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In this study, Caputo fractional derivative model of HIV and COVID-19 infections is analyzed. Moreover, the well-posedness of a
model is verified to depict that the developed model is mathematically meaningful and biologically acceptable. Particularly, Mittag
Leffler function is incorporated to show that total population size is bounded whereas fixed point theory is applied to show the
existence and uniqueness of solution of the constructed Caputo fractional derivative model of HIV and COVID-19 infections. The
study depicts that as the order of fractional derivative increase the size of the infected variable decrease as time increase.
Additionally, memory effects correspond to order of derivative in the reduction of a number of populations infected both with
HIV and COVID-19 infections. Numerical simulations are performed using MATLAB platform.

1. Introduction

COVID-19 wreaked havoc on both human life and the
immense economic development. A severe economic crisis
and the struggle for survival gripped the entire planet. Even
the most economically developed nation lost faith and was
unable to supply the urgently required resources asked by
doctors at medical facilities [1]. The dynamic transmission of
COVID-19 crises and attack on the upper respiratory organs
cause the breathing system to quickly narrow, which has a
significant negative impact [2]. Additionally, the prevalence of
the virus has decreased overall as a result of the use of masks
and the COVID-19 vaccine that reinforced through activation
ofmemory effects by public health interventions [3]. Recently,
in the worldwide it is registered that 692,576,573 cases,
6,903,976 deaths, and 664,687,106 recovered of COVID-19
[4]. On the other hand, the transmission of human immuno-
deficiency virus transmission through act of sexual practices,
blood transfusion, and possible exposure to the virus is a
burden in the worldwide [5]. Hence, different mathematical
models have been developed to address the impact of diseases
in the whole world [6–8]. For instance in engineering pro-
blems, the application of a regularized ψ–Hilfer fractional

derivative is described by Jajarmi et al. [9] whereas Caputo
fractional derivative is applied in the analysis of accelerated
mass-spring system by Defterli et al. [10]. Recently, fractional
derivative get a great attention due to indication of order of
fractional derivative impact on memory effects to control the
transmission and prevalence of infection in the population
[11]. Caputo fractional derivative is applied in controlling
the transmission dynamics of Nipah virus [12]. Also, some
studies supported with mathematical modeling show that the
occurrence of COVID-19 has significant impact on the HIV
carriers [13, 14]. Moreover, the availability of the infections
within the community inspires further investigation to con-
sider the impact of memory effects through public health
education intervention [15–18]. Also, the Caputo fractional
derivative is incorporated to investigate banking data compe-
tition [19]. Recently, fractional derivative models are fitted to
real data to describe the behavior of the real-world phenom-
ena [20–26]. Therefore, in this study the memory effect is
incorporated and a model with Caputo fractional derivative
is developed and analyzed. The remaining portion of the
paper is divided into the following sections: Section 2, which
introduces preliminary ideas and the formulation of a math-
ematical model; Section 3, which analyzes the fractional
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model mathematically; Section 4, which uses numerical sim-
ulation; Section 5, which discusses the results; and Section 6,
which contains the paper’s conclusion.

2. Mathematical Preliminary and
Model Formulation

2.1. Mathematical Preliminary. In this section, revise basic
definitions and theorems in fractional calculus that supports
the main results of the current study.

Definition 2.1. [27] The order α fractional integral of
Riemann–Liouville of a function f with f :Rþ À! R is given
by

Iαf tð Þ ¼ 1
Γ αð Þ

Z
t

0
t − ξð Þα−1f ξð Þdξ: ð1Þ

Definition 2.2. [28] Let f be an element of the space of abso-
lutely continuous function on a;½ b�; α>0 and n− 1<α≤ n.
The left and right Caputo fractional derivative of a function
f tð Þ with order α is given by

C
a Dα

t f tð Þ ¼ 1
Γ n − αð Þ

Z
t

0
t − ξð Þn−α−1f n ξð Þdξ leftð Þ: ð2Þ

C
t D

α
bf tð Þ ¼ −1ð Þn

Γ n − αð Þ
Z

b

t
ξ − tð Þn−α−1f n ξð Þdξ rightð Þ:

ð3Þ

Definition 2.3. [29] The Laplace transform of the left Caputo
fractional derivative is defined as follows:

L C
a Dα

t f tð Þf g ¼ sαF sð Þ − ∑
n−1

k¼0
f k 0ð Þsα−k−1: ð4Þ

Definition 2.4. [29] The Laplace transform of the function
tβ−1Eα; β Æμtαð Þ is given by

L tβ−1Eα;β Æμtαð ÞÈ É¼ sα−β

Sα ∓ μ
; ð5Þ

where Eα; β tð Þ is the two-parameter Mittage–Leffler function
with parameters α; β>0.

Definition 2.5. [29] Let Eα; β Zð Þ be Mittage–Leffler function.
Then

Eα;β Zð Þ ¼ Z:Eα;αþβ Zð Þ þ 1
Γ βð Þ : ð6Þ

Lemma 1. (Generalized Mean Value Theorem) Suppose that
f tð Þ 2C a;½ b� and C

aDα
t f tð Þ 2C a;½ b� for 0<α≤ 1, then we

have

f tð Þ ¼ f að Þ þ 1
Γ αþ 1ð Þ

C
a D

α
ξ f ξð Þ: t − að Þα; ð7Þ

with a≤ ξ≤ t, for all t 2 a;ð b�.

Moreover, if C
aDα

t0 f t0ð Þ>0; t0 2 a;ð bÞ, then there is a
neighborhood N of t0 such that f tð Þ> f að Þ; 8t 2N . Also, if
C
a D

α
t0 f t0ð Þ<0; t0 2 a;ð bÞ, then there is a neighborhood N of

t0 such that f tð Þ< f að Þ; 8t 2N .

2.2. Model Formulation. To construct our current model, we
have modified the coinfection model of HIV and cholera
virus developed in [30]. We formulate S;C;R;H;Hc;Hr

model of HIV and COVID-19 coinfection by dividing the
total population under consideration as classes consists of (i)
susceptible individuals (S). They are infection free indivi-
duals with possibility of acquiring HIV from HIV infected
individuals through sexual contact and acquiring COVID-19
from COVID-19 infected individuals only through effective
direct contacts; (ii) COVID-19 infected individuals (C). They
are individuals infected with COVID-19 and capable of
transmitting infection to susceptible population through
direct contact; (iii) COVID-19 recovered individuals (R).
They are individuals recovered from COVID-19 infection
with temporary immunity; (iv) HIV/AIDS infected indivi-
duals (H). They are individual infected with only HIV/AIDS
and capable of transmitting HIV to susceptible population
through sexual contacts; (v) coinfected individuals (Hc). They
are individuals infected with HIV and COVID-19. They can
transmit disease with effective contacts with susceptible popula-
tion; (vi) COVID-19 recovered andHIV/AIDS individuals (Hr).
They are HIV/AIDS individuals recovered from COVID-19
with temporary immunity. The following assumptions are also
stated:

(i) For this study a total population size is not
constant;

(ii) Susceptible persons recruited at the rate τ;
(iii) A naturally death rate is μ;
(iv) Only COVID-19 infected individuals die as a result

of infection at the rate φ;
(v) Only HIV/AIDS infected individuals die at the rate

δ¼ ζ;
(vi) Death rate of coinfected individuals die due to

infection at the rate ψ ;
(vii) COVID-19 transmission rate due to direct contact

is βc;
(viii) Transmission rate of HIV/AIDS due to unsafe

exposure to virus is βh;
(ix) Recovery rate of only COVID-19 infected with

temporary immunity is ω;
(x) Recovery rate of coinfected with temporary immu-

nity is κ.
(xi) γ is immunity loss rate of COVID-19 recovered

individuals R;
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(xii) ξ is COVID-19 infection vaccination rate for only
HIV infected individuals;

(xiii) ρ is COVID-19 infection vaccination rate for only
susceptible individuals;

(xiv) η is immunity loss rate of COVID-19 infection
recovered individuals Hr .

The total size of population under study is denoted by
P tð Þ and defined as P tð Þ¼ S tð ÞþC tð ÞþR tð ÞþH tð ÞþHc tð Þ
þHr tð Þ where S tð Þ is the size of susceptible population at
time t, C tð Þ size of COVID-19 population at time t, R tð Þ size
of only COVID-19 recovered population at time t, H tð Þ size
of HIV/AIDS population at time t, Hc tð Þ size of coinfected
population at time t, and Hr tð Þ size of COVID-19 recovered
HIV population at time.

The aforementioned assumptions and supporting flow
diagram described in Figure 1 lead to a model with Caputo
fractional derivative as given by subsequent equations.

C
0D

α
t S¼ τα −

Sβαc C þ Hcð Þ
N

−
Sβαh H þ Hc þ Hrð Þ

N
þ γαR − ρα þ μαð ÞS;

C
0D

α
0C ¼ Sβαc C þ Hcð Þ

N
−
Cβαh H þ Hc þ Hrð Þ

N
− φα þ ωα þ μαð ÞC;

C
0D

α
t R¼ ωαC þ ραS −

Rβαh H þ Hc þ Hrð Þ
N

− γα þ μαð ÞR;
C
0D

α
t H ¼ Sβαh H þ Hc þ Hrð Þ

N
−
Hβαc C þ Hcð Þ

N
þ ηαHr − ξα þ μα þ δαð ÞH;

C
0D

α
t Hc ¼

Hβαc C þ Hcð Þ
N

þ Cβαh H þ Hc þ Hrð Þ
N

− ψα þ κα þ μαð ÞHc;

C
0D

α
t Hr ¼

Rβαh H þ Hc þ Hrð Þ
N

þ καHc þ ξαH − ζα þ ηα þ μαð ÞHr;

ð8Þ

with initial value conditions for the problem S 0ð Þ>0;C 0ð Þ≥
0;R 0ð Þ≥ 0;H 0ð Þ≥ 0;Hc 0ð Þ≥ 0;Hr 0ð Þ≥ 0.

3. Fractional Model Analysis

3.1. Invariant Region

Theorem 1. The solutions of the model (1) are invariant in
the region Ω proper subset of six-dimensional space over non-
negative real numbers such that

Ω¼ S; C; R; H; D; Eð Þ:
n

P ¼ Sþ C þ Rþ H þ Hc þ Hr ≤
τα

μα

�
;

ð9Þ

Proof. To show the boundedness of solution we employ the
method employed by Qian et al. [31]. So, adding correspond-
ing terms on left and right of qualities in model (1) we obtain

C
0D

α
t P ¼ τα − μαP − φαC − δαH − ψαHc − ζαHr: ð10Þ

Implies,

C
0D

α
t P ≤ τα − μαP: ð11Þ

Moreover, for computation purpose, we set the preceding
expression to the form

C
0D

α
t P ¼ τα − μαP: ð12Þ

Also, from the preceding expression, we obtain

C
0D

α
t P þ μαP ¼ τα: ð13Þ

Moreover, applying the Laplace transform on both sides
of the preceding equation yields

L C
0D

α
t Pf g sð Þ þ μαL Pf g sð Þ ¼L ταf g sð Þ: ð14Þ

According to Podlubny [29], applying Laplace transform
definition in Caputo fractional derivative sense such that
L Pf g sð Þ¼P sð Þ¼P, the preceding equation reduces to the
form

δH

H Hc

Hβc (C + Hc)
N

βhC (H + Hc + Hr)
N

βhS (H + Hc + Hr)
N

ξH

τ
μS

μC ωC

γR
ρS

μH μHc ζHrψHc

кHc
Hr

μHr

ηHr

μR
βhR (H + Hc + Hr)

NφC

Sβc (C + Hc)
NS C R

FIGURE 1: Simulation of COVID-19 and HIV dynamics through
direct transmission.
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sαP − ∑
n−1

k¼0
sα−k−1Pk 0ð Þ þ μαP¼ τα

s
: ð15Þ

Also, for n¼ 1; 0<α<1, he preceding equation reduces
to

sαP − ∑
0

k¼0
sα−k−1Pk 0ð Þ þ μαP¼ τα

s
: ð16Þ

Also, by summation property the preceding equation
reduces to

sαP − sα−1P 0ð Þ þ μαP¼ τα

s
: ð17Þ

Moreover, arranging the terms, the preceding equation
can be written as follows:

sα þ μαð ÞP − sα−1P 0ð Þ ¼ τα

s
: ð18Þ

Further, solving forP, the foregoing equation reduces to

P¼ ταs−1

sα þ μα
þ sα−1

sα þ μα
P 0ð Þ: ð19Þ

Also, applying inverse Laplace transform on both sides of
the preceding equation, we obtain

L−1 Pf g ¼L−1 ταs−1

sα þ μα
þ sα−1

sα þ μα
P 0ð Þ

� �
: ð20Þ

Again applying property of inverse Laplace transform,
the preceding equation gives

L−1 Pf g ¼ ταL−1 s−1

sα þ μα

� �
þ P 0ð ÞL−1 sα−1

sα þ μα

� �
:

ð21Þ

Also, using the relationship between inverse Laplace
transform and Mittag Leffler function given by Qian et al.
[31], L−1 sα−β=sα −f λg¼ tβ−1Eα; β λtαð Þ, the preceding equa-
tion reduces to

P tð Þ ¼ τα tαþ1−1Eα;αþ1 −μαtαð ÞÀ Áþ P 0ð Þ t1−1Eα;1 μαtαð ÞÀ Á
:

ð22Þ

Implies,

P tð Þ ¼ ταtαEα;αþ1 −μαtαð Þ þ P 0ð ÞEα;1 −μαtαð Þ: ð23Þ

Also, the definition of Mittag Leffler function, Eα; αþβ zð Þ¼
1=zEα; β zð Þ− 1=z

ffiffiffi
β

p
, the preceding equation reduces to

P tð Þ¼ ταtα
1

−μαtα
Eα;1 −μαtαð Þ − 1

−μαtα
ffiffiffi
1

p
� �

þ P 0ð ÞEα;1 −μαtαð Þ:
ð24Þ

Implies,

P tð Þ ¼ −
τα

μα
Eα;1 −μαtαð Þ þ τα

μα

� �
þ P 0ð ÞEα;1 −μαtαð Þ:

ð25Þ

Hence, taking into consideration the Equation (3), we
obtain:

P tð Þ ≤ τα

μα
þ P 0ð Þ − τα

μα

� �
Eα;1 −μαtαð Þ: ð26Þ

Hence, as time t gets larger and larger the total popula-
tion size is bounded between 0 and τα=μα. □

3.2. Positivity Property
Theorem 2. The solution of the developed fractional model (1)
is positive for all time t in the invariant region Ω ⊂R6þ.

Proof. To show positivity of solutions, we employ the tech-
niques applied by Baleanu et al. [12]. In similar fashion, the
trajectory of solution of solution of model (1) along only one
state-axis, where other state variables vanishes, gives

C
0D

α
t SjS−axis ¼ τα − ρα þ μαð ÞS;

C
0D

α
0CjC−axis ¼ − φα þ ωα þ μαð ÞC;

C
0D

α
t RjR−axis ¼ − γα þ μαð ÞR;

C
0D

α
t HjH−axis ¼ − ξα þ μα þ δαð ÞH;

C
0D

α
t HcjHc−axis ¼ − ψα þ κα þ μαð ÞHc;

C
0D

α
t HrjHr−axis ¼ − ζα þ ηα þ μαð ÞHr:

ð27Þ

Similar to the procedures done for the boundedness
computed in Section 3.1, the solution of the foregoing equa-
tion is solved, respectively, as follows:

S tð Þ ¼ τα

μα
þ S 0ð Þ − τα

μα

� �
Eα;1 −μαtαð Þ>0;

C tð Þ ¼ E 0ð ÞEα;1 − φα þ ωα þ μαð Þtαð Þ>0;
R tð Þ ¼ R 0ð ÞEα;1 − γα þ μαð Þtαð Þ>0>0;
H tð Þ ¼ H 0ð ÞEα;1 − ξα þ μα þ δαð Þtαð Þ>0;
Hc tð Þ ¼ Hc 0ð ÞEα;1 − ψα þ κα þ μαð Þtαð Þ>0;
Hr tð Þ ¼ Hr 0ð ÞEα;1 − ζα þ ηα þ μαð Þtαð Þ>0:

ð28Þ

Therefore, the preceding computed results show that the
solution is positively invariant along the axis of state vari-
ables. Moreover, since the solution of the fractional model
(1) is positive in the plane C−R−H −Hc −Hr plane, let
t∗>0 such that S t∗ð Þ¼ 0;C t∗ð Þ>0;R t∗ð Þ>0;H t∗ð Þ>0;
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Hc t∗ð Þ>0;Hr t∗ð Þ>0 and S tð Þ<S t∗ð Þ. On this plane,

C
0D

α
t S tð Þjt¼t∗ ¼ τα>0: ð29Þ

Moreover, by Caputo fractional derivative mean value
theorem sated and applied by Musa et al. [32], we have

S tð Þ − S t∗ð Þ ¼ 1
Γ αð Þ

C
0D

α
t t0ð Þ t − t∗ð Þα; t0 2 t∗; t½ Þ: ð30Þ

Therefore, we get S tð Þ>S t∗ð Þ which contradicts our ear-
lier assumption for t∗. Hence, the state variable S tð Þ is

nonnegative for all time t. Similarly, other state variables are
nonnegative for all time t. Therefore, any solution of frac-
tional derivative is nonnegative for all time t. □

3.3. Existence and Uniqueness of Solution. In this section, as
presented by Ahmad et al. [28], we show uniqueness and
existence of the solution. However, before we prove the exis-
tence and uniqueness of solution define the kernel functions
from fractional derivative model (1) as follows:

ϕ1 ¼ τα −
Sβαc C þ Hcð Þ

N
−
Sβαh H þ Hc þ Hrð Þ

N
þ γαR − ρα þ μαð ÞS;

ϕ2 ¼
Sβαc C þ Hcð Þ

N
−
Cβαh H þ Hc þ Hrð Þ

N
− φα þ ωα þ μαð ÞC;

ϕ3 ¼ ωαC þ ραS −
Rβαh H þ Hc þ Hrð Þ

N
− γα þ μαð ÞR;

ϕ4 ¼
Sβαh H þ Hc þ Hrð Þ

N
−
Hβαc C þ Hcð Þ

N
þ ηαHr − ξα þ μα þ δαð ÞH;

ϕ5 ¼
Hβαc C þ Hcð Þ

N
þ Cβαh H þ Hc þ Hrð Þ

N
− ψα þ κα þ μαð ÞHc;

ϕ6 ¼
Rβαh H þ Hc þ Hrð Þ

N
þ καHc þ ξαH − ζα þ ηα þ μαð ÞHr:

ð31Þ

Moreover, let X tð Þ¼ S; C; R; H; Hc; Hrð ÞT andH t;ð
X tð ÞÞ¼ ψ ið ÞT ; i¼ 1; 2; 3; 4; 5; 6.

Then model (1) can be written as follows:

C
0D

α
t X tð Þ ¼ ϕ t;X tð Þð Þ;X 0ð Þ ¼ X0 ≥ 0; t 2 0; τ½ �; 0<α ≤ 1:

ð32Þ

In the preceding expression, the condition X0 ≥ 0 is to be
taken component wise. Problem (32) which is equivalent to
model (1), can be described by the integral of

X tð Þ ¼ X0 þ
1

Γ αð Þ
Z

t

0
t − ξð Þα−1ϕ ξ;X ξð Þð Þdξ: ð33Þ

Next we shall analyze model (1) through the integral
representation given above. For that case, let ζ¼C 0;½ð
τ�; RÞ denotes Banach space of all continuous functions that
maps from (0, τ) to Rendowed with the norm

Xk kζ ¼ supt2 0;b½ � X tð Þj jf g; ð34Þ

where X tð Þj j ¼ S tð Þj j þ C tð Þj j þ R tð Þj j þ H tð Þj j þ Hc tð Þj j þ
Hr tð Þj j. Note that, S;C;R;H;Hc;Hr all belong to C 0;½ð
τ�; RÞ. Moreover, we define the operator T : ζ À! ζ by

TXð Þ tð Þ ¼ X0 þ
1

Γ αð Þ
Z

t

0
t − ξð Þα−1φ ξ;X ξð Þð Þdξ: ð35Þ

Hence, the operator T is well-defined due to obvious
continuity of H.

Theorem 4. Let X ¼ S; C ; R; H ; Hc ; Hr

À Á
T , the function

ϕ¼ ϕið ÞT defined above satisfies

ϕ t;X tð Þð Þ − ϕ t;X tð ÞÀ Á 
ζ ≤ Lk X − X

 
ζ; ð36Þ

for some Lk>0.

Proof. The first component of ϕ gives,

ϕ1 t;X tð Þð Þ − ϕ1 t;X tð ÞÀ Á�� ��
¼ Sβαc C þ Hc

À Á
N

−
Sβαc C þ Hcð Þ

N
þ Sβαh H þ Hc þ Hr

À Á
N

����
−
Sβαh H þ Hc þ Hrð Þ

N
þ γαR − γαR þ ρα þ μαð ÞS

− ρα þ μαð ÞS
���:

ð37Þ

Let k1 ¼max Sβαc =N;
È

Sβαc =Ng; k2 ¼max Sβαh=N ;
È

Sβαh=Ng,
then the preceding equation can be reduced to

Abstract and Applied Analysis 5



ϕ1 t;X tð Þð Þ − ϕ1 t;X tð ÞÀ Á�� �� ≤ k1 C − C
�� ��þ k2 Hc − Hc

�� ��
þk2 H − H

�� ��þ k2 Hr − Hr

�� ��þ γα R − R
�� ��þ ρα þ μαð Þ S − S

�� ��
≤ L1 C − C

�� ��þ Hc − Hc

�� ��þ H − H
�� ��þ Hr − Hr

�� ��À
þ R − R
�� ��þ S − S

�� ��Á;
ð38Þ

where,

L1 ¼max k1; k2; ρα þ μα; γαf g: ð39Þ

Therefore,

ϕ1 t;X tð Þð Þ − ϕ1 t;X tð ÞÀ Á�� �� ≤ L1 C − C
�� ��þ Hc − Hc

�� ��À
þ H − H
�� ��þ Hr − Hr

�� ��þ R − R
�� ��þ S − S

�� ��Á;
ð40Þ

In similar fashion the remaining can be shown. Conse-
quently, we can conclude that

ϕ t;X tð Þð Þ − ϕ t;X tð ÞÀ Á 
ζ ≤ Lk X − X

 
ζ; ð41Þ

where Lk ¼ L1 þ L2 þ L3 þ L4 þ L5 þ L6. □

Theorem 5. Let the result of preceding theorem holds Ω¼
τα=Γ αþð 1Þ. If ΩLk<1, then there exists a unique solution of
model (1) on (0; τα) which is uniformly Lyapunov stable.

Proof. The function:ϕ 0;½ τ�×R6þ À! R6þ is obviously contin-
uous on its stated domain. Thus, the existence of the solution
follows from the works done by Ahmad et al. [28].

For uniqueness, we apply Banach contraction mapping
on operator T defined above. Next, we show T is both a self-
map and a contraction. By definition, supt2 0; b½ � ∥ϕ t;ð 0Þ∥¼
τα. Let us now define κ> ∥ X0 ∥ þΩτα=1−ΩLk and a closed
convex set Bk ¼ X 2f ζ : ∥X∥ζ ≤ kg. Thus, for self-map prop-
erty it is enough to show that TBk ⊂ Bk. So let X 2Bk, then

TXk kζ ¼ sup
t2 0;τα½ �

X0 þ
1

Γ αð Þ
Z

t

0
t − ξð Þα−1ϕ ξ;X ξð Þð Þdξ

����
����

� �
;

≤ X0j j þ 1
Γ αð Þ supt2 0;τα½ �

Z
t

0
t − ξð Þα−1 ϕ ξ;X ξð Þð Þ − ϕ ξ; 0ð Þj j þ ϕ ξ; 0ð Þj jð Þdξ

� �
;

≤ X0j j þ 1
Γ αð Þ supt2 0;τα½ �

Z
t

0
t − ξð Þα−1 ϕ ξ;X ξð Þð Þ −H ξ; 0ð Þk kζ þ ϕ ξ; 0ð Þk kζ

À Á
dξ

� �
;

≤ X0j j þ Lk Xk kζkþ τα

Γ αð Þ supt2 0;τα½ �

Z
t

0
t − ξð Þα−1dξ

� �
;

≤ X0j j þ Lkkþ τα

Γ αð Þ supt2 0;τα½ �

Z
t

0
t − ξð Þα−1dξ

� �
;

¼ X0j j þ Lkkþ τα

Γ αþ 1ð Þ α;
¼ X0j j þΩ Lkkþ ταð Þ ≤ k:

ð42Þ

It follows that the operator TX ⊆Bk and T is indeed a
self-map. Next, we prove that T is a contraction. Let X and X
satisfy the abbreviated dynamical system. The using the
result of theorem above, we have

TX − TX
 

ζ ¼ supt2 0;τ½ � TXð Þ tð Þ − TX
À Á

tð Þ�� ��È É
;

¼ 1
Γ αð Þ supt2 0;τ½ �

Z
t

0
t − ξð Þα−1 ϕ ξ;X ξð Þð Þ − ϕ ξ;X ξð ÞÀ Á�� ��dξ

� �
;

≤
Lk

Γ αð Þ supt2 0;τ½ �

Z
t

0
t − ξð Þα−1 X ξð Þ − X ξð Þ�� ��dξ

� �
;

≤ΩLk X − X
 

ζ:

ð43Þ

Hence, if ΩLk<1 then T is contraction mapping and by
Banach contraction mapping principle, T has a unique fixed
point on 0;½ τα� which is a solution of model (1). Moreover,

the uniformly Lyapunov stability of solutions follows as
stated by Ahmad et al. [28]. □

3.4. Disease-Free Equilibrium. The disease-free equilibrium,

Ef
0

� �
of fractional model (1) is a steady state point where the

disease extinct. Setting the state variables for disease equal to
zero, at steady state model (1) gives a disease-free equilib-
rium as follows:

Ef
0 ¼

τ

μ
; 0; 0; 0; 0; 0

� �
: ð44Þ

That is, we set model (1) equal to zero and solve as given
below
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C
0D

α
t S¼ τα −

Sβαc C þ Hcð Þ
N

−
Sβαh H þ Hc þ Hrð Þ

N
þ γαR − ρα þ μαð ÞS¼ 0;

C
0D

α
0C ¼ Sβαc C þ Hcð Þ

N
−
Cβαh H þ Hc þ Hrð Þ

N
− φα þ ωα þ μαð ÞC ¼ 0;

C
0D

α
t R¼ ωαC þ ραS −

Rβαh H þ Hc þ Hrð Þ
N

− γα þ μαð ÞR¼ 0;

C
0D

α
t H ¼ Sβαh H þ Hc þ Hrð Þ

N
−
Hβαc C þ Hcð Þ

N
þ ηαHr − ξα þ μα þ δαð ÞH ¼ 0;

C
0D

α
t Hc ¼

Hβαc C þ Hcð Þ
N

þ Cβαh H þ Hc þ Hrð Þ
N

− ψα þ κα þ μαð ÞHc ¼ 0;

C
0D

α
t Hr ¼

Rβαh H þ Hc þ Hrð Þ
N

þ καHc þ ξαH − ζα þ ηα þ μαð ÞHr ¼ 0:

ð45Þ

Moreover, at vanishing point of C;H;Hc, and Hr , we
obtain

S¼ τα

μα
;R¼ 0: ð46Þ

Therefore, the disease-free equilibrium of fractional
model is computed by applying simple mathematical calcu-
lation as follows:

Ef
0 ¼

τα

μα
; 0; 0; 0; 0; 0

� �
: ð47Þ

3.5. Endemic Equilibrium. The endemic equilibrium, Ef
1, of

fractional derivative model (1) is a point where the diseases
persist in the population. Hence, we can write the endemic
equilibrium as follows:

Ef
1 ¼ S∗;C∗;R∗;H∗;Hc

∗;Hr
∗ð Þ; ð48Þ

where S∗;C∗;R∗;H∗;Hc
∗, and Hr

∗ are obtained by solving
the subsequent equation

C
0D

α
t S¼ τα −

Sβαc C þ Hcð Þ
N

−
Sβαh H þ Hc þ Hrð Þ

N
þ γαR − ρα þ μαð ÞS¼ 0;

C
0D

α
0C ¼ Sβαc C þ Hcð Þ

N
−
Cβαh H þ Hc þ Hrð Þ

N
− φα þ ωα þ μαð ÞC ¼ 0;

C
0D

α
t R¼ ωαC þ ραS −

Rβαh H þ Hc þ Hrð Þ
N

− γα þ μαð ÞR¼ 0;

C
0D

α
t H ¼ Sβαh H þ Hc þ Hrð Þ

N
−
Hβαc C þ Hcð Þ

N
þ ηαHr − ξα þ μα þ δαð ÞH ¼ 0;

C
0D

α
t Hc ¼

Hβαc C þ Hcð Þ
N

þ Cβαh H þ Hc þ Hrð Þ
N

− ψα þ κα þ μαð ÞHc ¼ 0;

C
0D

α
t Hr ¼

Rβαh H þ Hc þ Hrð Þ
N

þ καHc þ ξαH − ζα þ ηα þ μαð ÞHr ¼ 0:

ð49Þ

Moreover, due to trick of the problem, we obtain the
endemic equilibrium from numerical simulation.

3.6. Basic Reproduction Number. The basic reproduction

number Rf
0

� �
is the indicator of disease status at any time

of investigation and defined as the average number of infected

persons flow into a fully susceptible population due to gener-
ation of infected individuals by typical infectious individual.
Inmathematical biology of epidemiology, the next-generation
matrix method is widely applied to systematically obtain basic
reproduction number from a model with more compart-
ments. Let consider model (1) and construct the subsequent
Jacobian matrices at disease-free equilibrium as follows:
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F ¼

βαc 0 βαc 0

0 βαh βαh βαh
0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCA;V ¼

φα þ ωα þ μα 0 0 0

0 ξα þ μα þ δα 0 −ηα

0 0 ψα þ κα þ μα 0

0 −ξα −κα ζα þ ηα þ μα

0
BBBB@

1
CCCCA: ð50Þ

Moreover, the next-generation matrix constructed from
the preceding matrices F and V is given by

FV−1 ¼

βαc
φα þ ωα þ μα

0
βαc

ψα þ κα þ μα
0

0
ξαβαh

bd − ξαηα
þ βαhd

bd − ξαηα
βαh
c
þ βαhbκ

α

c bd − ξαηαð Þ þ
βhκ

αηα

c bd − ξαηαð Þ
βhη

α

bd − ξη
þ βhb
bd − ξαηα

0 0 0 0

0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
: ð51Þ

where a¼φα þωα þ μα; b¼ ξα þ μα þ δα; c¼ψα þ κα þ μα;
d¼ ζα þ ηα þ μα.

The eigenvalues of the preceding matrices are computed
as follows:

λ1 ¼
βαc

φα þ ωα þ μα
; λ2 ¼

ξαβαh
bd − ξαηα

þ βαhd

bd − ξαηα
; λ3 ¼ 0;

λ4 ¼ 0:

ð52Þ

We know that the basic reproduction number is the
spectral radius of next-generation matrix. Thus, the basic
reproduction is computed as given below

Rf
0 ¼max

βαc
φα þ ωα þ μα

;
ξαβαh

bd − ξαηα
þ βαhd

bd − ξαηα

� �
:

ð53Þ

4. Numerical Simulations

4.1. Numerical Schemes for Caputo Fractional Derivative.
The numerical solution of Caputo fractional derivative is
performed using FDE12 [33]. Moreover, the initial popula-
tion sizes are S 0ð Þ¼ 300;000;C 0ð Þ¼ 300;R 0ð Þ¼ 0;H 0ð Þ¼
5;000;Hc ¼ 0;Hr ¼ 0. Moreover, parameter value is given in
Table 1.

5. Results and Discussion

In Figure 2 the size of susceptible population decrease as time
increase which shows the higher activation of humanmemory
toward vaccination the less the population are susceptible.
Moreover, the higher the order of fractional derivative the
higher the mobilization of population toward vaccination.

Figure 3 describes the dynamics of population size subject
to the transmission dynamics of novel COVID-19 and mem-
ory effects through public health education. It is noticed that
the intervention to activate memory of population signifi-
cantly contributes to control the pandemic COVID-19.More-
over, the simulation shows that less memory effect
contributes less in controlling of the infection whereas high
involvement in the activation of human memory results in
better way to control the infection.

In Figure 4, dynamics of only HIV-infected population
size is simulated. It is observed that the memory effect works
well to control the transmission dynamics of HIV infection.
Moreover, the simulation depicts there is comprise of popu-
lation in the long run. Thus, effectively apply the memory
effects before HIV infects many people. In Figure 5, the
simulation of coinfected population size is depicted. It is
shown that the number of individuals infected with both
infections is high at the beginning and the memory effect
is less effective. On the other hand, the memory effects work
well for reducing coinfected individuals as time increase. In
Figure 6, the dynamics of only HIV infected population with
COVID-19 recovered status is simulated. It is observed that
memory effect activation works continually for controlling
COVID-19 for HIV infected population. Hence, a contin-
uum memory effect helps HIV-infected population for
recovery from pandemic COVID-19.

In Figure 7, the dynamics of population size is simulated.
It is shown that the impact of COVID-19 can be controlled
with effective memory effect whereas the HIV infection per-
sists with population. In Figure 8, we observe that the more
individuals are susceptible the more they get infected with
COVID-19 infection whereas less the number of susceptible
individuals the less the number of individuals infected with
COVID-19 infection. In Figure 9, we observe that the more
individuals are susceptible to HIV the more they get attacked
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with HIV infection whereas the less the number of suscepti-
ble individuals toward HIV the less the number of indivi-
duals exposed to the HIV infection. Figure 10 depicts the
transferring of individuals to R(t) with immunity reduces
the number of susceptible individuals.

Figure 11 shows that the number of coinfected indivi-
duals decreases or increases along susceptible population
size. Figure 12 describes that the number of HIV infection
recovered individuals increases as susceptible decrease, but
lately decrease as the number of susceptible individuals
decreases. Figure 13 describes the dynamics of S tð Þ;C tð Þ, and
R tð Þ. The behavior of S tð Þ and C tð Þ alike as they decreases
from the beginning whereas R tð Þ increase initially and
decrease lately. Figure 14 describes the dynamics of S tð Þ;
H tð Þ, andHc tð Þ. The behaviors of S tð Þ andH tð Þ are similarly
get decrease from the beginning whereas Hc tð Þ increase ini-
tially and decrease lately. Figure 15 describes the dynamics of

TABLE 1: Parameter and source description.

Parameter Value Source

μ 0.0000548/day [30]
βc 0.02/day Assumed
λ 200 Assumed
ξ 0.5/day Assumed
ρ 0.5/day Assumed
βh 0.034/day [30]
γ 0.2/day Assumed
φ 0.1/day [5]
δ 0.09/day Assumed
ζ 0.09/day Assumed
ω 1=15/day [5]
ψ 0.15/day Assumed
η 0.1/day Assumed
κ 0.02/day Assumed

t
0 10 20 30 40 50 60

S(
t)

×105

0

0.5

1

1.5

2

2.5

3

α = 0.9
α = 0.7

α = 0.5
α = 0.3

FIGURE 2: Simulation of susceptible population with different order
of fractional derivative.

t
0 10 20 30 40 50 60

C(
t)

0

50

100

150

200

250

300

α = 0.9
α = 0.7

α = 0.5
α = 0.3

FIGURE 3: Simulations of population size infected only with novel
COVID-19.

t
0 10 20 30 40 50 60

H
(t)

0

1,000

2,000

3,000

4,000

5,000

α = 0.9
α = 0.7

α = 0.5
α = 0.3

FIGURE 4: Simulations of only HIV infected population size with time.

t
0 10 20 30 40 50 60

H
c(t

)

0

0.1

0.2

0.3

0.4

0.5

α = 0.9
α = 0.7

α = 0.5
α = 0.3

FIGURE 5: Simulation of HIV and COVID-19 coinfected population
size with time t.
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t (days)
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H
r(t

)

0

2,000

4,000

6,000

8,000

10,000

α = 0.9
α = 0.7

α = 0.5
α = 0.3

FIGURE 6: Simulation of COVID-19 recovered size of HIV infected
population.

t
0 10 20 30 40 50 60

S(
t),

 C
(t)

, R
(t)

, H
(t)

, H
c(t

), 
H

r(t
)

0

0.5

1

1.5

2

2.5

3

S(t)
C(t)
R(t)

H(t)
Hc(t)
Hr(t)

×105

FIGURE 7: Simulation of population size with time t.

C(
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50

0

100

150

200

250

300

S(t)
0 0.5 1 1.5 2 2.5 3

S(t)–C(t)

×105

FIGURE 8: The phase-diagram of susceptible and only corona-
infected population.

S(t)
0 0.5 1 1.5 2 2.5 3

H
(t)
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1,000

2,000

3,000

4,000

5,000
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×105

FIGURE 9: Phase diagram of H tð Þ and S tð Þ population.
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FIGURE 10: Simulation of S tð Þ and R tð Þ phase diagram.
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FIGURE 11: Simulation of S tð Þ and Hc tð Þ phase diagram.
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H tð Þ;Hc tð Þ, and Hr tð Þ. The behaviors of Hc tð Þ and Hc tð Þ are
similarly get increases from the beginning and decreases
lately whereas S tð Þdecreases from the beginning.

6. Conclusion

In this study, fractional derivative is incorporated and the
model of HIV and COVID-19 dynamics is developed and
analyzed. Based on the simulations of HIV and COVID-19
dynamics, infections can be controlled for basic reproduction
number is less than unity. The study depicts that HIV/AIDS
and COVID-19 coinfection may increase, through direct inter-
action of coinfected individuals. Also, fractional derivative
analysis shows increasing memory of population toward
COVID-19 and HIV infections will increase the ability of pop-
ulation to control the infections. In the future study, one can
extend ourmodel to a new generalized fractional derivative and
use real data to describe the biological phenomena. Numerical
simulations are performed using MATLAB platform.
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