ ∥L1∥∂

2
x ϑ ⋅rϱð Þ∥L2 þ

h
∥∂2x 1

ρ

� �
∥L2∥

ϑ ⋅rϱð Þ∥L1�≤Cδ∥∂3xϱ∥L2 ∥ϑ∥L1∥∂3xϱ∥L2 þ½ ∥∂2xϑ∥L2

∥∂xϱ∥L1 þ ∥ 2
ρ3 ∂xϱ ⋅ ∂xϱ∥L2 þ ∥ 1

ρ2 ∂
2
xϱ∥L2 �≤Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂2xϑð Þ∥2L2 ;
(iii) −

R
R3

α2

β2 ∂ijkϱ ⋅ ∂ij
1
ρ −

1
ρ

� �
⋅rϱ

h i
dx ≤ C∥∂3xϱ∥L2∥∂2x

1
ρ −

1
ρ

� �
⋅rϱ ∥L2 ≤C∥∂3xϱ∥L2 ∥ 1

ρ −
1
ρ

� �
∥L1∥∂3xϱ

h
∥L2 þ ∥∂2x 1

ρ −
1
ρ

� �
∥L2∥∂xϱ∥L1�≤Cδ∥∂3xϱ∥L2 ∥∂3xϱ½

∥L2 þ ∥ 2
ρ3 ∂xϱ ⋅ ∂xϱ∥L2 þ ∥ 1

ρ2 ∂
2
xϱ∥L2 �≤Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱð Þ∥2L2 ;
Similarly, we find that

(iv)
R
R3μα∂ijkϱ ⋅ ∂ij 1

ρ −
1
ρ

� �
Δv

h i
dx ≤ Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂4x vð Þ∥2L2 ;
(v)

R
R3α μþð λÞ∂ijkϱ ⋅ ∂ij 1

ρ −
1
ρ

� �
rdiv v

h i
dx ≤ Cδ ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂4x vð Þ∥2L2 ;
(vi)

R
R3α2∂ijkϱ ⋅ ∂ij 1

ρ H ⋅rHð Þ
h i

dx ≤ Cδ ∥
∂xϱ; ∂2xϱ; ∂3xϱ; ∂2xH; ∂3xHð Þ∥2L2 ;

(vii)
R
R3

α
β ∂ijkϱ ⋅ ∂ij

1
ρ −

1
ρ

� �
H ⋅rH
À Áh i

dx ≤ Cδ ∥ ∂xϱ;ð
∂2xϱ; ∂3xϱ; ∂3xHÞ∥2L2 ;

(viii) −
R
R3α2∂ijkϱ ⋅ ∂ij 1

ρ H ⋅rHTð Þ
h i

dx ≤ Cδ ∥ ∂xϱ;ð
∂2xϱ; ∂3xϱ; ∂2xH; ∂3xHÞ∥2L2 ;

(ix) −
R
R3

α
β ∂ijkϱ ⋅ ∂ij

1
ρ −

1
ρ

� �
H ⋅rHT
À Áh i

dx ≤ Cδ∥

∂xϱ; ∂2xϱ; ∂3xϱ; ∂3xHð Þ ∥2L2 :
Hence, from (i) to (ix); we derive the following estimate:

Z
R3
α∂ijkϱ ⋅ ∂ijvkt dx ¼

Z
R3
α∂ijkϱ ⋅ ∂ij Nk

2 − α∂kϑ − α∂kϱ
Â

þ μβ2Δvk þ β2 μþ λð Þ∂kdiv vk
þ βH ⋅ ∂kH − βH ⋅ ∂kHT

Ã
dx

≤ Cδ ∂xϱ; ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x v; ∂4x v;ðk
∂2xϑ; ∂2xH; ∂3xHÞk2L2 −

Z
R3
α2 ∂ijkϱ

�� ��2Â

þ ∂ijkϱ ⋅ ∂ijkϑ
Ã
dx þ

Z
R3
αβ∂ijkϱ

⋅ ∂ijΔvk þ ∂ijkdiv vk
Â Ã

dx

þ
Z

R3
αβ∂ijkϱ ⋅ H ⋅ ∂kH −H ⋅ ∂kHT

Â Ã
dx;

ð61Þ

where

−

Z
R3
α2 ∂ijkϱ

�� ��2 þ ∂ijkϱ ⋅ ∂ijkϑ
Â Ã

dx ≤ −
α
2
2 ∂3xϱk k2L2 þ α

2
2 ∂3xϑk k2L2 ;

ð62Þ

Z
R3
αβ∂ijkϱ ⋅ ∂ijΔvk − ∂ijkdiv vk

Â Ã
dx ≤

α2

4
∂3xϱk k2L2 þ 4β2 ∂4x vk k2L2 ;

ð63Þ

and

Z
R3
αβ∂ijkϱ ⋅ H ⋅ ∂kH −H ⋅ ∂kHT

Â Ã
dx ≤

α2

8
∂3xϱk k2L2 þ C ∂3xHk k2L2 :

ð64Þ

This together with Equations (58)–(61) and by inequality
Equation (14), we obtain:

Z
R3

β ∂ijkϱ
�� ��2 þ α∂ijkϱ∂ijvk

Â Ã
tdx þ

α2

8
∂3xϱk k2L2

≤ Cδ ∂xϱ; ∂xv; ∂4x v; ∂xϑ; ∂4xϑ; ∂xH; ∂4xHð Þk k2L2
þ α2 ∂i jdiv v

 2
L2 þ 4β2 ∂4x vk k2L2 þ

α2

2
∂3xϑk k2L2 þ C ∂3xHk k2L2 :

ð65Þ

D: Conclusion consequently, as in [4], adding Equations
(57) and (65), and using Equation (14), we have:
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Z
R3

β rϱj j2 þ αrϱ ⋅ vð Þtdx þ
α2

8
∂xϱk k2L2

þ
Z

R3
β ∂ijkϱ
�� ��2 þ α∂ijkϱ∂ijvk

Â Ã
tdx þ

α2

8
∂3xϱk k2L2

≤ Cδ ∂xv; ∂2x v; ∂xϑ; ∂xHð Þk k2L2 þ α2 div vk k2L2
þ 4β2 ∂2x vk k2L2 þ

α2

2
∂xϑk k2L2 þ C ∂xHk k2L2

þ Cδ ∂xϱ; ∂xv; ∂4x v; ∂xϑ; ∂4xϑ; ∂xH; ∂4xHð Þk k2L2
þ α2 ∂i jdiv v

 2
L2 þ 4β2 ∂4x vk k2L2 þ

α2

2
∂3xϑk k2L2

þ C ∂3xHk k2L2 ≤ Cδ ∂xϱk k2L2
þ C ∂xv; ∂4x v; ∂xϑ; ∂4xϑ; ∂xH; ∂4xHð Þk k2L2 :

ð66Þ

Multiplying the above estimate by ζ 2 0;ð 1=2Þ; and add-
ing the resulting inequality and Equation (51), we obtain:

ζ

Z
R3

β ∇ϱj j 2 þ α∇ϱ ⋅ vð Þtdx þ
α2

8
∂xϱk k2L2 þ

Z
R3

βð ∂ijkϱ
�� �� 2

þ α∂ijk∂ijϱvk
Á
tdx þ

α2

8
∂3xϱk k2L2

2
664

3
775

þ d
dt

ϱ; ∂3xϱ; v; ∂3xv; ϑ; ∂3xϑ;H; ∂3xHk k2L2

þ C
2

∂xv; ∂4xv; ∂xϑ; ∂4xϑ; ∂xH; ∂4xHð Þk k2L2 ≤ Cδζ ∂xϱk k2L2
þ Cδ ∂xϱ; ∂3xϱð Þk k2L2 :

ð67Þ

Now, letting δ 2 0;ð ζα2= 16Cð ÞÞ; we further have:

d
dt

ϱ; ∂3xϱ; v; ∂3x v; ϑ; ∂3xϑ;H; ∂3xHð Þk k2L2
È

þ
Z

R3
ζ β rϱj j2 þ αrϱ ⋅ v þ β ∂ijkϱ

�� ��2Â
þ α∂ijkϱ∂ijvk

Ã
dx
Éþ C1 ζð Þ

∂xϱ; ∂3xϱ; ∂xv; ∂4x v; ∂xϑ; ∂4xϑ; ∂xH; ∂4xHð Þk k2L2 ≤ 0;

ð68Þ

where C1 ζð Þ:¼min C=2;f ζα2=16g: By Cauchy’s inequality,
we have:

Z
R3
ζ β rϱj j2 þ αrϱ ⋅ v þ β ∂ijkϱ

�� ��2Â

þ α∂ijkϱ∂ijvk
Ã
dx ≥

ζβ

2
rϱk k2L2 þ ∂i jkϱ

 2
L2

À Á

−
ζα2

2β
vk k2L2 þ ∂i jvk

 2
L2

À Á
:

ð69Þ

Noting that α and β are finite, integrating Equation (68)
directly with respect to time, and using Equations (14), (19),
(29), and (30), we can obtain the a priori estimates of the
Equations (20)–(24) by choosing sufficiently small ζ. We can
finish the proof of Theorem 4.

2.2. Global Existence Proof. In this subsection, the existence
part has been proofed from Theorem 2. There is no need to
prove the local existence because it is already proved in [6]
and found in [7, 8]:

Theorem 5. Under the assumptions of Theorem 2, there exists
a positive constant T such that the initial value problem
Equations (5)–(6) has a unique solution ρ;ð u; θ;HÞ, which
continuous in 0;½ T�×R3 together with its derivatives of first
order in t and of second order in x, and there exists a constant
C2>1 such that the following inequality is satisfied:

ρ − ρ; v; θ − θ;H −H
À Á

⋅; tð Þ 2
H3

þ
Z

t

0
∂xρ ⋅; sð Þk k2H2 þ ∂xv; ∂xθ; ∂xHð Þ ⋅; sð Þk k2H3ds

≤ C2 ρ0 − ρ; v0;H0 −H
À Á 2

H3 ;

ð70Þ

for any t 2 0;½ T�.

The global existence of smooth solutions is confirmed by
a continued argument that combines the local existence the-
orem and the theorem of a priori estimates.

Postulate

E0 ¼ ρ0 − ρ; v0; θ0 − θ;H0 −H
À Á 

H3 <δ=
ffiffiffiffiffiffiffiffiffiffi
C1C2

p
;

ð71Þ

where δ is defined in Theorem 4. Because the initial data
satisfy E0<δ=

ffiffiffiffi
C

p
2; then by Theorem 5, there exists a posi-

tive constant T1>0; such that the smooth solution of Equa-
tions (5) and (6) on 0;½ T1� exists and has the following
estimate:

ρ − ρ; v; θ − θ;H −H
À Á

⋅; tð Þ 2
H3 þ

Z
t

0
∂xρ ⋅; sð Þk k2H2

þ ∂xv; ∂xθ; ∂xHð Þ ⋅; sð Þk k2H3ds ≤ C2E2
0;

ð72Þ

for 0 ≤ t ≤ T1. It implies:

E1 ¼
sup

0 ≤ t ≤ T1
ρ − ρ; v; θ − θ;H −H
À Á

⋅; tð Þ 
H3 ≤

ffiffiffiffiffi
C2

p
E0<δ:

ð73Þ

Thus, the solution satisfies the a priori estimate Equation
(17), by Theorem 4 and Equation (71), we have:

E1 ≤
ffiffiffiffiffi
C1

p
E0<

δffiffiffiffiffi
C2

p : ð74Þ

Thus, by Theorem 5, the initial problem (5) for t ≥ T1,
with initial data ρ;ð v; θ;HÞ x;ð T1Þ again has a unique local
solution ρ;ð v; θ;HÞ that satisfies:
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ρ − ρ; v; θ − θ;H −H
À Á

⋅; tð Þ 2
H3

þ
Z

t

0
∂xρ ⋅; sð Þk k2H2 þ ∂xv; ∂xθ; ∂xHð Þ ⋅; sð Þk k2H3ds

≤ C2 ρ − ρ; v; θ − θ;H −H
À Á

⋅;T1ð Þ 2
H3 ;

ð75Þ

for T1<t<2T1. This together with Equations (71) and (74)
yields:

sup

T1 ≤ t ≤ T2
ρ − ρ; v; θ − θ;H −H
À Á

⋅; tð Þ 
H3

≤
ffiffiffiffiffi
C1

p
E1 ≤

ffiffiffiffiffiffiffiffiffiffi
C1C2

p
E0<δ:

ð76Þ

Then by Equations (73) and (76) and Theorem 4, we
have:

E2 ¼
sup

0 ≤ t ≤ 2T1
ρ − ρ; v; θ − θ;H −H
À Á

⋅; tð Þ 2
H3 R3ð Þ

≤
ffiffiffiffiffi
C1

p
E0 ≤ δ=

ffiffiffiffiffi
C2

p
:

ð77Þ

We are able to perform similar procedure with 0 ≤ t ≤
nT1; n ¼ 3; 4; 5; ⋅ ⋅ ⋅ and eventually obtain the global solution
and the estimate Equation (8): It is easy to prove the unique-
ness of the solutions, although the proof is omitted here.

3. Decay Rate of the Solution

In this section, we will prove the rate of convergence of the
solution to complete the proof of Theorem 3. In subsection 1,
we give some elementary conclusions about the estimates of
the decay-in-time for the linearized system Equations
(20)–(24) and a useful inequality. In subsection 2, we first
obtain the energy inequality for the derivatives of order one
through two, and then point out a decay-in-time estimate for
the first-order derivatives, where the error is on the higher-
order derivatives. Finally, we determine the optimal decay
rates by bringing together these two estimates.

3.1. Some Elementary Decay-in-Time Estimates.We consider
the rate of convergence of the solution ϱ;ð v; ϑ;HÞ for the
linearization problem (20)–(24). For later use, the result on
the global existence of solutions to Equations (20)–(24) is
reformulated as follows:

Proposition 6. Under the assumption of divH0 ¼ 0 and (7),
there exists a unique globally smooth solution ϱ;ð v; ϑ;HÞ of
the Cauchy problem (20)–(24) satisfying for any t 2 0;½ 1Þ,

ϱ; v; ϑ;Hð Þ ⋅; tð Þk k2H3 þ
Z

t

0
∂xϱ ⋅; sð Þk k2H2

þ ∂xv; ∂xϑ; ∂xHð Þ ⋅; sð Þk k2H3ds ≤ C ϱ0; v0; ϑ0;H0ð Þk k2H3 :

ð78Þ

Moreover, ρ;ð v; ϑ;HÞ which satisfies Equation (19)
uniquely solves the initial problem Equations (5)–(6) for all
time. To utilize the Lp − Lq estimates to the linear problem
for the nonlinear problem (20)–(23), we rewrite the solution
of Equations (20)–(23) as:

U tð Þ ¼ E tð ÞU0 þ
Z

t

0
E t − sð ÞF U sð Þð Þds; ð79Þ

where

U ¼ ϱ; v; ϑ;H½ �T ;U0 ¼ ϱ0; v0; ϑ0;H0½ �T ;
F ¼ N1;N2;N3;N4½ �T ; ð80Þ

and E tð Þ is the solution of the semigroup defined by E tð Þ¼
e−tA; t ≥ 0; where A is a matrix-valued differential operator
given by

A ¼

0 αrT 0 0

αr −μβ2IΔ − β2 μþ λð ÞrrT αr −βIH ⋅rþ βrHT

0 αrT
−β2Δ 0

0 −βIH ⋅rþ βH ⋅rT 0 −IΔ

2
66664

3
77775:

The semigroup E tð Þ has the following properties on the
decay in time [9, 10].

Lemma 7. Let k ≥ 0 be an integer and 1 ≤ p ≤ 2 ≤ q<1:
Then, for any t ≥ 0, it holds that:

rkE tð ÞU0

 
Lq ≤ C 1þ tð Þ−σ p;q;kð Þ U0k kLp∩Hk ; ð81Þ

where σ p;ð q; kÞ is defined by Equation (12) and ∥ ⋅ ∥Lp∩Hk ¼
∥ ⋅ ∥Lp þ ∥ ⋅ ∥Hk .

Lemma 8. If k ≥ 0 is an integer and 1 ≤ p ≤ 2. Then, for any
t ≥ 0;

rkE tð ÞU0

 
L2 ≤ C 1þ tð Þ−σ p;2;kð Þ U0k kLp þ ∂kxU0

 
L2

À Á
;

ð82Þ

holds where σ p;ð q; kÞ is defined by Equation (12) and
∥ ⋅ ∥Lp∩Hk ¼ ∥ ⋅ ∥Lp þ ∥ ⋅ ∥Hk .

We end this subsection by listing an elementary but use-
ful inequality [12]:

Lemma 9. If r1>1 and r2 2 0;½ r1�, then we haveR
t
0 1þ t − τð Þ−r1 1þ τð Þ−r2dτ ≤ C r1;ð r2Þ 1þ tð Þ−r2 .
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3.2. Convergence Rates. First, we will estimate the decay rates
of the first-order derivatives.

Lemma 10. Under the assumption of Proposition 6, let ϱ;ð v;
ϑ;HÞ be the solution to the initial problem (20)–(24). Then,
we have:

∂x ϱ; v; ϑ;Hð Þk kL2 ≤ CK0 1þ tð Þ−σ p;2;1ð Þ

þ Cδ0

Z
t

0
1þ t − sð Þ−σ p;2;1ð Þ ∂x ϱ; v; ϑ;Hð Þ ⋅; sð Þk kH2ds;

ð83Þ

when K0 ¼ ∥ ϱ0;ð v0; ϑ0;H0Þ∥Lp∩H3 is finite from Equations
(7) and (9). Here, 1 ≤ p< 6

5 and σ is defined by Equation (13).

Proof. From the integral formula (79) and Lemma 7, we
have:

∂x ϱ; v; ϑ;Hð Þk kL2 ≤ CK0 1þ tð Þ−σ p;2;1ð Þ

þ C
Z

t

0
1þ t − sð Þ−σ p;2;1ð Þ N1;N2;N3;N4ð Þk kLp∩H1 ⋅; sð Þds;

ð84Þ

where 1 ≤ p< 6
5. To derive (83); we need to control ∥ N1;ð N2;

N3;N4Þ∥Lp∩H1 by the L2 norm of derivatives of ϱ; v; ϑ;H.
From Proposition 6:

N1k kLp ¼ αβ2 rϱ:v þ ϱ:div vð Þk kL2 ; ð85Þ

≤C ϱ; vð Þk k
L

2p
2−p

∂xϱ; ∂xvð Þk kL2 ; ð86Þ

≤ ϱ; vð Þk kH1 ∂xϱ; ∂xvð Þk kL2 ; ð87Þ

≤Cδ0 ∂xϱ; ∂xvð Þk kL2 ; ð88Þ

N1k kL2 ≤ Cδ0 ∂xϱ; ∂xvð Þk kL2 ; ð89Þ

and

∂xN1k kL2 ≤ Cδ0 ∂xϱ; ∂2xϱ; ∂xv; ∂2x vð Þk kL2 : ð90Þ

Thus, we achieve:

N1k kLp∩H1 ≤ Cδ0 ∂xϱ; ∂xvð Þk kH1 ; ð91Þ

N2k kLp ≤ C ϱ; v; ϑ;Hð Þk k
L

2p
2−p

∂xϱ; ∂xv; ∂iiv; ∂ijv; ∂xH
À Á 

L2

≤ C ϱ; v; ϑ;Hð Þk k
L

2p
2−p

∂xϱ; ∂xv; ∂2x v; ∂xHð Þk kL2 ;
ð92Þ

≤Cδ0 ∂xϱ; ∂xv; ∂2x v; ∂xHð Þk kL2 ; ð93Þ

N2k kL2 ≤ Cδ0 ∂xϱ; ∂xv; ∂2x v; ∂xHð Þk kL2 ; ð94Þ

and

∂xN2k kL2 ≤ C ϱ; ∂xϱ; v; ∂xv; ϑ; ∂xϑ;H; ∂xHð Þk kL1
∂xϱ; ∂2xϱ; ∂xv; ∂2x v; ∂3x v; ∂4x v; ∂xH; ∂2xH;ð Þk kL2

≤ Cδ0 ∂xϱ; ∂2xϱ; ∂xv; ∂2x v; ∂3x v; ∂xH; ∂2xH;ð Þk kL2 :
ð95Þ

Hence

N2k kLp∩H1 ≤ Cδ0 ∂xϱ; ∂xv; ∂xHð Þk kH2 ; ð96Þ

N3k kLp ≤ C ϱ; v; ∂xv; ϑ; ∂xHð Þk k
L

2p
2−p

∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk kL2
≤ Cδ0 ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk kL2 ;

ð97Þ

N3k kL2 ≤ Cδ0 ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk kL2 ; ð98Þ

and

∂xN3k kL2 ≤ C ϱ; ∂xϱ; v; ∂xv; ϑ; ∂xϑ; ∂xHð Þk kL1
∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂3xϑ; ∂xHð Þk kL2

≤ Cδ0 ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂3xϑ; ∂xHð Þk kL2 :
ð99Þ

We further obtain:

N3k kLp∩H1 ≤ Cδ0 ∂xv; ∂xϑ; ∂xHð Þk kH2 ; ð100Þ

N4k kLp ≤ C v;Hð Þk k
L

2p
2−p

∂xv; ∂xHð Þk kL2 ≤ Cδ0 ∂xv; ∂xHð Þk kL2 ;
ð101Þ

N4k kL2 ≤ C v;Hð Þk kL1 ∂xv; ∂xHð Þk kL2 ≤ Cδ0 ∂xv; ∂xHð Þk kL2 ;
ð102Þ

and

∂xN4k kL2 ≤ C v; ∂xv;H; ∂xHð Þk kL1 ∂xv; ∂2x v; ∂xH; ∂2xHð Þk kL2
≤ Cδ0 ∂xv; ∂2x v; ∂xH; ∂2xHð Þk kL2 :

ð103Þ

Finally, we obtain:

N4k kLp∩H1 ≤ Cδ0 ∂xv; ∂xHð Þk kH2 : ð104Þ

Hence, from Equations (91)–(104), we find:

N1;N2;N3;N4ð Þk kLp∩H1 ≤ Cδ0 ∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk kH2 :

ð105Þ

Then, we can derive Equation (83) from Equations (84)
and (105). □
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We now show the energy equation is an equality as
follows:

Lemma 11. Under the assumption of Proposition 6, let ϱ;ð v;
ϑ;HÞ be the solution to the initial problem (20)–(24), and ϱ;ð
u; θ;HÞ satisfies Equation (19), then there are two constants
C>0;D>0 such that if δ0>0 in Equation (7) is small enough,
the following holds:

dM tð Þ
dt

þ DM tð Þ ≤ C ∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk k2L2 ; ð106Þ

where M tð Þ defined by Equation (115) is equivalent to ∥ ∂xϱ;ð
∂xv; ∂xϑ; ∂xHÞ∥2H2 ; that is, there exists a constant C3>0 such
that:

1
C3

∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk k2H2 ≤M tð Þ
≤ C3 ∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk k2H2 :

ð107Þ

Proof. Considering ∂x to Equations (20)–(23), multiplying by
∂xϱ; ∂xv; ∂xϑ, and ∂xH, respectively, and integrating them
over R3, and adding the results, we have:

1
2
d
dt

∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk k2L2 þ μβ2 ∂2x vk k2L2
þ β2 ∂2xϑk k2L2 þ ∂2xHk k2L2 ¼ ∂xN1; ∂xϱh i
þ ∂xN2; ∂xvh i þ ∂xN3; ∂xϑh i þ ∂xN4; ∂xHh i;

ð108Þ

We then estimate the right-hand side of Equation (108),
and the details are as follows:

∂xN1; ∂xϱh i ≤ N1k kL2 ∂2xϱk kL2 ≤ Cδ0 ∂xϱ; ∂xvk k2H1 ; ð109Þ

∂xN2; ∂xvh i ≤ N2k kL2 ∂2x vk kL2 ≤ Cδ0 ∂xϱ; ∂xv; ∂xHk k2H1 ;

ð110Þ

∂xN3; ∂xϑh i ≤ N3k kL2 ∂2xϑk kL2 ≤ Cδ0 ∂xv; ∂xϑ; ∂xHk k2H1 ;

ð111Þ

and

∂xN4; ∂xHh i ≤ N4k kL2 ∂2xHk kL2 ≤ Cδ0 ∂xv; ∂xHk k2H1 ;

ð112Þ

Hence

1
2
d
dt

∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk k2L2 þ μβ2 ∂2x vk k2L2
þ β2 ∂2xϑk k2L2 þ ∂2xHk k2L2 ≤ Cδ0 ∂xϱ; ∂xv; ∂xϑ; ∂xHk k2H1 :

ð113Þ
□

From this together with Equations (52) and (68), we can
derive the following inequality with the aid of Proposition 6

and inequality (14):

d
dt

Z
R3

∂xϱ; ∂xv; ∂3x v; ∂xϑ; ∂3xϑ; ∂xH; ∂3xHð Þj j2
�

þ ϵ β ∂ijkϱ
�� ��2 þ α∂ijkϱ∂ijvk

À Á
dx
É

þ C ∂3xϱ; ∂2x v; ∂4x v; ∂2xϑ; ∂4xϑ; ∂2xH; ∂4xHð Þk k2L2
≤ C ϵð Þδ0 ∂xϱ; ∂xv; ∂xϑ; ∂xHk k2L2 ;

ð114Þ

where ϵ is sufficiently small. We define the temporal energy
functional as:

M tð Þ ¼
Z

R3
∂xϱ; ∂xv; ∂3x v; ∂xϑ; ∂3xϑ; ∂xH; ∂3xHð Þð Þj j2

þ ϵ β ∂ijkϱ
�� ��2 þ α∂ijkϱ∂ijvk

À Á
dx;

ð115Þ

where we note that M tð Þ is equivalent to ∥∂xϱ; ∂xv; ∂xϑ;
∂xH∥2H2 . By selecting a sufficiently large constant D1>0, and
adding D1 ∥ ∂xϱ; ∂xv; ∂xϑ; ∂xH∥2H2 to both sides of Equation
(114), we derive Equation (106). Now, we are in a position to
prove Equations (9) and (10). Next, we shall state the follow-
ing estimates for ϱ;ð v; ϑ;HÞ:

Proposition 12. Under the assumption of Proposition 6, let
ϱ;ð v; ϑ;HÞ be the solution to the initial problem (79) and ϱ;ð
v; ϑ;HÞ satisfies (78): Then, for p 2 1;½ 6

5Þ, there exists a con-
stant C such that:

∂kx ϱ; v; ϑ;Hð Þ 
L2 ≤ C 1þ tð Þ−σ p;2;1ð Þ; k ¼ 0; 1; 2;

ð116Þ

and

ϱ; v; ϑ;Hð Þk kLq ≤ C 1þ tð Þ−σ p;q;0ð Þ; ð117Þ

for any t ≥ 0 as well as σ is defined by Equation (12):

Proof. Define

h tð Þ ¼ sup

0 ≤ s ≤ t
M sð Þ 1þ sð Þ2σ p;2;1ð Þ; ð118Þ

Note that h tð Þ is nondecreasing, and

∂xϱ; ∂xv; ∂xϑ; ∂xHð Þ ; sð Þk kH2

≤ C
ffiffiffiffiffiffiffiffiffiffi
M sð Þp

≤ C 1þ sð Þ−σ p;2;1ð Þ ffiffiffiffiffiffiffiffi
h tð Þp

;
ð119Þ

for 0 ≤ s ≤ t. Then, it follows from Equation (83) and lemma
(81) that:
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∂xϱ; ∂xv; ∂xϑ; ∂xHð Þk kL2 ≤ CK0 1þ tð Þ−σ p;2;1ð Þ

þ Cδ0

Z
t

0
1þ t − sð Þ−σ p;2;1ð Þ 1þ sð Þ−σ p;2;1ð Þds

ffiffiffiffiffiffiffiffi
h tð Þp

≤ C 1þ tð Þ−σ p;2;1ð Þ K0 þ δ0
ffiffiffiffiffiffiffiffi
h tð ÞpÂ Ã

;

ð120Þ
□

Thus, from Gronwall’s inequality and Equations (106)
and (120), we obtain:

M tð Þ ≤M 0ð Þe−Dt þ C
Z

t

0
e−D t−sð Þ

∂xϱ; ∂xv; ∂xϑ; ∂xHð Þ ; sð Þk k2L2ds ≤ CM 0ð Þ 1þ tð Þ−2σ p;2;1ð Þ

þ C
Z

t

0
1þ t − sð Þ−2σ p;2;1ð Þ 1þ sð Þ−2σ p;2;1ð Þds K2

0 þ δ20h tð Þ½ �
≤ C 1þ tð Þ−2σ p;2;1ð Þ M 0ð Þ þ K2

0 þ δ20h tð Þ½ �:
ð121Þ

Because h tð Þ is nondecreasing, then from Equation (118),
we have thatM sð Þ 1þ sð Þ2σ p; 2;1ð Þ ≤ C M 0ð Þþ½ K2

0 � þCδ20h tð Þ;
for 0 ≤ s≤ t, which implies that:

sup

0 ≤ s ≤ t
M sð Þ 1þ sð Þ2σ p;2;1ð Þ ≤ C M 0ð Þ þ K2

0 þ δ20h tð Þ½ �:

ð122Þ

Then by the smallness of δ; we have

h tð Þ ≤ C M 0ð Þ þ K2
0½ �: ð123Þ

This gives Equation (116): Now we turn to estimate for
∥ ϱ;ð v; ϑ;HÞ∥Lq .

In a similar manner to Equation (84), we have from
Equation (79) that

ϱ; v; ϑ;Hð Þk kLq ≤ CK0 1þ tð Þ−σ p;q;0ð Þ

þ C
Z

t

0
1þ t − sð Þ−σ p;q;0ð Þ N1;N2;N3;N4ð Þ ; sð Þk kLp∩L2ds:

ð124Þ

Thus, using Equations (105), (119), and (123), we find:

ϱ; v; ϑ;Hð Þk kLq ≤ CK0 1þ tð Þ−σ p;q;0ð Þ

þ Cδ0

Z
t

0
1þ t − sð Þ−σ p;q;0ð Þ ∂xϱ; ∂xv; ∂xϑ; ∂xHð Þð Þk kH2ds

≤ CK0 1þ tð Þ−σ p;q;0ð Þ þ Cδ0

Z
t

0
1þ t − sð Þ−σ p;q;0ð Þ

1þ sð Þ−σ p;2;1ð Þdsh tð Þ ≤ CK0 1þ tð Þ−σ p;q;0ð Þ

þ Cδ0 M 0ð Þ þ K2
0½ �12

Z
t

0
1þ t − sð Þ−σ p;q;0ð Þ 1þ sð Þ−σ p;2;1ð Þds

ð125Þ

≤C 1þ tð Þ−σ p;q;0ð Þ; ð126Þ

where 2 ≤ q ≤ 6. Equations (116) and (117) imply Equations
(10) and (11) with the help of Equation (19). Finally, we
improve the decay rates of the second derivatives by modi-
fying the condition on the initial data. First, applying Lemma
8 and formula (79), we can immediately deduce the following
lemma:

Lemma 13. If k ≥ 0 is an integer and 1 ≤ p ≤ 2 ≤ q ≤1;
then for any t>0,

∂kxU tð Þ 
L2 ≤ C 1þ tð Þ−σ p;2;kð Þ U0 tð Þk kLpð

þ ∂kxU0 tð Þ 
L2
Áþ C

Z
t

0
1þ t − sð Þ−σ p;2;kð Þ F U sð Þð Þk kLpð

þ ∂kxF U sð Þð Þ 
L2
Á
:

ð127Þ

where σ is defined by Equation (12).
Next, we state the following proposition, which together

with Equation (19) yields Equation (13). This completes the
proof of Equations (10), (11), and (13) in Theorem 3.

Proposition 14. Under the assumption of Proposition 6, let
ϱ;ð v; ϑ;HÞ be the solution to the initial problem (79) and ϱ;ð
v; ϑ;HÞ satisfies Equation (78), if in addition the initial data
ϱ0;ð v0; ϑ0;H0Þ2H4 and ∥ ϱ0;ð v0; ϑ0;H0Þ∥H4 are small, then
there exists a constant C such that:

∂2x ϱ; v; ϑ;Hð Þk kL2 ≤ C 1þ tð Þ−σ p;2;2ð Þ: ð128Þ

As in the proof of the Theorem 5, we have the global
solution ϱ;ð v; ϑ;HÞ2H4 R3ð Þ by the smallness of ∥ ϱ0;ð v0; ϑ0;
H0Þ∥H4 . Moreover, we determine the decay in-time estimate
(116) for k ¼ 0; 1; 2; 3 (117). Now, we shall estimate for N1;
N2;N3 and N4 in Equation (128):

N1;N2;N3;N4ð Þk kLp ≤ C ϱ; v; ∂xv; ϑ;H; ∂xHð Þk kL2p
∂xϱ; ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk kL2p

≤ ϱ; v; ∂xv; ϑ;H; ∂xHð Þk kϵL2 ϱ; v; ∂xv; ϑ;H; ∂xHð Þk k1−ϵL6

× ∂xϱ; ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk kϵL2
∂xϱ; ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk k1−ϵL6

≤ C ϱ; v; ∂xv; ϑ;H; ∂xHð Þk kϵL2 ∂xϱ; ∂xv; ∂2x v; ∂xϑ; ∂2xϑ; ∂xHð Þk kL2
× ∂2xϱ; ∂2x v; ∂3x v; ∂2xϑ; ∂3xϑ; ∂2xHð Þk k1−ϵL2 ;

ð129Þ

where ϵ ¼ 3
2p −

1
2.

We shall now estimate ∂2x N1;ð N2;N3;N4Þ in detail:

∂2xN1k kL2 ≤ C ϱ; ∂xϱ; v; ∂xvk kL4 ∂2xϱ; ∂3xϱ; ∂2x v; ∂3x vk kL4
≤ C ϱ; vð Þk kH2 ∂2xϱ; ∂2x vð Þk kH2 ;

ð130Þ
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∂2xN2k kL2 ≤ C ϱ; v; ϑ;Hð Þk kL1 ∂3xϱ; ∂3x v; ∂4x v; ∂3xHð Þk kL2
þ C ∂xϱ; ∂2xϱ; ∂xv; ∂xϑ; ∂xHð Þk kL4 ∂2xϱ; ∂2x v; ∂3x v; ∂2xϑ; ∂2xHð Þk kL4
≤ C ϱ; v; ϑ;Hð Þk kH2 ∂2xϱ; ∂2x v; ∂2xϑ; ∂2xHð Þk kH2 ;

ð131Þ

∂2xN3k kL2 ≤ C ϱ; v; ϑð Þk kL1 ∂3x v; ∂3xϑ; ∂4xϑð Þk kL2
þ C ∂xϱ; ∂2xϱ; ∂xv; ∂2x v; ∂xϑ; ∂xH; ∂2xHð Þk kL4
∂2x v; ∂3x v; ∂2xϑ; ∂3xϑ; ∂2xH; ∂3xHð Þk kL4 ≤ C ϱ; v; ϑ;Hð Þk kH2

∂2xϱ; ∂2x v; ∂2xϑ; ∂2xHð Þk kH2 ;

ð132Þ

∂2xN4k kL2 ≤ C v; ∂xv;H; ∂xHð Þk kL4 ∂2x v; ∂3x v; ∂2xH; ∂3xHð Þk kL4
≤ C v;Hð Þk kH2 ∂2x v; ∂2xHð Þk kH2 :

ð133Þ

Therefore, by Lemma 13, the decay-in-time estimates
Equations (116) and (117), and the above estimates for N1;
N2;N3; and N4, we obtain:

∂2xU tð Þk kL2 ≤ C 1þ tð Þ −σ p;2;2ð ÞK0

þ C
Z

t

0
1þ t − sð Þ −σ p;2;2ð Þ F U sð Þð Þk kLpð Þ

þ ∂2x F U sð Þð Þk kL2ð Þds ≤ C 1þ tð Þ−σ p;2;2ð Þ

þ
Z

t

0
1þ t − sð Þ−σ p;2;2ð Þ 1þ sð Þ−5=4ds ≤ C 1þ tð Þ−σ p;2;2ð Þ:

ð134Þ
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